JP2020045935A - Tension adjustment device of power transmission belt and grinder having tension adjustment device - Google Patents

Tension adjustment device of power transmission belt and grinder having tension adjustment device Download PDF

Info

Publication number
JP2020045935A
JP2020045935A JP2018173213A JP2018173213A JP2020045935A JP 2020045935 A JP2020045935 A JP 2020045935A JP 2018173213 A JP2018173213 A JP 2018173213A JP 2018173213 A JP2018173213 A JP 2018173213A JP 2020045935 A JP2020045935 A JP 2020045935A
Authority
JP
Japan
Prior art keywords
pulley
power transmission
transmission belt
center position
urging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018173213A
Other languages
Japanese (ja)
Other versions
JP7206727B2 (en
Inventor
大 清田
Masaru Kiyota
大 清田
育也 加藤
Ikuya Kato
育也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2018173213A priority Critical patent/JP7206727B2/en
Publication of JP2020045935A publication Critical patent/JP2020045935A/en
Application granted granted Critical
Publication of JP7206727B2 publication Critical patent/JP7206727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

To provide a tension adjustment device which has durability so that rotation moment is not generated at a support part even when receiving reaction force and is small in the number of part items, low in a cost, and easy in assembling to a power transmission device by an integrated simple constitution, and a grinder having the tension adjustment device.SOLUTION: A tension adjustment device 50 comprises a fixing member 51, an energization pulley 55, a slide member 56 and an elastic member 57. A center position of an energization reaction force which the energization pulley receives from a power transmission belt 42 is defined as a first center position D1, a center position of an energization force by which the elastic member energizes the slide member 56 is defined as a second center position D2, a position in which a guide member 53 of the fixing member 51 guides the slide member is defined as a guide position G, and a first distance L1 between the first center position and the second position is shorter than a second distance L2 between the first center position D1 and the guide position G.SELECTED DRAWING: Figure 4

Description

本発明は、動力伝達ベルトの張力調整装置及び張力調整装置を備える研削盤に関する。   The present invention relates to a power transmission belt tension adjusting device and a grinding machine including the tension adjusting device.

従来、回転駆動力を一方の軸から他方の軸に伝達する駆動力伝達装置がある。このような駆動力伝達装置では、駆動力軸に固定された駆動プーリと動力を伝達させる従動軸に固定された従動プーリとの間に、例えばゴム製のベルトを掛け渡している。これにより、駆動力軸が回転駆動されると、回転駆動力はベルト及び従動プーリを介して従動軸に伝達される。   Conventionally, there is a driving force transmission device that transmits a rotational driving force from one axis to another axis. In such a driving force transmission device, for example, a rubber belt is stretched between a driving pulley fixed to a driving force shaft and a driven pulley fixed to a driven shaft for transmitting power. Thus, when the driving force shaft is rotationally driven, the rotational driving force is transmitted to the driven shaft via the belt and the driven pulley.

しかしながら、このとき、ベルトには常に大きな張力が付与される。このため、ゴム製のベルトは所定量伸び、ベルトの張力が低下する場合がある。ベルトの張力が低下すると、ベルトが例えば平ベルトである場合、ベルトと各プーリとの間に滑りが生じ、駆動力の伝達効率が低下する虞がある。また、さらに伸びが大きくなれば、ベルトが各プーリから外れてしまう虞もある。   However, at this time, a large tension is always applied to the belt. For this reason, the rubber belt may elongate by a predetermined amount, and the tension of the belt may decrease. When the tension of the belt decreases, if the belt is, for example, a flat belt, slippage occurs between the belt and each pulley, and the transmission efficiency of the driving force may be reduced. Further, if the elongation is further increased, the belt may be detached from each pulley.

そこで、このようなベルトの張力低下に対し、張力を増加させる方向の付勢力をベルトに付与する張力調整装置がある(特許文献1−3参照)。特許文献1の張力調整装置では、手動によってブラケットの先端に設けられた付勢用のプーリを移動させてベルトを付勢し、ベルトの張力の増加を図る。また、特許文献2の張力調整装置では、弾性部材によって付勢用のプーリをベルトの方向に移動させてベルトを付勢し、自動でベルトの張力の増加を図る。   Therefore, there is a tension adjusting device that applies an urging force in the direction of increasing the tension to the belt in response to such a decrease in the tension of the belt (see Patent Documents 1-3). In the tension adjusting device of Patent Literature 1, the belt is urged by manually moving an urging pulley provided at the end of the bracket to increase the belt tension. Further, in the tension adjusting device of Patent Literature 2, an urging pulley is moved in the direction of the belt by an elastic member to urge the belt, and the tension of the belt is automatically increased.

しかしながら、特許文献1の張力調整装置では、駆動プーリの軸方向において、付勢用のプーリがベルトを付勢する位置、即ちベルトの張力が付勢用のプーリに反力を付与する位置と、付勢用のプーリが設けられたブラケットの支持点位置とがオフセットして配置されている。また、ブラケットは、支持点位置を支点として片もち状態で配置されている。このため、ブラケットは、ベルトの張力に基づく反力によって回転モーメントを受け、受けた回転モーメントが大きい場合にはブラケットが変形する虞がある。   However, in the tension adjusting device of Patent Document 1, in the axial direction of the driving pulley, a position where the urging pulley urges the belt, that is, a position where the belt tension applies a reaction force to the urging pulley, The position of the support point of the bracket on which the biasing pulley is provided is offset. Further, the brackets are arranged in a cantilever state with the support point position as a fulcrum. For this reason, the bracket receives the rotational moment due to the reaction force based on the tension of the belt, and when the received rotational moment is large, the bracket may be deformed.

また、特許文献2の張力調整装置においても、駆動プーリ(クランクプーリ)の軸方向において、ベルトの張力が付勢用のプーリに反力を付与する位置と、弾性部材が付勢用のプーリ(テンションプーリ)をベルトの方向に付勢する荷重中心位置とがオフセットして配置されている。また、付勢用のプーリは、弾性部材を支持する支持部材に片もち状態で支持されている。このため、付勢用のプーリは、ベルトの張力に基づく反力によって回転モーメントを受けて支持部材が傾き、支持部材を支持する部材と支持部材との間に摩耗が生じる虞がある。   Also, in the tension adjusting device of Patent Document 2, in the axial direction of the driving pulley (crank pulley), the position where the belt tension applies a reaction force to the urging pulley, and the elastic member includes the urging pulley ( The center of the load that urges the tension pulley in the direction of the belt is offset from the center of the load. Further, the biasing pulley is supported in a cantilever manner by a support member that supports the elastic member. For this reason, the biasing pulley receives a rotational moment due to a reaction force based on the tension of the belt, and the support member is tilted, which may cause wear between the member supporting the support member and the support member.

しかし、これらの課題に対応可能な構成として、特許文献3に記載の張力調整装置では、駆動プーリの軸方向において、ベルトの張力が付勢用のプーリに反力を付与する位置と、弾性部材が付勢用のプーリをベルトの方向に付勢する荷重中心位置とがほぼ一致している。このため、付勢用のプーリが支持部材を介して固定部材に片もち状態で支持されていても、対向するベルトの張力は、弾性部材の付勢力によって相殺されるので、特許文献1,2のように、付勢用のプーリの支持部材が回転モーメントを受ける虞は低い。   However, as a configuration capable of coping with these problems, in the tension adjusting device described in Patent Document 3, in the axial direction of the driving pulley, the position where the belt tension applies a reaction force to the biasing pulley, and the elastic member The load center position for urging the urging pulley in the direction of the belt substantially coincides. For this reason, even if the urging pulley is supported by the fixed member via the supporting member in a one-sided state, the tension of the opposing belt is offset by the urging force of the elastic member. As described above, the possibility that the support member of the biasing pulley receives a rotational moment is low.

実公昭50−25905号公報Japanese Utility Model Publication No. 50-25905 実公昭62−44188号公報Japanese Utility Model Publication No. 62-44188 特許第5479351号公報Japanese Patent No. 5479351

しかしながら、特許文献3の張力調整装置は、本来、特許文献1,2の説明において記載した課題を解決するための構成ではない。特許文献3の記載によれば、張力調整装置は、良好なメンテナンス性(交換性)を満足させるために構成された装置である。このため、付勢部4aでは、新しい弾性部材(圧縮バネ)と交換し易いよう、付勢用のプーリが設けられた部分とは完全に別体で形成されている。また、付勢部4aは、弾性部材(圧縮バネ)を収容するためのシリンダ状の部材であるリテーナを備える。リテーナの内部には、圧縮バネの両端を支持するバネ保持部材と、圧縮バネを支持するとともに圧縮バネの圧縮量を管理するための挿入ピースと、を備える。また、リテーナの側面には、圧縮バネの交換時期を見極める指標となる圧縮バネの圧縮量を監視するための監視窓が設けられている。このため、特許文献3の張力調整装置は、非常に複雑で高価な構成となっている。   However, the tension adjusting device of Patent Literature 3 is not originally a configuration for solving the problems described in the descriptions of Patent Literatures 1 and 2. According to the description of Patent Document 3, the tension adjusting device is a device configured to satisfy good maintainability (exchangeability). For this reason, the urging portion 4a is formed completely separate from the portion provided with the urging pulley so that it can be easily replaced with a new elastic member (compression spring). Further, the urging portion 4a includes a retainer which is a cylindrical member for accommodating an elastic member (compression spring). The retainer includes a spring holding member that supports both ends of the compression spring, and an insertion piece that supports the compression spring and manages the compression amount of the compression spring. Further, a monitoring window for monitoring the compression amount of the compression spring, which is an index for determining the replacement time of the compression spring, is provided on a side surface of the retainer. For this reason, the tension adjusting device of Patent Document 3 has a very complicated and expensive configuration.

本発明は、上記課題に鑑みてなされたものであり、付勢用のプーリが動力伝達ベルトの張力に応じた反力をベルトから受けても、付勢用のプーリの支持部には回転モーメントが生じず耐久性を有するとともに、少ない部品点数、及び一体化された簡素な構成により、低コストで、且つ動力伝達装置への組み付けが容易である動力伝達ベルトの張力調整装置及び張力調整装置を備える研削盤を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problem, and even if a biasing pulley receives a reaction force corresponding to the tension of a power transmission belt from a belt, a rotational moment is applied to a supporting portion of the biasing pulley. The tension adjusting device and the tension adjusting device for the power transmission belt are low in cost and easy to assemble to the power transmission device because of the durability, the small number of parts, and the simple structure integrated. It is an object of the present invention to provide a grinding machine having the same.

(1.動力伝達ベルトの張力調整装置)
本発明に係る動力伝達ベルトの張力調整装置は、固定部材と、前記動力伝達ベルトを付勢して前記動力伝達ベルトの張力を変更する付勢用プーリと、前記付勢用プーリを回転可能に支持し、且つ、前記固定部材が備えるガイド部材に係合され、前記付勢用プーリによる前記動力伝達ベルトへの付勢方向へ前記固定部材に対して往復動可能にガイドされるスライド部材と、前記固定部材と前記スライド部材との間に配置され、前記付勢用プーリが前記動力伝達ベルトを付勢する方向に前記スライド部材を付勢する弾性部材と、を備える。
(1. Power transmission belt tension adjustment device)
The power transmission belt tension adjusting device according to the present invention includes a fixing member, a biasing pulley that biases the power transmission belt to change the tension of the power transmission belt, and a rotatable rotation of the biasing pulley. A sliding member that supports, and is engaged with a guide member included in the fixing member, and is guided to be reciprocally movable with respect to the fixing member in a direction of urging the power transmission belt by the urging pulley; An elastic member that is disposed between the fixed member and the slide member and that urges the slide member in a direction in which the urging pulley urges the power transmission belt.

そして、前記付勢用プーリの回転軸方向において、前記付勢用プーリが前記動力伝達ベルトから受ける付勢反力の中心位置を第一中心位置と定義し、前記弾性部材が前記スライド部材を付勢する前記付勢力の前記中心位置を第二中心位置と定義し、前記固定部材の前記ガイド部材が前記スライド部材をガイドする位置をガイド位置と定義し、前記第一中心位置と前記第二中心位置との間の第一距離が、前記第一中心位置と前記ガイド位置との間の第二距離よりも短い。   In the rotation axis direction of the biasing pulley, a center position of the biasing reaction force received by the biasing pulley from the power transmission belt is defined as a first center position, and the elastic member attaches the slide member. The center position of the urging force to be urged is defined as a second center position, a position at which the guide member of the fixed member guides the slide member is defined as a guide position, and the first center position and the second center are defined. A first distance between the positions is shorter than a second distance between the first center position and the guide position.

