JP2020038793A - Metal air battery - Google Patents
Metal air battery Download PDFInfo
- Publication number
- JP2020038793A JP2020038793A JP2018165400A JP2018165400A JP2020038793A JP 2020038793 A JP2020038793 A JP 2020038793A JP 2018165400 A JP2018165400 A JP 2018165400A JP 2018165400 A JP2018165400 A JP 2018165400A JP 2020038793 A JP2020038793 A JP 2020038793A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- metal
- electrolyte
- air battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 53
- 239000002184 metal Substances 0.000 title claims abstract description 53
- 239000010410 layer Substances 0.000 claims abstract description 67
- 239000003792 electrolyte Substances 0.000 claims abstract description 58
- 239000011241 protective layer Substances 0.000 claims abstract description 30
- 238000002955 isolation Methods 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims description 67
- 239000007774 positive electrode material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 8
- 239000011888 foil Substances 0.000 description 35
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- -1 hydroxide ions Chemical class 0.000 description 22
- 239000008151 electrolyte solution Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000004743 Polypropylene Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 7
- 238000002788 crimping Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007784 solid electrolyte Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 239000005486 organic electrolyte Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 4
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229910010941 LiFSI Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910018122 Li 3-x M Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、金属空気電池に関する。 The present invention relates to a metal-air battery.
金属空気電池は、負極活物質として金属リチウム等を使用し、正極活物質として大気中の酸素を使用するものであり、エネルギー密度が高く、EV(電気自動車)の本格的な普及に必要とされる500Wh/kg級のエネルギーを得られる電池として期待されている。 A metal-air battery uses metal lithium or the like as a negative electrode active material and uses oxygen in the air as a positive electrode active material, has a high energy density, and is required for full-scale spread of EVs (electric vehicles). It is expected as a battery that can obtain energy of the order of 500 Wh / kg.
金属空気電池において、放電時には、正極では、空気中の酸素と水が反応し、水酸化物イオンの生成が引き起こされる。それゆえ、高い電気エネルギーを得るためには、正極表面に空気を高効率で接触させることが必要である。 In a metal-air battery, at the time of discharge, oxygen and water in the air react with each other at the positive electrode to cause generation of hydroxide ions. Therefore, in order to obtain high electric energy, it is necessary to bring air into contact with the positive electrode surface with high efficiency.
例えば、特許文献1には、正極を折り曲げることによって、空気を保持できる領域を大きくして、正極の反応性を高めた正極電池が開示されている。 For example, Patent Literature 1 discloses a positive electrode battery in which a region in which air can be held is increased by bending the positive electrode to increase the reactivity of the positive electrode.
また、特許文献2には、正極基材にガス流路用の孔を設けることによって、セパレータ及び負極構造体と積層しても、空気又は酸素ガスからなる正極活物質を正極材に効率的に供給可能な薄型正極構造体を有する薄型リチウム空気電池が開示されている。 Further, in Patent Document 2, by providing holes for gas flow passages in the positive electrode base material, even if the separator and the negative electrode structure are laminated, the positive electrode active material composed of air or oxygen gas can be efficiently used as the positive electrode material. A thin lithium-air battery having a thin cathode structure that can be supplied is disclosed.
さらに、特許文献3には、負極金属層、負極電解質層、及び正極層を積層した後、ガス拡散層を正極層の一部分を覆うように積層し、次いで、ガス拡散層の上下の面及び一つの側面を正極層で覆うように、負極金属層、負極電解質層、及び正極層の積層体を折り曲げることによって、正極層に空気が高効率で供給される金属空気電池が開示されている。なお、上記のガス拡散層は、例えば、炭素繊維、カーボンクロス、又はカーボンフェルトのようなカーボンペーパーや、スポンジ形状含む金属のような金属フォームや、金属繊維マットから構成される。 Further, Patent Document 3 discloses that after a negative electrode metal layer, a negative electrode electrolyte layer, and a positive electrode layer are laminated, a gas diffusion layer is laminated so as to cover a part of the positive electrode layer. There is disclosed a metal-air battery in which air is supplied to a positive electrode layer with high efficiency by folding a laminate of a negative electrode metal layer, a negative electrode electrolyte layer, and a positive electrode layer so as to cover one side surface with a positive electrode layer. The gas diffusion layer is made of, for example, carbon paper such as carbon fiber, carbon cloth or carbon felt, metal foam such as sponge-shaped metal, or metal fiber mat.
しかしながら、特許文献1の空気電池の正極は、折り曲げることによって空気の流路を拡大する構成となっているものの、正極表面の面積は、平面状の正極とあまり変わらず、正極と空気との接触効率は大幅には向上しないと考えられる。また、特許文献2の金属空気電池の正極基材は、複雑な構造を有しており、ドライエッチング法を用いた緻密な製造工程によって得る必要がある。さらに、特許文献3の金属空気電池の製造には、負極金属層、負極電解質層、及び正極層の積層体の作製後に折り畳む、複雑な工程が必要となる。 However, although the positive electrode of the air battery of Patent Literature 1 is configured to expand the air flow path by bending, the area of the positive electrode surface is not much different from that of a planar positive electrode, and the positive electrode contacts air. Efficiency is not expected to increase significantly. In addition, the positive electrode substrate of the metal-air battery of Patent Document 2 has a complicated structure and needs to be obtained by a dense manufacturing process using a dry etching method. Further, the production of the metal-air battery of Patent Literature 3 requires a complicated process of folding after manufacturing a laminate of a negative electrode metal layer, a negative electrode electrolyte layer, and a positive electrode layer.
そこで本発明は、容易に作製でき、かつ、空気の流入経路の数をより多く確保できる正極を有する金属空気電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a metal-air battery having a positive electrode that can be easily manufactured and that can secure a greater number of air inflow paths.
上記の目的を達成するために、本発明に係る金属空気電池は、第1の正極と、第1の電解質と、負極、保護層、及び隔離層を含む第1の負極複合体と、がこの順に積層され、前記第1の正極が、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有する。 In order to achieve the above object, a metal-air battery according to the present invention includes a first positive electrode, a first electrolyte, a first negative electrode composite including a negative electrode, a protective layer, and an isolation layer. The first positive electrode is stacked in order, and has a cross-sectional structure including a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions.
本発明に係る金属空気電池において、前記第1の正極の、前記第1の電解質が積層される面とは反対側の面に、第2の電解質が積層されていることが好ましい。 In the metal-air battery according to the present invention, it is preferable that a second electrolyte is laminated on a surface of the first positive electrode opposite to a surface on which the first electrolyte is laminated.
本発明に係る金属空気電池において、前記第2の電解質の、前記第1の正極が積層される面とは反対側の面に、第2の負極複合体が積層されていることが好ましい。 In the metal-air battery according to the present invention, it is preferable that a second negative electrode composite is laminated on a surface of the second electrolyte opposite to a surface on which the first positive electrode is laminated.
本発明に係る金属空気電池において、前記第2の負極複合体の、前記第2の電解質が積層される面とは反対側の面に、第3の電解質が積層され、前記第3の電解質の、前記第2の負極複合体が積層される面とは反対側の面に、第2の正極が積層され、前記第2の正極は、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有することが好ましい。 In the metal-air battery according to the present invention, a third electrolyte is stacked on a surface of the second negative electrode composite opposite to a surface on which the second electrolyte is stacked, and a third electrolyte is formed. A second positive electrode is laminated on a surface opposite to a surface on which the second negative electrode composite is laminated, and the second positive electrode has a plurality of concave portions, a plurality of convex portions, or a plurality of concave portions; It is preferable to have a cross-sectional structure including a combination of a plurality of convex portions.
本発明に係る金属空気電池において、前記複数の凹部、前記複数の凸部、又は前記複数の凹部及び複数の凸部の組み合わせは、矩形、三角形及び曲線形から選択される形状を有することが好ましい。本発明に係る金属空気電池において、前記複数の凹部及び複数の凸部の組み合わせは、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることが好ましい。 In the metal-air battery according to the present invention, preferably, the plurality of recesses, the plurality of protrusions, or the combination of the plurality of recesses and the plurality of protrusions has a shape selected from a rectangle, a triangle, and a curve. . In the metal-air battery according to the present invention, as for the combination of the plurality of concave portions and the plurality of convex portions, it is preferable that one concave portion and one convex portion are arranged at the same position on the front and back, and a plurality of these are combined.
本発明に係る金属空気電池において、前記複数の凹部、前記複数の凸部、又は前記複数の凹部及び複数の凸部の組み合わせは、前記正極の平面において格子模様に並んでいることが好ましい。 In the metal-air battery according to the present invention, it is preferable that the plurality of recesses, the plurality of protrusions, or the combination of the plurality of recesses and the plurality of protrusions are arranged in a lattice pattern on the plane of the positive electrode.
本発明に係る金属空気電池において、前記保護層は、前記負極を覆っていることが好ましく、前記隔離層は、前記保護層と前記第1の電解質との間に位置していることが好ましい。 In the metal-air battery according to the present invention, the protective layer preferably covers the negative electrode, and the isolation layer is preferably located between the protective layer and the first electrolyte.
