JP2020046351A - Voltage input circuit and electric power measurer - Google Patents

Voltage input circuit and electric power measurer Download PDF

Info

Publication number
JP2020046351A
JP2020046351A JP2018176249A JP2018176249A JP2020046351A JP 2020046351 A JP2020046351 A JP 2020046351A JP 2018176249 A JP2018176249 A JP 2018176249A JP 2018176249 A JP2018176249 A JP 2018176249A JP 2020046351 A JP2020046351 A JP 2020046351A
Authority
JP
Japan
Prior art keywords
circuit
voltage
resistor
capacitor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018176249A
Other languages
Japanese (ja)
Other versions
JP7336181B2 (en
Inventor
勝也 橘
Katsuya Tachibana
勝也 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Yokogawa Test and Measurement Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Test and Measurement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Test and Measurement Corp filed Critical Yokogawa Electric Corp
Priority to JP2018176249A priority Critical patent/JP7336181B2/en
Publication of JP2020046351A publication Critical patent/JP2020046351A/en
Application granted granted Critical
Publication of JP7336181B2 publication Critical patent/JP7336181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a voltage input circuit with which it is possible to raise the degree of design freedom for the capacitance value of a capacitor.SOLUTION: A voltage input circuit 80 comprises an op-amp 811, an input unit 800 for supplying an input signal to an inverted input terminal of the op-amp 811, and a feedback unit 810 for feeding the output signal of the op-amp 811 back to the inverted input terminal of the op-amp 811. The input unit 800 includes n resistors (n≥2) that are connected in series, n-1 resistors that are connected between the connecting point of said resistors and a reference potential, n capacitors that are connected in series, and n-1 capacitors that are connected between the connecting point of said capacitors and the reference potential, the connecting point of resistors and the connecting point of capacitors being unconnected. The feedback unit 810 includes an RC parallel circuit.SELECTED DRAWING: Figure 1

Description

本開示は、電圧入力回路及び電力測定器に関する。   The present disclosure relates to a voltage input circuit and a power meter.

電力測定器として、一般的に図7に示す構成のものが知られている(例えば、特許文献1参照)。図7において、電力測定器100は、電圧入力回路10と、電流入力回路20と、演算部30と、表示部40と、メモリ50と、操作部60と、CPU70とを備える。   As a power measuring device, one having a configuration shown in FIG. 7 is generally known (for example, see Patent Document 1). 7, the power measuring device 100 includes a voltage input circuit 10, a current input circuit 20, an arithmetic unit 30, a display unit 40, a memory 50, an operation unit 60, and a CPU 70.

電圧入力回路10は、分圧回路11により入力電圧を分圧した後、増幅回路12により増幅し、A/D変換器13によりデジタル信号に変換する。
に出力する。
The voltage input circuit 10 divides the input voltage by the voltage divider circuit 11, amplifies the input voltage by the amplifier circuit 12, and converts the input signal into a digital signal by the A / D converter 13.
Output to

電流入力回路20は、シャント抵抗21にかかる電圧を増幅回路22で増幅し、A/D変換器23によりデジタル信号に変換する。   The current input circuit 20 amplifies the voltage applied to the shunt resistor 21 by the amplifier circuit 22 and converts the voltage to a digital signal by the A / D converter 23.

演算部30は、A/D変換器13から入力された電圧信号、及びA/D変換器23から入力された電流信号から、電圧値、電流値、電力値などを演算し、演算結果をメモリ50に格納する。表示部40は、演算部30の演算結果を表示する。操作部60は、例えば、ボタン、キー、外付けのキーボードやマウス等であり、測定条件等が設定される。CPU70は、電力測定器1の各機能部10〜60とバスで接続されて各機能部10〜60を制御し、電力測定器1の全体を制御する。   The calculation unit 30 calculates a voltage value, a current value, a power value, and the like from the voltage signal input from the A / D converter 13 and the current signal input from the A / D converter 23, and stores the calculation result in a memory. 50. The display unit 40 displays the calculation result of the calculation unit 30. The operation unit 60 is, for example, a button, a key, an external keyboard, a mouse, or the like, and sets measurement conditions and the like. The CPU 70 is connected to the functional units 10 to 60 of the power measuring device 1 by a bus, controls the functional units 10 to 60, and controls the entire power measuring device 1.