このように、本発明に係る張力調整装置では、第一中心位置と第二中心位置との間の第一距離が、第一中心位置とガイド位置との間の第二距離よりも短くなるよう構成される。このため、付勢用のプーリが動力伝達ベルトの張力に応じた反力を受けても、当該反力は第二中心位置の位置に応じて、弾性部材がスライド部材を付勢する付勢力により相応に相殺されるので、スライド部材のガイド部材が受ける回転モーメントを良好に抑制することができる。また、ガイド軸の摩耗が良好に抑制されるので高い耐久性を備える。   Thus, in the tension adjusting device according to the present invention, the first distance between the first center position and the second center position is shorter than the second distance between the first center position and the guide position. Be composed. Therefore, even if the urging pulley receives a reaction force corresponding to the tension of the power transmission belt, the reaction force is generated by the urging force by which the elastic member urges the slide member according to the position of the second center position. As a result, the rotational moment applied to the guide member of the slide member can be satisfactorily suppressed. Further, since the wear of the guide shaft is suppressed well, high durability is provided.

そして、このとき、弾性部材は、特許文献3の付勢部(4a)の構成とは大きく異なり、固定部材とスライド部材との間に配置するだけで付勢部として成立する。このため、組み付けが簡素であるとともに部品点数が大幅に削減されるので低コストに製造できる。さらに、張力調整装置は、固定部材、弾性部材、付勢用プーリ、スライド部材、及びスライド部材をガイドするガイド部材が一体化(ユニット化)されて形成される。従って、特許文献3のように、付勢部(4a)と付勢用のプーリ(14)とをそれぞれ別体で形成し、その後、相互に係合させながら駆動力伝達装置の支持部に別々に組み付ける必要がない。このため、駆動力伝達装置への組み付け工数の低減、延いては低コスト化を図ることができる。   At this time, the elastic member is significantly different from the configuration of the urging portion (4a) of Patent Document 3, and is formed as an urging portion only by being disposed between the fixed member and the sliding member. For this reason, the assembling is simple and the number of parts is greatly reduced, so that the manufacturing can be performed at low cost. Further, the tension adjusting device is formed by integrating (uniting) a fixing member, an elastic member, a biasing pulley, a slide member, and a guide member for guiding the slide member. Therefore, as in Patent Document 3, the urging portion (4a) and the urging pulley (14) are formed separately from each other, and then separately engaged with the supporting portion of the driving force transmission device while being engaged with each other. There is no need to assemble them. Therefore, it is possible to reduce the number of assembling steps to the driving force transmission device, and further reduce the cost.

(2.研削盤)
また、本発明に係る研削盤は、砥石車と、前記砥石車と連結され前記砥石車を軸線周りに回転可能に支持する軸部材と、出力軸を備えるモータと、前記軸部材と前記モータの前記出力軸に掛け渡され、前記モータの回転力を、前記軸部材を介して前記砥石車に伝達する動力伝達ベルトと、前記動力伝達ベルトの張力を所定の張力に調整する上記に記載の張力調整装置と、を備える。このように、工作物を研削する際には、常時、砥石車の振動によって動力伝達ベルトの張力が変動する研削盤に適用することで、高い耐久性を有する研削盤が得られる。また、研削盤の低コスト化にも寄与する。
(2. Grinding machine)
Further, the grinding machine according to the present invention is a grinding wheel, a shaft member connected to the grinding wheel and rotatably supporting the grinding wheel around an axis, a motor having an output shaft, and a motor having an output shaft, the shaft member and the motor A power transmission belt that is wound around the output shaft and transmits the rotational force of the motor to the grinding wheel via the shaft member; and the tension described above that adjusts the tension of the power transmission belt to a predetermined tension. An adjusting device. As described above, when a workpiece is ground, a grinding machine having high durability can be obtained by applying the invention to a grinding machine in which the tension of the power transmission belt fluctuates due to the vibration of the grinding wheel. It also contributes to the cost reduction of the grinding machine.

実施形態に係る動力伝達ベルトの張力調整装置が適用された研削盤の平面図の概要である。1 is a schematic plan view of a grinding machine to which a power transmission belt tension adjusting device according to an embodiment is applied. 図1のK視図であり、駆動力伝達装置に張力調整装置が装着された図である。FIG. 2 is a view as viewed in a direction K in FIG. 1, in which a tension adjusting device is mounted on a driving force transmission device. 張力調整装置の斜視図である。It is a perspective view of a tension adjusting device. 図2のIV−IV矢視断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2. 図4における固定部材本体のみのQ視図である。FIG. 5 is a Q view of only the fixing member main body in FIG. 4. 図4のR視図である。FIG. 5 is an R view of FIG. 4. 変形例1を説明する図6に対応する図である。FIG. 7 is a view corresponding to FIG. 6 and illustrating a first modification. 変形例2を説明する図4に対応する図である。FIG. 13 is a diagram corresponding to FIG. 4 for explaining Modification 2;

<1.第一実施形態>
(1−1.概要)
以下に、本発明の実施形態を、図面を用いて説明する。図1には、本発明に係る動力伝達ベルト42の張力調整装置50(図2参照)を適用した研削盤1の実施形態を示す。研削盤1は、一例として砥石台トラバース型研削盤を示す。図1は、研削盤1の平面図の例を示し、図2は、図1におけるK視図を示す。また、X軸,Y軸,Z軸が記載されている全ての図面において、X軸とY軸とZ軸とは互いに直交している。Y軸は鉛直上向きを示しており、Z軸とX軸は水平方向を示している。Z軸はワーク回転軸方向を示しており、X軸方向は砥石車15が、ワークWに切り込む方向を示している。
<1. First embodiment>
(1-1. Overview)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a grinding machine 1 to which a tension adjusting device 50 (see FIG. 2) for a power transmission belt 42 according to the present invention is applied. The grinder 1 is, for example, a grindstone traverse grinder. FIG. 1 shows an example of a plan view of the grinding machine 1, and FIG. 2 shows a K view in FIG. In all the drawings in which the X axis, the Y axis, and the Z axis are described, the X axis, the Y axis, and the Z axis are orthogonal to each other. The Y axis indicates a vertical upward direction, and the Z axis and the X axis indicate a horizontal direction. The Z axis indicates the direction of the workpiece rotation axis, and the X axis direction indicates the direction in which the grinding wheel 15 cuts into the workpiece W.

(1−2.研削盤1の全体構成)
図1に示すように、研削盤1は、床上に固定されたベッド11と、ベッド11に固定されたワークWを回転可能に両端支持する主軸台12と、心押装置13と、ベッド11上をZ軸方向及びX軸方向に移動可能な砥石台14と、制御装置18と、を備える。
(1-2. Overall Configuration of Grinding Machine 1)
As shown in FIG. 1, the grinding machine 1 includes a bed 11 fixed on a floor, a headstock 12 rotatably supporting both ends of a work W fixed to the bed 11, a tailstock device 13, The wheel head 14 is capable of moving in a Z-axis direction and an X-axis direction, and a control device 18 is provided.

砥石台14は、砥石台14に回転可能に支持される砥石車15と、砥石車15を回転駆動させる駆動力伝達装置40と、後に詳述する本発明に係る張力調整装置50と、を備える。制御装置18は、主軸台12及び砥石車15を駆動させ、かつワークWに対する砥石車15の位置を制御するとともに砥石車15によるワークWの研削を制御する。   The grindstone head 14 includes a grindstone wheel 15 rotatably supported by the grindstone wheel 14, a driving force transmitting device 40 for rotatingly driving the grindstone wheel 15, and a tension adjusting device 50 according to the present invention described in detail below. . The control device 18 drives the headstock 12 and the grinding wheel 15, controls the position of the grinding wheel 15 with respect to the work W, and controls the grinding of the work W by the grinding wheel 15.

研削盤1は、ワーク回転軸WZ回りに回転するワークWを、砥石車15によって研削する。砥石車15は、略円板形状に形成される。砥石車15は、砥石回転軸TZ回りに回転し、ワークWに対してZ軸及びX軸方向に相対移動可能に構成されている。なお、ワーク回転軸WZと砥石回転軸TZは、どちらもZ軸と平行である。   The grinding machine 1 grinds the workpiece W rotating around the workpiece rotation axis WZ by the grinding wheel 15. The grinding wheel 15 is formed in a substantially disk shape. The grinding wheel 15 rotates around a grinding wheel rotation axis TZ, and is configured to be relatively movable with respect to the workpiece W in the Z-axis and X-axis directions. The work rotation axis WZ and the grindstone rotation axis TZ are both parallel to the Z axis.

図1に示すように、主軸台12は、ベース12aと、主軸ハウジング12bと、主軸12cとを備える。ベース12aは、ベッド11上に載置される。主軸ハウジング12bは、ベース12aに対してZ軸方向に往復移動可能に構成される。主軸12cは、主軸ハウジング12b内でワーク回転軸WZ回りに回転可能に支持される。また、主軸12cの一端にはセンタ部材12dが設けられる。主軸12cには図示しない駆動モータが設けられており、制御装置18は、センタ部材12dの先端をとおるワーク回転軸WZ回りに主軸12cを、任意の角速度で任意の角度まで回転させることができる。   As shown in FIG. 1, the headstock 12 includes a base 12a, a spindle housing 12b, and a spindle 12c. The base 12a is placed on the bed 11. The main shaft housing 12b is configured to be able to reciprocate in the Z-axis direction with respect to the base 12a. The main shaft 12c is supported rotatably around the work rotation axis WZ in the main shaft housing 12b. A center member 12d is provided at one end of the main shaft 12c. The main shaft 12c is provided with a drive motor (not shown), and the control device 18 can rotate the main shaft 12c at an arbitrary angular velocity to an arbitrary angle around the work rotation axis WZ passing through the tip of the center member 12d.

心押装置13は、ベース13aと、心押軸ハウジング13bと、心押軸13cと、センタ部材13dとを備える。ベース13aは、ベッド11上に載置される。心押軸ハウジング13bは、ベース13aに対してZ軸方向に移動可能に構成される。心押軸13cは、心押軸ハウジング13b内でワーク回転軸WZ回りに回転可能または回転不能に支持され、主軸12cと同軸に設けられる。そして、ワークWは、センタ部材12dを備えた主軸台12と、センタ部材13dを備えた心押装置13によって両端(または両端近傍)が支持される。なお、センタ部材12dは、チャックであってもよい。   The tailstock 13 includes a base 13a, a tailstock housing 13b, a tailstock 13c, and a center member 13d. The base 13a is placed on the bed 11. The tailstock housing 13b is configured to be movable in the Z-axis direction with respect to the base 13a. The tail shaft 13c is rotatably or non-rotatably supported around the work rotation axis WZ within the tail shaft housing 13b, and is provided coaxially with the main shaft 12c. The work W is supported at both ends (or near both ends) by the headstock 12 having the center member 12d and the tailstock 13 having the center member 13d. Note that the center member 12d may be a chuck.

また、ベッド11には、トラバースベース19が載置される。トラバースベース19は、Z軸駆動モータ21にて制御されるボールねじ22の回転角度に応じ、V型ガイド23に沿ってZ軸方向の任意の位置に位置決め制御される。制御装置18は、図略のエンコーダ等の位置検出手段からの信号を検出しながら、Z軸駆動モータ21に制御信号を出力して、トラバースベース19のZ軸方向の位置決めをする。   A traverse base 19 is placed on the bed 11. The traverse base 19 is positioned and controlled at an arbitrary position in the Z-axis direction along the V-shaped guide 23 according to the rotation angle of the ball screw 22 controlled by the Z-axis drive motor 21. The control device 18 outputs a control signal to the Z-axis drive motor 21 while detecting a signal from position detection means such as an encoder (not shown), and positions the traverse base 19 in the Z-axis direction.