本発明に係る金属空気電池において、前記第1の正極は、正極集電体と正極材料とを備えることが好ましく、前記正極集電体は、金属メッシュであることが好ましい。 In the metal-air battery according to the present invention, the first positive electrode preferably includes a positive electrode current collector and a positive electrode material, and the positive electrode current collector preferably includes a metal mesh.
本発明に係る金属空気電池によれば、正極の断面構造が、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含むことによって、平面状の正極と比べ、空気の流路の数をより多く確保し、かつ、空気との接触面積を拡大することができるため、充放電性能を向上することができる。また、このような断面形状に成形加工する必要があるのは正極のみであり、負極複合体及び電解質等の金属空気電池の他の構成要素については、従来技術を用いることができる。正極も、プレス加工等の簡単な製造工程を経るだけで得られるため、容易に作製できる。このように正極自体を加工するだけで、別部材の追加が必要ないため、金属空気電池の重量をほぼ維持したままで、金属空気電池の製造に費やすコストや作製工数の増加を抑えることができる。すなわち、本発明によれば、容易に作製でき、かつ、空気の流入経路の数をより多く確保できる正極を有する金属空気電池が提供される。 According to the metal-air battery according to the present invention, the cross-sectional structure of the positive electrode includes a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions, so that compared to a planar positive electrode, air Since the number of channels can be increased and the contact area with air can be increased, the charge / discharge performance can be improved. Further, only the positive electrode needs to be formed into such a cross-sectional shape, and the conventional technology can be used for other components of the metal-air battery such as the negative electrode composite and the electrolyte. The positive electrode can also be easily manufactured because it can be obtained only through a simple manufacturing process such as press working. In this way, since only the positive electrode itself is processed and no additional member is required, it is possible to suppress an increase in the cost and man-hours required for manufacturing the metal-air battery while almost maintaining the weight of the metal-air battery. . That is, according to the present invention, there is provided a metal-air battery having a positive electrode that can be easily manufactured and that can secure a greater number of air inflow paths.
また、第1の正極の、第1の電解質が積層される面とは反対側の面に、第2の電解質が積層されても、正極が上述した断面構造を有するため、空気の流入経路の数をより多く確保でき、従来の平面の正極では空気と接触できなくなり電池性能が著しく低下するということを回避することができる。よって、更に第2の電解質の、第1の正極が積層される面とは反対側の面に、第2の負極複合体が積層されても、充電電圧、サイクル特性等の電池性能を損なうことなく、複数のセルを重ね合わせた金属空気電池を提供することができる。上述した正極の断面構造は、第2の負極複合体の、第2の電解質が積層される面とは反対側の面に、第3の電解質が積層され、第3の電解質の、第2の負極複合体が積層される面とは反対側の面に、第2の正極が積層された場合の第2の正極にも、採用することで、セルのサイズや、セルをモジュール化する際の自由度も向上できる。 Further, even if the second electrolyte is laminated on the surface of the first positive electrode opposite to the surface on which the first electrolyte is laminated, the positive electrode has the above-described cross-sectional structure. A larger number can be secured, and it can be avoided that the conventional flat cathode cannot contact air and the battery performance is significantly reduced. Therefore, even if the second negative electrode composite is further laminated on the surface of the second electrolyte opposite to the surface on which the first positive electrode is laminated, battery performance such as charging voltage and cycle characteristics is impaired. Instead, a metal-air battery in which a plurality of cells are stacked can be provided. The above-described cross-sectional structure of the positive electrode has a structure in which the third electrolyte is laminated on the surface of the second negative electrode composite opposite to the surface on which the second electrolyte is laminated, and the second electrolyte is formed of the second electrolyte. By adopting the second positive electrode also when the second positive electrode is laminated on the surface opposite to the surface on which the negative electrode composite is laminated, the size of the cell and the size of the cell when it is modularized The degree of freedom can be improved.
更に、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせが、矩形、三角形及び曲線形から選択される一つの形状を有してもよく、これにより、正極の表面が、同じ形を繰り返す形状となるため、1つの正極における空気と触れ合う面積及び電解質と触れ合う面積に規則性があり、安定した電池性能とすることができる。 Further, the plurality of recesses, the plurality of protrusions, or the combination of the plurality of recesses and the plurality of protrusions may have one shape selected from a rectangle, a triangle, and a curve, whereby the surface of the positive electrode However, since it has a shape that repeats the same shape, the area of one positive electrode that comes into contact with air and the area that comes into contact with the electrolyte have regularity, and stable battery performance can be achieved.
保護層が負極を覆い、隔離層が保護層と第1の電解質との間に位置する構成にすることで、負極複合体によって金属負極を保護できるため、リチウム等の空気中では使用できない金属を使用した空気電池を提供することができる。また、第1の正極が正極集電体と正極材料とを備え、正極集電体が金属メッシュである構成にすることで、正極集電体が金属箔の場合と異なり、金型を用いたプレス加工で容易に、正極に、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を形成することができる。また、空気の流量や方向に応じた自由度の高い金型形状を作成できる。 Since the protective layer covers the negative electrode and the isolation layer is located between the protective layer and the first electrolyte, the negative electrode composite can protect the metal negative electrode. The used air battery can be provided. In addition, the first positive electrode includes a positive electrode current collector and a positive electrode material, and the positive electrode current collector is formed of a metal mesh, unlike the case where the positive electrode current collector is a metal foil. A sectional structure including a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions can be easily formed on the positive electrode by press working. In addition, a mold having a high degree of freedom according to the flow rate and direction of air can be created.
以下に、本発明に係る金属空気電池の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。本実施の形態の金属空気電池における各構成(正極、電解質、負極複合体、負極、隔離層、フィルム、金属ラミネートフィルム、負極複合体内の電解液など)の説明は、図示する金属空気電池に限定されず、本発明に係る金属空気電池に広く適用できるものである。 Hereinafter, embodiments of the metal-air battery according to the present invention will be described. However, the present invention is not limited by the embodiments described below. The description of each configuration (a positive electrode, an electrolyte, a negative electrode composite, a negative electrode, a separator, a film, a metal laminate film, an electrolytic solution in the negative electrode composite, and the like) in the metal-air battery of the present embodiment is limited to the illustrated metal-air battery. However, the present invention can be widely applied to the metal-air battery according to the present invention.
[金属空気電池]
本発明に係る金属空気電池の一実施形態としては、例えば、図1を参照して説明することができる。図1において、金属空気電池100Aは、第1の正極1、第1の電解質3及び第1の負極複合体2が順に積層される構造を有する。
[Metal-air battery]
An embodiment of the metal-air battery according to the present invention can be described with reference to, for example, FIG. 1, the metal-air battery 100A has a structure in which a first positive electrode 1, a first electrolyte 3, and a first negative electrode composite 2 are sequentially stacked.
本発明に係る金属空気電池の別の実施形態としては、図1に示した積層構造を1つのセルとして、複数のセルを積み重ねた構造としてもよい。例えば、図2に示すように、金属空気電池100Bは、第1の負極複合体2A、第1の電解質3A、第1の正極1A、第2の電解質3B、第2の負極複合体2B、第3の電解質3C、第2の正極1B、第4の電解質3D、第3の負極複合体2C、…、第xの負極複合体2Xが順に積層される構造を有する。このような金属空気電池100A及び100Bの各構成について、以下に説明する。 As another embodiment of the metal-air battery according to the present invention, the stacked structure shown in FIG. 1 may be a single cell and a structure in which a plurality of cells are stacked. For example, as shown in FIG. 2, the metal-air battery 100B includes a first negative electrode composite 2A, a first electrolyte 3A, a first positive electrode 1A, a second electrolyte 3B, a second negative electrode composite 2B, The third electrolyte 3C, the second positive electrode 1B, the fourth electrolyte 3D, the third negative electrode composite 2C,..., And the x-th negative electrode composite 2X are sequentially laminated. Each configuration of such metal-air batteries 100A and 100B will be described below.
[正極]
本実施の形態に係る金属空気電池100A及び100Bにおける正極は、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有する。この複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせは、矩形、三角形及び曲線形から選択される一つの形状を有することが好ましい。矩形や三角形は、角を面取りしてもよい。三角形は、二等辺三角形や、直角三角形、正三角形などが好ましい。曲線形は、正弦曲線や、円弧、楕円弧、二次曲線などが好ましい。
[Positive electrode]
The positive electrodes in metal-air batteries 100A and 100B according to the present embodiment have a cross-sectional structure including a plurality of recesses, a plurality of protrusions, or a combination of a plurality of recesses and a plurality of protrusions. The plurality of recesses, the plurality of protrusions, or the combination of the plurality of recesses and the plurality of protrusions preferably has one shape selected from a rectangle, a triangle, and a curve. A rectangle or triangle may have a chamfered corner. The triangle is preferably an isosceles triangle, a right triangle, an equilateral triangle, or the like. The curved shape is preferably a sine curve, a circular arc, an elliptical arc, a quadratic curve, or the like.