特開2009−288218号公報JP 2009-288218 A

図8は、従来の電圧入力回路10の一例を示す回路図である。良好な周波数特性を得るためには、分圧回路11において、各RC並列回路の時定数をそれぞれ同一の値に合わせる必要がある。すなわち、抵抗121及びコンデンサ131の並列回路の時定数と、抵抗122及びコンデンサ132の並列回路の時定数と、抵抗123及びコンデンサ133の並列回路の時定数と、抵抗124及びコンデンサ134の並列回路の時定数とを同一の値にする必要がある。そのため、抵抗値の大きな抵抗を使用した場合には容量値の小さなコンデンサを使用する必要があり、逆に抵抗値の小さな抵抗を使用した場合には容量値の大きなコンデンサを使用する必要があり、部品を選択する際の制約が大きかった。また、容量値の小さいコンデンサは、一般的に許容差が大きく、可変容量コンデンサ(トリマコンデンサ)等で許容差を調整する場合でも、調整感度や容量値変動の影響が大きくなる。   FIG. 8 is a circuit diagram showing an example of a conventional voltage input circuit 10. In order to obtain good frequency characteristics, it is necessary to adjust the time constants of the respective RC parallel circuits to the same value in the voltage dividing circuit 11. That is, the time constant of the parallel circuit of the resistor 121 and the capacitor 131, the time constant of the parallel circuit of the resistor 122 and the capacitor 132, the time constant of the parallel circuit of the resistor 123 and the capacitor 133, and the time constant of the parallel circuit of the resistor 124 and the capacitor 134. The time constant must be the same value. Therefore, when using a resistor with a large resistance value, it is necessary to use a capacitor with a small capacitance value. Conversely, when using a resistor with a small resistance value, it is necessary to use a capacitor with a large capacitance value. The restrictions on selecting parts were great. In addition, a capacitor having a small capacitance generally has a large tolerance, and even when the tolerance is adjusted by a variable capacitor (trimmer capacitor) or the like, the influence of the adjustment sensitivity and the capacitance value fluctuation becomes large.

そこで、本開示は、コンデンサの容量値の設定自由度を上げることが可能な電圧入力回路及び電力測定器を提供することにある。   Thus, the present disclosure is to provide a voltage input circuit and a power measuring device that can increase the degree of freedom in setting the capacitance value of a capacitor.

幾つかの実施形態に係る電圧入力回路は、分圧回路を備え、前記分圧回路は、オペアンプと、前記オペアンプの反転入力端子に入力信号を供給する入力部と、前記オペアンプの出力信号を前記オペアンプの反転入力端子にフィードバックするフィードバック部と、を備え、前記入力部は、直列接続されたn(n≧2)個の抵抗と、該抵抗同士の接続点と基準電位との間に接続されたn−1個の抵抗と、直列接続されたn個のコンデンサと、該コンデンサ同士の接続点と前記基準電位との間に接続されたn−1個のコンデンサとを有し、前記抵抗同士の接続点と前記コンデンサ同士の接続点とは非接続であり、前記フィードバック部は、RC並列回路を有する。
このように、入力部の抵抗とコンデンサとを分離することにより、コンデンサの容量値の設定自由度を上げることができる。
A voltage input circuit according to some embodiments includes a voltage dividing circuit, the voltage dividing circuit includes an operational amplifier, an input unit that supplies an input signal to an inverting input terminal of the operational amplifier, and an output signal of the operational amplifier. A feedback unit that feeds back to an inverting input terminal of the operational amplifier, wherein the input unit is connected between n (n ≧ 2) resistors connected in series, and a connection point between the resistors and a reference potential. N-1 resistors, n capacitors connected in series, and n-1 capacitors connected between a connection point between the capacitors and the reference potential. And the connection point between the capacitors are not connected, and the feedback unit has an RC parallel circuit.
As described above, by separating the resistor and the capacitor of the input section, the degree of freedom in setting the capacitance value of the capacitor can be increased.

前記nは2であり、前記入力部は、第1抵抗、第2抵抗、及び第3抵抗をT字に接続した抵抗T型回路と、第1コンデンサ、第2コンデンサ、及び第3コンデンサをT字に接続したコンデンサT型回路とを有してもよい。
このように、n=2とすることで、簡易な構成の電圧入力回路を実現することができる。
The n is 2. The input unit includes a resistor T-type circuit in which a first resistor, a second resistor, and a third resistor are connected in a T shape, and a first capacitor, a second capacitor, and a third capacitor that are connected to each other by T. And a capacitor T-type circuit connected in a U-shape.
Thus, by setting n = 2, a voltage input circuit having a simple configuration can be realized.

一実施形態において、前記入力部は第1切替部を有し、前記第1抵抗及び前記第1コンデンサの接続点は、前記電圧入力回路の+端子に接続され、前記第1切替部により、前記第2抵抗及び前記第2コンデンサの接続点は、前記電圧入力回路の−端子に接続されるか、又は前記オペアンプの反転入力端子に接続され、前記第3抵抗及び前記第3コンデンサの接続点は、前記オペアンプの反転入力端子に接続され、前記−端子は前記基準電位を有してもよい。
このように、第1切替部を有することにより、レンジ切り替えをすることができる。
In one embodiment, the input unit has a first switching unit, and a connection point between the first resistor and the first capacitor is connected to a + terminal of the voltage input circuit, and the first switching unit A connection point between the second resistor and the second capacitor is connected to a negative terminal of the voltage input circuit or connected to an inverting input terminal of the operational amplifier, and a connection point between the third resistance and the third capacitor is , Connected to an inverting input terminal of the operational amplifier, the-terminal may have the reference potential.
Thus, the range can be switched by having the first switching unit.

一実施形態において、前記抵抗T型回路の中点及び前記コンデンサT型回路の中点の電圧を監視する監視回路を備えてもよい。
このように、監視回路を備えることにより、異常の発生を検知することができる。
In one embodiment, a monitoring circuit that monitors a voltage at a middle point of the resistor T-type circuit and a middle point of the capacitor T-type circuit may be provided.
Thus, the provision of the monitoring circuit makes it possible to detect the occurrence of an abnormality.