トラバースベース19には、砥石車15を進退させる砥石台14が載置される。砥石台14は、X軸駆動モータ25にて制御されるボールねじ30の回転角度に応じ、トラバースベース19の上面に一体的に設けられたガイド16,17に沿ってX軸方向の任意の位置に位置決めされる。制御装置18は、位置検出手段からの信号を検出しながらX軸駆動モータ25に制御信号を出力して、砥石台14のX軸方向の位置を位置決めする。   On the traverse base 19, a grinding wheel base 14 for moving the grinding wheel 15 forward and backward is mounted. The grinding wheel head 14 is positioned at an arbitrary position in the X-axis direction along guides 16 and 17 integrally provided on the upper surface of the traverse base 19 according to the rotation angle of the ball screw 30 controlled by the X-axis drive motor 25. Is positioned. The control device 18 outputs a control signal to the X-axis drive motor 25 while detecting a signal from the position detection means, and positions the position of the grinding wheel head 14 in the X-axis direction.

また、例えば、砥石回転軸TZとワーク回転軸WZは同一水平面上に位置しているとする。この状態で砥石車15をワークWに対して相対的に近づけていき、ワークWと砥石車15とが接触した位置における砥石車15の側の点を加工点とする。このとき、研削盤1には、加工点の近傍にクーラントを供給するクーラントノズルが設けられているが、図示省略する。   Further, for example, it is assumed that the grinding wheel rotation axis TZ and the workpiece rotation axis WZ are located on the same horizontal plane. In this state, the grinding wheel 15 is relatively approached to the workpiece W, and a point on the grinding wheel 15 side at a position where the workpiece W contacts the grinding wheel 15 is set as a processing point. At this time, the grinding machine 1 is provided with a coolant nozzle for supplying coolant near the processing point, but is not shown.

図1に示すように、砥石台14は、スライドテーブル26と、砥石車15と、砥石軸受27と、砥石駆動モータ28(サーボモータであり、モータに相当する)と、X軸駆動モータ25と、砥石車15を回転駆動させる駆動力伝達装置40(図2参照)と、張力調整装置50(図2参照)等を備える。砥石駆動モータ28の回転駆動力(回転力)は、駆動力伝達装置40を介して砥石車15に伝達される。なお、本実施形態では、砥石台14をX軸駆動モータ25とボールねじ30とによって進退させる構造の例を示したが、例えばリニアモータを用いてもよい。砥石台14を進退させる駆動装置は、特に限定されない。   As shown in FIG. 1, the grindstone table 14 includes a slide table 26, a grindstone wheel 15, a grindstone bearing 27, a grindstone drive motor 28 (a servomotor, corresponding to a motor), and an X-axis drive motor 25. , A driving force transmitting device 40 (see FIG. 2) for rotating and driving the grinding wheel 15, a tension adjusting device 50 (see FIG. 2) and the like. The rotational driving force (rotating force) of the grinding wheel drive motor 28 is transmitted to the grinding wheel 15 via the driving force transmission device 40. In the present embodiment, an example of the structure in which the wheel head 14 is moved forward and backward by the X-axis drive motor 25 and the ball screw 30 has been described, but a linear motor may be used, for example. The drive device for moving the grindstone head 14 forward and backward is not particularly limited.

(1−3.駆動力伝達装置40)
図2に示すように、駆動力伝達装置40は、駆動プーリ41,動力伝達ベルト42,従動プーリ43を備える。円筒状の駆動プーリ41は、砥石駆動モータ28が備える回転軸28a(出力軸に相当)の先端に回転軸28aと一体回転可能に固定される。回転軸28aの軸線方向における駆動プーリ41の外周面両端には、鍔部(図略)が突設されている。また、本実施形態において、円筒状の従動プーリ43は、駆動プーリ41よりも円筒の直径が小さく、砥石車15を軸線周りに回転可能に支持する回転軸15a(軸部材に相当)の先端に回転軸15aと一体回転可能に固定される。回転軸15aの軸線方向における従動プーリ43の外周面両端には、鍔部(図略)が突設されている。
(1-3. Driving force transmission device 40)
As shown in FIG. 2, the driving force transmission device 40 includes a driving pulley 41, a power transmission belt 42, and a driven pulley 43. The cylindrical drive pulley 41 is fixed to a tip of a rotary shaft 28a (corresponding to an output shaft) provided in the grindstone drive motor 28 so as to be integrally rotatable with the rotary shaft 28a. At both ends of the outer peripheral surface of the drive pulley 41 in the axial direction of the rotating shaft 28a, flanges (not shown) are provided to protrude. In the present embodiment, the cylindrical driven pulley 43 has a smaller cylindrical diameter than the driving pulley 41, and is provided at the tip of a rotating shaft 15a (corresponding to a shaft member) that supports the grinding wheel 15 rotatably around the axis. It is fixed so as to be integrally rotatable with the rotating shaft 15a. A flange (not shown) protrudes from both ends of the outer peripheral surface of the driven pulley 43 in the axial direction of the rotating shaft 15a.

そして、駆動プーリ41の外周面の鍔部の間、及び従動プーリ43の外周面の鍔部の間に動力伝達ベルト42(以降、ベルト42とのみ記載する)が、張力Tを有して掛け渡される(図2中、二点鎖線参照)。なお、このとき、張力Tは、砥石駆動モータ28の作動時に、駆動プーリ41と従動プーリ43との間で設定されるべき所定の張力T1以下の大きさでよい(T≦T1)。なお、所定の張力T1は、所定の幅(範囲)を有して設定される値である。   The power transmission belt 42 (hereinafter, referred to as the belt 42 only) is hung with tension T between the flanges on the outer peripheral surface of the driving pulley 41 and between the flanges on the outer peripheral surface of the driven pulley 43. (See the two-dot chain line in FIG. 2). At this time, the tension T may be smaller than a predetermined tension T1 to be set between the drive pulley 41 and the driven pulley 43 when the grindstone drive motor 28 is operated (T ≦ T1). The predetermined tension T1 is a value set to have a predetermined width (range).

そして、駆動プーリ41と従動プーリ43との間におけるベルト42の張力Tが所定の張力T1である場合、砥石駆動モータ28の回転力が、回転軸28a,駆動プーリ41,ベルト42,従動プーリ43,回転軸15aの順に高効率で伝達され、砥石車15が回転駆動される。つまり、砥石駆動モータ28の回転力を、回転軸15a(軸部材)を介して砥石車15に伝達する。   When the tension T of the belt 42 between the drive pulley 41 and the driven pulley 43 is a predetermined tension T1, the rotational force of the grinding wheel drive motor 28 is reduced by the rotation shaft 28a, the drive pulley 41, the belt 42, and the driven pulley 43. , The rotating shaft 15a in this order, and the grinding wheel 15 is driven to rotate. That is, the rotational force of the grinding wheel drive motor 28 is transmitted to the grinding wheel 15 via the rotating shaft 15a (shaft member).

上記において、ベルト42は、所謂、平ベルトと呼称されるベルトであり、例えば、ゴムであるウレタンゴムのみによって形成される単体式平ベルトである。ただし、ベルト42は、単体式平ベルトには限らない。例えば、心体として延伸ポリアミドフィルムなどを用いるフィルムコア平ベルト,心体としてポリエステルコードなどを用いるコード平ベルト,又はポリエステルなどの比較的強度の高い心体と摩擦係数の高いカバー層を積層した積層式平ベルトであってもよい。   In the above description, the belt 42 is a so-called flat belt, and is, for example, a unitary flat belt formed only of urethane rubber which is rubber. However, the belt 42 is not limited to a simple flat belt. For example, a film core flat belt using a stretched polyamide film or the like as a core, a cord flat belt using a polyester cord or the like as a core, or a laminate in which a relatively strong core such as polyester and a cover layer having a high friction coefficient are laminated. A flat belt may be used.

(1−4.張力調整装置50)
張力調整装置50は、駆動力伝達装置40が備えるベルト42の張力Tを、予め設定された所定の張力T1に調整する装置である。図2に示すように、張力調整装置50は、ユニット化され、砥石台14が有するスライドテーブル26に固定される。図2−図4に示すように、張力調整装置50は、固定部材51と、付勢用プーリ55と、スライド部材56と、二本の圧縮コイルばね57,57(弾性部材に相当する)と、を備える。
(1-4. Tension adjusting device 50)
The tension adjusting device 50 is a device that adjusts the tension T of the belt 42 included in the driving force transmission device 40 to a predetermined tension T1 set in advance. As shown in FIG. 2, the tension adjusting device 50 is unitized and fixed to the slide table 26 of the grindstone table 14. As shown in FIGS. 2 to 4, the tension adjusting device 50 includes a fixing member 51, a biasing pulley 55, a slide member 56, two compression coil springs 57, 57 (corresponding to elastic members). , Is provided.

(1−4−1.固定部材51)
固定部材51は、固定部材本体52と、二本のガイド軸53,53(ガイド部材に相当する)と、二本の支持軸54,54と、を備える。固定部材本体52は、例えば、SPCC等の鉄系の板部材により形成される。図2−図4に示すように、固定部材本体52は、長方形状の板部材の長手方向両端部がそれぞれ直角に屈曲されて形成される第一支持部52a,及び第二支持部52bと、第一支持部52aと第二支持部52bとを連結する接続部52cと、を備える。これにより、第一支持部52aと第二支持部52bとは内側の面52a1,52b1同士が対向して配置される。
(1-4-1. Fixing member 51)
The fixing member 51 includes a fixing member main body 52, two guide shafts 53, 53 (corresponding to guide members), and two support shafts 54, 54. The fixing member main body 52 is formed of, for example, an iron-based plate member such as SPCC. As shown in FIGS. 2 to 4, the fixing member main body 52 includes a first support portion 52 a and a second support portion 52 b formed by bending both ends in the longitudinal direction of a rectangular plate member at right angles, respectively. A connection portion 52c for connecting the first support portion 52a and the second support portion 52b; As a result, the inner surfaces 52a1 and 52b1 of the first support 52a and the second support 52b face each other.

図2に示すように、このとき、接続部52cの下方の端部から立設される第二支持部52bの長さは、同様に接続部52cの上方の端部から立設される第一支持部52aの長さの約半分程度である。接続部52cは、砥石台14のスライドテーブル26に、図示しない所定の固定手段によって固定される。図5に示すように、第一支持部52aは、4個所の貫通孔52a2,52a3,52a4,52a5を備える。なお、図5は、図4における固定部材本体52のみのQ視図である。図5に示すように、4個所の貫通孔52a2−52a5は、各孔の中心を結んだ仮想線(二点鎖線)が矩形Reを形成するよう配置される。また、第二支持部52bは、第一支持部52aの貫通孔52a2,52a3と対向する位置に貫通孔52b2,52b3を備える。   As shown in FIG. 2, at this time, the length of the second support portion 52b erected from the lower end of the connection portion 52c is the same as the first support portion erected from the upper end of the connection portion 52c. The length is about half of the length of the support portion 52a. The connecting portion 52c is fixed to the slide table 26 of the grindstone table 14 by predetermined fixing means (not shown). As shown in FIG. 5, the first support portion 52a includes four through holes 52a2, 52a3, 52a4, and 52a5. FIG. 5 is a Q view of only the fixing member main body 52 in FIG. As shown in FIG. 5, the four through-holes 52a2-52a5 are arranged such that virtual lines (two-dot chain lines) connecting the centers of the holes form a rectangle Re. The second support 52b has through holes 52b2, 52b3 at positions facing the through holes 52a2, 52a3 of the first support 52a.

二本のガイド軸53,53は、第一支持部52aの貫通孔52a2と第二支持部52bの貫通孔52b2との間、及び第一支持部52aの貫通孔52a3と第二支持部52bの貫通孔52b3との間に、各軸線位置が各貫通孔の中心と一致するよう配置される。このとき、各ガイド軸53,53は、それぞれ一方(図4において上方)の端部である第一端部53aと他方(図4において下方)の端部である第二端部53bの各端面に、それぞれ雌ねじ53a1,53b1を備える。   The two guide shafts 53 are provided between the through-hole 52a2 of the first support 52a and the through-hole 52b2 of the second support 52b, and between the through-hole 52a3 of the first support 52a and the second support 52b. It is arranged between the through-hole 52b3 so that each axis position matches the center of each through-hole. At this time, the respective guide shafts 53, 53 are respectively end faces of a first end 53a which is one (upper in FIG. 4) end and a second end 53b which is the other (lower in FIG. 4) end. Are provided with female screws 53a1 and 53b1, respectively.