具体的には、本実施形態に係る金属空気電池における正極の例として、金属空気電池の断面方向から見て、図3(a)〜(e)に示すような構造を採用することができる。例えば、図3(a)の正極11は、その圧着部11aが複数の凹部及び複数の凸部の組み合わせの断面構造を有し、凹部及び凸部がどちらも矩形であり、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることによって、全体では矩形波形状を有する。なお、本明細書において正極11の圧着部11aの断面構造は、図3(a)に示すように、圧着部11aに隣接する端子部11bの両表面を基準面L、L’とし、この基準面L、L’から内側(中心側)に窪んでいるものを凹部とし、基準面L、L’から外側に突出しているものを凸部とする。凹部は、反対側の表面(基準面Lに対しては基準面L’)を超えて窪んでもよいし、越えずに正極11の厚みの範囲で窪んでもよい。 Specifically, as an example of the positive electrode in the metal-air battery according to the present embodiment, the structure shown in FIGS. 3A to 3E can be adopted when viewed from the cross-sectional direction of the metal-air battery. For example, in the positive electrode 11 of FIG. 3A, the crimping portion 11a has a cross-sectional structure of a combination of a plurality of concave portions and a plurality of convex portions, the concave portions and the convex portions are both rectangular, and one concave portion and one convex portion. The two convex portions are arranged at the same position on the front and back, and a plurality of them are combined to form a rectangular wave as a whole. In this specification, as shown in FIG. 3A, the cross-sectional structure of the crimping portion 11a of the positive electrode 11 is such that both surfaces of the terminal portion 11b adjacent to the crimping portion 11a are reference planes L and L '. Those that are depressed inward (center side) from the surfaces L and L 'are referred to as concave portions, and those that protrude outward from the reference surfaces L and L' are referred to as convex portions. The recess may be recessed beyond the surface on the opposite side (the reference plane L ′ with respect to the reference plane L), or may be recessed within the thickness of the positive electrode 11 without exceeding it.
また、図3(b)の正極12は、複数の凹部及び複数の凸部がどちらも正弦曲線であり、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることによって、全体では正弦波形状を有する。図3(c)の正極13は、複数の凹部及び複数の凸部がどちらも二等辺三角形であり、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることによって、全体では三角波形状を有する。図3(d)の正極14は、複数の凹部及び複数の凸部がどちらも直角三角形であり、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることによって、全体ではのこぎり歯形状を有する。図3(e)の正極15は、複数の凹部及び複数の凸部がどちらも円弧であり、一つの凹部と一つの凸部が表裏に同位置に配置され、それらが複数組み合わせられることによって、全体では波形形状を有する。図3では、正極が複数の凹部と複数の凸部の組み合わせの断面構造を有する場合の実施の形態を示したが、本発明はこれに限定されず、複数の凹部のみの断面構造であっても、複数の凸部のみの断面構造であってもよい。 Further, in the positive electrode 12 of FIG. 3B, the plurality of concave portions and the plurality of convex portions are both sinusoidal curves, one concave portion and one convex portion are arranged at the same position on the front and back, and a plurality of them are combined. This has a sinusoidal shape as a whole. In the positive electrode 13 shown in FIG. 3C, each of the plurality of concave portions and the plurality of convex portions is an isosceles triangle, one concave portion and one convex portion are arranged at the same position on the front and back, and a plurality of them are combined. Has a triangular wave shape as a whole. In the positive electrode 14 of FIG. 3D, the plurality of concave portions and the plurality of convex portions are each a right triangle, and one concave portion and one convex portion are arranged at the same position on the front and back, and a plurality of them are combined. , Have a sawtooth shape as a whole. In the positive electrode 15 of FIG. 3E, the plurality of concave portions and the plurality of convex portions are both arcs, and one concave portion and one convex portion are arranged at the same position on the front and back, and a plurality of them are combined. It has a wavy shape as a whole. FIG. 3 shows an embodiment in which the positive electrode has a cross-sectional structure of a combination of a plurality of concave portions and a plurality of convex portions. However, the present invention is not limited to this, and has a cross-sectional structure of only a plurality of concave portions. Alternatively, a cross-sectional structure of only a plurality of convex portions may be used.
図3(a)〜(e)に示される正極11〜15を作製する方法の一例としては、平面状の正極集電体を、任意の断面形状(複数の矩形、正弦曲線、二等辺三角形、直角三角形、曲線形状等)を有する上型及び下型でプレス加工することが挙げられる。正極材料は、プレス加工前に正極集電体に担持させてもよいし、プレス加工後に正極集電体に担持させてもよい。また、プレス加工後の正極集電体に正極材料を担持させた後、同金型で再度、プレス加工してもよい。 As an example of a method of manufacturing the positive electrodes 11 to 15 shown in FIGS. 3A to 3E, a planar positive electrode current collector is formed by an arbitrary cross-sectional shape (a plurality of rectangles, sine curves, isosceles triangles, Pressing with an upper mold and a lower mold having a right triangle, a curved shape, and the like. The positive electrode material may be supported on the positive electrode current collector before the pressing, or may be supported on the positive electrode current collector after the pressing. Alternatively, after the positive electrode material is supported on the positive electrode current collector after the pressing, the pressing may be performed again using the same mold.
更に、図3では、正極11の圧着部11aの端子部11b側の端からその反対側の端への方向のみ、複数の凹部及び複数の凸部が繰り返し配置される場合を示したが、本発明はこれに限定されず、上記方向に代えて上記方向と直交する方向にのみ、複数の凹部及び複数の凸部が繰り返し配置される構造にしてもよいし、図4(a)及び図4(b)に示すように、上記方向に加えて上記方向と直交する方向にも、複数の凹部及び複数の凸部が交互に繰り返し配置される構造を有することができる。断面図である図4(a)に示される正極16の矩形波形状のうちの複数の凸部16bの部分のパターンを、平面図である図4(b)に斜線で示し、複数の凸部16bで挟まれた平面16aの部分のパターンを白抜きで示した。すなわち、本実施の形態では、図4(b)に示すように、正極16の正面方向から見た構造は、複数の凹部16a及び複数の凸部16bが格子模様に並んだ構造となっている。 Further, FIG. 3 shows a case where a plurality of concave portions and a plurality of convex portions are repeatedly arranged only in the direction from the end on the terminal portion 11b side of the crimping portion 11a of the positive electrode 11 to the end on the opposite side. The present invention is not limited to this, and may have a structure in which a plurality of concave portions and a plurality of convex portions are repeatedly arranged only in a direction orthogonal to the above-described direction instead of the above-described direction. As shown in (b), it is possible to have a structure in which a plurality of concave portions and a plurality of convex portions are alternately and repeatedly arranged in a direction orthogonal to the above direction in addition to the above direction. The pattern of the plurality of convex portions 16b of the rectangular wave shape of the positive electrode 16 shown in the cross-sectional view of FIG. 4A is shown by oblique lines in the plan view of FIG. The pattern of the portion of the plane 16a sandwiched between 16b is shown in white. That is, in the present embodiment, as shown in FIG. 4B, the structure of the positive electrode 16 as viewed from the front direction is a structure in which a plurality of concave portions 16a and a plurality of convex portions 16b are arranged in a lattice pattern. .
図4(a)及び図4(b)に示される正極16を作製する方法の一例を、図4(c)に示す。図4(c)に示される平面状の正極集電体に正極材料を担持したもの16Aに対し、端子部11b側の端からその反対側の端への方向に、凹部または凸部の一辺の長さを有する複数の切り込み16x(太線)を入れ、その後、図4(a)の凸部16bに相当する箇所Aに矩形等の任意の断面形状を有する上型及び下型で、垂直にプレスする方法が挙げられる。 An example of a method for manufacturing the positive electrode 16 shown in FIGS. 4A and 4B is shown in FIG. In contrast to the flat cathode current collector 16A shown in FIG. 4C in which the cathode material is carried on the flat cathode current collector, one side of the concave portion or the convex portion extends in the direction from the terminal portion 11b side end to the opposite end. A plurality of cuts 16x (thick lines) having a length are formed, and then vertically pressed by an upper die and a lower die having an arbitrary cross-sectional shape such as a rectangle at a portion A corresponding to the convex portion 16b in FIG. Method.