一実施形態において、前記フィードバック部は、複数組のRC並列回路と、第2切替部とを有し、前記第2切替部により、前記複数組のRC並列回路のうちいずれのRC並列回路を用いて前記オペアンプの出力信号をフィードバックさせるかが切り替えられてもよい。
このように、第2切替部を有することにより、レンジ切り替えをすることができる。
In one embodiment, the feedback unit includes a plurality of sets of RC parallel circuits and a second switching unit, and the second switching unit uses any one of the plurality of sets of RC parallel circuits. Whether the output signal of the operational amplifier is fed back may be switched.
Thus, the range can be switched by having the second switching unit.

幾つかの実施形態に係る電力測定器は、前記電圧入力回路を備える。
このような構成によれば、高精度に電圧を測定することができる。
A power meter according to some embodiments includes the voltage input circuit.
According to such a configuration, the voltage can be measured with high accuracy.

本開示によれば、コンデンサの容量値の設定自由度を上げることが可能な電圧入力回路及び電力測定器を提供することができる。   According to the present disclosure, it is possible to provide a voltage input circuit and a power measurement device that can increase the degree of freedom in setting the capacitance value of a capacitor.

一実施形態に係る電圧入力回路を示す図である。FIG. 2 is a diagram illustrating a voltage input circuit according to one embodiment. 図1に示した分圧回路の第1の変形例を示す図である。FIG. 3 is a diagram illustrating a first modification of the voltage divider circuit illustrated in FIG. 1. 図1に示した分圧回路の第2の変形例を示す図である。FIG. 5 is a diagram illustrating a second modification of the voltage divider circuit illustrated in FIG. 1. 図1に示した分圧回路の第3の変形例を示す図である。FIG. 7 is a diagram illustrating a third modification of the voltage divider circuit illustrated in FIG. 1. 図1に示した分圧回路の第4の変形例を示す図である。FIG. 11 is a diagram illustrating a fourth modification of the voltage divider circuit illustrated in FIG. 1. 図1に示した分圧回路の第5の変形例を示す図である。FIG. 13 is a diagram illustrating a fifth modification of the voltage divider circuit illustrated in FIG. 1. 従来の電力測定器の一例を示す図である。FIG. 11 is a diagram illustrating an example of a conventional power measuring device. 従来の電力測定器における電圧入力回路の一例を示す図である。FIG. 9 is a diagram illustrating an example of a voltage input circuit in a conventional power measuring device.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る電圧入力回路を示す図である。図1に示すように、電圧入力回路80は、分圧回路81aと、増幅回路12と、A/D変換器13とを備える。分圧回路81aは、電圧入力回路80の入力電圧を分圧する。増幅回路12は、分圧回路81aにより分圧された電圧を増幅する。A/D変換器13は、増幅回路12により増幅された電圧をアナログ信号からデジタル信号に変換する。なお、増幅回路12は無くてもよく、その場合には、A/D変換器13は、分圧回路81aにより分圧された電圧をアナログ信号からデジタル信号に変換する。   FIG. 1 is a diagram illustrating a voltage input circuit according to an embodiment of the present invention. As shown in FIG. 1, the voltage input circuit 80 includes a voltage dividing circuit 81a, an amplifier circuit 12, and an A / D converter 13. The voltage dividing circuit 81a divides the input voltage of the voltage input circuit 80. The amplifier circuit 12 amplifies the voltage divided by the voltage dividing circuit 81a. The A / D converter 13 converts the voltage amplified by the amplifier circuit 12 from an analog signal to a digital signal. Note that the amplifier circuit 12 may not be provided, and in that case, the A / D converter 13 converts the voltage divided by the voltage dividing circuit 81a from an analog signal to a digital signal.

分圧回路81aは、オペアンプ811と、オペアンプ811の反転入力端子に入力信号を供給する入力部800と、オペアンプ811の出力信号をオペアンプ811の反転入力端子にフィードバックするフィードバック部810とを備える。   The voltage dividing circuit 81a includes an operational amplifier 811, an input unit 800 that supplies an input signal to an inverting input terminal of the operational amplifier 811, and a feedback unit 810 that feeds back an output signal of the operational amplifier 811 to the inverting input terminal of the operational amplifier 811.

入力部800は、直列接続されたn(n≧2)個の抵抗と、該抵抗同士の接続点と基準電位(グラウンド)との間に接続されたn−1個の抵抗と、直列接続されたn個のコンデンサと、該コンデンサ同士の接続点と基準電位との間に接続されたn−1個のコンデンサとを有し、抵抗同士の接続点とコンデンサ同士の接続点とは非接続である。図1では、n=1の場合を示している。すなわち、入力部800は、抵抗821、抵抗822、及び抵抗823をT字に接続したT型回路(以下、「抵抗T型回路」という。)と、コンデンサ831、コンデンサ832、及びコンデンサ833をT字に接続したT型回路(以下、「コンデンサT型回路」という。)とを有し、抵抗同士の接続点(抵抗T型回路の中点)Pと、コンデンサ同士の接続点(コンデンサT型回路の中点)Qとは非接続である。   The input unit 800 is connected in series with n (n ≧ 2) resistors connected in series, and n−1 resistors connected between a connection point between the resistors and a reference potential (ground). N capacitors, and n-1 capacitors connected between a connection point between the capacitors and a reference potential, and a connection point between the resistors and a connection point between the capacitors are not connected. is there. FIG. 1 shows a case where n = 1. That is, the input unit 800 connects a resistor 821, a resistor 822, and a resistor 823 in a T-shape (hereinafter, referred to as a “resistor T-type circuit”) and a capacitor 831, a capacitor 832, and a capacitor 833 to a T-circuit. A T-type circuit (hereinafter, referred to as a “capacitor T-type circuit”) connected in a V-shape, and a connection point P between resistors (middle point of a resistance T-type circuit) and a connection point between capacitors (capacitor T-type circuit) (Middle point of the circuit) Q is not connected.

