JP2020041838A - Hydrogen embrittlement characteristic evaluation method - Google Patents

Hydrogen embrittlement characteristic evaluation method Download PDF

Info

Publication number
JP2020041838A
JP2020041838A JP2018167775A JP2018167775A JP2020041838A JP 2020041838 A JP2020041838 A JP 2020041838A JP 2018167775 A JP2018167775 A JP 2018167775A JP 2018167775 A JP2018167775 A JP 2018167775A JP 2020041838 A JP2020041838 A JP 2020041838A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen embrittlement
plastic strain
test material
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018167775A
Other languages
Japanese (ja)
Inventor
小林 憲司
Kenji Kobayashi
憲司 小林
大村 朋彦
Tomohiko Omura
朋彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018167775A priority Critical patent/JP2020041838A/en
Publication of JP2020041838A publication Critical patent/JP2020041838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a method capable of quantitatively evaluating the influence of a plastic strain amount affecting a hydrogen embrittlement characteristic of a steel material.SOLUTION: A hydrogen embrittlement characteristic evaluation method is a method of evaluating the hydrogen embrittlement characteristic of a steel material to which a plastic strain is applied. This method includes: (a) a process of applying a cold or warm compression work or rolling to a test material that is made of the same steel as the steel material before the plastic strain is applied and whose thickness in a predetermined direction changes continuously or gradually in the direction perpendicular to the predetermined direction so that the predetermined direction becomes a compression direction; (b) a process of introducing hydrogen to the test material having undergone the compression work or rolling; and (c) a process of evaluating the hydrogen embrittlement characteristic of the steel material on the basis of the evaluation result of the hydrogen embrittlement characteristic using the test material to which hydrogen has been introduced.SELECTED DRAWING: None

Description

本発明は、水素脆化特性評価方法に関する。   The present invention relates to a method for evaluating hydrogen embrittlement characteristics.

鉄鋼材料では、材料中に水素が導入され引張応力が負荷されると、水素脆化と呼ばれる現象が生じることがある。水素脆化が生じると、材料の破断強度、伸びおよび絞りが低下する。また、材料中の水素濃度が極めて高い場合には、引張応力または残留応力が付与されていない状態であっても、材料内部で水素脆化割れが生じることがある。その一例が、油井・ガス井の湿潤硫化水素環境で使用される炭素鋼・低合金鋼で生じる、水素誘起割れ(Hydrogen Induced Cracking:HIC)である。   In a steel material, when hydrogen is introduced into the material and a tensile stress is applied, a phenomenon called hydrogen embrittlement may occur. When hydrogen embrittlement occurs, the breaking strength, elongation and drawing of the material decrease. Further, when the hydrogen concentration in the material is extremely high, hydrogen embrittlement cracking may occur inside the material even in a state where no tensile stress or residual stress is applied. One example is Hydrogen Induced Cracking (HIC) that occurs in carbon steel and low alloy steel used in wet hydrogen sulfide environments in oil and gas wells.

一般に、材料強度が高くなるほど、鉄鋼材料の水素脆化感受性は増大することが知られている。したがって、材料に対する塑性ひずみ(永久ひずみ)の付与は、転位を生成し材料強度を上昇させるため、水素脆化感受性に対して悪影響を与える可能性が高いと考えられる。   In general, it is known that the higher the material strength, the higher the hydrogen embrittlement susceptibility of the steel material. Therefore, it is considered that the application of plastic strain (permanent strain) to the material generates dislocations and increases the strength of the material, and thus has a high possibility of adversely affecting the hydrogen embrittlement susceptibility.

鉄鋼材料には、製管またはプレスといった成形時に加えて、施工時、使用時等の種々の段階において、塑性ひずみが付与される。上述のとおり、塑性ひずみは水素脆化感受性に大きく影響を与えるため、製品の最終的な水素脆化感受性を適正に評価するためには、塑性ひずみ付与後の性能評価が必要である。   A plastic strain is imparted to the steel material at various stages such as construction and use, in addition to forming at the time of forming a pipe or pressing. As described above, since plastic strain greatly affects hydrogen embrittlement susceptibility, it is necessary to evaluate the performance after plastic strain is applied in order to properly evaluate the final hydrogen embrittlement susceptibility of a product.

例えば、鋼板をパイプ状に成形して継目を溶接することで製造する溶接鋼管においては、製管時に塑性変形が加わることとなる。ここで、最終製品である溶接鋼管を用いて水素脆化感受性を評価することは可能である。しかしながら、この方法では製管した後でないと最終製品の性能が分からないため、工業的にはその前段階である鋼板を用いて適正な評価ができることが望まれる。   For example, in a welded steel pipe manufactured by forming a steel plate into a pipe shape and welding seams, plastic deformation is applied during pipe production. Here, it is possible to evaluate hydrogen embrittlement susceptibility using a welded steel pipe as a final product. However, in this method, the performance of the final product cannot be known until after the pipe has been produced. Therefore, industrially, it is desired that a proper evaluation can be performed using a steel plate which is the preceding stage.