複数の凸部16b(又は複数の凹部)間の間隔は、図3又は図4に示す配置でもその他の配置でも、特に限定されないが、例えば、その下限は、空気の流通性の観点から、1mm以上が好ましく、2mm以上がより好ましい。また、上限は、正極の耐久構造の観点から、6mm以下が好ましく、5mm以下がより好ましい。正極の断面形状は、複数の凸部のみでも、複数の凹部のみでも、複数の凹部及び複数の凸部の組み合わせでも、その断面形状の頂面から底面までの高さは、特に限定されないが、例えば、その下限は、空気の流通性の観点から、0.5mm以上が好ましく、1mm以上が好ましい。また、上限は、正極の耐久構造の観点から、4mm以下が好ましく、3mm以下がより好ましい。 The interval between the plurality of convex portions 16b (or the plurality of concave portions) is not particularly limited in the arrangement shown in FIG. 3 or FIG. 4 or other arrangements. For example, the lower limit is 1 mm from the viewpoint of air flow. Or more, more preferably 2 mm or more. The upper limit is preferably 6 mm or less, more preferably 5 mm or less, from the viewpoint of the durability of the positive electrode. The cross-sectional shape of the positive electrode is only a plurality of protrusions, only a plurality of recesses, or a combination of a plurality of recesses and a plurality of protrusions, the height from the top surface to the bottom surface of the cross-sectional shape is not particularly limited, For example, the lower limit is preferably 0.5 mm or more, and more preferably 1 mm or more, from the viewpoint of air circulation. The upper limit is preferably 4 mm or less, more preferably 3 mm or less, from the viewpoint of the durability of the positive electrode.
本発明に係る金属空気電池における正極は、正極集電体と正極材料とを含むことが好ましい。正極11の圧着部11aは正極集電体と正極材料で、正極11の端子部11bは正極集電体で構成されることが好ましい。 The positive electrode in the metal-air battery according to the present invention preferably includes a positive electrode current collector and a positive electrode material. It is preferable that the crimping portion 11a of the positive electrode 11 be made of a positive electrode current collector and a positive electrode material, and the terminal portion 11b of the positive electrode 11 be made of a positive electrode current collector.
正極集電体及び正極材料としては、金属空気電池で使用される材料であれば、特に限定されない。正極材料としては、例えば、白金、金、イリジウム、ルテニウムなどの触媒活性を示す貴金属や、それらの酸化物等、もしくは、触媒活性を示す二酸化マンガン等を、導電性の高いカーボン等を導電助剤、バインダーとしてポリフッ化ビニリデンやポリテトラフルオロエチレン、スチレンブタジエンゴム等を混合して用いることができる。正極集電体としては、例えば、カーボンペーパー、カーボンクロス、カーボン不織布、チタンメッシュ、ニッケルメッシュ、銅メッシュ、SUSメッシュ、多孔質ニッケル(ニッケルの金属発泡体)や多孔質アルミニウム(アルミの金属発泡体)、多孔質チタン等の耐腐食性の高い金属を使用した金属メッシュ等を用いることができる。正極集電体は、導電性とガス拡散性に優れたものが好ましい。なお、ここでいうカーボンクロスとは、カーボンファイバー等で織られた布状のシートのことを指し、カーボン不織布は、カーボンファイバーをランダムに絡み合わせたシート状のものである。 The positive electrode current collector and the positive electrode material are not particularly limited as long as they are materials used in a metal-air battery. Examples of the positive electrode material include platinum, gold, iridium, ruthenium and other noble metals having catalytic activity, oxides thereof, or manganese dioxide having catalytic activity, and carbon having high conductivity as a conductive aid. Polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, or the like can be used as a binder. Examples of the positive electrode current collector include carbon paper, carbon cloth, carbon nonwoven fabric, titanium mesh, nickel mesh, copper mesh, SUS mesh, porous nickel (nickel metal foam), and porous aluminum (aluminum metal foam). ), A metal mesh using a metal having high corrosion resistance such as porous titanium or the like can be used. The positive electrode current collector preferably has excellent conductivity and gas diffusivity. Here, the carbon cloth refers to a cloth-like sheet woven with carbon fiber or the like, and the carbon non-woven fabric is a sheet-like sheet in which carbon fibers are randomly entangled.
上記の正極材料を、正極集電体に担持させることで、正極11の圧着部11aを形成することができる。正極材料は、正極集電体のメッシュ内に満たされているとともに、正極集電体の両表面に膜状に存在している。正極集電体の厚さは、特に限定されないが、例えば、下限は、0.04mm以上が好ましく、0.1mm以上がより好ましく、上限は、0.4mm以下が好ましく、0.3mm以下がより好ましい。正極集電体の表面に形成される正極材料の膜の厚さは、特に限定されないが、例えば、下限は、0.2mm以上が好ましく、0.4mm以上がより好ましく、上限は、1mm以下が好ましく、0.7mm以下がより好ましい。 By supporting the positive electrode material on a positive electrode current collector, the pressure-bonded portion 11a of the positive electrode 11 can be formed. The positive electrode material is filled in the mesh of the positive electrode current collector and exists in a film form on both surfaces of the positive electrode current collector. The thickness of the positive electrode current collector is not particularly limited, but, for example, the lower limit is preferably 0.04 mm or more, more preferably 0.1 mm or more, and the upper limit is preferably 0.4 mm or less, more preferably 0.3 mm or less. preferable. The thickness of the positive electrode material film formed on the surface of the positive electrode current collector is not particularly limited. For example, the lower limit is preferably 0.2 mm or more, more preferably 0.4 mm or more, and the upper limit is 1 mm or less. Preferably, it is 0.7 mm or less.
金属空気電池において、水溶液系電解液を用いた場合には、正極には、導電性、ガス拡散性、及び電解液に対する耐腐食性が求められる。また、金属空気電池において、正極集電体をプレス成型で空気の通過が可能な任意の形状に加工する必要がある。本発明に係る金属空気電池における正極集電体は、金属メッシュであることが好ましい。導電助剤等を圧着させる点、及びプレス成型可能な点から、金属メッシュは正極集電体として好適な材料である。特に、チタンメッシュは、導電性があり、アルカリ水溶液に対しても耐腐食性が高く、軽量であり、高い耐食性を示す白金や金などの貴金属よりも安価であり、プレス成型可能なことから、正極集電体として好ましく用いることができる材料である。 In the case of using an aqueous electrolyte solution in a metal-air battery, the positive electrode is required to have conductivity, gas diffusion properties, and corrosion resistance to the electrolyte solution. Further, in a metal-air battery, it is necessary to process the positive electrode current collector into an arbitrary shape through which air can pass by press molding. The positive electrode current collector in the metal-air battery according to the present invention is preferably a metal mesh. A metal mesh is a suitable material as a positive electrode current collector because a conductive auxiliary agent and the like are pressed and press-moldable. In particular, titanium mesh is conductive, has high corrosion resistance to alkaline aqueous solutions, is lightweight, is less expensive than precious metals such as platinum and gold, which exhibit high corrosion resistance, and can be press-molded. It is a material that can be preferably used as a positive electrode current collector.
上記の図3(a)〜(e)及び図4(a)に示すような複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有する正極は、片面又は両面に平面状の電解質に積層した場合であっても、正極には空気が通過可能な空間が生じるため、正極が取り込む空気量が増加し、効率良く空気を取り込むことが可能になる。また、上記の正極は、平面状の正極集電体に正極材料を担持したものを任意の形状にプレスすることによって得られるため、作製が容易である。 A positive electrode having a cross-sectional structure including a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions as shown in FIGS. 3A to 3E and FIG. Even when a flat electrolyte is laminated on one or both sides, a space through which air can pass is created in the positive electrode, so that the amount of air taken in by the positive electrode increases, and air can be taken in efficiently. Further, since the above-described positive electrode is obtained by pressing a positive electrode material supported on a planar positive electrode current collector into an arbitrary shape, the production is easy.
[電解質]
本実施の形態における電解質3としては、金属空気電池で使用される電解質であれば、特に限定されない。例えば、水溶液系電解液又は非水溶液系電解液を用いることができる。
[Electrolytes]
The electrolyte 3 in the present embodiment is not particularly limited as long as it is an electrolyte used in a metal-air battery. For example, an aqueous electrolyte solution or a non-aqueous electrolyte solution can be used.
水溶液系電解液としては電気伝導性を有していればよく、水にリチウム塩を溶解させた水溶液系電解質が好ましい。水に溶解させるリチウム塩としては、例えば、LiCl(塩化リチウム)、LiOH(水酸化リチウム)、LiNO3(硝酸リチウム)、CH3COOLi(酢酸リチウム)等が挙げられ、これらの1つ又は複数を水に溶解させた液体を用いることができる。 The aqueous electrolyte solution only needs to have electrical conductivity, and is preferably an aqueous electrolyte solution in which a lithium salt is dissolved in water. Examples of the lithium salt dissolved in water include LiCl (lithium chloride), LiOH (lithium hydroxide), LiNO 3 (lithium nitrate), CH 3 COOLi (lithium acetate), and the like. A liquid dissolved in water can be used.