抵抗821及びコンデンサ831の接続点は、電圧入力回路80の+端子に接続される。すなわち、抵抗821の、コンデンサ831と接続されない端子は中点Pに接続され、コンデンサ831の、抵抗821と接続されない端子は中点Qに接続される。また、抵抗822及びコンデンサ832の接続点は、電圧入力回路80の−端子(グラウンド)に接続される。すなわち、抵抗822の、コンデンサ832と接続されない端子は中点Pに接続され、コンデンサ831の、抵抗821と接続されない端子は中点Qに接続される。また、抵抗823及びコンデンサ833の接続点は、オペアンプ811の反転入力端子に接続される。すなわち、抵抗823の、コンデンサ833と接続されない端子は中点Pに接続され、コンデンサ833の、抵抗823と接続されない端子は中点Qに接続される。   The connection point between the resistor 821 and the capacitor 831 is connected to the + terminal of the voltage input circuit 80. That is, the terminal of the resistor 821 that is not connected to the capacitor 831 is connected to the middle point P, and the terminal of the capacitor 831 that is not connected to the resistor 821 is connected to the middle point Q. The connection point between the resistor 822 and the capacitor 832 is connected to the negative terminal (ground) of the voltage input circuit 80. That is, the terminal of the resistor 822 not connected to the capacitor 832 is connected to the midpoint P, and the terminal of the capacitor 831 not connected to the resistor 821 is connected to the midpoint Q. The connection point between the resistor 823 and the capacitor 833 is connected to the inverting input terminal of the operational amplifier 811. That is, the terminal of the resistor 823 that is not connected to the capacitor 833 is connected to the middle point P, and the terminal of the capacitor 833 that is not connected to the resistor 823 is connected to the middle point Q.

フィードバック部810は、抵抗824及びコンデンサ834のRC並列回路を有する。抵抗824及びコンデンサ834の一端はオペアンプ811の反転入力端子に接続され、抵抗824及びコンデンサ834の他端はオペアンプ811の出力端子に接続される。   The feedback unit 810 has an RC parallel circuit of a resistor 824 and a capacitor 834. One ends of the resistor 824 and the capacitor 834 are connected to an inverting input terminal of the operational amplifier 811, and the other ends of the resistor 824 and the capacitor 834 are connected to an output terminal of the operational amplifier 811.

図2に、分圧回路81aの第1の変形例である分圧回路81bを示す。図2は、分圧回路81bの入力部800において、n=2の場合を示している。すなわち、分圧回路81bの入力部800は、抵抗T型回路の入力側に抵抗825,826を有し、コンデンサT型回路の入力側にコンデンサ835,836を有する。抵抗同士の接続点P,P’は、コンデンサ同士の接続点Q,Q’と非接続である。   FIG. 2 shows a voltage dividing circuit 81b which is a first modification of the voltage dividing circuit 81a. FIG. 2 shows a case where n = 2 in the input section 800 of the voltage dividing circuit 81b. That is, the input section 800 of the voltage dividing circuit 81b has the resistors 825 and 826 on the input side of the resistor T-type circuit and the capacitors 835 and 836 on the input side of the capacitor T-type circuit. The connection points P and P 'between the resistors are not connected to the connection points Q and Q' between the capacitors.

図3に、分圧回路81aの第2の変形例である分圧回路81cを示す。図3に示すように、分圧回路81cのフィードバック部810は、複数組のRC並列回路と、切替部(スイッチ)841とを有する。切替部841は、いずれのRC並列回路を用いてオペアンプ811の出力信号をフィードバックさせるかを切り替える。分圧回路81cのフィードバック部810は、RC並列回路が2組の場合を示している。分圧回路81cのフィードバック部810は、切替部841により、抵抗824及びコンデンサ834のRC並列回路のみを選択するか、該RC並列回路と、抵抗827及びコンデンサ837のRC並列回路の双方を選択するかを切り替える。   FIG. 3 shows a voltage dividing circuit 81c which is a second modification of the voltage dividing circuit 81a. As shown in FIG. 3, the feedback section 810 of the voltage dividing circuit 81c includes a plurality of sets of RC parallel circuits and a switching section (switch) 841. The switching unit 841 switches which RC parallel circuit is used to feed back the output signal of the operational amplifier 811. The feedback unit 810 of the voltage dividing circuit 81c shows a case where the number of RC parallel circuits is two. The feedback unit 810 of the voltage dividing circuit 81c selects only the RC parallel circuit of the resistor 824 and the capacitor 834 or selects both the RC parallel circuit and the RC parallel circuit of the resistor 827 and the capacitor 837 by the switching unit 841. Switch.