そして、図4に示すように、4本のボルト151が、第一支持部52a及び第二支持部52bにおいてガイド軸53,53が配置された側とは反対側から、貫通孔52a2,52a3及び貫通孔52b2,52b3を介して、それぞれの雌ねじ53a1,53b1と螺着される。これにより、ガイド軸53,53が、固定部材本体52に固定される。なお、このとき、ガイド軸53,53には、後に詳述するスライド部材56が、ガイド軸53,53に対して軸線方向に相対移動可能に挿通されている。具体的には、スライド部材56に形成された貫通孔であるガイド軸用貫通孔56a,56aにガイド軸53,53が挿通される。   Then, as shown in FIG. 4, the four bolts 151 are connected to the through holes 52a2 and 52a3 from the side opposite to the side where the guide shafts 53 and 53 are arranged in the first support portion 52a and the second support portion 52b. The female screws 53a1 and 53b1 are screwed through the through holes 52b2 and 52b3. Thus, the guide shafts 53 are fixed to the fixing member main body 52. At this time, a slide member 56 described later in detail is inserted through the guide shafts 53, 53 so as to be relatively movable in the axial direction with respect to the guide shafts 53, 53. Specifically, the guide shafts 53 are inserted through guide shaft through holes 56a, which are through holes formed in the slide member 56.

次に、支持軸54,54について説明する。図4に示すように、二本の支持軸54,54は、一方(図4において上方)の端部である第一端部54a,54aの各端面に、それぞれ雌ねじ54a1,54a1を備える。支持軸54,54は、第一支持部52aに対して、ガイド軸53,53が配置される側と同じ側で、かつ軸線が貫通孔52a4,52a5の中心と一致するよう配置される。そして、2本のボルト58が、第一支持部52aにおいて支持軸54,54が配置された側とは反対側から、貫通孔52a4,52a5を介して、雌ねじ54a1,54a1と螺着される。これにより、支持軸54,54が、固定部材本体52に片もち支持によって固定される。   Next, the support shafts 54 will be described. As shown in FIG. 4, the two support shafts 54, 54 are provided with female threads 54a1, 54a1, respectively, on the end surfaces of the first ends 54a, 54a, which are the one (upper in FIG. 4) ends. The support shafts 54, 54 are disposed on the same side as the guide shafts 53, 53 on the first support portion 52a, such that the axes thereof coincide with the centers of the through holes 52a4, 52a5. Then, the two bolts 58 are screwed to the female screws 54a1 and 54a1 via the through holes 52a4 and 52a5 from the side opposite to the side where the support shafts 54 and 54 are arranged in the first support portion 52a. Thus, the support shafts 54, 54 are fixed to the fixing member main body 52 by one-sided support.

また、このとき、支持軸54,54には、図4に示すように、前述したスライド部材56が、支持軸54,54及びガイド軸53,53に対して軸線方向に相対移動可能に挿通される。具体的には、スライド部材56に形成された貫通孔である支持軸用孔56b,56bに、支持軸54,54が挿通される。なお、支持軸用孔56b,56bは、貫通孔ではなく有底の孔であってもよい。つまり、スライド部材56と支持軸54,54とが軸線方向に相対移動した際、支持軸54,54の他方側の端部54b,54bが支持軸用孔の底面に当接しないような深さで形成されていればよい。   At this time, the slide member 56 described above is inserted into the support shafts 54, 54 so as to be relatively movable in the axial direction with respect to the support shafts 54, 54 and the guide shafts 53, 53, as shown in FIG. You. Specifically, the support shafts 54, 54 are inserted into support shaft holes 56b, 56b, which are through holes formed in the slide member 56. The support shaft holes 56b may be bottomed holes instead of through holes. That is, when the slide member 56 and the support shafts 54, 54 move relatively in the axial direction, the other ends 54b, 54b of the support shafts 54, 54 do not contact the bottom surface of the support shaft hole. What is necessary is just to be formed.

図4に示すように、付勢用プーリ55は、張力調整装置50が作動した場合、付勢用プーリ55の外周面によって駆動力伝達装置40のベルト42を付勢し、ベルト42の張力Tを所定の張力T1に調整する(変更する)。図4に示すように、付勢用プーリ55は、駆動プーリ41及び従動プーリ43と近似の形状で形成される。   As shown in FIG. 4, when the tension adjusting device 50 operates, the urging pulley 55 urges the belt 42 of the driving force transmission device 40 by the outer peripheral surface of the urging pulley 55, and the tension T of the belt 42 is increased. Is adjusted (changed) to a predetermined tension T1. As shown in FIG. 4, the urging pulley 55 is formed in a shape similar to the driving pulley 41 and the driven pulley 43.

つまり、付勢用プーリ55は、円筒状に形成される。付勢用プーリ55は、付勢用プーリ55の回転を支持する回転支持軸59の先端に、回転支持軸59と相対回転可能に設けられる。また、付勢用プーリ55は、付勢用プーリ55の回転軸線方向における外周面両端に鍔部を備える。そして、後に詳細に説明するが、回転支持軸59は、付勢用プーリ55が設けられた側と反対側の端部がスライド部材56に固定される。   That is, the biasing pulley 55 is formed in a cylindrical shape. The urging pulley 55 is provided at the tip of a rotation support shaft 59 that supports the rotation of the urging pulley 55 so as to be rotatable relative to the rotation support shaft 59. The urging pulley 55 includes flanges at both ends of the outer peripheral surface in the rotation axis direction of the urging pulley 55. As will be described later in detail, the end of the rotation support shaft 59 opposite to the side on which the biasing pulley 55 is provided is fixed to the slide member 56.

スライド部材56は、図3の斜視図、及び図4の断面図に示すように、直方体状のブロックのうち、図4において、下方で、且つ前方(左側)の一部(図4の二点鎖線部参照)が削除された形状を呈している。便宜上、以降の説明では、ブロックのうち削除されている部分の後方(図4の右側)の部材を第一部材56Aとし、削除されている部分の上方の部材を第二部材56Bとして説明する。   As shown in the perspective view of FIG. 3 and the cross-sectional view of FIG. 4, the slide member 56 is a lower part and a front part (left side) in FIG. (See the dashed line portion). For the sake of convenience, in the following description, a member behind (a right side in FIG. 4) of the deleted portion of the block will be described as a first member 56A, and a member above the deleted portion will be described as a second member 56B.

スライド部材56は、第一部材56Aに、上述したガイド軸用貫通孔56a,56aが形成される。ガイド軸用貫通孔56a,56aは、第一部材56Aの上面56cから下面56dに貫通して形成される。ガイド軸用貫通孔56a,56aは、付勢用プーリ55の回転軸線方向(=回転支持軸59の軸線方向)において同じ位置に配置される。ガイド軸用貫通孔56a,56aには、上述したように固定部材51が備えるガイド軸53,53(ガイド部材に相当する)が挿通し係合される。詳細には、ガイド軸用貫通孔56a,56aの両端(上端及び下端)には、ガイド軸53,53との間にドライ軸受152,153が設けられる。   In the slide member 56, the above-described guide shaft through holes 56a, 56a are formed in the first member 56A. The guide shaft through holes 56a, 56a are formed to penetrate from the upper surface 56c to the lower surface 56d of the first member 56A. The guide shaft through holes 56a, 56a are arranged at the same position in the rotation axis direction of the urging pulley 55 (= the axis direction of the rotation support shaft 59). As described above, the guide shafts 53, 53 (corresponding to guide members) of the fixing member 51 are inserted into and engaged with the guide shaft through holes 56a, 56a. Specifically, dry bearings 152 and 153 are provided between the guide shafts 53 and 53 at both ends (upper and lower ends) of the guide shaft through holes 56a and 56a.

これにより、スライド部材56が、付勢用プーリ55によるベルト42への付勢方向(=ガイド軸53,53の軸線方向)において、固定部材51に対して精度よく往復動可能にガイドされる。本実施形態では、このように、付勢用プーリ55の回転軸線方向において、固定部材51が備えるガイド軸53,53(ガイド部材に相当)が、スライド部材56をガイドする位置、即ち、ガイド軸53,53(又はガイド軸用貫通孔56a,56a)の軸線位置をガイド位置Gと定義する。なお、ガイド位置Gは、後の説明にて使用する。   Thereby, the slide member 56 is guided to be able to reciprocate with high precision with respect to the fixed member 51 in the urging direction (= axial direction of the guide shafts 53, 53) of the belt 42 by the urging pulley 55. In the present embodiment, the guide shafts 53, 53 (corresponding to the guide members) of the fixing member 51 guide the slide member 56 in the rotation axis direction of the urging pulley 55, that is, the guide shafts. The axial positions of the guide shafts 53, 53 (or guide shaft through holes 56a, 56a) are defined as guide positions G. The guide position G will be used later.

また、スライド部材56は、上述したように、回転支持軸59を介して、付勢用プーリ55を支持する。付勢用プーリ55は、回転支持軸59に対して相対回転可能となるよう回転支持軸59に支持される。このとき、付勢用プーリ55の回転軸線方向(回転支持軸59の軸線方向)は、張力調整装置50を駆動力伝達装置40に組付けた組付け状態(以降の説明においては、組付け状態とのみ記載して説明する場合がある)とした場合において、駆動プーリ41及び従動プーリ43の各回転軸線と平行となるよう配置される。   Further, the slide member 56 supports the urging pulley 55 via the rotation support shaft 59 as described above. The urging pulley 55 is supported by the rotation support shaft 59 so as to be rotatable relative to the rotation support shaft 59. At this time, the rotation axis direction of the urging pulley 55 (the axis direction of the rotation support shaft 59) is set in an assembled state in which the tension adjusting device 50 is assembled to the driving force transmission device 40 (in the following description, an assembled state is set). Are described only in some cases) and the driving pulley 41 and the driven pulley 43 are arranged in parallel with each other.

回転支持軸59は、第一部材56Aの前面56eから所定量突出して固定される。上述したように、回転支持軸59は、第一部材56Aの前面56e(図4において左側の面)から第一部材56Aの背面56f(図4において右側の面)に亘り貫通して設けられた支持孔に、端部が圧入されて固定される。   The rotation support shaft 59 is fixed by projecting a predetermined amount from the front surface 56e of the first member 56A. As described above, the rotation support shaft 59 is provided so as to penetrate from the front surface 56e (the left surface in FIG. 4) of the first member 56A to the rear surface 56f (the right surface in FIG. 4) of the first member 56A. The end is press-fitted into the support hole and fixed.

このとき、図4を左方向から見たR視図、即ち張力調整装置50を、付勢用プーリ55の回転軸線方向から視た図6に示すように、水平方向において、ガイド軸53,53の軸線53A,53Aが、それぞれ付勢用プーリ55の回転軸線O(=回転支持軸59の軸線)を跨いで回転軸線Oの両側に均等に配置される。そして、付勢用プーリ55が、回転支持軸59の先端部に、例えば、ボールベアリング、ニードルベアリング等の軸受(不図示)を介して回転支持軸59に対し相対回転可能に設けられる。   At this time, as shown in FIG. 4 when viewed from the left in FIG. 4, that is, when the tension adjusting device 50 is viewed from the rotation axis direction of the urging pulley 55 in FIG. Are respectively arranged equally on both sides of the rotation axis O across the rotation axis O of the urging pulley 55 (= the axis of the rotation support shaft 59). The biasing pulley 55 is provided at the tip of the rotation support shaft 59 so as to be rotatable relative to the rotation support shaft 59 via a bearing (not shown) such as a ball bearing or a needle bearing.