また、鋼板をプレス成形する場合、塑性ひずみは局所に集中する。このような材料に外部応力を負荷して水素脆化特性を評価することは容易ではない。材料が大きく変形してしまっていること、歪み分布により強度分布が同時に生じ均一な応力負荷が困難なことが挙げられる。したがって、塑性ひずみの影響を正しく評価できる手法が必要である。   Further, when a steel sheet is press-formed, plastic strain is locally concentrated. It is not easy to evaluate the hydrogen embrittlement characteristics by applying an external stress to such a material. The material is greatly deformed, and the strength distribution is simultaneously generated due to the strain distribution, and it is difficult to uniformly apply a stress. Therefore, there is a need for a method capable of correctly evaluating the effect of plastic strain.

例えば、特許文献1には、高強度鋼板の耐遅れ破壊性の評価方法(水素脆化評価法)が開示されている。特許文献1に記載される方法では、高強度鋼板の試験片に対して、この高強度鋼板の伸び量に対して20〜80%の塑性歪みを伴う引張加工を加えた後に、曲げ部の半径が5〜30mmとなるようなU曲げ加工か、曲げ部の角度が30〜90度となるようなV曲げ加工のいずれかを加え、更に、この曲げ加工を加えた試験片の両辺部分に対して500〜2000MPaの圧縮応力を付加した状態で、電解溶液に陰極として浸漬し、陰極及び陽極に定電流を通電して水素チャージを行い、陰極試験片に割れが生じるまでの時間で高強度鋼板の耐遅れ破壊性を評価することとしている。   For example, Patent Literature 1 discloses a method for evaluating delayed fracture resistance of a high-strength steel sheet (hydrogen embrittlement evaluation method). In the method described in Patent Literature 1, a test piece of a high-strength steel sheet is subjected to a tensile processing with a plastic strain of 20 to 80% with respect to the elongation of the high-strength steel sheet, and then a radius of a bent portion is obtained. Is 5 to 30 mm or V-bending so that the angle of the bent portion is 30 to 90 degrees. Furthermore, the bending is performed on both sides of the test piece. In a state where a compressive stress of 500 to 2000 MPa is applied, the cathode is immersed in the electrolytic solution as a cathode, a constant current is applied to the cathode and the anode, and hydrogen charging is performed. Is to be evaluated for delayed fracture resistance.

特開2007−198895号公報JP 2007-198895A

しかしながら、特許文献1に記載される方法では、塑性歪みを伴う引張加工に加えて、評価時にU曲げ加工またはV曲げ加工により塑性ひずみを付与するため、塑性ひずみ量と水素脆化特性との関係を定量的に評価することができないという問題がある。また、引張加工では、塑性ひずみが局部に集中するおそれがあり、付与する塑性ひずみ量の制御が困難であるという問題もある。   However, in the method described in Patent Document 1, since a plastic strain is imparted by U-bending or V-bending at the time of evaluation, in addition to tensile processing accompanied by plastic strain, the relationship between the amount of plastic strain and hydrogen embrittlement properties is evaluated. Cannot be quantitatively evaluated. Further, in the tensile working, there is a possibility that the plastic strain may be concentrated in a local area, and there is a problem that it is difficult to control the amount of the applied plastic strain.

本発明は、上記の問題を解決し、鋼材の水素脆化特性に及ぼす塑性ひずみ量の影響を定量的に評価することが可能な方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a method capable of quantitatively evaluating the effect of the amount of plastic strain on the hydrogen embrittlement characteristics of a steel material.

本発明は、上記の問題を解決するためになされたものであり、下記の水素脆化特性評価方法を要旨とする。   The present invention has been made to solve the above-mentioned problem, and has a gist of the following method for evaluating hydrogen embrittlement characteristics.

(1)塑性ひずみが付与される鋼材の水素脆化特性を評価する方法であって、
(a)前記塑性ひずみが付与される前の前記鋼材と同一の鋼からなり、所定方向における厚さが、前記所定方向に垂直な方向において連続的または段階的に変化する試験材に対して、前記所定方向が圧縮方向となるように、冷間または温間の圧縮加工または圧延を施す工程と、
(b)前記圧縮加工または圧延が施された前記試験材に対して、水素を導入する工程と、
(c)前記水素が導入された前記試験材を用いた水素脆化特性の評価結果に基づいて、前記鋼材の水素脆化特性を評価する工程と、を備える、
水素脆化特性評価方法。
(1) A method for evaluating the hydrogen embrittlement property of a steel material to which plastic strain is applied,
(A) For a test material made of the same steel as the steel material before the plastic strain is applied and having a thickness in a predetermined direction that changes continuously or stepwise in a direction perpendicular to the predetermined direction, A step of performing cold or warm compression or rolling so that the predetermined direction is the compression direction,
(B) introducing hydrogen into the compression-processed or rolled test material;
(C) evaluating a hydrogen embrittlement property of the steel material based on an evaluation result of the hydrogen embrittlement property using the test material into which the hydrogen has been introduced,
Method for evaluating hydrogen embrittlement characteristics.