分圧回路81cのフィードバック部810は、切替部841により、オペアンプ811の反転入力端子と出力端子との間の抵抗値を変更することができるため、分圧回路81cの入力電圧の分圧比を変更することができる。分圧比の具体例については後述する。   The feedback unit 810 of the voltage dividing circuit 81c can change the resistance value between the inverting input terminal and the output terminal of the operational amplifier 811 by the switching unit 841, so that the voltage dividing ratio of the input voltage of the voltage dividing circuit 81c is changed. can do. Specific examples of the partial pressure ratio will be described later.

図4に、分圧回路81aの第3の変形例である分圧回路81dを示す。図4に示すように、分圧回路81dの入力部800は切替部(スイッチ)842を有する。切替部842は、抵抗822及びコンデンサ832の接続点を−端子(グラウンド)に接続するか、又はオペアンプ811の反転入力端子に接続するかを切り替える。   FIG. 4 shows a voltage dividing circuit 81d which is a third modification of the voltage dividing circuit 81a. As shown in FIG. 4, the input section 800 of the voltage dividing circuit 81d has a switching section (switch) 842. The switching unit 842 switches whether to connect the connection point of the resistor 822 and the capacitor 832 to the negative terminal (ground) or to the inverting input terminal of the operational amplifier 811.

分圧回路81dは、抵抗822及びコンデンサ832の接続点をグラウンドに接続した場合には、入力電圧は、抵抗821の抵抗値と、抵抗822及び抵抗823の合成抵抗値との比により分圧され、さらに抵抗823及び抵抗824の抵抗値の比により分圧される。分圧回路81dは、抵抗822及びコンデンサ832の接続点をオペアンプ811の反転入力端子に接続した場合には、入力電圧は、抵抗821、抵抗822、及び抵抗823の合成抵抗値と、抵抗824の抵抗値の比により分圧される。よって、切替部842により分圧比を変更することができる。分圧比の具体例については後述する。   When the connection point of the resistor 822 and the capacitor 832 is connected to the ground, the voltage dividing circuit 81d divides the input voltage by the ratio between the resistance value of the resistor 821 and the combined resistance value of the resistors 822 and 823. The voltage is further divided by the ratio of the resistance values of the resistors 823 and 824. When the connection point between the resistor 822 and the capacitor 832 is connected to the inverting input terminal of the operational amplifier 811, the input voltage is equal to the combined resistance value of the resistor 821, the resistor 822, and the resistor 823, The voltage is divided by the ratio of the resistance values. Therefore, the partial pressure ratio can be changed by the switching unit 842. Specific examples of the partial pressure ratio will be described later.

図5に、分圧回路81aの第4の変形例である分圧回路81eを示す。切替部841及び切替部842を切り替えることにより分圧比が変わるため、レンジ切り替えが可能となる。例えば、抵抗821の抵抗値を9.9MΩ、抵抗822の抵抗値を111.11kΩ、抵抗823の抵抗値を1MΩ、抵抗824の抵抗値を100kΩ、抵抗827の抵抗値を900kΩとした場合、切替部841及び切替部842の切り替えに応じて、分圧比は以下の(1)〜(4)のようになる。   FIG. 5 shows a voltage dividing circuit 81e which is a fourth modification of the voltage dividing circuit 81a. Since the voltage division ratio changes by switching between the switching unit 841 and the switching unit 842, the range can be switched. For example, when the resistance of the resistor 821 is 9.9 MΩ, the resistance of the resistor 822 is 111.11 kΩ, the resistance of the resistor 823 is 1 MΩ, the resistance of the resistor 824 is 100 kΩ, and the resistance of the resistor 827 is 900 kΩ, the switching is performed. According to the switching of the unit 841 and the switching unit 842, the partial pressure ratio becomes as in the following (1) to (4).

(1)切替部842により抵抗822がグラウンドに接続され、切替部841により抵抗827が短絡された場合
この場合には、中点Pの電圧が、抵抗823及び抵抗824の抵抗値の比で分圧される。抵抗821の抵抗値は9.9MΩであり、抵抗822及び抵抗823の合成抵抗値は100kΩであるため、中点Pの電圧は入力電圧の1/100となる。また、抵抗823及び抵抗824の抵抗値の比は、1M:100k=10:1である。したがって、オペアンプ811の出力電圧は、分圧回路81eの入力電圧の1/1000となる。
(1) When the resistor 822 is connected to the ground by the switching unit 842 and the resistor 827 is short-circuited by the switching unit 841, in this case, the voltage at the middle point P is divided by the ratio of the resistance values of the resistors 823 and 824. Pressed. Since the resistance value of the resistor 821 is 9.9 MΩ and the combined resistance value of the resistors 822 and 823 is 100 kΩ, the voltage at the middle point P is 1/100 of the input voltage. The ratio between the resistance values of the resistor 823 and the resistor 824 is 1M: 100k = 10: 1. Therefore, the output voltage of the operational amplifier 811 is 1/1000 of the input voltage of the voltage dividing circuit 81e.