また、付勢用プーリ55は、図4における右側の端面が、第一部材56Aの前面56eから若干、離間して配置される。また、付勢用プーリ55は、回転支持軸59周りの多くの部分が、第一部材56Aの前面の前方と、第二部材56Bの下面56gの下方とによって形成される空間S内に収容される。また、付勢用プーリ55の下方は、外部空間Vに開放されている。これにより、上述した駆動力伝達装置40への組付け状態において、付勢用プーリ55の下方の外部空間Vに位置する駆動力伝達装置40が備えるベルト42の外表面と、付勢用プーリ55の外周面のうち下方に位置する一部の面とが良好に当接できる。   In addition, the biasing pulley 55 is disposed such that the right end surface in FIG. 4 is slightly separated from the front surface 56e of the first member 56A. Further, the biasing pulley 55 has a large portion around the rotation support shaft 59 housed in a space S formed by the front of the front surface of the first member 56A and below the lower surface 56g of the second member 56B. You. The lower portion of the urging pulley 55 is open to the external space V. Accordingly, in the state of being assembled to the driving force transmission device 40 described above, the outer surface of the belt 42 provided in the driving force transmission device 40 located in the external space V below the urging pulley 55, and the urging pulley 55 A part of the outer peripheral surface located below can be satisfactorily contacted.

また、上述したように、スライド部材56は、第二部材56Bに二本の支持軸54,54が挿通される支持軸用孔56b,56bを備える。支持軸用孔56b,56bは、第二部材56Bの上面56cから下面56gに貫通して形成される。なお、第二部材56Bの上面56cは、第一部材56Aの上面56cと同一面である。また、支持軸用孔56b,56bは、付勢用プーリ55の回転軸線方向(回転支持軸59の軸線方向)において同じ位置に配置される。   As described above, the slide member 56 includes the support shaft holes 56b through which the two support shafts 54 are inserted into the second member 56B. The support shaft holes 56b are formed to penetrate from the upper surface 56c to the lower surface 56g of the second member 56B. The upper surface 56c of the second member 56B is flush with the upper surface 56c of the first member 56A. The support shaft holes 56b are arranged at the same position in the rotation axis direction of the biasing pulley 55 (the axis direction of the rotation support shaft 59).

そして、図4に示すように、支持軸用孔56b,56bには、上述したように固定部材51が備える支持軸54,54が挿通される。従って、支持軸用孔56b,56bの軸線及び、支持軸54,54の軸線の位置は一致しているといえる。このとき、各支持軸54,54の下端面の位置は、スライド部材56が支持軸54,54に対して最大限、上方に相対移動した場合でも、スライド部材56の第二部材56Bの下面56gから突出して付勢用プーリ55の外周面に当接(衝突)しない長さに形成される。   Then, as shown in FIG. 4, the support shafts 54, 54 of the fixing member 51 are inserted into the support shaft holes 56b, 56b as described above. Therefore, it can be said that the positions of the axes of the support shaft holes 56b, 56b and the axes of the support shafts 54, 54 coincide. At this time, the position of the lower end surface of each of the support shafts 54, 54 is such that the lower surface 56g of the second member 56B of the slide member 56 can be moved even if the slide member 56 is moved upward relative to the support shafts 54 at the maximum. And is formed to have a length that does not abut (collide) with the outer peripheral surface of the urging pulley 55.

そして、上記の構成において、二本の圧縮コイルばね57,57(弾性部材)が、各支持軸54,54を、それぞれ、内径側に挿通した状態で、固定部材本体52における第一支持部52aのスライド部材56側の面52a1と、スライド部材56の上面56cの間に所定量圧縮されて配置される。これにより、圧縮コイルばね57,57は、上述した組付け状態において、付勢用プーリ55が動力伝達ベルト42を付勢する方向にスライド部材56を付勢する。   In the above-described configuration, the first support portion 52a of the fixed member main body 52 is provided with the two compression coil springs 57, 57 (elastic members) having the support shafts 54, 54 respectively inserted into the inner diameter side. A predetermined amount of compression is provided between the surface 52a1 on the side of the slide member 56 and the upper surface 56c of the slide member 56. Thus, the compression coil springs 57 urge the slide member 56 in the direction in which the urging pulley 55 urges the power transmission belt 42 in the above-described assembled state.

ここで、図4に示すように、付勢用プーリ55の回転軸線方向において、二本の圧縮コイルばね57,57(弾性部材)がスライド部材56を付勢する付勢力Pの中心位置、即ち付勢力Pの荷重中心位置を第二中心位置D2と定義する。また、付勢用プーリ55の回転軸線方向において、付勢用プーリ55がベルト42から受ける付勢反力(−P)の中心位置、即ち付勢反力(−P)の荷重中心位置を第一中心位置D1と定義する。本実施形態において、付勢用プーリ55の回転軸線方向における第一中心位置D1は、ベルト42の幅Wiの中央位置に一致するものとする。   Here, as shown in FIG. 4, in the rotation axis direction of the biasing pulley 55, the center position of the biasing force P that biases the slide member 56 by the two compression coil springs 57, 57 (elastic member), that is, The load center position of the urging force P is defined as a second center position D2. Further, in the rotation axis direction of the urging pulley 55, the center position of the urging reaction force (-P) received from the belt 42 by the urging pulley 55, that is, the load center position of the urging reaction force (-P) is referred to as the fourth position. Defined as one center position D1. In the present embodiment, the first center position D1 of the urging pulley 55 in the rotation axis direction is assumed to coincide with the center position of the width Wi of the belt 42.

このとき、ベルト42の幅Wiの中央位置が、付勢用プーリ55の回転軸線方向において、圧縮コイルばね57,57が、スライド部材56を付勢する付勢力の第二中心位置D2と一致するよう付勢用プーリ55の位置が予め設定される。つまり、上記実施形態においては、付勢用プーリ55の回転軸線方向において、第一中心位置D1と第二中心位置D2との間の第一距離L1(不図示)は「0」である。従って、第一距離L1は、第一中心位置D1とガイド位置Gとの間の第二距離L2よりも短い。   At this time, the center position of the width Wi of the belt 42 coincides with the second center position D2 of the urging force for urging the slide member 56 by the compression coil springs 57, 57 in the rotation axis direction of the urging pulley 55. The position of the biasing pulley 55 is set in advance. That is, in the above embodiment, the first distance L1 (not shown) between the first center position D1 and the second center position D2 in the rotation axis direction of the biasing pulley 55 is “0”. Therefore, the first distance L1 is shorter than the second distance L2 between the first center position D1 and the guide position G.

また、スライド部材56を、付勢用プーリ55の回転軸線方向(R方向)から視た場合、図6に示すように、支持軸54,54(又は支持軸54,54を挿通させる支持軸用孔56b,56b)の軸線54A,54Aの延長線は、それぞれ付勢用プーリ55の回転軸線O(=回転支持軸59の軸線)を跨いで回転軸線Oの両側に均等な距離aを有して配置される。   When the slide member 56 is viewed from the rotation axis direction (R direction) of the urging pulley 55, as shown in FIG. 6, the support shafts 54, 54 (or the support shafts through which the support shafts 54, 54 are inserted). Extensions of the axes 54A, 54A of the holes 56b, 56b) have a uniform distance a on both sides of the rotation axis O across the rotation axis O of the urging pulley 55 (= the axis of the rotation support shaft 59). Placed.

また、このとき、圧縮コイルばね57,57が、スライド部材56を付勢する付勢力の中心位置D3(第二中心位置D2に対応する)、即ち二本の圧縮コイルばね57,57による付勢力の荷重中心位置D3は、圧縮コイルばね57,57の軸線間の中央である。つまり、R方向から視た場合において、中心位置D3において、二本の圧縮コイルばね57,57がスライド部材56を付勢する付勢力Pの延長線は、付勢用プーリ55の回転軸線Oと交差する。   At this time, the compression coil springs 57, 57 are biased by the two compression coil springs 57, 57 at the center position D3 (corresponding to the second center position D2) of the biasing force for biasing the slide member 56. Is the center between the axes of the compression coil springs 57, 57. That is, when viewed from the R direction, at the center position D3, the extension line of the urging force P for urging the slide member 56 by the two compression coil springs 57 is the same as the rotation axis O of the urging pulley 55. Intersect.

(1−5.作用)
次に、張力調整装置50を駆動力伝達装置40に組付けた組付け状態(図2参照)における作用について説明する。なお、研削盤1の作動については、公知であるため、詳細な説明は省略する。例えば、図2は、初期状態において、張力調整装置50を駆動力伝達装置40に組付けた際、二本の圧縮コイルばね57,57が、スライド部材56を付勢する付勢力Pと、付勢用プーリ55がベルト42から受ける付勢反力(−P)と、が釣り合った状態を示す。そして、このときのベルト42の張力が、幅(範囲)を有した所定の張力T1であるものとする。
(1-5. Action)
Next, the operation in the assembled state (see FIG. 2) in which the tension adjusting device 50 is assembled to the driving force transmitting device 40 will be described. Since the operation of the grinding machine 1 is known, a detailed description is omitted. For example, FIG. 2 shows that, in the initial state, when the tension adjusting device 50 is assembled to the driving force transmitting device 40, the two compression coil springs 57, 57 apply an urging force P for urging the slide member 56; This shows a state in which the biasing reaction force (-P) received by the biasing pulley 55 from the belt 42 is balanced. It is assumed that the tension of the belt 42 at this time is a predetermined tension T1 having a width (range).

このとき、図4に示すように、付勢用プーリ55の回転軸線方向において、圧縮コイルばね57,57が、スライド部材56を付勢する付勢力Pの第二中心位置D2と、付勢用プーリ55がベルト42から受ける付勢反力(−P)の第一中心位置D1とは同じ位置である。これにより、付勢用プーリ55の回転軸線方向において、付勢力Pと付勢反力(−P)とは、相殺される。   At this time, as shown in FIG. 4, in the rotation axis direction of the biasing pulley 55, the compression coil springs 57, 57 move the second central position D <b> 2 of the biasing force P for biasing the slide member 56 and the biasing pulley 55. The pulley 55 is at the same position as the first center position D1 of the urging reaction force (-P) received from the belt 42. Thus, the biasing force P and the biasing reaction force (-P) are offset in the rotation axis direction of the biasing pulley 55.

従って、付勢用プーリ55がベルト42から受ける付勢反力(−P)によって、付勢用プーリ55が固定されるスライド部材56が、ガイド位置Gの何れかの点を中心として回転する回転モーメントは生じにくい。このため、生じた回転モーメントによって、スライド部材56が備える軸受152と、軸受153が支持するガイド軸53,53との間において傾きが生じ摩耗が生じる虞は低い。   Accordingly, the slide member 56 to which the biasing pulley 55 is fixed is rotated about any point of the guide position G by the biasing reaction force (-P) received by the biasing pulley 55 from the belt 42. Moment is unlikely to occur. For this reason, there is a low possibility that the generated rotational moment causes a tilt between the bearing 152 provided in the slide member 56 and the guide shafts 53 supported by the bearing 153 to cause abrasion.

また、このとき、図6に示すように、張力調整装置50を、付勢用プーリ55の回転軸線方向(R方向)から視た場合、第二中心位置D2に対応する中心位置D3において、圧縮コイルばね57,57がスライド部材56を付勢する付勢力Pの延長線は、付勢用プーリ55の回転軸線と交差する。また、第一中心位置D1に対応する中心位置D4において、付勢用プーリ55がベルト42から受ける付勢反力(−P)の延長線は、付勢用プーリ55の回転軸線と交差する。   At this time, as shown in FIG. 6, when the tension adjusting device 50 is viewed from the rotation axis direction (R direction) of the urging pulley 55, the tension adjusting device 50 is compressed at the center position D3 corresponding to the second center position D2. An extension line of the urging force P for urging the slide member 56 by the coil springs 57, 57 intersects the rotation axis of the urging pulley 55. Further, at a center position D4 corresponding to the first center position D1, the extension line of the biasing reaction force (-P) received by the biasing pulley 55 from the belt 42 intersects with the rotation axis of the biasing pulley 55.

つまり、図6における左右方向において、圧縮コイルばね57,57が、スライド部材56を付勢する付勢力Pの中心位置D3(荷重中心位置)と、付勢用プーリ55がベルト42から受ける付勢反力(−P)の中心位置D4(荷重中心位置)とは一致している。   That is, in the left-right direction in FIG. 6, the compression coil springs 57, 57 are biased by the biasing pulley 55 received from the belt 42 by the center position D <b> 3 (load center position) of the biasing force P for biasing the slide member 56. The center position D4 of the reaction force (-P) (the center position of the load) coincides with the center position D4.