(2)上記(b)の工程において、水素導入の前、後または同時に、前記試験材に対して、弾性域での引張応力を付与する、
上記(1)に記載の水素脆化特性評価方法。
(2) In the step (b), a tensile stress in an elastic region is applied to the test material before, after or simultaneously with the introduction of hydrogen.
The method for evaluating hydrogen embrittlement characteristics according to the above (1).

(3)上記(a)の工程において、前記鋼材に付与される塑性ひずみの最大値の見積もり結果に基づいて、前記試験材に対して、前記試験材の厚さが最大となる部分において、前記塑性ひずみの最大値以上の塑性ひずみを付与する、
上記(1)または(2)に記載の水素脆化特性評価方法。
(3) In the step (a), based on the estimation result of the maximum value of the plastic strain applied to the steel material, a portion where the thickness of the test material is maximum with respect to the test material, Giving a plastic strain not less than the maximum value of the plastic strain,
The method for evaluating hydrogen embrittlement characteristics according to the above (1) or (2).

本発明によれば、鋼材の水素脆化特性に及ぼす塑性ひずみ量の影響を定量的に評価することが可能となる。   According to the present invention, it is possible to quantitatively evaluate the effect of the amount of plastic strain on the hydrogen embrittlement characteristics of a steel material.

本発明の一実施形態に係る水素脆化特性評価方法に用いられる試験材の形状を説明するための図である。It is a figure for explaining the shape of the test material used for the hydrogen embrittlement property evaluation method concerning one embodiment of the present invention. 実施例で用いられる試験材の形状を示す図である。It is a figure showing the shape of the test material used in an example. HIC試験後の試験材の超音波探傷法によるCスキャン結果を示す図である。It is a figure showing the C scan result by ultrasonic flaw detection of a test material after a HIC test.

本発明の一実施形態に係る水素脆化特性評価方法について、詳細に説明する。   The method for evaluating hydrogen embrittlement properties according to one embodiment of the present invention will be described in detail.

本発明の一実施形態に係る水素脆化特性評価方法は、製造時、施工時または使用時に塑性ひずみが付与される鋼材の水素脆化特性を評価する方法であり、(a)塑性ひずみ負荷工程、(b)水素導入工程、および(c)水素脆化特性評価工程を備える。各工程について詳しく説明する。   The hydrogen embrittlement property evaluation method according to one embodiment of the present invention is a method for evaluating the hydrogen embrittlement property of a steel material to which a plastic strain is imparted at the time of production, construction, or use. , (B) a hydrogen introduction step, and (c) a hydrogen embrittlement property evaluation step. Each step will be described in detail.

(a)塑性ひずみ負荷工程
塑性ひずみ負荷工程においては、まず塑性ひずみが付与される前の、水素脆化特性の評価対象となる鋼材と同一の鋼からなる試験材を準備する。ここで、同一の鋼とは、工業的に同一の工程により製造された鋼を意味する。すなわち、塑性ひずみが付与される前の鋼材と試験材とは、化学組成および金属組織が略同一である。
(A) Plastic Strain Loading Step In the plastic strain loading step, first, a test material made of the same steel as a steel to be evaluated for hydrogen embrittlement characteristics before plastic strain is applied is prepared. Here, the same steel means steel manufactured industrially by the same process. In other words, the steel material before the plastic strain is applied and the test material have substantially the same chemical composition and metal structure.

図1は、本発明の一実施形態に係る水素脆化特性評価方法に用いられる試験材の形状を説明するための図である。図1(a)に示す例では、試験材の厚さが、長さ方向において連続的に変化し、一方側から他方側に向かって漸移減少している。また、図2(b)に示す例のように、厚さが長さ方向において増減を繰り返す形状であってもよい。   FIG. 1 is a diagram for explaining the shape of a test material used in the hydrogen embrittlement property evaluation method according to one embodiment of the present invention. In the example shown in FIG. 1A, the thickness of the test material changes continuously in the length direction, and gradually decreases from one side to the other side. Further, as in the example shown in FIG. 2B, the shape may be such that the thickness repeatedly increases and decreases in the length direction.

また、図1(a),(b)に示す例では、厚さは長さ方向において連続的に変化しているが、図1(c),(d)に示す例のように、厚さが長さ方向において段階的に変化してもよい。図1(d)に示す例では、厚さが均一の部分と厚さが漸移減少するテーパ状の部分とが交互に繰り返される形状となっている。   In addition, in the example shown in FIGS. 1A and 1B, the thickness continuously changes in the length direction, but as in the example shown in FIGS. May change stepwise in the length direction. In the example shown in FIG. 1D, a portion having a uniform thickness and a tapered portion having a gradually decreasing thickness are alternately repeated.

なお、上述の例では、試験材の厚さは長さ方向において変化し、幅方向においては一定であるが、厚さ方向に垂直な方向において変化していればよい。例えば、厚さが長さ方向において一定であり、幅方向において変化していてもよいし、長さ方向および幅方向の両方において変化していてもよい。   In the above-described example, the thickness of the test material changes in the length direction and is constant in the width direction, but may be changed in the direction perpendicular to the thickness direction. For example, the thickness may be constant in the length direction and change in the width direction, or may change in both the length direction and the width direction.