非水溶液系電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)等の炭酸エステル系の有機溶媒、及びエチレングリコールジメチルエーテル(EGDME)、テトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル系溶媒が挙げられ、これらの単独又は混合溶液を用いることができ、導電性を持たせるために、LiPF6(六フッ化リン酸リチウム)、LiClO4(過塩素酸リチウム)、LiBF4(テトラフルオロほう酸リチウム)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiFSI(リチウムビス(フルオロスルホニル)イミド)、LiN(SO2CF3)2(リチウムビス(トリフルオロメタンスルホニル)イミド)等を添加することができる。 Examples of the non-aqueous electrolyte include a carbonate-based organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC); ethylene glycol dimethyl ether (EGDME); Examples thereof include ether solvents such as ethylene glycol dimethyl ether and triethylene glycol dimethyl ether. These solvents may be used alone or in a mixed solution. In order to impart conductivity, LiPF 6 (lithium hexafluorophosphate), LiClO 4 (lithium perchlorate), LiBF 4 (lithium tetrafluoroborate), LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiFSI (lithium bis (fluorosulfonyl) imide), Li (SO 2 CF 3) 2 can be added (lithium bis (trifluoromethanesulfonyl) imide) and the like.
上記のような電解液の他には、リチウム塩をポリマーに分散させた固体電解質であってもよいし、リチウム塩を溶解した有機電解液をポリマーに膨潤させたゲル電解質であってもよい。リチウム塩は、LiPF6、LiClO4、LiBF4、LiTFSI(LiN(SO2CF3)2)、LiFSI(LiN(SO2F))2、LiBOB(ビスオキサラトホウ酸リチウム)等を挙げることができる。ゲル電解質のホストとなるポリマーは、PEO(ポリエチレンオキシド)、PPO(ポリプロピレンオキシド)、PVA(ポリビニルアルコール)、PAN(ポリアクリロニトリル)、PVP(ポリビニルピロリドン)、PEO−PMA(ポリエチレンオキシド修飾ポリメタクリレートの架橋体)、PVdF(ポリフッ化ビリニデン)、PVA(ポリビニルアルコール)、PAA(ポリアクリル酸)、PVdF−HFP(ポリフッ化ビリニデンとヘキサフロオロプロピレンとの共重合体)等を挙げることができる。 In addition to the above electrolyte, a solid electrolyte in which a lithium salt is dispersed in a polymer may be used, or a gel electrolyte in which an organic electrolyte in which a lithium salt is dissolved is swollen in a polymer may be used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (LiN (SO 2 CF 3 ) 2 ), LiFSI (LiN (SO 2 F)) 2 , and LiBOB (lithium bisoxalatoborate). . The polymer serving as the host for the gel electrolyte is PEO (polyethylene oxide), PPO (polypropylene oxide), PVA (polyvinyl alcohol), PAN (polyacrylonitrile), PVP (polyvinylpyrrolidone), PEO-PMA (polyethylene oxide-modified polymethacrylate cross-linking). Body), PVdF (polyvinylidene fluoride), PVA (polyvinyl alcohol), PAA (polyacrylic acid), PVdF-HFP (copolymer of polyvinylidene fluoride and hexafluoropropylene) and the like.
また、電解質としては、上記の電解液を多孔質体に含浸させたものを、使用してもよい。多孔質体としては、ポリアクリルアミド、ポリエチレン及びポリプロピレンなどの多孔膜の他、セルロース、樹脂不織布及びガラス繊維不織布等の不織布、ハイドロゲルなどを用いることができる。 In addition, as the electrolyte, a material obtained by impregnating a porous body with the above electrolyte may be used. As the porous body, in addition to a porous film such as polyacrylamide, polyethylene, and polypropylene, a nonwoven fabric such as cellulose, a resin nonwoven fabric, and a glass fiber nonwoven fabric, and a hydrogel can be used.
[負極複合体]
本実施の形態の金属空気電池における負極複合体としては、負極、保護層、及び隔離層を備える負極複合体であれば、特に限定されず、公知の負極複合体を用いることができる。本実施形態に係る負極複合体の一例としては、図5に示される片面型の負極複合体2aがある。このような片面型の負極複合体2aは、図1に示す負極構造体2や、図2に示す第1の負極複合体2Aと、第xの負極複合体2Xに用いることができる。片面型の負極複合体2aは、図5において上下に設けられた第1の金属箔ラミネートフィルム20a及び第2の金属箔ラミネートフィルム20bの間に、固体電解質から構成されている隔離層40と、保護層33と、負極30と、フィルム34とが挟まれた積層構造となっている。金属空気電池の正極(図示省略)側に位置する第1の金属箔ラミネートフィルム20aには、その平面においてほぼ中央の位置に、開口部50が設けられている。
[Negative electrode composite]
The negative electrode composite in the metal-air battery of the present embodiment is not particularly limited as long as it has a negative electrode, a protective layer, and an isolation layer, and a known negative electrode composite can be used. As an example of the negative electrode composite according to the present embodiment, there is a single-sided negative electrode composite 2a shown in FIG. Such a single-sided negative electrode composite 2a can be used for the negative electrode structure 2 shown in FIG. 1, the first negative electrode composite 2A shown in FIG. 2, and the x-th negative electrode composite 2X. The single-sided negative electrode composite 2a includes an isolation layer 40 made of a solid electrolyte between a first metal foil laminated film 20a and a second metal foil laminated film 20b provided at the top and bottom in FIG. It has a laminated structure in which the protective layer 33, the negative electrode 30, and the film 34 are sandwiched. The first metal foil laminated film 20a located on the positive electrode (not shown) side of the metal-air battery has an opening 50 substantially at the center of the plane thereof.
開口部50を有する第1の金属箔ラミネートフィルム20aは、片面型の負極複合体2aの内側から外側に向けて(図中、下から上へ向けて)、第1の樹脂層21、金属箔層22、第2の樹脂層23の順に3つの層が積層されたシートとなっている。第2の金属箔ラミネートフィルム20bも、同様に、片面型の負極複合体2aの内側から外側に向けて(図中、上から下へ向けて)、第1の樹脂層21、金属箔層22、第2の樹脂層23の順に3つの層が積層されたシートとなっている。第1の金属箔ラミネートフィルム20a及び第2の金属箔ラミネートフィルム20bの周縁部は熱溶着によって接合されている。 The first metal foil laminated film 20a having the opening 50 is formed from the inside of the single-sided negative electrode composite 2a from the inside to the outside (from bottom to top in the figure), the first resin layer 21, the metal foil It is a sheet in which three layers are laminated in the order of the layer 22 and the second resin layer 23. Similarly, the second metal foil laminated film 20b also includes a first resin layer 21 and a metal foil layer 22 from the inside to the outside of the single-sided negative electrode composite 2a (from top to bottom in the figure). , A second resin layer 23 in the order of three layers. The peripheral portions of the first metal foil laminated film 20a and the second metal foil laminated film 20b are joined by heat welding.
第1の金属箔ラミネートフィルム20aの内側に、開口部50を塞ぐように、隔離層40が配置されている。すなわち、隔離層40の平面における大きさは、第1の金属箔ラミネートフィルム20aの開口部50よりも大きく、隔離層40の周縁部が第1の金属箔ラミネートフィルム20aの開口部50の内側周縁部に溶着され固定されている。 An isolation layer 40 is arranged inside the first metal foil laminated film 20a so as to close the opening 50. That is, the size in the plane of the isolation layer 40 is larger than the opening 50 of the first metal foil laminated film 20a, and the peripheral edge of the isolation layer 40 is the inner peripheral edge of the opening 50 of the first metal foil laminated film 20a. It is welded to the part and fixed.
保護層33と、負極30と、フィルム34とは、その端が、第1の金属箔ラミネートフィルム20a及び開口部のない第2の金属箔ラミネートフィルム20bに挟まれ、溶着され固定されている。 The ends of the protective layer 33, the negative electrode 30, and the film 34 are sandwiched between the first metal foil laminated film 20a and the second metal foil laminated film 20b having no opening, and are welded and fixed.
負極30は、フィルム34の側から順に、負極集電体31、金属リチウムからなる負極層32の順に2つの層が積層した構造となっている。保護層33の端は、負極集電体31に溶着され、固定されており、これによって負極集電体31と保護層33とにより負極層32を封止する構成となっている。なお、保護層33は負極層32に対しては固定されていない。 The negative electrode 30 has a structure in which two layers are laminated in this order from a film 34 side, a negative electrode current collector 31 and a negative electrode layer 32 made of metallic lithium. The end of the protective layer 33 is welded to and fixed to the negative electrode current collector 31, so that the negative electrode current collector 31 and the protective layer 33 seal the negative electrode layer 32. Note that the protective layer 33 is not fixed to the negative electrode layer 32.