(2)切替部842により抵抗822がグラウンドに接続され、切替部841により抵抗827が短絡されなかった場合
この場合には、中点Pの電圧が、抵抗823の抵抗値と、抵抗824及び抵抗827の合成抵抗値との比で分圧される。中点Pの電圧は、上述したように入力電圧の1/100である。また、抵抗823の抵抗値と、抵抗824及び抵抗827の合成抵抗値との比は、1M:(900k+100k)=1:1である。したがって、オペアンプ811の出力電圧は、分圧回路81eの入力電圧の1/100となる。
(2) The case where the resistor 822 is connected to the ground by the switching unit 842 and the resistor 827 is not short-circuited by the switching unit 841. In this case, the voltage at the middle point P is the resistance value of the resistor 823, the resistance 824, and the resistance. The voltage is divided at a ratio of 827 to the combined resistance value. The voltage at the midpoint P is 1/100 of the input voltage as described above. The ratio between the resistance of the resistor 823 and the combined resistance of the resistors 824 and 827 is 1M: (900k + 100k) = 1: 1. Therefore, the output voltage of the operational amplifier 811 is 1/100 of the input voltage of the voltage dividing circuit 81e.

(3)切替部842により抵抗822がオペアンプ811の反転入力端子に接続され、 切替部841により抵抗827が短絡された場合
この場合には、分圧回路81eの入力電圧が、抵抗821、抵抗822、及び抵抗823の合成抵抗値と、抵抗824の抵抗値との比で分圧される。この比は、(9.9M+100k):100k=100:1である。したがって、オペアンプ811の出力電圧は、分圧回路81eの入力電圧の1/100となる。
(3) When the resistor 822 is connected to the inverting input terminal of the operational amplifier 811 by the switching unit 842, and the resistor 827 is short-circuited by the switching unit 841, in this case, the input voltage of the voltage dividing circuit 81e is reduced by the resistors 821 and 822. , And the ratio of the combined resistance value of the resistor 823 and the resistance value of the resistor 824. This ratio is (9.9M + 100k): 100k = 100: 1. Therefore, the output voltage of the operational amplifier 811 is 1/100 of the input voltage of the voltage dividing circuit 81e.

(4)切替部842により抵抗822がオペアンプ811の反転入力端子に接続され、切替部841により抵抗827が短絡されなかった場合
この場合には、分圧回路81eの入力電圧が、抵抗821、抵抗822、及び抵抗823の合成抵抗値と、抵抗824及び抵抗827の合成抵抗値との比で分圧される。この比は、(9.9M+100k):(900k+100k)=10:1である。したがって、オペアンプ811の出力電圧は、分圧回路81eの入力電圧の1/10となる。
(4) When the resistor 822 is connected to the inverting input terminal of the operational amplifier 811 by the switching unit 842 and the resistor 827 is not short-circuited by the switching unit 841, in this case, the input voltage of the voltage dividing circuit 81e is The voltage is divided by the ratio of the combined resistance value of the resistors 822 and 823 to the combined resistance value of the resistors 824 and 827. This ratio is (9.9M + 100k) :( 900k + 100k) = 10: 1. Therefore, the output voltage of the operational amplifier 811 is 1/10 of the input voltage of the voltage dividing circuit 81e.

フィードバック部810のコンデンサの容量値は、RC並列回路の時定数が所定の値となるように調整される。一方、入力部800のコンデンサの容量値は、中点Pにおける分流比と中点Qにおける分流比が同一になればよい。抵抗822に流れる電流と抵抗823に流れる電流の比は9:1であるため、コンデンサ832の容量値とコンデンサ833の容量値の比も9:1とすればよい。例えば、コンデンサ832の容量値を297pFとし、コンデンサ833の容量値を33pFとする。   The capacitance value of the capacitor of the feedback unit 810 is adjusted so that the time constant of the RC parallel circuit becomes a predetermined value. On the other hand, the capacitance value of the capacitor of the input unit 800 may be such that the shunt ratio at the midpoint P and the shunt ratio at the midpoint Q are the same. Since the ratio of the current flowing through the resistor 822 to the current flowing through the resistor 823 is 9: 1, the ratio between the capacitance of the capacitor 832 and the capacitance of the capacitor 833 may be 9: 1. For example, the capacitance value of the capacitor 832 is 297 pF, and the capacitance value of the capacitor 833 is 33 pF.

図6に、分圧回路81aの第5の変形例である分圧回路81fを示す。分圧回路81fは、監視回路820を備える。監視回路820は、中点P及び中点Qの電圧を常時監視する回路である。中点P及び中点Qの電圧の変動率又は変動量等が閾値を越えた場合には異常が発生したと判断することができる。例えば、監視回路820は図6に示すように、抵抗828と、抵抗829と、コンデンサ838と、コンデンサ839と、オペアンプ812とを有する。中点P及び中点Qの電圧は、レンジ切り替えのために図5に示す切替部841及び切替部842が設けられていた場合でも、レンジ切り替えの影響を受けないで一定の値となる。そのため、監視回路820により、適切に異常の発生を検知することができる。   FIG. 6 shows a voltage dividing circuit 81f which is a fifth modification of the voltage dividing circuit 81a. The voltage dividing circuit 81f includes a monitoring circuit 820. The monitoring circuit 820 is a circuit that constantly monitors the voltages at the midpoints P and Q. If the rate of change or the amount of change in the voltage at the midpoints P and Q exceeds the threshold, it can be determined that an abnormality has occurred. For example, as illustrated in FIG. 6, the monitoring circuit 820 includes a resistor 828, a resistor 829, a capacitor 838, a capacitor 839, and an operational amplifier 812. The voltage at the midpoints P and Q has a constant value without being affected by the range switching even when the switching units 841 and 842 shown in FIG. 5 are provided for the range switching. Therefore, the monitoring circuit 820 can appropriately detect occurrence of an abnormality.