そして、上記の試験片に対して、厚さ方向が圧縮方向となるように、冷間または温間の圧縮加工または圧延を施す。ここで、冷間または温間の圧縮加工または圧延とは、50℃程度までの温度で行う圧縮加工または圧延を指すものとする。50℃を超える温度では、鋼の回復が生じるおそれがある。その場合、塑性ひずみの水素脆化特性への影響が低減されるため、狙い通りの塑性ひずみを付与しても、その塑性ひずみの水素脆化特性への影響の適切な評価が難しくなるおそれがある。   Then, the test piece is subjected to cold or warm compression processing or rolling so that the thickness direction becomes the compression direction. Here, cold or warm compression processing or rolling refers to compression processing or rolling performed at a temperature up to about 50 ° C. At temperatures above 50 ° C., steel recovery may occur. In that case, the influence of plastic strain on hydrogen embrittlement properties is reduced, so even if the intended plastic strain is applied, it may be difficult to properly evaluate the influence of plastic strain on hydrogen embrittlement properties. is there.

本発明者らが、鋼材に付与される塑性ひずみ量と水素脆化特性との関係を調査した結果、塑性ひずみの付与方法に依存せずに、塑性ひずみ量と水素脆化割れの感受性との間に正の相関関係が認められることが分かった。すなわち、圧縮加工であっても引張加工であっても、それにより生じる塑性ひずみ量の水素脆化特性に及ぼす影響が同等であることを見出した。   The present inventors have investigated the relationship between the amount of plastic strain and the hydrogen embrittlement characteristics imparted to steel, without depending on the method of imparting plastic strain, the amount of plastic strain and the susceptibility of hydrogen embrittlement cracking It was found that there was a positive correlation between them. That is, it has been found that the effect of the amount of plastic strain caused by the compression processing and the tensile processing on the hydrogen embrittlement characteristics is the same.

上述のように、試験材に対して引張加工を施す場合には、塑性ひずみが局部に集中するおそれがあり、特に大きな塑性ひずみを付与したい場合には、付与する塑性ひずみ量の制御が困難である。そのため、本発明においては、塑性ひずみを付与するため、圧縮加工または圧延を行う。塑性ひずみ量は、断面圧下率などにより容易に調整することが可能である。   As described above, when performing tensile processing on the test material, there is a risk that the plastic strain is concentrated in a local area, and particularly when it is desired to apply a large plastic strain, it is difficult to control the amount of the plastic strain to be applied. is there. Therefore, in the present invention, compression or rolling is performed to impart plastic strain. The amount of plastic strain can be easily adjusted by the cross-sectional reduction ratio or the like.

さらに、厚さが長さ方向において変化する試験材に対して、圧縮加工または圧延を施し、均一の厚さにすることにより、元の厚さが大きい領域では大きなひずみ量が、元の厚さが小さい領域では小さなひずみ量が付与されることになる。すなわち、1つの試験材に対して場所ごとに異なる様々な塑性ひずみを付与することが可能である。   Furthermore, by compressing or rolling the test material whose thickness changes in the length direction to make the thickness uniform, a large amount of strain is generated in the region where the original thickness is large, and the original thickness is reduced. In a region where is small, a small amount of strain is applied. That is, it is possible to give various plastic strains different for each place to one test material.

試験材の大きさについては特に制限はなく、小型のものから大型のものまで自由に適用することが可能である。また、様々な塑性ひずみが付与された試験材を複数に分割し、後述する工程に供してもよい。   There is no particular limitation on the size of the test material, and it can be applied freely from small to large. In addition, the test material to which various plastic strains are given may be divided into a plurality of pieces and subjected to a process described later.

試験材に付与する塑性ひずみ量についても、適宜調整すればよい。例えば、評価対象となる鋼材に付与される塑性ひずみの最大値を見積もり、その見積り結果に基づいて、試験材に付与する塑性ひずみ量を決定することができる。塑性ひずみが付与された後の鋼材の水素脆化特性を厳しく評価する観点からは、見積もられた塑性ひずみの最大値以上の塑性ひずみを、試験材の厚さが最大となる部分、すなわち最も大きな塑性ひずみが付与される部分に付与することが好ましい。   The amount of plastic strain to be applied to the test material may be appropriately adjusted. For example, it is possible to estimate the maximum value of the plastic strain to be applied to the steel material to be evaluated, and to determine the amount of plastic strain to be applied to the test material based on the estimation result. From the viewpoint of rigorously evaluating the hydrogen embrittlement characteristics of steel after plastic strain is applied, a plastic strain equal to or greater than the estimated maximum plastic strain is applied to the portion where the thickness of the test material is the maximum, that is, the most. It is preferable to apply it to a portion where a large plastic strain is applied.