これにより、スライド部材56は、付勢用プーリ55がベルト42から受ける付勢反力(−P)と、二本の圧縮コイルばね57,57がスライド部材56を付勢する付勢力Pとが図6における左右方向において同一位置で対向する。よって、図6に示す状態におけるスライド部材56を、回転させる回転モーメントは生じにくい。このため、生じた回転モーメントによって、スライド部材56が備える軸受152と、軸受153が支持するガイド軸53,53との間において傾きが生じ摩耗する虞は低い。   As a result, the slide member 56 generates a biasing reaction force (−P) that the biasing pulley 55 receives from the belt 42 and a biasing force P that biases the slide member 56 by the two compression coil springs 57. They face each other at the same position in the horizontal direction in FIG. Therefore, a rotational moment for rotating the slide member 56 in the state shown in FIG. For this reason, there is a low possibility that the generated rotational moment causes an inclination between the bearing 152 provided in the slide member 56 and the guide shafts 53 supported by the bearing 153, resulting in wear.

その後、研削盤1が長時間作動し、駆動力伝達装置40のベルト42が伸びると、ベルト42の張力T1が低下する。これにより、駆動プーリ41と従動プーリ43との間で伝達される砥石駆動モータ28の回転力の伝達効率が低下する。また、張力T1がさらに低下すれば、ベルト42が、駆動プーリ41及び従動プーリ43から脱落する虞もある。   Thereafter, when the grinding machine 1 operates for a long time and the belt 42 of the driving force transmission device 40 is extended, the tension T1 of the belt 42 decreases. Thereby, the transmission efficiency of the rotational force of the grinding wheel drive motor 28 transmitted between the drive pulley 41 and the driven pulley 43 is reduced. If the tension T1 further decreases, the belt 42 may fall off the driving pulley 41 and the driven pulley 43.

しかしながら、本実施形態では、張力調整装置50を備え、上述したように、付勢用プーリ55がベルト42を常にバランスよく付勢している。そして、張力T1が低下すると、バランスよく付勢した状態が維持されたまま、付勢用プーリ55が、圧縮コイルばね57,57の付勢によってベルト42側に前進し、ベルト42の張力を張力T1に調整する。   However, in the present embodiment, the tension adjusting device 50 is provided, and the urging pulley 55 always urges the belt 42 in a well-balanced manner as described above. When the tension T1 decreases, the urging pulley 55 advances toward the belt 42 by the urging of the compression coil springs 57, 57 while maintaining the state of being urged in a well-balanced state, and reduces the tension of the belt 42 by the tension. Adjust to T1.

(1−6.第一実施形態における効果)
上記第一実施形態に係る動力伝達ベルト42の張力調整装置50によれば、固定部材51と、付勢用プーリ55と、スライド部材56と、圧縮コイルばね57,57(弾性部材)とによって構成される。そして、付勢用プーリ55の回転軸線方向において、付勢用プーリ55が動力伝達ベルト42から受ける付勢反力(−P)の中心位置を第一中心位置D1と定義し、圧縮コイルばね57,57(弾性部材)がスライド部材56を付勢する付勢力Pの中心位置を第二中心位置D2と定義し、固定部材51のガイド軸53,53(ガイド部材)がスライド部材56をガイドする位置をガイド位置Gと定義する。そして、第一中心位置D1と第二中心位置D2との間の第一距離L1が、第一中心位置D1とガイド位置Gとの間の第二距離L2よりも短い。
(1-6. Effect in First Embodiment)
According to the tension adjusting device 50 of the power transmission belt 42 according to the first embodiment, the tension adjusting device 50 includes the fixing member 51, the urging pulley 55, the slide member 56, and the compression coil springs 57, 57 (elastic members). Is done. Then, in the rotation axis direction of the biasing pulley 55, the center position of the biasing reaction force (-P) received by the biasing pulley 55 from the power transmission belt 42 is defined as a first center position D1. , 57 (elastic member) define the center position of the urging force P for urging the slide member 56 as the second center position D2, and the guide shafts 53, 53 (guide member) of the fixed member 51 guide the slide member 56. The position is defined as a guide position G. Then, a first distance L1 between the first center position D1 and the second center position D2 is shorter than a second distance L2 between the first center position D1 and the guide position G.

このように、張力調整装置50では、第一中心位置D1と第二中心位置D2の間の第一距離L1が、第一中心位置D1とガイド位置Gとの間の第二距離L2よりも短くなるよう構成される。このため、付勢用プーリ55が動力伝達ベルト42の張力Tに応じた反力(−P)を受けても、当該反力は第二中心位置D2の位置に応じて、圧縮コイルばね57,57(弾性部材)がスライド部材56を付勢する付勢力により相応に相殺される。このため、スライド部材56のガイド軸53,53(ガイド部材)が受ける回転モーメントを良好に抑制することができる。したがって、スライド部材56は、ガイド軸53,53(ガイド部材)によって良好にガイドされ、ガイド軸53,53に対して精度よく軸線方向に相対移動可能である。また、張力調整装置50は、ガイド軸53,53の摩耗が良好に抑制されるので高い耐久性を備える。   Thus, in the tension adjusting device 50, the first distance L1 between the first center position D1 and the second center position D2 is shorter than the second distance L2 between the first center position D1 and the guide position G. It is configured to be. For this reason, even if the urging pulley 55 receives a reaction force (-P) corresponding to the tension T of the power transmission belt 42, the reaction force is not changed according to the position of the second center position D2. 57 (elastic member) is offset correspondingly by the urging force for urging the slide member 56. For this reason, the rotational moment received by the guide shafts 53, 53 (guide members) of the slide member 56 can be favorably suppressed. Therefore, the slide member 56 is satisfactorily guided by the guide shafts 53 and 53 (guide member), and can be accurately moved relative to the guide shafts 53 and 53 in the axial direction. In addition, the tension adjusting device 50 has high durability because the abrasion of the guide shafts 53 is well suppressed.

そして、このとき、圧縮コイルばね57,57(弾性部材)は、従来技術(特許文献3)における付勢部4aの構成とは大きく異なり、固定部材51(固定部材本体52)とスライド部材56との間に配置するだけで付勢部として成立する。このため、組み付けが簡素であるとともに部品点数が大幅に削減されるので、張力調整装置50を低コストに製造できる。   At this time, the compression coil springs 57, 57 (elastic members) are greatly different from the configuration of the urging portion 4a in the related art (Patent Document 3), and the fixed member 51 (fixed member main body 52) and the slide member 56 It is established as an urging portion simply by arranging it between. For this reason, assembling is simple and the number of parts is greatly reduced, so that the tension adjusting device 50 can be manufactured at low cost.

さらに、張力調整装置50は、固定部材51、圧縮コイルばね57,57、付勢用プーリ55、スライド部材56、及びスライド部材56をガイドするガイド軸53,53(ガイド部材)が一体化(ユニット化)されて形成される。従って、従来技術(特許文献3)のように、付勢部(4a)と付勢用のプーリ(14)とをそれぞれ別体で形成し、その後、相互に係合させながら駆動力伝達装置の支持部に別々に組み付ける必要がない。このため、駆動力伝達装置40への組み付け工数の低減、延いては低コスト化を図ることができる。   Further, in the tension adjusting device 50, the fixing member 51, the compression coil springs 57, 57, the biasing pulley 55, the slide member 56, and the guide shafts 53, 53 (guide members) for guiding the slide member 56 are integrated (unit). Is formed. Therefore, as in the prior art (Patent Literature 3), the urging portion (4a) and the pulley (14) for urging are formed separately from each other, and thereafter, while being engaged with each other, the driving force transmission device is provided. There is no need to separately assemble the support. For this reason, the number of steps for assembling to the driving force transmission device 40 can be reduced, and the cost can be reduced.

また、上記第一実施形態によれば、張力調整装置50を、付勢用プーリ55の回転軸線方向(R方向)から視た場合、第二中心位置D2に対応し、圧縮コイルばね57,57(弾性部材)がスライド部材56を付勢する付勢力Pの中心位置D3(荷重中心位置)から付勢力P方向に伸びる延長線は、付勢用プーリ55の回転軸線Oと交差する。これにより、R方向から視た場合において、付勢力Pと,付勢用プーリ55が動力伝達ベルト42から受ける付勢反力(−P)とは、図6における左右方向において、同一位置で付勢し合い相殺される。このため、図6におけるスライド部材56に回転モーメントは生じない。従って、スライド部材56は、ガイド軸53,53(ガイド部材)によってさらに良好にガイドされ、ガイド軸53,53に対して精度よく軸線方向に相対移動可能となる。   According to the first embodiment, when the tension adjusting device 50 is viewed from the rotation axis direction (R direction) of the urging pulley 55, the tension adjusting device 50 corresponds to the second center position D2, and the compression coil springs 57, 57 are provided. An extension line extending in the direction of the biasing force P from the center position D3 (load center position) of the biasing force P for biasing the slide member 56 by the (elastic member) intersects the rotation axis O of the biasing pulley 55. Thus, when viewed from the R direction, the urging force P and the urging reaction force (-P) received by the urging pulley 55 from the power transmission belt 42 are applied at the same position in the left-right direction in FIG. The momentum is offset. Therefore, no rotational moment is generated on the slide member 56 in FIG. Therefore, the slide member 56 is more appropriately guided by the guide shafts 53, 53 (guide member), and can be relatively accurately moved relative to the guide shafts 53, 53 in the axial direction.

また、上記第一実施形態によれば、弾性部材は、圧縮コイルばね57,57であり、固定部材51は、固定部材本体52と、第一、第二端部53a,53bが固定部材本体52に固定され、軸線の位置がガイド位置Gとなるガイド部材としてのガイド軸53,53と、第一端部54aが固定部材本体52に固定されるとともに圧縮コイルばね57,57の内径側に挿通され、軸線の位置が第二中心位置D2と一致する支持軸54,54と、を備える。また、スライド部材56は、ガイド軸53,53が、スライド部材56に対して軸線方向に相対移動可能となるよう貫挿されるガイド軸用貫通孔56a,56aと、支持軸54,54が、スライド部材56に対して軸線方向に相対移動可能となるように挿通される支持軸用孔56b,56bと、を備える。   Further, according to the first embodiment, the elastic members are the compression coil springs 57, 57, and the fixed member 51 has the fixed member main body 52 and the first and second end portions 53a, 53b have the fixed member main body 52. , The guide shafts 53, 53 serving as guide members whose axis position is the guide position G, the first end 54 a is fixed to the fixed member main body 52, and is inserted through the inner diameter side of the compression coil springs 57, 57. And support shafts 54, 54 whose axial position matches the second center position D2. The slide member 56 includes guide shaft through-holes 56a, 56a through which the guide shafts 53, 53 are axially movable relative to the slide member 56, and support shafts 54, 54, respectively. And supporting shaft holes 56b, 56b inserted so as to be relatively movable in the axial direction with respect to the member 56.

このように、弾性部材として圧縮コイルばね57,57を備える。これにより、固定部材51、圧縮コイルばね57,57、付勢用プーリ55、スライド部材56、及びスライド部材56をガイドするガイド軸53,53(ガイド部材)を、容易、且つ低コストに一体化(ユニット化)できる。   Thus, the compression coil springs 57, 57 are provided as elastic members. Thus, the fixing member 51, the compression coil springs 57, 57, the biasing pulley 55, the slide member 56, and the guide shafts 53, 53 (guide members) for guiding the slide member 56 are integrated easily and at low cost. (Unitized).