このように、分圧回路81a〜81fでは、抵抗T型回路の中点Pと、コンデンサT型回路の中点Qとは非接続であり、入力部800において抵抗とコンデンサとが分離される。そのため、入力部800のコンデンサの容量値を設定する際に、従来のように各RC並列回路の時定数を合わせるという制約が無くなり、コンデンサの容量値の設定自由度を上げることができる。そして、容量値の設定自由度が上がることにより、容量値の許容差が大きくなる低容量のコンデンサを使用しなくても済むようになり、特性の良いコンデンサの選定も可能になる。また、トリマコンデンサによる調整感度を下げることができ、その結果、容量値の設定ずれによる誤差を低減することが可能となる。また、直流系統と交流系統の分離設計でパターンの混在を避けることができ、特性検証が容易となる。また、交流の分圧比は容量値で決定するため、抵抗値の変更にも柔軟に対応することが可能となる。   Thus, in the voltage dividing circuits 81a to 81f, the middle point P of the resistor T-type circuit and the middle point Q of the capacitor T-type circuit are not connected, and the input unit 800 separates the resistor and the capacitor. Therefore, when setting the capacitance value of the capacitor of the input section 800, there is no longer the restriction that the time constants of the respective RC parallel circuits are adjusted as in the related art, and the degree of freedom in setting the capacitance value of the capacitor can be increased. By increasing the degree of freedom in setting the capacitance value, it is not necessary to use a low-capacitance capacitor having a large tolerance of the capacitance value, and a capacitor having good characteristics can be selected. Further, the adjustment sensitivity by the trimmer capacitor can be reduced, and as a result, it is possible to reduce an error due to a deviation in setting of the capacitance value. In addition, mixing of patterns can be avoided by the separate design of the DC system and the AC system, and the characteristic verification becomes easy. Further, since the AC voltage dividing ratio is determined by the capacitance value, it is possible to flexibly cope with a change in the resistance value.

また、図7に示した電力測定器100の電圧入力回路10を、上述した電圧入力回路80に置換することができる。電圧入力回路80は、上述したように特性の良いコンデンサを選定することができるため、電圧入力回路80を備える電力測定器は、高精度に電圧を測定することが可能となる。   Further, the voltage input circuit 10 of the power measuring device 100 shown in FIG. 7 can be replaced with the above-described voltage input circuit 80. As described above, a capacitor having good characteristics can be selected for the voltage input circuit 80, so that a power measuring device including the voltage input circuit 80 can measure a voltage with high accuracy.

以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。   The embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes various modifications without departing from the spirit of the present invention. It is.

12 増幅回路
13 A/D変換器
80 電圧入力回路
81a,81b,81c,81d,81e 分圧回路
800 入力部
810 フィードバック部
820 監視回路
811,812 オペアンプ
821,822,823,824,825,826,827,828,829 抵抗
831,832,833,834,835,836,837,838,839 コンデンサ
841,842 切替部
DESCRIPTION OF SYMBOLS 12 Amplification circuit 13 A / D converter 80 Voltage input circuit 81a, 81b, 81c, 81d, 81e Voltage divider circuit 800 Input section 810 Feedback section 820 Monitoring circuit 811,812 Operational amplifier 821,822,823,824,825,826, 827,828,829 Resistance 831,832,833,834,835,836,837,838,839 Capacitor 841,842 Switching unit

Claims (6)