(b)水素導入工程
水素導入工程においては、上記(a)の工程で圧縮加工または圧延を施し、塑性ひずみを付与した試験材に対して、水素を導入する。
(B) Hydrogen Introducing Step In the hydrogen introducing step, hydrogen is introduced into the test material which has been subjected to compression or rolling in the step (a) to give plastic strain.

水素を導入する方法については特に制限はなく、公知の方法を適宜採用すればよい。例えば、電解液中で電解チャージを行う方法、高圧水素ガス雰囲気下で保持する方法、腐食液中に浸漬する方法等が挙げられる。   The method for introducing hydrogen is not particularly limited, and a known method may be appropriately employed. For example, a method of performing electrolytic charging in an electrolytic solution, a method of maintaining the same in a high-pressure hydrogen gas atmosphere, a method of immersing it in a corrosive solution, and the like can be given.

電解チャージを行う方法では、試験材および白金等の対極を電解液に浸漬し、試験材と対極との間に電位差を生じさせて、試験材に水素発生電位より卑の電位となる電圧を印加することで、試験材中に電気化学的に水素を導入することが可能である。   In the method of performing electrolytic charging, a test material and a counter electrode such as platinum are immersed in an electrolytic solution to generate a potential difference between the test material and the counter electrode, and a voltage that is lower than the hydrogen generation potential is applied to the test material. By doing so, it is possible to electrochemically introduce hydrogen into the test material.

電解液としては、硫酸(HSO)水溶液または塩酸(HCl)水溶液等の酸性溶液、塩化ナトリウム(NaCl)水溶液等の中性溶液、水酸化ナトリウム(NaOH)水溶液等のアルカリ性溶液を用いることができる。 As the electrolytic solution, an acidic solution such as an aqueous solution of sulfuric acid (H 2 SO 4 ) or hydrochloric acid (HCl), a neutral solution such as an aqueous solution of sodium chloride (NaCl), or an alkaline solution such as an aqueous solution of sodium hydroxide (NaOH) is used. Can be.

また、高圧水素ガス雰囲気下で保持する方法では、例えば、水素分圧が0.1MPa以上、好ましくは1MPa以上である水素含有雰囲気中に試験材を保持することで、水素を導入することが可能である。   In the method of holding under a high-pressure hydrogen gas atmosphere, for example, hydrogen can be introduced by holding the test material in a hydrogen-containing atmosphere having a hydrogen partial pressure of 0.1 MPa or more, preferably 1 MPa or more. It is.

さらに、腐食液中に浸漬する方法では、酸溶液中に単純浸漬し、腐食反応で発生した水素を材料中に導入してもよいし、NACE TM0284−2016に規定される酸性溶液中に硫化水素ガスを飽和させた環境に試験材を浸漬し、腐食反応によって試験材表面で水素を発生させることで、試験材中に水素を導入してもよい。   Further, in the method of immersion in a corrosion liquid, hydrogen may be simply immersed in an acid solution and hydrogen generated by the corrosion reaction may be introduced into the material, or hydrogen sulfide may be introduced into an acid solution specified in NACE TM0284-2016. Hydrogen may be introduced into the test material by immersing the test material in a gas-saturated environment and generating hydrogen on the surface of the test material by a corrosion reaction.

水素導入工程においては、水素導入の前後または同時に、試験材に対して、弾性域での引張応力を付与してもよい。引張応力を付与することにより、水素の導入量を増加させることが可能である。付与する引張応力を弾性域のものとするのは、新たな塑性ひずみが付与されるのを避けるためである。   In the hydrogen introduction step, a tensile stress in the elastic range may be applied to the test material before, after or simultaneously with the introduction of hydrogen. By applying a tensile stress, the amount of hydrogen introduced can be increased. The reason why the applied tensile stress is in the elastic range is to avoid applying new plastic strain.

(c)水素脆化特性評価工程
水素脆化特性評価工程においては、まず上記(b)の工程で水素が導入された試験材を用いて、当該試験材の水素脆化特性の評価を行う。水素脆化特性の評価方法については特に制限はなく、試験材に含まれる水素濃度を測定する方法、割れの発生状態を評価する方法、水素透過試験を行う方法などが挙げられる。
(C) Hydrogen embrittlement property evaluation step In the hydrogen embrittlement property evaluation step, first, the hydrogen embrittlement property of the test material is evaluated using the test material into which hydrogen has been introduced in the step (b). The method for evaluating the hydrogen embrittlement characteristics is not particularly limited, and examples thereof include a method for measuring the concentration of hydrogen contained in the test material, a method for evaluating the state of occurrence of cracks, and a method for performing a hydrogen permeation test.

試験材中の水素濃度の測定方法については特に制限はなく、例えば、ガスクロマトグラフ式昇温脱離水素分析装置(TDA)を用いて、試験材を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより求めることができる。   The method for measuring the hydrogen concentration in the test material is not particularly limited. For example, the test material is heated to 400 ° C. at a rate of 100 ° C./h using a gas chromatograph-type thermal desorption / hydrogen analyzer (TDA). After heating, it can be determined by measuring the amount of hydrogen released.