負極集電体31は、図5に示すように、フィルム34と負極層32とに挟まれている集電部31aと、そこから第1の金属箔ラミネートフィルム20a及び第2の金属箔ラミネートフィルム20bの外方まで延伸している端子部31bとから構成される。負極集電体31の集電部31aは、平面において四角形の形状を有し、端子部31bは、それよりも幅の狭い線形の形状を有している。負極集電体31の集電部31aは、端部まで全て保護層33に覆われるように、保護層33と接合している。フィルム34は、負極集電体31の集電部31aの裏側全面を覆っている。 As shown in FIG. 5, the negative electrode current collector 31 includes a current collector 31a sandwiched between a film 34 and a negative electrode layer 32, and a first metal foil laminated film 20a and a second metal foil laminated film therefrom. And a terminal portion 31b extending to the outside of 20b. The current collecting portion 31a of the negative electrode current collector 31 has a rectangular shape in a plane, and the terminal portion 31b has a linear shape with a smaller width. The current collector 31 a of the negative electrode current collector 31 is joined to the protective layer 33 so that the entire end portion is covered with the protective layer 33. The film 34 covers the entire back side of the current collector 31 a of the negative electrode current collector 31.
また、図5に示すように、隔離層40と保護層33とは、間隔をおいて設けられている。そして、隔離層40と、保護層33と、第1の金属箔ラミネートフィルム20aとの間の空間には、有機電解液等が封入されている。 Further, as shown in FIG. 5, the isolation layer 40 and the protective layer 33 are provided at an interval. An organic electrolyte or the like is sealed in a space between the isolation layer 40, the protective layer 33, and the first metal foil laminated film 20a.
本実施の形態に係る負極複合体の他の例としては、図6に示される両面型の負極複合体2bがある。このような両面型の負極複合体2bは、図2の第2の負極複合体2B、第3の負極複合体2C、・・・、第(x−1)の負極複合体2X’に用いることができる。なお、両面型の負極複合体2bは、図5に示される片面型の負極複合体2aの変形例であるため、重複する説明を省略し、相違点について説明する。図6において、両面型の負極複合体2bは、負極集電体31を境界に図中上下両面に、負極層32、保護層33、隔離層40、開口部を有する金属箔ラミネートフィルム20aをそれぞれ設けた構造となっている。このような構成によれば、負極複合体の両面にそれぞれ正極を配置する構造の空気電池にすることができ、1つの負極複合体の一面に1つの正極の一面を正対させる構造の空気電池に比べ、体積を小さくすることができる。 As another example of the negative electrode composite according to the present embodiment, there is a double-sided negative electrode composite 2b shown in FIG. Such a double-sided negative electrode composite 2b is used for the second negative electrode composite 2B, the third negative electrode composite 2C,..., The (x−1) -th negative electrode composite 2X ′ in FIG. Can be. The double-sided negative electrode composite 2b is a modified example of the single-sided negative electrode composite 2a shown in FIG. 5, and thus a duplicate description will be omitted, and differences will be described. In FIG. 6, the double-sided negative electrode composite 2b includes a negative electrode current collector 31, a negative electrode layer 32, a protective layer 33, an isolation layer 40, and a metal foil laminated film 20a having an opening on both upper and lower surfaces in the figure. It has a structure provided. According to such a configuration, an air battery having a structure in which a positive electrode is disposed on both surfaces of a negative electrode composite can be provided, and an air battery having a structure in which one surface of one positive electrode faces one surface of one negative electrode composite The volume can be reduced as compared with.
[負極]
本実施の形態の負極複合体の負極30は、図5及び図6に示すように、負極層32及び負極集電体31を備える。
[Negative electrode]
The negative electrode 30 of the negative electrode composite according to the present embodiment includes a negative electrode layer 32 and a negative electrode current collector 31, as shown in FIGS.
負極層32の負極活物質としては、リチウム、亜鉛等の金属を用いることができるが、開放電圧が高く、実用的な観点からリチウムがより好ましい。また、負極活物質は、金属リチウムに限定されず、リチウムを主成分とする合金もしくは化合物であってもよい。リチウムを主成分とする合金は、マグネシウム、カルシウム、アルミニウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、銀、金、亜鉛等を含むことができる。リチウムを主成分とする化合物は、例えば、Li3−xMxN(M=Co、Cu、Ni;x=1、2、3)がある。 As the negative electrode active material of the negative electrode layer 32, metals such as lithium and zinc can be used, but lithium is more preferable from the viewpoint of high open-circuit voltage and practicality. Further, the negative electrode active material is not limited to metallic lithium, and may be an alloy or compound containing lithium as a main component. The lithium-based alloy can include magnesium, calcium, aluminum, silicon, germanium, tin, lead, antimony, bismuth, silver, gold, zinc, and the like. Compound mainly containing lithium, for example, Li 3-x M x N (M = Co, Cu, Ni; x = 1,2,3) is.
負極集電体31の材料は、空気電池の動作範囲で安定して存在でき、所望する導電性を有していればよく、例えば、銅、ニッケルなどを挙げることができる。 The material of the negative electrode current collector 31 may be any material as long as it can exist stably in the operation range of the air battery and has a desired conductivity, and examples thereof include copper and nickel.
負極層が金属リチウムである場合には、金属空気電池が放電を行う際、負極層がリチウムイオン(Li+)と電子(e−)となる。そして、リチウムイオン(Li+)は電解液に溶解し、電子(e−)は負極集電体の集電部を介して端子部に供給される。したがって、負極層の厚さや面積を変えることで、電池容量の設計値をコントロールすることができる。 When the negative electrode layer is metallic lithium, the negative electrode layer becomes lithium ions (Li + ) and electrons (e − ) when the metal-air battery discharges. Then, the lithium ions (Li + ) are dissolved in the electrolytic solution, and the electrons (e − ) are supplied to the terminals through the current collector of the negative electrode current collector. Therefore, the design value of the battery capacity can be controlled by changing the thickness and area of the negative electrode layer.
[保護層]
本実施の形態の負極複合体2の保護層33としては、金属空気電池で使用される保護層であれば、特に限定されない。例えば、保護層33は、リチウムイオン等の負極活物質である金属のイオンや有機電解液が通過可能な複数の空孔を有するものであることが好ましい。このような保護層33として、例えば、リチウムイオン電池等のセパレータとして使用されている多孔質のポリエチレンやポリプロピレン等のポリオレフィン系樹脂、セルロース等のシートを用いることができる。これらの材料以外に、多孔質構造を持つアラミド、ポリテトラフルオロエチレン、毛細管状構造の酸化アルミニウム等の材質を用いることができる。また、これら材料のシートに有機電解液を含浸させたものを用いることができる。
[Protective layer]
The protective layer 33 of the anode composite 2 of the present embodiment is not particularly limited as long as it is a protective layer used in a metal-air battery. For example, it is preferable that the protective layer 33 has a plurality of pores through which ions of a metal such as lithium ions, which is a negative electrode active material, and an organic electrolyte can pass. As such a protective layer 33, for example, a sheet of a porous polyolefin resin such as polyethylene or polypropylene, or a sheet of cellulose or the like used as a separator of a lithium ion battery or the like can be used. In addition to these materials, materials such as aramid having a porous structure, polytetrafluoroethylene, and aluminum oxide having a capillary structure can be used. Further, a sheet in which an organic electrolytic solution is impregnated in a sheet of these materials can be used.
保護層33の材料としては、空孔率が約40%〜90%、厚みが約10〜300μm程度のものを用いることができ、約15〜100μmのものが、より好適に用いることができる。空孔の大きさは、約20nm〜500nm程度であればよく、より好ましくは約20〜70nm程度であればよい。また、保護層自体にある程度の剛性、強度を有するものがより好ましい。 As the material of the protective layer 33, a material having a porosity of about 40% to 90% and a thickness of about 10 to 300 μm can be used, and a material having a porosity of about 15 to 100 μm can be more preferably used. The size of the holes may be about 20 nm to 500 nm, and more preferably about 20 to 70 nm. Further, it is more preferable that the protective layer itself has some rigidity and strength.
[隔離層]
本実施の形態の負極複合体2の隔離層40としては、金属空気電池で使用される隔離層であれば、特に限定されない。例えば、隔離層40は、電圧を印可することによりイオン(リチウムイオン)を透過することができる固体の物質であることが好ましい。固体電解質としては、例えば、リチウムイオン伝導性に優れ不燃性であるガラスセラミック等を用いることができる。また特に、電解液に水溶液系の電解液を用いた場合には、耐水性の高いLATP系ガラスセラミック電解質を用いることができる。
[Isolation layer]
The isolation layer 40 of the anode composite 2 of the present embodiment is not particularly limited as long as it is an isolation layer used in a metal-air battery. For example, the isolation layer 40 is preferably a solid substance that can transmit ions (lithium ions) by applying a voltage. As the solid electrolyte, for example, a non-combustible glass ceramic having excellent lithium ion conductivity can be used. In particular, when an aqueous electrolytic solution is used as the electrolytic solution, a highly water-resistant LATP glass ceramic electrolyte can be used.