また、上記第一実施形態によれば、固定部材51は、ガイド軸53,53の軸線、及び支持軸54,54の軸線の延長線が、それぞれ付勢用プーリ55の回転軸線O(=回転支持軸59の軸線)を跨いで回転軸線Oの両側に均等に配置されるようガイド軸53,53及び支持軸54,54を二本ずつ備える。圧縮コイルばね57,57(弾性部材)は、各軸線が、各二本の支持軸54,54の軸線とそれぞれ一致するよう固定部材51とスライド部材56との間に二本配置される。   Further, according to the first embodiment, in the fixing member 51, the extension of the axis of the guide shafts 53, 53 and the extension of the axis of the support shafts 54, 54 are respectively the rotation axis O (= rotation) of the biasing pulley 55. Two guide shafts 53, 53 and two support shafts 54, 54 are provided so as to be evenly arranged on both sides of the rotation axis O across the support shaft 59). Two compression coil springs 57, 57 (elastic members) are arranged between the fixed member 51 and the slide member 56 such that their respective axes coincide with the axes of the two support shafts 54, 54, respectively.

このような構成によって、二本の圧縮コイルばね57,57が、スライド部材56を広い範囲でかつ安定的に付勢できるとともに、二本の圧縮コイルばね57,57によってスライド部材56を付勢する中心位置(荷重中心)を、容易に付勢用プーリ55が動力伝達ベルト42から受ける付勢反力(−P)の位置に一致させることができる。これにより、R方向から視た場合において、圧縮コイルばね57,57による付勢力Pと付勢用プーリ55が動力伝達ベルト42から受ける付勢反力(−P)とは、図6における左右方向において、同一位置で付勢し合い相殺される。従って、スライド部材56には回転モーメントが生じないので、安定して固定部材51に対して軸線方向に相対移動可能となる。   With such a configuration, the two compression coil springs 57, 57 can urge the slide member 56 in a wide range and stably, and the two compression coil springs 57, 57 urge the slide member 56. The center position (center of load) can be easily matched with the position of the urging reaction force (-P) received by the urging pulley 55 from the power transmission belt 42. Accordingly, when viewed from the R direction, the urging force P by the compression coil springs 57, 57 and the urging reaction force (-P) received by the urging pulley 55 from the power transmission belt 42 correspond to the left-right direction in FIG. In, they are urged and offset at the same position. Accordingly, since no rotational moment is generated in the slide member 56, the slide member 56 can stably move relative to the fixed member 51 in the axial direction.

また、上記第一実施形態によれば、研削盤1が、砥石車15と、砥石車15と連結され、砥石車15を軸線周りに回転可能に支持する回転軸15a(軸部材に相当)と、回転軸28a(出力軸)を備える砥石駆動モータ28(モータ)と、回転軸15aとモータ28の回転軸28aに掛け渡され、砥石駆動モータ28の回転力を、回転軸15aを介して砥石車15に伝達する動力伝達ベルト42と、動力伝達ベルト42の張力Tを所定の張力に調整する張力調整装置50と、を備える。このように、ワークW(工作物)を研削する際には、常時、砥石車15の振動によって動力伝達ベルト42の張力Tが変動する研削盤1に張力調整装置50を適用することで、研削盤1も高い耐久性を有する。また、低コストな張力調整装置50を適用することで、研削盤1の低コスト化にも寄与する。   Further, according to the first embodiment, the grinding machine 1 includes the grinding wheel 15 and the rotating shaft 15a (corresponding to a shaft member) that is connected to the grinding wheel 15 and rotatably supports the grinding wheel 15 around the axis. , A grinding wheel drive motor 28 (motor) having a rotating shaft 28a (output shaft), a rotating shaft 15a and a rotating shaft 28a of the motor 28, and the rotating force of the grinding wheel drive motor 28 is applied to the grinding wheel via the rotating shaft 15a. A power transmission belt 42 for transmitting to the vehicle 15 and a tension adjusting device 50 for adjusting the tension T of the power transmission belt 42 to a predetermined tension are provided. As described above, when the workpiece W (workpiece) is ground, the tension adjusting device 50 is applied to the grinding machine 1 in which the tension T of the power transmission belt 42 fluctuates due to the vibration of the grinding wheel 15 at all times. The board 1 also has high durability. In addition, by applying the low-cost tension adjusting device 50, the cost of the grinding machine 1 can be reduced.

(1−7.第一実施形態の変形例)
(1−7−1.変形例1)
上記第一実施形態においては、支持軸54,54及び圧縮コイルばね57,57(弾性部材)を二本ずつ設けた。しかしこの態様には限らない。第一実施形態の変形例1として、支持軸54及び圧縮コイルばね57(弾性部材)は、それぞれ一本ずつでもよい。この場合、支持軸54及び圧縮コイルばね57は、図7に示すように、張力調整装置50をR方向から視た場合、各軸線は、付勢用プーリ55の回転軸線と交差するよう配置されることが好ましい。これにより、第一実施形態と同様の効果が期待できる。なお、変形例1の態様に限らず、支持軸54及び圧縮コイルばね57の各軸線は、付勢用プーリ55の回転軸線と交差しないよう配置されてもよい。これによっても相応の効果は期待できる。
(1-7. Modification of First Embodiment)
(1-7-1. Modification 1)
In the first embodiment, two support shafts 54, 54 and two compression coil springs 57, 57 (elastic members) are provided. However, it is not limited to this mode. As a first modification of the first embodiment, each of the support shaft 54 and the compression coil spring 57 (elastic member) may be one. In this case, as shown in FIG. 7, the support shaft 54 and the compression coil spring 57 are arranged such that each axis crosses the rotation axis of the biasing pulley 55 when the tension adjusting device 50 is viewed from the R direction. Preferably. Thereby, the same effect as in the first embodiment can be expected. The present invention is not limited to the mode of the first modification, and the axes of the support shaft 54 and the compression coil spring 57 may be arranged so as not to intersect with the rotation axis of the biasing pulley 55. This can be expected to have a corresponding effect.

(1−7−2.変形例2)
また、上記第一実施形態では、付勢用プーリ55の回転軸線方向において、ベルト42が付勢用プーリ55を付勢する付勢反力(−P)の中心位置である第一中心位置D1と、圧縮コイルばね57,57がスライド部材56を付勢する付勢力Pの中心位置である第二中心位置D2とが一致する態様について説明した。
(1-7-2. Modification 2)
Further, in the first embodiment, the first center position D1 which is the center position of the biasing reaction force (-P) for biasing the biasing pulley 55 by the belt 42 in the rotation axis direction of the biasing pulley 55. The aspect in which the compression coil springs 57 and 57 match the second center position D2 which is the center position of the urging force P for urging the slide member 56 has been described.

しかし、この態様には限らない。第一実施形態の変形例2(図8参照)として、第二中心位置D2は、付勢用プーリ55の回転軸線方向における動力伝達ベルト42の幅Wiの範囲内に位置していればよい。このような配置によっても、第二中心位置D2がガイド位置に一致するよう配置された場合と比べて、スライド部材56に対して発生させる回転モーメントは、第二中心位置D2の大きさに応じて抑制される。さらには、第二中心位置D2は、付勢用プーリ55の回転軸線方向における動力伝達ベルト42の幅Wiの範囲内に位置していなくてもよい。この場合、第一距離L1が、第二距離L2より小さければよい。これによっても相応の効果は期待できる。   However, it is not limited to this mode. As a second modification of the first embodiment (see FIG. 8), the second center position D2 only needs to be located within the range of the width Wi of the power transmission belt 42 in the rotation axis direction of the biasing pulley 55. Even with such an arrangement, the rotational moment to be generated for the slide member 56 can be changed according to the magnitude of the second center position D2, as compared with the case where the second center position D2 is arranged to coincide with the guide position. Is suppressed. Further, the second center position D2 may not be located within the range of the width Wi of the power transmission belt 42 in the rotation axis direction of the urging pulley 55. In this case, the first distance L1 may be smaller than the second distance L2. This can be expected to have a corresponding effect.

(1−7−3.変形例3)
また、上記第一実施形態においては、動力伝達ベルト42は、ゴム製の平ベルトであるとして説明した。しかし、この態様には限らない。第一実施形態の変形例3(図略)として、動力伝達ベルト42は、駆動力伝達装置40の作動中に伸び、張力Tが低下する可能性のある材質で形成されればどのような材質で形成されてもよい。一例として、樹脂や、金属等で形成されてもよい。これによっても、相応の効果が期待できる。
(1-7-3. Modification 3)
In the first embodiment, the power transmission belt 42 is described as a rubber flat belt. However, it is not limited to this mode. As a third modification (not shown) of the first embodiment, any material may be used as long as the power transmission belt 42 is formed of a material that may be elongated during operation of the driving force transmission device 40 and the tension T may be reduced. May be formed. For example, it may be formed of resin, metal, or the like. With this, a corresponding effect can be expected.

<2.その他>
上記第一実施形態においては、回転支持軸59は、スライド部材56に相対回転不能に固定された。しかし、この態様には限らず、回転支持軸59は、付勢用プーリ55が配置される側の端部と反対側の端部が、スライド部材56に、例えばボールベアリング等を介して相対回転可能に支持されてもよい。この場合、付勢用プーリ55は、回転支持軸59のもう一方の端部に固定される。これによっても、第一実施形態と同様の効果が期待できる。
<2. Others>
In the first embodiment, the rotation support shaft 59 is fixed to the slide member 56 so as not to rotate relatively. However, the present invention is not limited to this mode. The rotation support shaft 59 may be configured such that the end opposite to the end on which the biasing pulley 55 is disposed is rotated relative to the slide member 56 via a ball bearing or the like. It may be supported as possible. In this case, the urging pulley 55 is fixed to the other end of the rotation support shaft 59. With this, the same effect as in the first embodiment can be expected.

また、上記第一実施形態では、スライド部材56のガイド部として、スライド部材56に形成されたガイド軸用貫通孔56a,56aと、ガイド軸用貫通孔56a,56aに貫挿されたガイド軸53,53を係合させて成立させた。しかし、この態様には限らず、ガイド部はどのような方式によって成立させてもよい。例えば、従来技術(特許第5479351号公報)に開示されるようなレール方式によるガイド部でもよい。または、公知のLMガイドを適用してガイド部を成立させてもよい。これらによっても、上記実施形態と同様の効果が期待できる。   In the first embodiment, as the guide portions of the slide member 56, the guide shaft through holes 56a formed in the slide member 56, and the guide shaft 53 inserted through the guide shaft through holes 56a, 56a. , 53 are engaged. However, the present invention is not limited to this mode, and the guide section may be formed by any method. For example, a guide unit using a rail system as disclosed in the related art (Japanese Patent No. 5479351) may be used. Alternatively, a known LM guide may be applied to form the guide portion. With these, the same effects as in the above embodiment can be expected.

また、上記第一実施形態では、弾性部材を圧縮コイルばね57としたが、この態様には限らない。弾性部材は、ゴム,板ばね,ウェーブワッシャ等どのようなものであってよい。ただし、弾性部材は、支持軸、又は支持軸に代わる部材によって、スライド部材56の上面と、固定部材本体52の第一支持部52aとの間に、良好に保持可能であることが好ましい。これによっても、相応の効果は期待できる。   In the first embodiment, the elastic member is the compression coil spring 57, but is not limited to this mode. The elastic member may be any material such as rubber, a leaf spring, and a wave washer. However, it is preferable that the elastic member can be satisfactorily held between the upper surface of the slide member 56 and the first support portion 52a of the fixed member main body 52 by the support shaft or a member replacing the support shaft. This can be expected to have a corresponding effect.

また、上記第一実施形態では、動力伝達ベルトの張力調整装置50を研削盤に備える態様について説明したが、この態様には限らない。駆動プーリ、従動プーリ及びベルトによって構成される駆動力伝達装置を備える装置であれば、どのような装置に適用しても良い。   Further, in the first embodiment, the mode in which the tension adjusting device 50 for the power transmission belt is provided in the grinding machine has been described, but the present invention is not limited to this mode. The present invention may be applied to any device provided with a driving force transmission device including a driving pulley, a driven pulley, and a belt.