なお、水素濃度の測定は、上述の方法によって試験材に水素を導入した後に行ってもよいし、水素導入の前後の両方で行ってその差を評価してもよい。水素脆化特性を評価するための重要なパラメータの1つである試験材中の水素濃度を測定することにより、試験材の水素脆化特性を評価することが可能となる。   The measurement of the hydrogen concentration may be performed after introducing hydrogen into the test material by the above-described method, or may be performed both before and after introducing hydrogen to evaluate the difference. By measuring the hydrogen concentration in the test material, which is one of the important parameters for evaluating the hydrogen embrittlement characteristics, the hydrogen embrittlement characteristics of the test material can be evaluated.

また、割れの発生状態を評価する方法についても特に制限はなく、水素導入後の試験材について、目視で評価するか、光学顕微鏡もしくは電子顕微鏡等を用いて表面観察を行うか、または超音波探傷法を用いて内部の割れの測定を行い、水素導入によって割れが生じたか否か、またはどの程度の割れが発生したかの調査を行うことができる。   Also, there is no particular limitation on the method of evaluating the state of occurrence of cracks, and the test material after hydrogen introduction is visually evaluated, or surface observation is performed using an optical microscope or an electron microscope, or ultrasonic flaw detection. The internal crack is measured by using the method, and it is possible to investigate whether or not the crack has been generated by the introduction of hydrogen or how much the crack has been generated.

さらに、試験材に対して応力を負荷した後に、割れの発生状態を評価してもよい。試験材に負荷する応力の種類については特に制限されず、引張応力、圧縮応力、曲げ応力、ねじり応力のいずれであってもよい。そして、例えば、破断が生じた際の応力を測定することによって、試験材の水素脆化特性を直接的に評価することが可能である。試験材に対する応力の負荷は、上述の方法によって試験材に水素を導入した後に行ってもよいし、水素を導入しながら行ってもよい。塑性ひずみの影響を調査することが目的であるため、試験片全体に負荷される応力については弾性応力以下とすることが望ましいが、切欠き底またはき裂先端等の応力集中が生じる局所においては、弾性応力を超え塑性ひずみが生じてもよい。   Furthermore, after applying stress to the test material, the state of occurrence of cracks may be evaluated. The type of stress applied to the test material is not particularly limited, and may be any of tensile stress, compressive stress, bending stress, and torsional stress. Then, for example, it is possible to directly evaluate the hydrogen embrittlement characteristics of the test material by measuring the stress at the time when the fracture occurs. The loading of the stress on the test material may be performed after introducing hydrogen into the test material by the above-described method, or may be performed while introducing hydrogen. Since the purpose is to investigate the effect of plastic strain, it is desirable that the stress applied to the entire test piece be equal to or less than the elastic stress, but in places where stress concentration occurs, such as the notch bottom or crack tip. Alternatively, a plastic strain exceeding the elastic stress may occur.

また、水素透過試験とは、板状の試験片を採取し、その一方から水素を導入し、他方から試験片中を透過した水素を検出する手法である。水素導入方法について特に制限はなく、上述した電解液中で電解チャージを行う方法、高圧水素ガス雰囲気下で保持する方法、腐食液中に浸漬する方法等を採用することができる。一方、水素検出側についても、透過してきた水素を電気化学的に測定してもよいし、ガスクロマトグラフ等を用いてガスとして評価してもよい。用いる手法によっては、試験片上にNiまたはPdのメッキを施すこともある。水素透過試験では、材料中への水素の侵入速度および拡散速度を評価することができる。   In addition, the hydrogen permeation test is a method in which a plate-shaped test piece is sampled, hydrogen is introduced from one of the test pieces, and hydrogen transmitted through the test piece is detected from the other. The method for introducing hydrogen is not particularly limited, and a method of performing electrolytic charging in the above-described electrolytic solution, a method of maintaining the same in a high-pressure hydrogen gas atmosphere, a method of immersing in an etching solution, and the like can be employed. On the hydrogen detection side, on the other hand, the permeated hydrogen may be measured electrochemically or may be evaluated as a gas using a gas chromatograph or the like. Depending on the technique used, the test piece may be plated with Ni or Pd. In the hydrogen permeation test, the rate of penetration and diffusion of hydrogen into a material can be evaluated.

上述の方法により試験材を用いた水素脆化特性の評価が終了した後、当該評価結果に基づいて、評価対象となる鋼材の水素脆化特性の評価を行う。鋼材の水素脆化特性の評価方法については特に制限はない。例えば、鋼材に付与されると見積もられた塑性ひずみの最大値を含む、種々の塑性ひずみを試験材に付与した場合には、試験材における上記の最大値が付与された部分の水素脆化特性が、塑性ひずみが付与された後の鋼材の水素脆化特性であると評価することができる。   After the evaluation of the hydrogen embrittlement characteristics using the test material is completed by the above-described method, the hydrogen embrittlement characteristics of the steel to be evaluated are evaluated based on the evaluation results. There is no particular limitation on the method for evaluating the hydrogen embrittlement properties of steel. For example, when various plastic strains are applied to the test material, including the maximum value of the plastic strain estimated to be applied to the steel material, the hydrogen embrittlement of the portion of the test material where the above-described maximum value is applied is given. The property can be evaluated as the hydrogen embrittlement property of the steel material after the plastic strain is applied.