[フィルム]
本実施の形態の負極複合体2のフィルム34は、負極集電体31の集電部31aの裏側全面を覆っている。フィルム34は、集電部の裏側全面を接合してもよいし、周縁部のみを接合してもよい。また、フィルム34は、負極集電体31の全面のみならず、側面(端部)まで覆ってもよい。フィルム34としては、有機電解液を通さず且つ有機電解液に対して耐性のある、例えば、ポリポロピレンやポリエチレン等の樹脂シート等を用いることができる。
[the film]
The film 34 of the negative electrode composite 2 of the present embodiment covers the entire rear surface of the current collector 31 a of the negative electrode current collector 31. The film 34 may be joined on the entire back side of the current collector, or may be joined only on the periphery. Further, the film 34 may cover not only the entire surface of the negative electrode current collector 31 but also the side surface (end portion). As the film 34, for example, a resin sheet or the like that is impermeable to the organic electrolyte and resistant to the organic electrolyte, such as polypropylene or polyethylene, can be used.
[金属箔ラミネートフィルム]
本実施の形態の負極複合体2の金属箔ラミネートフィルム20としては、例えば、図5に示すように、第1の樹脂層21、金属箔層22、第2の樹脂層23の順に3つの層が積層されたシートを用いることができる。なお、各層の間に、例えばナイロンフィルム等の1層又は複数の樹脂フィルムを積層し、4層以上の構造としてもよい。
[Metal foil laminated film]
As the metal foil laminated film 20 of the anode composite 2 of the present embodiment, for example, as shown in FIG. 5, three layers of a first resin layer 21, a metal foil layer 22, and a second resin layer 23 are arranged in this order. Can be used. One layer or a plurality of resin films such as a nylon film may be laminated between the layers to form a structure of four or more layers.
第1の樹脂層21には、例えば、ポリプロピレン樹脂、ポリエチレン樹脂等のポリオレフィン系樹脂を用いることができる。これらの樹脂は、融点が低く、熱加工が容易でヒートシール(熱溶着)に適しており、負極複合体の製造を容易とする。 For the first resin layer 21, for example, a polyolefin-based resin such as a polypropylene resin or a polyethylene resin can be used. These resins have a low melting point, are easily heat-processed, are suitable for heat sealing (heat welding), and facilitate the production of a negative electrode composite.
金属箔層22は、ガスバリア性及び強度向上のためのものであり、例えば、アルミ箔、SUS箔、銅箔等の金属箔を使用することができる。 The metal foil layer 22 is for improving gas barrier properties and strength. For example, a metal foil such as an aluminum foil, a SUS foil, and a copper foil can be used.
第2の樹脂層23には、例えば、ポリエチレンテレフタレート樹脂等のポリエステル系樹脂や、ナイロン系樹脂を用いることができる。これらの樹脂材料は、耐熱性及び強度に優れている。そのため、負極複合体の強度等を向上することができる。 For the second resin layer 23, for example, a polyester resin such as a polyethylene terephthalate resin or a nylon resin can be used. These resin materials are excellent in heat resistance and strength. Therefore, the strength and the like of the negative electrode composite can be improved.
[負極複合体内の電解液]
隔離層40と、第1及び第2の金属箔ラミネートフィルム20a及び20bとの間の空間には、電解液が封入されている。この電解液としては、上述の正極1と負極複合体2とに挟まれた電解質3で説明した、水溶液系電解液や非水溶液系電解液などの各種電解液を用いることができる。負極複合体内に封入する電解液と、正極と負極複合体とに挟まれる電解質は、同じ種類の電解質でもよいし、異なる種類の電解質でもよい。
[Electrolyte in negative electrode composite]
An electrolytic solution is sealed in a space between the isolation layer 40 and the first and second metal foil laminated films 20a and 20b. As the electrolytic solution, various electrolytic solutions such as an aqueous electrolytic solution and a non-aqueous electrolytic solution described with the electrolyte 3 sandwiched between the positive electrode 1 and the negative electrode composite 2 can be used. The electrolyte to be sealed in the negative electrode composite and the electrolyte sandwiched between the positive electrode and the negative electrode composite may be the same type of electrolyte or different types of electrolytes.
以下に、本発明の実施例を挙げて、本発明をより詳細に説明する。しかし、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention. However, the present invention is not limited to the following examples.
[1.負極複合体の作製]
まず、PP樹脂/Al箔/PET樹脂の金属箔ラミネートフィルムの中心部分を2×2cm角に打ち抜いた外装材、酸変性ポリプロピレンフィルム打ち抜き品(外周部3×3cm、内周2×2cm)、2.5×2.5cm角の固体電解質(LATP)、酸変性ポリプロピレンフィルム打ち抜き品(外周部3×3cm、内周2×2cm)の順に重ねて、固体電解質4辺をヒートシーラーで熱溶着接合して上側外装体とした。
[1. Production of negative electrode composite]
First, an exterior material obtained by punching a central portion of a metal foil laminated film of PP resin / Al foil / PET resin into a 2 × 2 cm square, an acid-modified polypropylene film punched product (outer peripheral portion 3 × 3 cm, inner peripheral 2 × 2 cm), A 2.5 × 2.5 cm square solid electrolyte (LATP) and an acid-modified polypropylene film punched product (outer perimeter 3 × 3 cm, inner perimeter 2 × 2 cm) are stacked in this order, and four sides of the solid electrolyte are heat-welded with a heat sealer. To form an upper exterior body.
アルゴン雰囲気下のグローブボックス内に移し、裏面に酸変性ポリプロピレンフィルムが接合された負極集電体及び端子が一体化された銅箔(銅箔厚さ:10μm、集電体サイズ:2×7cm)の2×2cmの部分の表面に、金属Li箔(サイズ1.45×1.4cm、厚さ0.2mm)を接合し、リチウムイオン電池用のPP樹脂セパレ−タ(保護層)で覆い、負極集電体裏面のポリプロピレンが接合された部分とで端部4辺を熱溶着接合し、一体化して負極とした。これに、固体電解質部分と負極面が対向するように、上側外装体、一体化した負極、下側外装体の金属箔ラミネートフィルム(開口部がないもの)を重ねて、端部3辺をヒートシーラーにより熱溶着接合した。 Transfer to a glove box under an argon atmosphere, a negative electrode current collector with an acid-modified polypropylene film bonded to the back surface, and a copper foil with integrated terminals (copper foil thickness: 10 μm, current collector size: 2 × 7 cm) A metal Li foil (size 1.45 × 1.4 cm, thickness 0.2 mm) is bonded to the surface of a 2 × 2 cm portion of the above, and covered with a PP resin separator (protective layer) for a lithium ion battery, The four sides of the end of the negative electrode current collector and the part where the polypropylene was bonded were heat-welded and joined to form a negative electrode. An upper package, an integrated negative electrode, and a metal foil laminate film (with no opening) of the lower package are stacked on top of each other so that the solid electrolyte portion and the negative electrode face each other. Heat welding was performed with a sealer.
接合していない端部より、非水溶液系電解液(4M(mol/l)LiFSI/EGDME)を負極複合体内に2ml注入した。外装体中のガスを出した後、最後に残りの1辺の端部(負極集電体のタブがある部分)をヒートシーラーで接合させて密閉し、片面負極複合体を作製した。負極集電体と上側及び下側外装体は酸変性PP樹脂等の熱溶着シートを介して熱溶着されている。なお、固体電解質にはLATP(オハラ社製)を用いた。また、リチウムイオン電池用セパレ−タ(保護層)としては、ポリプロピレン樹脂で、厚さ20μm、空孔60〜70nm、空孔率42%、透気度250sec/100ccのものを使用した。 2 ml of a non-aqueous electrolyte (4 M (mol / l) LiFSI / EGDME) was injected into the negative electrode composite body from the unjoined end. After discharging the gas in the outer package, finally, the other end of the one side (the portion where the tab of the negative electrode current collector was present) was joined and sealed with a heat sealer to produce a single-sided negative electrode composite. The negative electrode current collector and the upper and lower outer packages are heat-welded via a heat-welding sheet such as an acid-modified PP resin. LATP (manufactured by OHARA) was used as the solid electrolyte. As a separator (protective layer) for a lithium ion battery, a polypropylene resin having a thickness of 20 μm, vacancies of 60 to 70 nm, porosity of 42%, and air permeability of 250 sec / 100 cc was used.
また、上記の片面型の負極複合体において、銅箔の裏面の酸変性ポリプロピレンフィルムの代わりに金属Li箔を接合し、PP樹脂セパレータで覆い、さらに、上記の下側外装体の代わりに上側外装体を重ねることによって、両面型の負極複合体を作製した。 In the single-sided negative electrode composite, a metal Li foil is bonded instead of the acid-modified polypropylene film on the back surface of the copper foil, covered with a PP resin separator, and further, an upper package is used instead of the lower package. By stacking the bodies, a double-sided negative electrode composite was produced.