1;研削盤、 15;砥石車、 15a;回転軸(軸部材)、 28;砥石駆動モータ(モータ)、 28a;回転軸(出力軸)、 40;駆動力伝達装置、 41;駆動プーリ、 42;動力伝達ベルト、 43;従動プーリ、 50;張力調整装置、 51;固定部材、 52;固定部材本体、 52a;第一支持部、 52b;第二支持部、 52c;接続部、 53;ガイド軸、 54;支持軸、 55;付勢用プーリ、 56;スライド部材、 56a;ガイド軸用貫通孔、 56b;支持軸用孔、 59;回転支持軸、 D1;第一中心位置、 D2;第二中心位置、 G;ガイド位置、 L1;第一距離、 L2;第二距離。   Reference Signs List 1: grinding machine, 15: grinding wheel, 15a: rotating shaft (shaft member), 28: grinding wheel driving motor (motor), 28a: rotating shaft (output shaft), 40: driving force transmission device, 41: driving pulley, 42 Power transmission belt, 43; driven pulley, 50: tension adjusting device, 51: fixing member, 52: fixing member main body, 52a: first supporting portion, 52b; second supporting portion, 52c; connecting portion, 53; , 54; support shaft, 55; biasing pulley, 56; slide member, 56a; guide shaft through hole, 56b; support shaft hole, 59; rotary support shaft, D1: first center position, D2; Center position, G: guide position, L1: first distance, L2: second distance.

Claims (8)

動力伝達ベルトの張力調整装置において、
固定部材と、
前記動力伝達ベルトを付勢して前記動力伝達ベルトの張力を変更する付勢用プーリと、
前記付勢用プーリを回転可能に支持し、且つ、前記固定部材が備えるガイド部材に係合され、前記付勢用プーリによる前記動力伝達ベルトへの付勢方向へ前記固定部材に対して往復動可能にガイドされるスライド部材と、
前記固定部材と前記スライド部材との間に配置され、前記付勢用プーリが前記動力伝達ベルトを付勢する方向に前記スライド部材を付勢する弾性部材と、
を備え、
前記付勢用プーリの回転軸線方向において、前記付勢用プーリが前記動力伝達ベルトから受ける付勢反力の中心位置を第一中心位置と定義し、前記弾性部材が前記スライド部材を付勢する付勢力の中心位置を第二中心位置と定義し、前記固定部材の前記ガイド部材が前記スライド部材をガイドする位置をガイド位置と定義し、
前記第一中心位置と前記第二中心位置との間の第一距離が、前記第一中心位置と前記ガイド位置との間の第二距離よりも短い、動力伝達ベルトの張力調整装置。
In the power transmission belt tension adjustment device,
A fixing member,
An urging pulley for urging the power transmission belt to change the tension of the power transmission belt,
The biasing pulley is rotatably supported, and is engaged with a guide member included in the fixing member, and reciprocates with respect to the fixing member in a direction of biasing the power transmission belt by the biasing pulley. A sliding member guided as possible,
An elastic member that is disposed between the fixed member and the slide member and that urges the slide member in a direction in which the urging pulley urges the power transmission belt;
With
In the rotation axis direction of the biasing pulley, a center position of the biasing reaction force received by the biasing pulley from the power transmission belt is defined as a first center position, and the elastic member biases the slide member. The center position of the urging force is defined as a second center position, and the position where the guide member of the fixed member guides the slide member is defined as a guide position,
A tension adjusting device for a power transmission belt, wherein a first distance between the first center position and the second center position is shorter than a second distance between the first center position and the guide position.
前記張力調整装置を、前記付勢用プーリの前記回転軸線方向から視た場合、前記第二中心位置における前記弾性部材が前記スライド部材を付勢する前記付勢力の前記中心位置の延長線は、前記付勢用プーリの前記回転軸線と交差する、請求項1に記載の動力伝達ベルトの張力調整装置。   When the tension adjusting device is viewed from the rotation axis direction of the urging pulley, the elastic member at the second central position is an extension of the central position of the urging force for urging the slide member, The tension adjusting device for a power transmission belt according to claim 1, wherein the tension adjusting device intersects the rotation axis of the urging pulley. 前記弾性部材は、圧縮コイルばねであり、
前記固定部材は、
固定部材本体と、
第一、第二端部が前記固定部材本体に固定され、軸線の位置が前記ガイド位置となる前記ガイド部材としてのガイド軸と、
第一端部が前記固定部材本体に固定されるとともに前記圧縮コイルばねの内径側に挿通され、軸線の位置が前記第二中心位置と一致する支持軸と、を備え、
前記スライド部材は、
前記ガイド軸が、前記スライド部材に対して軸線方向に相対移動可能となるよう貫挿されるガイド軸用貫通孔と、
前記支持軸が、前記スライド部材に対して軸線方向に相対移動可能となるように挿通される支持軸用孔と、を備える、請求項1又は2に記載の動力伝達ベルトの張力調整装置。
The elastic member is a compression coil spring,
The fixing member,
A fixing member body,
A first and second end portions are fixed to the fixing member main body, and a guide shaft as the guide member whose axial position is the guide position,
A first end portion is fixed to the fixing member main body and is inserted through the inner diameter side of the compression coil spring, and a support shaft having an axial position coinciding with the second center position,
The slide member,
The guide shaft, a guide shaft through-hole that is inserted so as to be relatively movable in the axial direction with respect to the slide member,
3. The power transmission belt tension adjusting device according to claim 1, wherein the support shaft includes a support shaft hole that is inserted so as to be relatively movable in the axial direction with respect to the slide member. 4.
前記固定部材は、
前記ガイド軸の前記軸線、及び前記支持軸の前記軸線の延長線が、それぞれ前記付勢用プーリの前記回転軸線を跨いで前記回転軸線の両側に均等に配置されるよう前記ガイド軸及び前記支持軸を二本ずつ備え、
前記圧縮コイルばねは、
軸線が、各前記二本の支持軸の前記軸線とそれぞれ一致するよう前記固定部材と前記スライド部材との間に二本配置される、請求項3に記載の動力伝達ベルトの張力調整装置。
The fixing member,
The guide shaft and the support so that the axis of the guide shaft and the extension of the axis of the support shaft are equally arranged on both sides of the rotation axis while straddling the rotation axis of the urging pulley. Equipped with two axes,
The compression coil spring,
The tension adjusting device for a power transmission belt according to claim 3, wherein two axes are arranged between the fixed member and the slide member so that the axes coincide with the axes of the two support shafts, respectively.
前記第二中心位置は、前記付勢用プーリの前記回転軸線方向における前記動力伝達ベルトの幅の範囲内に位置する、請求項1−4の何れか1項に記載の動力伝達ベルトの張力調整装置。   The tension adjustment of the power transmission belt according to any one of claims 1 to 4, wherein the second center position is located within a range of a width of the power transmission belt in the rotation axis direction of the biasing pulley. apparatus. 前記第二中心位置は、前記第一中心位置と一致する、請求項1−4の何れか1項に記載の動力伝達ベルトの張力調整装置。   The tension adjusting device for a power transmission belt according to claim 1, wherein the second center position matches the first center position. 前記動力伝達ベルトは、ゴム製の平ベルトである、請求項1−6の何れか1項に記載の動力伝達ベルトの張力調整装置。   The tension adjusting device for a power transmission belt according to any one of claims 1 to 6, wherein the power transmission belt is a rubber flat belt. 砥石車と、
前記砥石車と連結され前記砥石車を軸線周りに回転可能に支持する軸部材と、
出力軸を備えるモータと、
前記軸部材と前記モータの前記出力軸に掛け渡され、前記モータの回転力を、前記軸部材を介して前記砥石車に伝達する前記動力伝達ベルトと、
前記動力伝達ベルトの張力を所定の張力に調整する請求項1−7の何れか一項に記載の張力調整装置と、を備える研削盤。
With a grinding wheel
A shaft member connected to the grinding wheel and supporting the grinding wheel so as to be rotatable around an axis;
A motor having an output shaft;
The power transmission belt that is wound around the shaft member and the output shaft of the motor, and that transmits the rotational force of the motor to the grinding wheel via the shaft member;
A grinding machine comprising: the tension adjusting device according to claim 1, wherein the tension of the power transmission belt is adjusted to a predetermined tension.
JP2018173213A 2018-09-18 2018-09-18 Grinding machine with tensioning device for power transmission belt and tensioning device Active JP7206727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173213A JP7206727B2 (en) 2018-09-18 2018-09-18 Grinding machine with tensioning device for power transmission belt and tensioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173213A JP7206727B2 (en) 2018-09-18 2018-09-18 Grinding machine with tensioning device for power transmission belt and tensioning device

Publications (2)

Publication Number Publication Date
JP2020045935A true JP2020045935A (en) 2020-03-26
JP7206727B2 JP7206727B2 (en) 2023-01-18

Family

ID=69899410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173213A Active JP7206727B2 (en) 2018-09-18 2018-09-18 Grinding machine with tensioning device for power transmission belt and tensioning device

Country Status (1)

Country Link
JP (1) JP7206727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787389A (en) * 2021-09-22 2021-12-14 连云港鸿锐复合材料有限公司 Efficient grinding machine for production of glass fiber reinforced plastic storage tank and grinding method thereof
CN114589359A (en) * 2022-03-14 2022-06-07 安徽达顺不锈钢有限公司 Precise stainless steel strip surface treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501389A (en) * 1981-09-11 1983-08-18 デイコ プロダクツ、インコーポレイテッド Belt tensioning device, parts therefor, and manufacturing method thereof
JPS6266370U (en) * 1985-10-16 1987-04-24
JPH10274297A (en) * 1997-02-03 1998-10-13 Koyo Seiko Co Ltd Belt tensioner mechanism and continuously variable transmission
JP2000130567A (en) * 1998-10-28 2000-05-12 Sony Corp Lubrication management mechanism
JP2006068847A (en) * 2004-09-01 2006-03-16 Toyoda Mach Works Ltd Grinding machine
JP2012077868A (en) * 2010-10-04 2012-04-19 Seiko Epson Corp Belt drive transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501389A (en) * 1981-09-11 1983-08-18 デイコ プロダクツ、インコーポレイテッド Belt tensioning device, parts therefor, and manufacturing method thereof
JPS6266370U (en) * 1985-10-16 1987-04-24
JPH10274297A (en) * 1997-02-03 1998-10-13 Koyo Seiko Co Ltd Belt tensioner mechanism and continuously variable transmission
JP2000130567A (en) * 1998-10-28 2000-05-12 Sony Corp Lubrication management mechanism
JP2006068847A (en) * 2004-09-01 2006-03-16 Toyoda Mach Works Ltd Grinding machine
JP2012077868A (en) * 2010-10-04 2012-04-19 Seiko Epson Corp Belt drive transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787389A (en) * 2021-09-22 2021-12-14 连云港鸿锐复合材料有限公司 Efficient grinding machine for production of glass fiber reinforced plastic storage tank and grinding method thereof
CN114589359A (en) * 2022-03-14 2022-06-07 安徽达顺不锈钢有限公司 Precise stainless steel strip surface treatment device

Also Published As

Publication number Publication date
JP7206727B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US9289877B2 (en) Device for the fine machining of optically active surfaces on, in particular, spectacle lenses
JP2020045935A (en) Tension adjustment device of power transmission belt and grinder having tension adjustment device
US5241183A (en) Vertical xy stage
JP2003245855A (en) Center support grinding method, center support grinding machine, and centering method for machine
MXPA01011143A (en) Ribbon drive and tensioning system for a print and apply engine or a printer.
KR101263582B1 (en) Omnidirectional mobile robot with variable footprinting mechanism
CN212886907U (en) Integral type polishing waxing machine
KR20200010067A (en) Driving system having reduced vibration transmission
JPH06134654A (en) Rotating/slitting device
JP2007247886A (en) Friction drive unit
WO2019150681A1 (en) Linear drive mechanism and shape measuring machine
JPH071308A (en) Glasses lens polishing machine with means for controlling value of pressure for tightening glasses lens material to be polished
US5717138A (en) Arrangement for driving a measuring spindle of a balancing machine
JPH1026203A (en) Friction drive mechanism
JP2000354915A (en) Pick and place device
JP2007239783A (en) Bearing supporting method and robot device using this method
US20070006448A1 (en) Component pressing device
JP3084418B2 (en) Vertical XY stage for SOR exposure
JP2519749B2 (en) Robot power transmission device
JP2937997B1 (en) Serial recording device
JP2005007485A (en) Feeding mechanism and machine tool
JP4415519B2 (en) Actuator
CN216731129U (en) Automatic conveying device for abrasive belt
CN216265182U (en) Multifunctional polishing assembly
JP3071185B1 (en) Honing machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7206727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150