また、試験材に対して種々の塑性ひずみを付与した後に水素脆化特性を評価し、結果が良好であった領域と不良であった領域とを判別することで、閾値となる塑性ひずみ量を決定し、鋼材に付与される塑性ひずみ量が上記の閾値以下であれば水素脆化特性に優れると評価し、上記の閾値を超える場合には水素脆化特性に劣ると評価することができる。   In addition, after applying various plastic strains to the test material, the hydrogen embrittlement characteristics are evaluated, and by discriminating a region where the result is good and a region where the result is bad, the plastic strain amount serving as a threshold is determined. It is determined that if the amount of plastic strain imparted to the steel material is equal to or less than the above threshold, the steel is excellent in hydrogen embrittlement properties, and if it exceeds the above threshold, it can be evaluated that the hydrogen embrittlement properties are inferior.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

0.05%のCおよび1.5%のMnを含む炭素鋼からなり、図2に示す形状を有する鋼板を試験材とした。試験材の寸法は、幅20mm、長さ100mmであり、厚さは一方側において16.2mm、他方側において18mmである。また、鋼板の引張強さは、約600MPaであった。   A steel plate made of carbon steel containing 0.05% of C and 1.5% of Mn and having the shape shown in FIG. 2 was used as a test material. The dimensions of the test material are 20 mm wide and 100 mm long, and the thickness is 16.2 mm on one side and 18 mm on the other side. Further, the tensile strength of the steel sheet was about 600 MPa.

そして、上記試験材に対して冷間圧延を施して、厚さを16.2mmとした。すなわち、試験材の一方側には塑性ひずみは付与されておらず、他方側には10%の塑性ひずみが付与されている。   Then, the test material was cold-rolled to a thickness of 16.2 mm. That is, no plastic strain was applied to one side of the test material, and 10% of plastic strain was applied to the other side.

そして、塑性ひずみが付与された試験材を用いて、NACE TM0284−2016の規定から浸漬時間のみを変更したHIC試験を実施した。具体的には、5%NaClおよび0.5%CHCOOHを含有し、窒素ガスを用いて酸素を除去した後、1気圧のHSを飽和させた水溶液を試験液として準備した。 Then, using a test material to which plastic strain was applied, an HIC test was performed in which only the immersion time was changed from the specification of NACE TM0284-2016. Specifically, an aqueous solution containing 5% NaCl and 0.5% CH 3 COOH and removing oxygen using nitrogen gas and saturated with 1 atm of H 2 S was prepared as a test solution.

そして、上記の試験液に各試験材を25℃で168時間浸漬することで、水素の導入を行った。その後、試験材を試験液から取り出し、内部に発生したHICを超音波探傷法(Cスキャン)により測定を行った。図3は、HIC試験後の試験材の超音波探傷法によるCスキャン結果を示す図である。   Then, hydrogen was introduced by immersing each test material in the test liquid at 25 ° C. for 168 hours. Thereafter, the test material was taken out of the test solution, and the HIC generated inside was measured by an ultrasonic flaw detection method (C scan). FIG. 3 is a view showing a C-scan result of the test material after the HIC test by the ultrasonic flaw detection method.

図3に示すように、塑性ひずみ量が4.5%を超える領域において、HICが内部に発生することが分かった。そして、本実施例で評価対象となった鋼材は、付与される塑性ひずみが4.5%以下の場合には水素脆化特性に優れ、4.5%を超える塑性ひずみが付与される場合には、水素脆化特性が劣化するおそれがあると評価された。   As shown in FIG. 3, it was found that HIC was generated inside in a region where the amount of plastic strain exceeded 4.5%. The steel material evaluated in the present example is excellent in hydrogen embrittlement properties when the applied plastic strain is 4.5% or less, and when the applied plastic strain exceeds 4.5%. Was evaluated as having a possibility that hydrogen embrittlement characteristics might be deteriorated.

本発明によれば、鋼材の水素脆化特性に及ぼす塑性ひずみ量の影響を定量的に評価することが可能となる。   According to the present invention, it is possible to quantitatively evaluate the effect of the amount of plastic strain on the hydrogen embrittlement characteristics of a steel material.

Claims (3)

塑性ひずみが付与される鋼材の水素脆化特性を評価する方法であって、
(a)前記塑性ひずみが付与される前の前記鋼材と同一の鋼からなり、所定方向における厚さが、前記所定方向に垂直な方向において連続的または段階的に変化する試験材に対して、前記所定方向が圧縮方向となるように、冷間または温間の圧縮加工または圧延を施す工程と、
(b)前記圧縮加工または圧延が施された前記試験材に対して、水素を導入する工程と、
(c)前記水素が導入された前記試験材を用いた水素脆化特性の評価結果に基づいて、前記鋼材の水素脆化特性を評価する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement properties of steel material to which plastic strain is applied,
(A) For a test material made of the same steel as the steel material before the plastic strain is applied and having a thickness in a predetermined direction that changes continuously or stepwise in a direction perpendicular to the predetermined direction, A step of performing cold or warm compression or rolling so that the predetermined direction is the compression direction,
(B) introducing hydrogen into the compression-processed or rolled test material;
(C) evaluating a hydrogen embrittlement property of the steel material based on an evaluation result of the hydrogen embrittlement property using the test material into which the hydrogen has been introduced,
Method for evaluating hydrogen embrittlement characteristics.
上記(b)の工程において、水素導入の前、後または同時に、前記試験材に対して、弾性域での引張応力を付与する、
請求項1に記載の水素脆化特性評価方法。
In the step (b), a tensile stress in an elastic range is applied to the test material before, after or simultaneously with the introduction of hydrogen.
The method for evaluating hydrogen embrittlement characteristics according to claim 1.
上記(a)の工程において、前記鋼材に付与される塑性ひずみの最大値の見積もり結果に基づいて、前記試験材に対して、前記試験材の厚さが最大となる部分において、前記塑性ひずみの最大値以上の塑性ひずみを付与する、
請求項1または請求項2に記載の水素脆化特性評価方法。
In the step (a), based on the estimation result of the maximum value of the plastic strain applied to the steel material, the plastic strain of the test material is maximized at a portion where the thickness of the test material is maximum with respect to the test material. Giving a plastic strain greater than the maximum value,
The method for evaluating hydrogen embrittlement characteristics according to claim 1 or 2.
JP2018167775A 2018-09-07 2018-09-07 Hydrogen embrittlement characteristic evaluation method Pending JP2020041838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167775A JP2020041838A (en) 2018-09-07 2018-09-07 Hydrogen embrittlement characteristic evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167775A JP2020041838A (en) 2018-09-07 2018-09-07 Hydrogen embrittlement characteristic evaluation method

Publications (1)

Publication Number Publication Date
JP2020041838A true JP2020041838A (en) 2020-03-19

Family

ID=69798023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167775A Pending JP2020041838A (en) 2018-09-07 2018-09-07 Hydrogen embrittlement characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP2020041838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153305A (en) * 2023-08-29 2023-12-01 天津大学 Method for establishing pipeline steel equivalent wet hydrogen sulfide environment hydrogen charging model and application thereof
JP7492944B2 (en) 2020-09-24 2024-05-30 Jfeテクノリサーチ株式会社 Hydrogen charging method and hydrogen embrittlement characteristic evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492944B2 (en) 2020-09-24 2024-05-30 Jfeテクノリサーチ株式会社 Hydrogen charging method and hydrogen embrittlement characteristic evaluation method
CN117153305A (en) * 2023-08-29 2023-12-01 天津大学 Method for establishing pipeline steel equivalent wet hydrogen sulfide environment hydrogen charging model and application thereof

Similar Documents

Publication Publication Date Title
JP5196926B2 (en) Apparatus for evaluating hydrogen embrittlement for thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
JP6512154B2 (en) Evaluation method for delayed fracture of metallic materials
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
WO2006090889A1 (en) High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
JP3892842B2 (en) Apparatus and method for evaluating hydrogen embrittlement of thin steel sheet
JP2007198895A (en) Evaluation method of delayed breaking resistance of high-strength steel sheet
JP2020041838A (en) Hydrogen embrittlement characteristic evaluation method
Li et al. Corrosion induced degradation of fatigue strength of steel in service for 128 years
Zvirko et al. Corrosion degradation of steel of long-term operated gas pipeline elbow with large-scale delamination
Shibayama et al. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens
JP7234544B2 (en) Hydrogen embrittlement property evaluation method
Chaves et al. Stage I crack directions under in-phase axial–torsion fatigue loading for AISI 304L stainless steel
JP6470716B2 (en) Method for calculating test piece area and test cell size in hydrogen embrittlement property evaluation test
JP2010223945A (en) Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
Wang et al. Pioneering research on the role of strain burst in the early-stage stress corrosion crack propagation
JP2012047540A (en) Method for charging hydrogen to material and method for evaluating hydrogen embrittlement characteristics of material
JP2013124999A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
CN110763874A (en) Method and device for researching metal stress corrosion dynamic process by monitoring pitting corrosion
Mazza et al. Relationship between the electrochemical and corrosion behavior and the structure of stainless steels subjected to cold plastic deformation
Toribio Stress corrosion cracking of progressively cold-drawn pearlitic steels: From Tintoretto to Picasso
RU2539111C1 (en) Method for determining resistance to extended ductile fracture of high-strength pipe steels
US7326306B2 (en) Method for producing nitriding steel
Ogita et al. Evaluation of hydrogen-induced cracking behavior in duplex stainless steel by numerical simulation of stress and diffusible hydrogen distribution at the microstructural scale
David et al. Effect of grain size on the anodic dissolution of lean duplex UNS S32202 austenitic-ferritic stainless steel