分圧回路を備えた電圧入力回路であって、
前記分圧回路は、
オペアンプと、
前記オペアンプの反転入力端子に入力信号を供給する入力部と、
前記オペアンプの出力信号を前記オペアンプの反転入力端子にフィードバックするフィードバック部と、を備え、
前記入力部は、直列接続されたn(n≧2)個の抵抗と、該抵抗同士の接続点と基準電位との間に接続されたn−1個の抵抗と、直列接続されたn個のコンデンサと、該コンデンサ同士の接続点と前記基準電位との間に接続されたn−1個のコンデンサとを有し、前記抵抗同士の接続点と前記コンデンサ同士の接続点とは非接続であり、
前記フィードバック部は、RC並列回路を有することを特徴とする電圧入力回路。
A voltage input circuit having a voltage dividing circuit,
The voltage dividing circuit includes:
An operational amplifier,
An input unit for supplying an input signal to an inverting input terminal of the operational amplifier,
A feedback unit that feeds back an output signal of the operational amplifier to an inverting input terminal of the operational amplifier,
The input unit includes n (n ≧ 2) resistors connected in series, n−1 resistors connected between a connection point between the resistors and a reference potential, and n serially connected resistors And n-1 capacitors connected between a connection point between the capacitors and the reference potential, and a connection point between the resistors and a connection point between the capacitors are not connected. Yes,
The voltage input circuit, wherein the feedback unit has an RC parallel circuit.
前記nは2であり、
前記入力部は、第1抵抗、第2抵抗、及び第3抵抗をT字に接続した抵抗T型回路と、第1コンデンサ、第2コンデンサ、及び第3コンデンサをT字に接続したコンデンサT型回路とを有することを特徴とする、請求項1に記載の電圧入力回路。
N is 2;
The input unit includes a resistor T-type circuit in which a first resistor, a second resistor, and a third resistor are connected in a T-shape, and a capacitor T-type in which a first capacitor, a second capacitor, and a third capacitor are connected in a T-shape. The voltage input circuit according to claim 1, further comprising a circuit.
前記入力部は第1切替部を有し、
前記第1抵抗及び前記第1コンデンサの接続点は、前記電圧入力回路の+端子に接続され、
前記第1切替部により、前記第2抵抗及び前記第2コンデンサの接続点は、前記電圧入力回路の−端子に接続されるか、又は前記オペアンプの反転入力端子に接続され、
前記第3抵抗及び前記第3コンデンサの接続点は、前記オペアンプの反転入力端子に接続され、
前記−端子は前記基準電位を有することを特徴とする、請求項2に記載の電圧入力回路。
The input unit has a first switching unit,
A connection point between the first resistor and the first capacitor is connected to a + terminal of the voltage input circuit;
By the first switching unit, a connection point of the second resistor and the second capacitor is connected to a negative terminal of the voltage input circuit, or connected to an inverting input terminal of the operational amplifier,
A connection point between the third resistor and the third capacitor is connected to an inverting input terminal of the operational amplifier;
The voltage input circuit according to claim 2, wherein the-terminal has the reference potential.
前記抵抗T型回路の中点及び前記コンデンサT型回路の中点の電圧を監視する監視回路を備えることを特徴とする、請求項2又は3に記載の電圧入力回路。   The voltage input circuit according to claim 2, further comprising a monitoring circuit that monitors a voltage at a middle point of the resistor T-type circuit and a middle point of the capacitor T-type circuit. 前記フィードバック部は、複数組のRC並列回路と、第2切替部とを有し、
前記第2切替部により、前記複数組のRC並列回路のうちいずれのRC並列回路を用いて前記オペアンプの出力信号をフィードバックさせるかが切り替えられることを特徴とする、請求項1から4のいずれか一項に記載の電圧入力回路。
The feedback unit has a plurality of sets of RC parallel circuits and a second switching unit,
5. The apparatus according to claim 1, wherein the second switching unit switches which one of the plurality of sets of RC parallel circuits is used to feed back the output signal of the operational amplifier. The voltage input circuit according to claim 1.
請求項1から5のいずれか一項に記載の電圧入力回路を備えることを特徴とする電力測定器。

A power measuring device comprising the voltage input circuit according to claim 1.

JP2018176249A 2018-09-20 2018-09-20 Voltage input circuit and power measuring instrument Active JP7336181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018176249A JP7336181B2 (en) 2018-09-20 2018-09-20 Voltage input circuit and power measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018176249A JP7336181B2 (en) 2018-09-20 2018-09-20 Voltage input circuit and power measuring instrument

Publications (2)

Publication Number Publication Date
JP2020046351A true JP2020046351A (en) 2020-03-26
JP7336181B2 JP7336181B2 (en) 2023-08-31

Family

ID=69899548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018176249A Active JP7336181B2 (en) 2018-09-20 2018-09-20 Voltage input circuit and power measuring instrument

Country Status (1)

Country Link
JP (1) JP7336181B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293820A (en) * 1979-08-23 1981-10-06 Centre De Recherche Industrielle Du Quebec Positive feedback biquad filter
JP2009288218A (en) * 2008-06-02 2009-12-10 Yokogawa Electric Corp Wattmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293820A (en) * 1979-08-23 1981-10-06 Centre De Recherche Industrielle Du Quebec Positive feedback biquad filter
JP2009288218A (en) * 2008-06-02 2009-12-10 Yokogawa Electric Corp Wattmeter

Also Published As

Publication number Publication date
JP7336181B2 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US9632163B2 (en) Method and system for calibrating a shunt resistor
US8988063B2 (en) System and method for current measurement in the presence of high common mode voltages
US20070103174A1 (en) Direct current test apparatus
KR20140051054A (en) Active shunt ammeter apparatus and method
CN111771109B (en) Electrostatic capacitance detection device
JP4642413B2 (en) Current detector
CN109782053B (en) Power supply device
JP6101322B2 (en) Insulation resistance monitoring device and detection voltage estimation method
JP2020046351A (en) Voltage input circuit and electric power measurer
EP3347724A2 (en) Scalable average current sensor system
US3268813A (en) Meter circuits with multiple increments of different slopes
CN107561339B (en) Nested ampere meter
JP2862296B2 (en) Voltage applied current measuring device and current applied voltage measuring device
CN220625545U (en) Temperature sampling circuit, temperature sampling device and processing equipment
JP2020112455A (en) Bridge sensor constant current power supply circuit
GB2524521A (en) Apparatus and methods for measuring electrical current
JP3189866B2 (en) Resistance meter calibration device
KR101138692B1 (en) Circuit for detecting a load current
JPH07501616A (en) Particle current measurement method and measurement circuit
JP4511717B2 (en) Current / voltage measuring device
JP7146560B2 (en) Voltage measuring device
WO2020027026A1 (en) Measurement device and measurement method
EP0280516A2 (en) Differential amplifier circuit
JP2015125133A (en) Differential output current detection device and differential output current detection method
DE19960301A1 (en) Interference compensating circuit arrangement for a sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150