[2.正極の作製]
正極を、以下の手順で作製した。
(1)正極触媒として触媒活性を持つMnO2(比表面積300m2/g)を0.8gと、導電助剤としてケッチェンブラック(比表面積800m2/g)0.1gと、バインダー(結着剤)としてポリテトラフルオロエチレン(PTFE)0.1gを計り取り、メノウ乳鉢に移し、分散剤としてエタノールを5ml加えて混練し、正極材料とした。
(2)2.5×2.5cmの圧着部と1×5.5cmのタブ部(端子部)とが一体となったTiメッシュの圧着部を、複数の矩形の凸断面構造を有する上型(凸部高さ:約2mm、凸部幅:約2mm、凸部ピッチ:約4mm、凸部R:0.1mm)及びそれに対応する複数の矩形の凹部断面構造を有する下型(凹部深さ:約2mm、凹部幅:約2mm、凹部ピッチ:約4mm、凹部R:0.1mm)に入れて10〜20kNのプレス圧でプレスした。その後、(1)の正極材料を2等分し、成形したTiメッシュ(線径0.1mm、100mesh)の圧着部の両面にそれぞれ配置して再度金型に入れ、20kNのプレス圧でプレスすることで圧着した。その後、Tiメッシュの圧着部からはみ出た正極材料を除去し、空気中で24時間自然乾燥させて、正極を作製した。
[2. Preparation of positive electrode]
A positive electrode was produced according to the following procedure.
(1) and 0.8 g MnO 2 (specific surface area: 300 meters 2 / g) having a catalytic activity as a cathode catalyst, a ketjen black (specific surface area 800m 2 /g)0.1g as a conductive additive, a binder (binder 0.1 g of polytetrafluoroethylene (PTFE) was measured and transferred to an agate mortar, and 5 ml of ethanol was added as a dispersant and kneaded to obtain a positive electrode material.
(2) An upper mold having a plurality of rectangular convex cross-sections formed by a Ti mesh crimping section in which a 2.5 × 2.5 cm crimping section and a 1 × 5.5 cm tab section (terminal section) are integrated. (Protrusion height: about 2 mm, convex part width: about 2 mm, convex part pitch: about 4 mm, convex part R: 0.1 mm) and a lower mold (recess depth) having a plurality of rectangular concave sectional structures corresponding thereto. : About 2 mm, recess width: about 2 mm, recess pitch: about 4 mm, recess R: 0.1 mm) and pressed at a press pressure of 10 to 20 kN. Thereafter, the positive electrode material of (1) is divided into two equal parts, arranged on both sides of a crimped portion of a formed Ti mesh (wire diameter: 0.1 mm, 100 mesh), put into a mold again, and pressed with a press pressure of 20 kN. It crimped by doing. Thereafter, the positive electrode material protruding from the pressure-bonded portion of the Ti mesh was removed, and was naturally dried in air for 24 hours to produce a positive electrode.
[3.電解質の作製]
水溶液系電解液として、LiOHとLiClの混合液を用い、pHが10以下になるように調製した。上記の混合液を3×3cmのポリアクリルアミドのシート上に1.5ml滴下し、電解質を得た。
[3. Preparation of electrolyte]
A mixture of LiOH and LiCl was used as an aqueous electrolyte solution, and the pH was adjusted to 10 or less. 1.5 ml of the above mixed solution was dropped onto a 3 × 3 cm polyacrylamide sheet to obtain an electrolyte.
[4.金属空気電池の作製]
上記の方法で作製した、片面型の負極複合体、電解質及び正極を、この順で積層することによって、金属空気電池を作製した。さらに、得られた上記の金属空気電池の正極に、電解質、両面型の負極複合体、電解質、正極、電解質、両面型の負極複合体、電解質、正極、電解質、片面型の負極複合体を、この順で積層することによって、複数のセルを積み重ねた金属空気電池も作製した。
[4. Production of metal-air battery]
A metal-air battery was produced by laminating the single-sided negative electrode composite, the electrolyte and the positive electrode produced in the above-described manner in this order. Further, an electrolyte, a double-sided negative electrode composite, an electrolyte, a positive electrode, an electrolyte, a double-sided negative electrode composite, an electrolyte, a positive electrode, an electrolyte, a single-sided negative electrode composite, By stacking in this order, a metal-air battery in which a plurality of cells were stacked was also manufactured.
1、1A、1B 正極
2、2A、2B、2C、2X 負極複合体
2a 片面型の負極複合体
2b 両面型の負極複合体
3、3A、3B、3C、3D 電解質
20a 第1の金属箔ラミネートフィルム
20b 第2の金属箔ラミネートフィルム
21 第1の樹脂層
22 金属箔層
23 第2の樹脂層
30 負極
31 負極集電体
31a 集電部
31b 端子部
32 負極層
33 保護層
34 フィルム
40 隔離層
50 開口部
100A 金属空気電池
100B 金属空気電池
1, 1A, 1B Positive electrode 2, 2A, 2B, 2C, 2X Negative electrode composite 2a Single-sided negative electrode composite 2b Double-sided negative electrode composite 3, 3A, 3B, 3C, 3D Electrolyte 20a First metal foil laminated film 20b Second metal foil laminated film 21 First resin layer 22 Metal foil layer 23 Second resin layer 30 Negative electrode 31 Negative current collector 31a Current collector 31b Terminal 32 Negative layer 33 Protective layer 34 Film 40 Isolation layer 50 Opening 100A Metal-air battery 100B Metal-air battery
Claims (8)
第1の電解質と、
負極、保護層、及び隔離層を含む第1の負極複合体と、がこの順に積層され、
前記第1の正極が、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有する、金属空気電池。 A first positive electrode;
A first electrolyte;
A negative electrode, a protective layer, and a first negative electrode composite including an isolation layer are stacked in this order;
A metal-air battery, wherein the first positive electrode has a cross-sectional structure including a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions.
前記第3の電解質の、前記第2の負極複合体が積層される面とは反対側の面に、第2の正極が積層され、
前記第2の正極が、複数の凹部、複数の凸部、又は複数の凹部及び複数の凸部の組み合わせを含む断面構造を有する、請求項3に記載の金属空気電池。 A third electrolyte is laminated on a surface of the second anode composite opposite to a surface on which the second electrolyte is laminated,
A second positive electrode is laminated on a surface of the third electrolyte opposite to a surface on which the second negative electrode composite is laminated,
The metal-air battery according to claim 3, wherein the second positive electrode has a cross-sectional structure including a plurality of concave portions, a plurality of convex portions, or a combination of a plurality of concave portions and a plurality of convex portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018165400A JP7161692B2 (en) | 2018-09-04 | 2018-09-04 | metal air battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018165400A JP7161692B2 (en) | 2018-09-04 | 2018-09-04 | metal air battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020038793A true JP2020038793A (en) | 2020-03-12 |
JP7161692B2 JP7161692B2 (en) | 2022-10-27 |
Family
ID=69738146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018165400A Active JP7161692B2 (en) | 2018-09-04 | 2018-09-04 | metal air battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7161692B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192313A (en) * | 2009-02-19 | 2010-09-02 | Mie Univ | Lithium air battery |
JP2015149191A (en) * | 2014-02-06 | 2015-08-20 | 日産自動車株式会社 | Air battery unit and air battery |
CN106486720A (en) * | 2015-08-26 | 2017-03-08 | 三星电子株式会社 | Metal-air battery and the method controlling its temperature |
-
2018
- 2018-09-04 JP JP2018165400A patent/JP7161692B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192313A (en) * | 2009-02-19 | 2010-09-02 | Mie Univ | Lithium air battery |
JP2015149191A (en) * | 2014-02-06 | 2015-08-20 | 日産自動車株式会社 | Air battery unit and air battery |
CN106486720A (en) * | 2015-08-26 | 2017-03-08 | 三星电子株式会社 | Metal-air battery and the method controlling its temperature |
Also Published As
Publication number | Publication date |
---|---|
JP7161692B2 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9680192B2 (en) | Air battery and air battery stack | |
CN104681895B (en) | Lithium Air Battery And Positive Electrode Structural Body Of Lithium Battery | |
KR101933655B1 (en) | Battery Cell Having Recess Portion Formed at Portion of Electrode Tab | |
US10784503B2 (en) | Protected lithium electrode structure for lithium-air battery | |
US20150372358A1 (en) | Metal-air battery | |
CN109075413B (en) | Negative electrode composite structure of lithium air battery | |
JP6601342B2 (en) | Lithium air battery | |
JP7131214B2 (en) | metal air battery | |
JP2016046039A (en) | Metal air battery and electrolytic medium for metal air battery positive electrode side | |
JP6962070B2 (en) | Air battery and negative electrode complex used for it | |
JP7161692B2 (en) | metal air battery | |
JP2020009609A (en) | Air battery, air battery system and positive electrode structure used for the same | |
JP6665729B2 (en) | Lithium-air battery cathode structure | |
KR20170043366A (en) | Metal-air battery | |
JP6583138B2 (en) | Metal air battery | |
JP6361476B2 (en) | Lithium air battery and negative electrode composite of lithium air battery | |
JP2013069493A (en) | Method for manufacturing laminated air cell | |
JP7091965B2 (en) | Air battery and negative electrode complex used for it | |
WO2022138334A1 (en) | Secondary battery and method for producing secondary battery | |
JP2022053281A (en) | Negative electrode complex of lithium metal battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220916 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220929 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7161692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |