JP2020038221A - Foreign matter detection device and foreign matter detection method - Google Patents

Foreign matter detection device and foreign matter detection method Download PDF

Info

Publication number
JP2020038221A
JP2020038221A JP2019213765A JP2019213765A JP2020038221A JP 2020038221 A JP2020038221 A JP 2020038221A JP 2019213765 A JP2019213765 A JP 2019213765A JP 2019213765 A JP2019213765 A JP 2019213765A JP 2020038221 A JP2020038221 A JP 2020038221A
Authority
JP
Japan
Prior art keywords
image data
ray
transmission image
inspection object
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019213765A
Other languages
Japanese (ja)
Other versions
JP7001327B2 (en
Inventor
格 宮崎
Itaru Miyazaki
格 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2019213765A priority Critical patent/JP7001327B2/en
Publication of JP2020038221A publication Critical patent/JP2020038221A/en
Application granted granted Critical
Publication of JP7001327B2 publication Critical patent/JP7001327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a foreign matter detection device capable of accurately detecting foreign matter according to the type of an object to be inspected or foreign matter.SOLUTION: A foreign matter detection device 20 has: a plurality of photon detection type X-ray sensors 31to 31that outputs a pulse signal of a peak value corresponding to the energy of a photon each time an X-ray photon is input; and transmission image data generation means 40 that determines whether the peak value of each pulse signal falls in any of a plurality of areas obtained by dividing a predetermined range in advance, and using data generated from a result of accumulating the number of pulse signal inputs for each area, and generates a plurality of transmission image data that is a combination of regions optimal for detection of foreign matter with respect to an object to be inspected W.SELECTED DRAWING: Figure 1

Description

本発明は、X線を用いて被検査物内の異物検出を行なう技術に関する。   The present invention relates to a technique for detecting foreign matter in an inspection object using X-rays.

食品等の製造を行なう工場では、製品に金属やプラスチック等の異物が混入していないか否かを異物検出装置によって調べている。   In factories that manufacture foods and the like, a foreign substance detection device checks whether or not foreign substances such as metal and plastic are mixed in the product.

この異物検出装置として、従来では、コンベア等によって所定方向に搬送される被検査物の通過路にX線を出射し、被検査物を透過したX線の強さをセンサ(複数のX線センサが通過方向と直交する方向に並んで一体化されたラインセンサ)で検出し、その検出信号が異物の存在によって局所的に変化することを利用して検出する方式のものが用いられている。   Conventionally, as this foreign matter detecting device, a sensor (a plurality of X-ray sensors) emits X-rays into a passage of an inspection object conveyed in a predetermined direction by a conveyor or the like and transmits the X-rays through the inspection object. Is detected by a line sensor integrated in a direction perpendicular to the passing direction), and the detection signal is locally changed due to the presence of a foreign substance.

しかし、上記したように被検査物を透過したX線の強度をセンサで検出する方式では、X線が透過する方向の厚さや材質が変化する物品による透過率の違いにより、異物を正確に検出できない場合があった。   However, as described above, in the method of detecting the intensity of X-rays transmitted through the inspection object using a sensor, foreign substances are accurately detected due to differences in transmittance due to articles whose thickness or material changes in the X-ray transmission direction. In some cases, it was not possible.

これを解決する技術として、例えば特許文献1には、被検査物を透過するX線のエネルギーを異ならせて得られる二つの透過X線データに対するサブトラクション(画像データの差分処理)等の処理を行なうことで、異物の検出精度を高めることが提案されている。   As a technique for solving this, for example, Patent Document 1 performs a process such as subtraction (difference processing of image data) on two pieces of transmitted X-ray data obtained by changing the energy of X-rays transmitted through an inspection object. Thus, it has been proposed to improve the detection accuracy of foreign matter.

特開平10−318943号公報JP-A-10-318943

しかしながら、上記特許文献1では、単一のX線源から出力されて被検査物を透過したX線を、被検査物の搬送方向に並んで配置され、X線に対するエネルギー感度が異なる二つの検出器(ラインセンサ)で検出することで、二つの透過X線データを得るようにしている。   However, in the above-mentioned Patent Document 1, X-rays output from a single X-ray source and transmitted through the inspection object are arranged side by side in the transport direction of the inspection object, and two detections having different energy sensitivities to the X-ray are performed. Two transmission X-ray data are obtained by detecting with a detector (line sensor).

このため、必然的に一方の検出器に入射するX線が被検査物内を透過する経路と、他方の検出器に入射するX線が被検査物内を透過する経路が一致せず、その影響で、被検査物内の異物を正しく認識できなくなることが考えられる。また、二つの検出器のセンサ素子の特性差により、正確な異物検出を行なえないことも考えられる。   For this reason, the path through which the X-rays incident on one detector necessarily pass through the object to be inspected and the path through which the X-rays incident on the other detector pass through the object to be inspected do not coincide with each other. Due to the influence, it is conceivable that foreign substances in the inspection object cannot be correctly recognized. It is also conceivable that accurate foreign object detection cannot be performed due to the characteristic difference between the sensor elements of the two detectors.

なお、特許文献1には、X線エネルギーが異なる二つのX線源を用いることも記載されているが、その場合、二つのX線が互いに干渉しないようにX線源およびそれに対応する二つの検出器(ラインセンサ)の間隔を広くとらなければならず、装置全体が大きくなるとともに、その間で搬送中の被検査物の姿勢変化が起きやすくなり、しかも、前記同様に二つの検出器を用いるため、異物の検出精度が低下する恐れがある。   In addition, Patent Document 1 discloses that two X-ray sources having different X-ray energies are used. In this case, an X-ray source and two corresponding X-ray sources are arranged so that the two X-rays do not interfere with each other. The distance between the detectors (line sensors) must be widened, which increases the size of the entire apparatus, changes the posture of the test object being transported during that time, and uses two detectors as described above. Therefore, there is a possibility that the detection accuracy of the foreign matter may be reduced.

これを解決する方法として、X線管等から発生されるX線の光子のエネルギーにばらつきがあることに着目し、X線の光子が入射される毎にそのエネルギーに対応した波高値のパルス信号を出力する光子検出型のX線センサを用い、一定時間内にX線センサから出力されたパルス信号をその波高値の違いにより複数の領域に分類し、その領域毎のパルス信
号の数を累積することで、X線エネルギーが異なる場合の透過画像データを得ることが考えられる。この方式であれば、複数のX線センサを被検査物の通過方向と交差する方向に1列に並べておけばよく、上記問題を解消できる。
As a method of solving this, attention is paid to the fact that the energy of X-ray photons generated from an X-ray tube or the like varies, and a pulse signal of a peak value corresponding to the energy is generated each time an X-ray photon is incident. The pulse signal output from the X-ray sensor within a certain time is classified into a plurality of regions according to the difference of the peak value, and the number of pulse signals for each region is accumulated. By doing so, it is conceivable to obtain transmission image data when the X-ray energies are different. According to this method, a plurality of X-ray sensors may be arranged in a line in a direction intersecting with the passing direction of the inspection object, and the above problem can be solved.

しかしながら、特許文献1にあるような従来技術ではエネルギー感度が異なる二つの検出器を用いていたことから必然的に、サブトラクション処理に用いられる二つの透過X線データのエネルギー領域は固定されていた。   However, in the related art as disclosed in Patent Document 1, since two detectors having different energy sensitivities are used, the energy regions of the two transmission X-ray data used for the subtraction processing are necessarily fixed.

本発明は、上記課題を解決し、光子検出型のX線センサを用いながら、被検査物や異物の種類に応じて最適なエネルギー領域の複数の透過画像データを作成し、サブトラクション処理を行うことで、高精度に異物検出が行なえる異物検出装置および異物検出方法を提供することを目的としている。   The present invention solves the above-described problems, and performs subtraction processing by creating a plurality of transmission image data in an optimal energy region according to the type of an inspection object or a foreign substance while using a photon detection type X-ray sensor. Therefore, it is an object of the present invention to provide a foreign substance detection device and a foreign substance detection method capable of performing foreign substance detection with high accuracy.

前記目的を達成するために、本発明の請求項1の異物検出装置は、
被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(311〜31N)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所
定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、前記被検査物について異物の検出に最適な領域の組合せとなる複数の透過画像データを生成するように構成され、
前記判定手段は、
前記透過画像データ生成手段で得られた複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定するように構成されていることを特徴とする。
In order to achieve the above object, a foreign matter detection device according to claim 1 of the present invention is provided.
An X-ray generator (22) that emits X-rays into a passage through which the inspection object passes;
At a position for receiving X-rays emitted from the X-ray generator to the passage and transmitted through the inspection object, the X-ray generation units are arranged so as to be arranged in a direction intersecting with the passing direction of the inspection object, and receive X-rays, respectively. A plurality of X-ray sensors (311-31N) for converting into electric signals;
While the inspection object is passing between the X-ray generating unit and the plurality of X-ray sensors, a signal output from each of the plurality of X-ray sensors is divided for a predetermined period to perform predetermined signal processing. A two-dimensional position information determined by a passing direction of the inspection object and a direction in which the X-ray sensors are arranged, and transmission image data generating means for generating transmission image data of the inspection object based on a signal processing result for each position; (40)
A foreign matter detection device having a determination means (50) for determining the presence or absence of a foreign matter in the inspection object based on the transmission image data generated by the transmission image data generation means;
The X-ray sensor is a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon every time a photon of the X-ray is input,
The transmission image data generating means,
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls into any of a plurality of regions in which the predetermined range is divided in advance. Is configured to accumulate the number of input pulse signals for each of the regions, and to generate a plurality of transmission image data that is a combination of regions optimal for detecting foreign matter with respect to the inspection object using the accumulation result for each of the regions. And
The determining means includes:
By performing predetermined image processing including subtraction processing on a plurality of transmission image data obtained by the transmission image data generating means, it is configured to determine the presence or absence of foreign matter in the inspection object. Features.

また、本発明の請求項2の異物検出装置は、請求項1に記載の異物検出装置において、
予め所定範囲内を複数に区分けした領域の数が3以上であることを特徴とする。
According to a second aspect of the present invention, there is provided a foreign matter detection device according to the first aspect.
The number of regions into which a predetermined range is previously divided into a plurality of regions is three or more.

また、本発明の請求項3の異物検出装置は、請求項1または2に記載の異物検出装置において、
前記透過画像データ生成手段は、前記予め所定範囲内を複数に区分けした各領域毎の透過画像データを生成し、前記被検査物について異物の検出に最適な透過画像データの組合せを見つけるように構成されていることを特徴とする。
According to a third aspect of the present invention, there is provided a foreign matter detection device according to the first or second aspect,
The transmission image data generation unit is configured to generate transmission image data for each of the plurality of areas divided in advance in the predetermined range, and to find a combination of transmission image data that is optimal for detecting a foreign substance with respect to the inspection object. It is characterized by having been done.

また、本発明の請求項4の異物検出装置は、請求項3に記載の異物検出装置において、前記透過画像データ生成手段は、前記予め所定範囲内を複数に区分けした各領域毎の透過画像データを生成し、該生成した複数の前記透過画像データの一部を合成して新たな透過画像データを作成することを特徴とする。   According to a fourth aspect of the present invention, in the foreign object detection device according to the third aspect, the transmission image data generating unit is configured to transmit the transmission image data for each area in which the predetermined range is divided into a plurality of areas in advance. Is generated, and a part of the plurality of generated transmission image data is combined to create new transmission image data.

また、本発明の請求項5の異物検出装置は、請求項1または2に記載の異物検出装置において、前記透過画像データ生成手段は、前記被検査物に対して異物検出に最適な透過画像データの組合せが既知の場合には、当該組み合わせにかかる領域についての透過画像データのみを生成することを特徴とする。   According to a fifth aspect of the present invention, there is provided a foreign matter detection apparatus according to the first or second aspect, wherein the transmission image data generating means is configured to transmit the transmission image data optimal for the foreign matter detection with respect to the inspection object. When the combination of the combinations is known, only the transmission image data for the region according to the combination is generated.

また、本発明の請求項6の異物検出装置は、請求項5に記載の異物検出装置において、前記透過画像データ生成手段は、複数の領域の領域識別信号の累積数を加算して新たな透過画像データを作成することを特徴とする。   According to a sixth aspect of the present invention, in the foreign object detection device according to the fifth aspect, the transmission image data generating means adds a cumulative number of area identification signals of a plurality of areas to generate a new transmission image. It is characterized in that image data is created.

また、本発明の請求項7の異物検出方法は、
X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(311〜31N)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、前記被検査物について異物の検出に最適な領域の組合せとなる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、
前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定することを特徴とする。
Also, the foreign matter detection method according to claim 7 of the present invention,
Emitting X-rays from the X-ray generator (22) to a passage through which the inspection object passes;
X-rays emitted to the passage and transmitted through the inspection object are received by a plurality of X-ray sensors (311 to 31N) arranged in a direction intersecting with the passing direction of the inspection object and converted into electric signals. ,
While the inspection object is passing between the X-ray generating unit and the plurality of X-ray sensors, a signal output from each of the plurality of X-ray sensors is divided for a predetermined period to perform predetermined signal processing. Generating two-dimensional position information determined by a passing direction of the inspection object and a direction in which the X-ray sensors are arranged, and transmitting image data of the inspection object including a signal processing result for each position;
Based on the generated transmission image data, determining the presence or absence of a foreign substance in the inspection object,
Each time an X-ray photon is input, a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon is used as the X-ray sensor,
In the step of generating the transmission image data,
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls into any of a plurality of regions in which the predetermined range is divided in advance. The number of pulse signal inputs is accumulated for each region, and using the accumulation result for each region, a plurality of transmission image data that is a combination of regions optimal for detecting a foreign substance with respect to the inspection object is generated.
In the step of determining the presence or absence of foreign matter in the inspection object,
By performing predetermined image processing including subtraction processing on the plurality of generated transmission image data, the presence or absence of a foreign substance in the inspection object is determined.

本発明は、X線センサとして、X線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、生成しておいた複数のエネルギー領域の透過画像データを用いて、被検査物や異物の種類に応じて最適なエネルギー領域の組み合わせで複数の透過画像データを作成し、サブトラクション処理を行うので、異物検出を精度よく行うことができる。   The present invention uses a photon detection type, which outputs a pulse signal of a peak value corresponding to the energy of an X-ray photon as an X-ray photon is input, to generate a plurality of energy regions that have been generated. By using the transmitted image data described above, a plurality of transmitted image data is created by combining the optimum energy regions according to the type of the inspection object and the foreign matter, and the subtraction processing is performed, so that the foreign matter can be detected with high accuracy.

本発明の実施形態の構成図である。FIG. 2 is a configuration diagram of an embodiment of the present invention. X線センサから出力されるパルス信号と領域との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a pulse signal output from an X-ray sensor and a region. 波高値の領域毎に得られる3種類の透過画像データの例を示す図である。It is a figure showing an example of three kinds of transmission image data obtained for every field of a peak value. 管電流(X線の線量)と被検査物の厚さとの関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a tube current (a dose of X-rays) and a thickness of an inspection object. X線センサから出力されるパルス信号が重なった場合の波形を示す図である。It is a figure showing a waveform when a pulse signal outputted from an X-ray sensor overlaps.

以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明を適用した異物検出装置20の全体構成を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a foreign matter detection device 20 to which the present invention is applied.

この異物検出装置20は、搬送装置21、X線発生部22、複数NのX線センサ31〜31、透過画像データ生成手段40、判定手段50、厚さ検出手段60およびX線線量可変手段70を有している。 The foreign matter detection device 20 includes a transport device 21, an X-ray generation unit 22, a plurality of X-ray sensors 31 1 to 31 N , a transmission image data generation unit 40, a determination unit 50, a thickness detection unit 60, and an X-ray dose variable. It has means 70.

搬送装置21は、被検査物Wを所定方向(図では紙面に直交する方向、以下では通過方向または搬送方向という)に搬送するためのものであり、一般的には、コンベアのように被検査物Wを一定速度で水平に搬送するものが使用されるが、必ずしも動力源をもつ搬送装置を用いる必要はなく、被検査物の重さを利用して傾斜路を滑走させる方式や、上方から落下させる方式であってもよい。   The transport device 21 is for transporting the inspection object W in a predetermined direction (in the drawing, a direction orthogonal to the paper surface, hereinafter, referred to as a passing direction or a transport direction), and is generally inspected like a conveyor. A device that horizontally transports the object W at a constant speed is used, but it is not always necessary to use a transport device having a power source, and a method of sliding on a slope using the weight of the inspected object or from above. A method of dropping may be used.

X線発生部22は、搬送装置21によって所定方向に搬送される被検査物Wが通過する通過路にX線を出射する。この実施形態では、搬送装置21によって搬送される被検査物Wの上方からその搬送路の幅方向に拡がるX線を出射するものとするが、X線の出射方向はこれに限らず、被検査物Wの側方から側面方向へ出射してもよい。   The X-ray generation unit 22 emits X-rays to a passage through which the inspection object W conveyed in a predetermined direction by the conveyance device 21 passes. In this embodiment, the X-rays that spread in the width direction of the transport path are emitted from above the inspection object W transported by the transport device 21. However, the emission direction of the X-rays is not limited to this, and the X-rays are emitted. The light may be emitted from the side of the object W to the side.

X線発生部22のX線源には、過熱したフィラメントから放出される電子を加速して陽極のターゲットに衝突させてX線を放出させる熱陰極X線管や、格子制御型熱陰極X線管が用いられ、その他にX線管を駆動するために必要な電源が含まれている。   The X-ray source of the X-ray generation unit 22 includes a hot cathode X-ray tube that accelerates electrons emitted from a superheated filament and collides with an anode target to emit X-rays, and a grid control type hot cathode X-ray. A tube is used, and additionally contains the power required to drive the X-ray tube.

X線発生部22が出射するX線の線量(単位時間当りのエネルギーの総和)は、単位時間当りにX線管のフィラメントから陽極のターゲットに到達する電子の数(管電流)や管電圧に対応しており、管電流は、電子の放出量を決めるフィラメント電流や、電子の流れを制御する格子電圧等に依存する。このX線発生部22が出射するX線の線量は、X線線量可変手段70によって可変されるが、それについては後述する。   The dose of X-rays (sum of energy per unit time) emitted by the X-ray generation unit 22 depends on the number of electrons (tube current) and the tube voltage reaching the anode target from the filament of the X-ray tube per unit time. Correspondingly, the tube current depends on the filament current that determines the amount of emitted electrons, the grid voltage that controls the flow of electrons, and the like. The X-ray dose emitted by the X-ray generation unit 22 is varied by the X-ray dose varying unit 70, which will be described later.

複数NのX線センサ31〜31は、それぞれがX線を受けて電気信号に変換するものであり、X線発生部22から被検査物Wの通過路に出射されて被検査物Wを透過したX
線を受ける位置で、被検査物Wの通過方向(紙面と直交する方向)と交差(この例では直交)する方向に隙間がほとんど無い状態で一列に並んでいる。
Each of the plurality of N X-ray sensors 31 1 to 31 N receives an X-ray and converts the X-ray into an electric signal. X transmitted through
At the position where the line is received, they are arranged in a line with almost no gap in a direction intersecting (in this example, orthogonal) with the passing direction of the inspected objects W (the direction orthogonal to the paper surface).

実際の装置としては、複数NのX線センサ31〜31は、それぞれが一体的に連結された一本のラインセンサ30で構成され、搬送装置21の搬送路の下面側に配置されている。ここで、例えばX線センサの幅を1mm、X線センサ同士の隙間を幅に対して無視できる程小さいとし、被検査物Wを搬送する搬送路の幅を200mmとすれば、概略200個のX線センサを有するラインセンサを用いればよい。 As an actual device, the plurality of N X-ray sensors 31 1 to 31 N are each configured by a single line sensor 30 integrally connected thereto, and are arranged on the lower surface side of the transport path of the transport device 21. I have. Here, for example, if the width of the X-ray sensor is 1 mm, the gap between the X-ray sensors is so small as to be negligible with respect to the width, and the width of the transport path for transporting the inspection object W is 200 mm, approximately 200 A line sensor having an X-ray sensor may be used.

従来の異物検出装置で用いられるX線センサは、一般的に入射したX線により可視光を発生してこれをフォトセンサで受けて電気信号に変換するシンチレータ型フォトセンサであって可視光のエネルギーを積分した値が画像の濃淡を表すが、この異物検出装置20が用いるX線センサ31〜31は、被検査物Wを透過したX線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型(CdTeセンサ)であり、単位時間当りに出力するパルス数が透過画像の濃淡を表すことになる。 An X-ray sensor used in a conventional foreign matter detection device is a scintillator-type photosensor that generally generates visible light by incident X-rays, receives the visible light by a photosensor, and converts the light into an electric signal. The X-ray sensors 31 1 to 31 N used by the foreign matter detection device 20 receive the X-ray photons transmitted through the inspection object W each time the X-ray photons are input. It is a photon detection type (CdTe sensor) that outputs a pulse signal of a peak value corresponding to energy, and the number of pulses output per unit time indicates the density of a transmitted image.

透過画像データ生成手段40は、X線発生部22とX線センサ31〜31の間を被検査物Wが通過している間にX線センサ31〜31からそれぞれ出力される信号をスキャン時間ずつ区切って所定の信号処理を行い、被検査物Wの通過方向とX線センサの並び方向とで決まる2次元の位置の情報と、その位置毎の信号処理結果からなる被検査物の透過画像データを生成する。 The transmission image data generation unit 40 outputs signals output from the X-ray sensors 31 1 to 31 N while the inspection object W passes between the X-ray generation unit 22 and the X-ray sensors 31 1 to 31 N. Are subjected to predetermined signal processing by dividing the scan time by scan time, a two-dimensional position information determined by a passing direction of the inspected object W and an arrangement direction of the X-ray sensors, and an inspected object composed of a signal processing result for each position. Is generated.

前記したように、光子検出型のX線センサ31〜31は、一つの光子の入力に対して、その光子のエネルギーに対応した波高値のパルス信号を一つ出力するが、X線発生部22から出射されるX線の光子のエネルギーは、その管電流が一定であってもばらつきがあるため、それに応じて、図2に示すように、各X線センサから出力されるパルス信号P、P、P、…の波高値H、H、H、…にばらつきが生じる。 As described above, the X-ray sensors 31 1 to 31 N of the photon detection type output one pulse signal of a peak value corresponding to the energy of one photon in response to the input of one photon. Since the energy of the X-ray photons emitted from the unit 22 varies even when the tube current is constant, the pulse signal P output from each X-ray sensor is accordingly adjusted as shown in FIG. The peak values H 1 , H 2 , H 3 ,... Of 1 , P 2 , P 3 ,.

言い換えれば、エネルギーの異なるX線が混在していることになり、スキャン時間内に一つのX線センサから出力されるパルス信号の波高値H、H、H、…が、予め波高値の出力範囲全体を複数M(図2ではM=4)に区分けした領域R〜Rのいずれに入るかを判定し、そのスキャン時間内のパルス信号入力数を領域毎に累積すれば、そのスキャン時間に対応する部位についてX線透過エネルギーの範囲が異なる複数の透過画像データを生成することができる。 In other words, X-rays having different energies are mixed, and the peak values H 1 , H 2 , H 3 ,... Of the pulse signal output from one X-ray sensor during the scan time are previously set to the peak values. if the entire output range to determine enters one the regions R 1 to R M divided into a plurality M (in FIG. 2 M = 4), the cumulative number of the pulse signal input within the scanning time for each region, It is possible to generate a plurality of transmission image data having different X-ray transmission energy ranges for a portion corresponding to the scan time.

上記X線透過エネルギーの範囲が異なる複数の透過画像データを生成するために、透過画像データ生成手段40は、各X線センサ31〜31の出力信号を、それぞれA/D変換器41〜41によってデジタルのデータ列に変換し、波高値検出手段42〜42に入力する。 In order to generate a plurality of transmission image data having different ranges of the X-ray transmission energy, the transmission image data generation unit 40 converts the output signals of the X-ray sensors 31 1 to 31 N into A / D converters 41 1 respectively. into digital data sequence by to 41 N, it is input to the peak value detection unit 42 1 through 42 N.

各波高値検出手段42〜42は、入力されるデータ列からパルス信号の波高値を検出するためのものであり、例えば入力されるデータ列に対して微分処理を行い、微分値(信号の傾き)が所定以上の正の値から所定以下の負の値に切り換わるときのゼロクロスタイミングを検出し、そのゼロクロスタイミングにおけるデータ値をパルス信号の波高値として検出し、それぞれ領域判定手段43〜43に出力する。 Each of the peak value detecting means 42 1 to 42 N is for detecting the peak value of the pulse signal from the input data sequence, and performs, for example, a differentiation process on the input data sequence to obtain a differential value (signal slope) detects a zero-cross timing when switched to a negative value of the predetermined or less from the positive value equal to or greater than a predetermined, detecting the data value at that zero-cross timing as the crest value of the pulse signals, respectively region determining means 43 1 To 43 N.

領域判定手段43〜43は、前記した波高値の出力範囲を複数Mの領域R〜Rに区分けする境界値領域L〜LM−1と、波高値検出手段42〜42で検出された波高値とを比較し、その波高値がいずれの領域に入るかを判定し、波高値が入る領域を表す領域識別信号を領域別累積手段44〜44に出力する。 Region determining means 43 1 ~ 43 N includes a boundary value region L 1 ~L M-1 for dividing the output range of the above-mentioned peak value in the region R 1 to R M of the plurality M, the peak value detecting means 42 1-42 comparing the peak value detected in N, its peak value to determine enters one region, and outputs the region identification signal representative of a region where the peak value enters an area cumulative means 44 1 ~ 44 N.

各領域別累積手段44〜44は、スキャン時間内に領域判定手段43〜43からそれぞれ出力される領域識別信号を受け、同一領域を示す領域識別信号の入力数をそれぞれ累積して、スキャン時間内における領域毎の累積数を求めて順次出力する。 Accumulating means 44 1 ~ 44 N each region receives an area identification signal output from the region judging means 43 1 ~ 43 N within the scan time, and the cumulative number of inputs of a region identification signal indicating the same area, respectively , The cumulative number for each area within the scan time is obtained and sequentially output.

この領域識別信号の累積数は、スキャン時間内に1つのX線センサから出力されるパルス信号のうち、その波高値が入る領域が同じパルス信号同士の累積数であり、各領域別累積手段44〜44からスキャン時間毎に出力される領域識別信号の累積数を、透過画像データメモリ45に、並列的に且つ時系列に記憶することで、領域ごとの被検査物に対するX線透過画像データが得られる。 The cumulative number of the region identification signals is the cumulative number of the pulse signals in which the peak value is included in the pulse signals output from one X-ray sensor within the scan time, and the cumulative value of each region is calculated. By storing the cumulative number of area identification signals output from 1 to 44 N for each scan time in the transmission image data memory 45 in parallel and in time series, the X-ray transmission image for the inspection object for each area is stored. Data is obtained.

簡単な例として、スキャン時間を3単位、X線センサ数Nを3、波高値の領域数Mを3とし、パルス信号の累積数をA(波高値の領域の順位、スキャン時間の順位、センサの並び順位)で表すと、最初のスキャン時間T1内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,1)、領域Rに入るものの累積数をA(2,1,1)、領域Rに入るものの累積数をA(3,1,1)とする。 As a simple example, the scan time is 3 units, the number of X-ray sensors N is 3, the number of peak value areas M is 3, and the cumulative number of pulse signals is A (order of peak value areas, order of scan time, sensor expressed in sequence order) of in the first scan time T1, of the first X-ray pulse signal sensor 311 has output, the cumulative number of those whose peak value enters the area R 1 a (1, 1 , 1), a (2,1,1 cumulative number of those entering the area R 2), the cumulative number of those entering the area R 3 and a (3,1,1).

また、同じスキャン時間T1内で、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,2)、領域Rに入るものの累積数をA(2,1,2)、領域Rに入るものの累積数をA(3,1,2)とする。 Further, in the same scan time within T1, of the second X-ray sensor 312 is a pulse signal output, the cumulative number of those whose peak value enters the area R 1 A (1,1,2), the area R 2 a (2, 1, 2) the cumulative number of those entering, the cumulative number of those entering the area R 3 and a (3,1,2).

また、同じスキャン時間T1内で、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,3)、領域Rに入るものの累積数をA(2,1,3)、領域Rに入るものの累積数をA(3,1,3)とする。 Further, in the same scan time within T1, 3-th of the pulse signal X-ray sensor 313 is output, A (1,1,3) the cumulative number of those whose peak value enters the area R 1, region R 2 a (2, l, 3) the cumulative number of those entering, the cumulative number of those entering the area R 3 and a (3,1,3).

同様に、次のスキャン時間T2内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,1)、領域Rに入るものの累積数をA(2,2,1)、領域Rに入るものの累積数をA(3,2,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,2)、領域Rに入るものの累積数をA(2,2,2)、領域Rに入るものの累積数をA(3,2,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,3)、領域Rに入るものの累積数をA(2,2,3)、領域Rに入るものの累積数をA(3,2,3)とする。 Similarly, in the next scan time T2, among the pulse signals output by the first X-ray sensor 311, the cumulative number of the pulse signals whose peak values fall in the region R 1 is A (1,2,1), the cumulative number of those entering the R 2 a (2,2,1), the cumulative number of those entering the area R 3 and a (3,2,1), the second X-ray sensor 312 is a pulse signal output among them, the cumulative number of those whose peak value enters the area R 1 a (1,2,2), a (2,2,2) the cumulative number of those entering the area R 2, the cumulative number of those entering the area R 3 was the a (3,2,2), 3 th of pulse signals X-ray sensor 313 has output, the cumulative number of those whose peak value enters the area R 1 a (1,2,3), region the cumulative number of those entering the R 2 a (2,2,3), the cumulative number of those entering the area R 3 and a (3,2,3).

さらに、次のスキャン時間T3内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,3,1)、領域Rに入るものの累積数をA(2,3,1)、領域Rに入るものの累積数をA(3,3,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,3,2)、領域Rに入るものの累積数をA(2,3,2)、領域Rに入るものの累積数をA(3,3,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,3,3)、領域Rに入るものの累積数をA(2,3,3)、領域Rに入るものの累積数をA(3,3,3)とする。 Further, within the next scan time T3, among the pulse signals output by the first X-ray sensor 311, the cumulative number of the pulse signals whose peak values fall in the region R 1 is A (1,3,1), and the region R the cumulative number of those entering 2 a (2,3,1), the cumulative number of those entering the area R 3 and a (3,3,1), of the second X-ray sensor 312 is a pulse signal output , the cumulative number of those whose peak value enters the area R 1 a (1,3,2), the cumulative number of those entering the area R 2 a (2,3,2), the cumulative number of those entering the area R 3 and a (3,3,2), 3 th of pulse signals X-ray sensor 313 has output, the cumulative number of those whose peak value enters the region R 1 a (1,3,3), a region R the cumulative number of those entering 2 a (2,3,3), the cumulative number of those entering the area R 3 and a (3,3,3).

このようにして得られたデータから、領域Rについて得られた9つの累積数を、図3の(a)のように、横方向をスキャン時間の順、縦方向をセンサの並び順となるように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の9つの部位の透過画像データが得られる。 Thus from the obtained data in the composed nine cumulative number obtained for region R 1, as in FIG. 3 (a), transverse to the scan time of the order, the longitudinal and order of the sensor if arranged in three rows and three columns as the transmission image data for the nine sites of the object by the X-ray energy range corresponding to the region R 1 is obtained.

同様に、領域Rについて得られた9つの累積数を、図3の(b)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データ
が得られ、領域Rについて得られた9つの累積数を、図3の(c)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データが得られる。
Similarly, nine cumulative number obtained for region R 2, if arranged in three rows and three columns as shown in (b) of FIG. 3, the object to be inspected by the X-ray energy range corresponding to the region R 2 transmission image data is obtained, nine cumulative number obtained for region R 3, be arranged in three rows and three columns as shown in (c) of FIG. 3, according to X-ray energy range corresponding to the region R 3 Transmission image data of the inspection object is obtained.

実際には、異物検査に必要なスキャン数は、物品の搬送方向の長さを搬送速度で除して得られる搬送時間(例えば0.5秒)をスキャン時間(例えば1ミリ秒)で除算した値(例えば500)となり、センサの並び方向の分割数はX線センサの数N(例えば200)に対応している。   In practice, the number of scans required for foreign substance inspection is obtained by dividing the transport time (for example, 0.5 seconds) obtained by dividing the length of the article in the transport direction by the transport speed by the scan time (for example, 1 millisecond). It becomes a value (for example, 500), and the number of divisions in the sensor arrangement direction corresponds to the number N (for example, 200) of X-ray sensors.

このようにして、波高値の領域にそれぞれ対応したエネルギー範囲毎の透過画像データが得られれば、判定手段50により、それら複数の透過画像データに対して従来から行なわれているサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定することができる。   In this manner, if transmission image data for each energy range corresponding to the peak value area is obtained, the determination unit 50 determines a predetermined value including a subtraction process conventionally performed on the plurality of transmission image data. By performing the above image processing, it is possible to determine the presence or absence of a foreign substance in the inspection object.

なお、上記の波高値の領域の区分けの仕方は任意であり、一つの例としては、X線発生部22から出射されるX線の光子のエネルギーの最大値(X線管の場合、電子の加速電圧に依存する理論値)に対してX線センサが出力するパルス信号の波高値と、所定の基準値(例えば0)との間の複数に等分すればよい。また、領域数も2つ以上で任意であり、最初に多くの領域で透過画像データを生成しておき、その被検査物について異物の検出に最適な透過画像データの組合せを見つけ、その最適な透過画像データによるサブトラクション処理を含む所定の画像処理を行なってもよい。   The method of dividing the peak value area is arbitrary. As one example, the maximum value of the energy of the photon of the X-ray emitted from the X-ray generation unit 22 (in the case of the X-ray tube, the What is necessary is just to divide the pulse signal output from the X-ray sensor with respect to the acceleration value (theoretical value depending on the acceleration voltage) into a plurality of values between a peak value of the pulse signal and a predetermined reference value (for example, 0). Also, the number of regions is arbitrary with two or more, and transmission image data is generated in many regions first, and the optimum combination of transmission image data for foreign object detection for the inspection object is found. Predetermined image processing including subtraction processing using transmitted image data may be performed.

具体的には、例えば、初期の領域数を10として、それぞれの領域で透過画像データを生成しておき、エネルギーの大きい方から数えて1番目の領域を前述の領域Rに割当て、3番目の領域を前述の領域Rに割当て、…というように、初期の領域から最終的な領域に選択的に割り当てて、この割り当てられた領域の透過画像データを複数用いて、所定の画像処理を行なってもよい。また、エネルギーの大きい方から数えて1番目と2番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、3番目と4番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、…というように初期の複数の領域の透過画像データを合成して最終的な1つの領域の透過画像データとし、その合成された透過画像データを複数用いる、あるいは合成された透過画像データと、それを含まない初期の領域の透過画像データとを用いて所定の画像処理を行なってもよい。 Specifically, for example, the initial number of regions as 10, allocated in advance to generate a transmission image data in each region, the first region counted from the largest energy in the region R 1 of the above, the third allocates a region in the region R 2 of the above, and so ..., from the initial area to the final area allocated selectively, by using a plurality of transmission image data of the allocated space, the predetermined image processing You may do it. Further, by combining the transmission image data of the first and second regions counted from the larger energy, which was the previous region R 1 of the transmitted image data, the transmitted image data of the third and fourth region synthesized and, this as a transmission image data in the above described region R 2, the transmitted image data of the initial plurality of areas combined with the transmitted image data of the final one area and so ... was their synthesis The predetermined image processing may be performed using a plurality of transmission image data or combining transmission image data and transmission image data of an initial region not including the transmission image data.

上記具体例では、初期の領域の数だけ透過画像データを生成しておき、異物の検出に最適な透過画像データの組合せに応じて、領域の割当てや透過画像データの合成を行なうようにしているが、被検査物に対して異物検出に最適な透過画像データの組合せが既知の場合には、割当てられる領域についての透過画像データのみを生成すればよく、また、複数の透過画像データを合成する代わりに、複数の領域の領域識別信号の累積数を加算して、一つの透過画像データを生成してもよい。これにより、透過画像データの記憶領域を節約することができる。   In the above specific example, as many transmission image data as the number of initial regions are generated, and areas are allocated and the transmission image data is synthesized in accordance with a combination of transmission image data that is optimal for detecting foreign matter. However, if the optimum combination of transmission image data for foreign matter detection with respect to the object to be inspected is known, only transmission image data for the assigned area need be generated, and a plurality of transmission image data are synthesized. Alternatively, one transmission image data may be generated by adding the cumulative numbers of the area identification signals of a plurality of areas. Thereby, the storage area of the transmission image data can be saved.

ここで、サブトラクション処理について簡単に説明すると、同一部位について異なるエネルギーによるX線透過データが得られた場合、その差分処理を行なうと、その部位の厚さの影響が除去され、材質(透過率)の影響だけが現れ、X線エネルギーの違いに対する被検査物自体の材質の透過率変化と、異物の材質の透過率変化の差が顕著化する。これにより、異物に対する検出感度が高くなる。判定手段50では、この処理の他に、ノイズの除去等のために各種のフィルタ処理などを行い、異物の検出をより高い精度で行なっている。   Here, the subtraction processing will be briefly described. When X-ray transmission data with different energies is obtained for the same part, when the difference processing is performed, the influence of the thickness of the part is removed, and the material (transmittance) is obtained. Only, the difference between the change in the transmittance of the material of the inspection object itself and the change in the transmittance of the material of the foreign substance with respect to the difference in the X-ray energy becomes remarkable. As a result, the detection sensitivity for foreign matter is increased. In addition to this processing, the determination means 50 performs various kinds of filter processing and the like for removing noise and the like, and detects foreign matter with higher accuracy.

上記方法で得られた複数の透過画像データは、物品の通過方向と直交する方向に一列に並んだ複数のX線センサの出力から求めているので、二つのラインセンサを用いる従来方式に比べて、格段に精度の高い透過画像データが得られ、それにより、異物検出を正確に行なうことができ、しかも小型に構成できる。   Since the plurality of transmission image data obtained by the above method is obtained from the outputs of the plurality of X-ray sensors arranged in a line in a direction orthogonal to the passing direction of the article, compared to the conventional method using two line sensors. This makes it possible to obtain transmission image data with extremely high accuracy, thereby enabling accurate detection of foreign matter and a small size.

なお、判定手段50の判定結果(異物の有無を示す信号)は、図示しない後続の選別装置に送られ、異物有りと判定された物品が、良品の経路から排除されることになる。   The determination result (the signal indicating the presence or absence of a foreign substance) by the determination means 50 is sent to a subsequent sorting device (not shown), and the article determined to have the foreign substance is excluded from the path of a good product.

ここで、被検査物を透過するX線のエネルギーは、被検査物の材質とX線透過方向の厚さによって大きく変化する。被検査物の材質をほぼ均一とし、X線透過方向の厚さがほぼ一定であれば、その厚さに合わせてX線の平均的な出射エネルギーを一定に調整しておけば、X線センサに入射するX線の線量を適正範囲に維持できる。 しかし、被検査物の厚さが部位によって大きく変化する場合、X線センサに入射するX線の線量を適正範囲に維持できなくなる。例えば、厚さが大の部位に合わせてX線の出射エネルギーを決めると、厚さが小の部位を透過するX線の線量が過大となり、逆に、厚さが小の部位に合わせてX線の出射エネルギーを決めると、厚さが大の部位を透過するX線の線量が過小となる。 このように被検査物を透過したX線の線量が過大になると、上記した光子検出型のX線センサでは、光子の入力頻度が過大となって、例えば図5のように、X線センサから出力されるパルス信号P、P同士やパルス信号P、P同士が重なってしまい、二つのパルス信号に対してそれぞれ一つのピーク値(波高値H、H)しか得られない現象が発生する。この現象を一般的にパイルアップ現象と呼び、この現象が高い確率で発生すると、領域ごとの正しい計数結果が得られなくなり、その結果、異物の検出を正確に行なえなくなる。 また、被検査物を透過したX線の線量が過小になると、パルス信号の累積数が極端に少なくなってノイズ成分との区別がつかなくなり、透過画像データのS/Nが低下してしまう。上記のように光子検出型のX線センサを用いた場合、前記したように、X線センサに入射されるX線の線量(単位時間当りに出力される光子数)が多すぎるとパイルアップ現象が高い確率で発生して、領域ごとの正しい計数結果が得られなくなり、X線の線量が少なすぎるとノイズとの区別がつかなくなり、やはり正しい透過画像データが得られない。 Here, the energy of the X-ray transmitted through the inspection object greatly changes depending on the material of the inspection object and the thickness in the X-ray transmission direction. If the material of the object to be inspected is substantially uniform and the thickness in the X-ray transmission direction is substantially constant, the X-ray sensor can be adjusted by adjusting the average emission energy of X-rays to be constant according to the thickness. The dose of X-rays incident on the substrate can be maintained in an appropriate range. However, when the thickness of the inspection object varies greatly depending on the part, the dose of X-rays incident on the X-ray sensor cannot be maintained in an appropriate range. For example, if the emission energy of X-rays is determined in accordance with a portion having a large thickness, the dose of X-rays transmitted through a portion having a small thickness becomes excessively large. When the emission energy of the ray is determined, the dose of the X-ray that passes through a thick part becomes too small. When the dose of the X-ray transmitted through the inspection object becomes excessive in this way, in the above-described X-ray sensor of the photon detection type, the input frequency of the photon becomes excessive, and for example, as shown in FIG. The output pulse signals P 1 and P 2 and the pulse signals P 4 and P 5 overlap each other, and only one peak value (peak value H 1 or H 3 ) is obtained for each of the two pulse signals. The phenomenon occurs. This phenomenon is generally called a pile-up phenomenon. If this phenomenon occurs with a high probability, a correct counting result for each region cannot be obtained, and as a result, it is impossible to accurately detect foreign matter. Further, when the dose of X-rays transmitted through the inspection object becomes too small, the cumulative number of pulse signals becomes extremely small, so that it is difficult to distinguish the noise components from the noise components, and the S / N of transmitted image data is reduced. When the photon detection type X-ray sensor is used as described above, as described above, if the dose of the X-rays incident on the X-ray sensor (the number of photons output per unit time) is too large, the pile-up phenomenon occurs. Occurs with a high probability, and a correct counting result for each region cannot be obtained. If the X-ray dose is too small, it cannot be distinguished from noise, and correct transmission image data cannot be obtained.

被検査物を透過するX線の線量は、被検査物の材質が同じであれば、その透過方向の厚さが大きい程少なくなるので、一般的には、被検査物の厚さに応じてX線発生部22から出射されるX線の線量を設定しているが、材質は同じでも厚さ通過方向に沿って変化するような形状の被検査物には対応できない。   The dose of X-rays that pass through the test object decreases as the thickness in the transmission direction increases if the material of the test object is the same, so that the dose generally depends on the thickness of the test object. Although the dose of the X-ray emitted from the X-ray generation unit 22 is set, it is not possible to cope with an inspection object having the same material but having a shape that changes along the thickness passing direction.

これを解決するために、実施形態の異物検出装置20では、厚さ検出手段60とX線線量可変手段70が設けられている。   In order to solve this, in the foreign matter detection device 20 of the embodiment, the thickness detection means 60 and the X-ray dose variation means 70 are provided.

厚さ検出手段60は、搬送装置21上のX線照射位置の手前で、被検査物WのX線透過方向の厚さを検出する。この厚さ検出の方法は任意であるが、例えば光学的な構成例で言えば、厚さ検出領域に進入した被検査物の側面の一方側から光を照射し、その光を反対側に縦方向に並んだ複数の受光器で受け、被検査物によって光の入射が遮られた受光器の高さにより検出する。または、光学式反射型センサを通過路の上方に配置してレーザ光を出射し、被検査物の上面で反射した反射光を受光して変位を測定し、センサから通過路までの距離とセンサから被検査物の上面までの距離との差を被検査物の厚さとして検出するようなものであってもよい。   The thickness detecting means 60 detects the thickness of the inspection object W in the X-ray transmission direction just before the X-ray irradiation position on the transport device 21. The method of detecting the thickness is arbitrary.For example, in the case of an optical configuration example, light is irradiated from one side of the side surface of the inspection object that has entered the thickness detection area, and the light is vertically transmitted to the opposite side. The light is received by a plurality of light receivers arranged in the direction, and the light is detected by the height of the light receivers whose light incidence is blocked by the inspection object. Alternatively, an optical reflective sensor is arranged above the passage, emits laser light, receives reflected light reflected on the upper surface of the inspection object, measures displacement, and measures the distance from the sensor to the passage and the sensor. Alternatively, the difference from the distance to the upper surface of the inspection object may be detected as the thickness of the inspection object.

なお、厚さ検出手段60は、被検査物の厚さを検出し、検出結果である厚さHをX線線量可変手段70に出力する動作を逐次行うことによって、被検査物の通過方向の厚さの変化を検出しているが、この動作の周期は、スキャン時間と同じ、またはスキャン時間よりも短いことが望ましい。   The thickness detecting means 60 detects the thickness of the object to be inspected, and sequentially outputs the thickness H, which is the detection result, to the X-ray dose varying means 70, thereby detecting the thickness of the object to be inspected in the passing direction of the object. Although a change in thickness is detected, it is desirable that the cycle of this operation be the same as or shorter than the scan time.

厚さ検出手段60によって検出された厚さHを受けたX線線量可変手段70は、その厚さHの被検査物を透過してX線センサに入射するX線の線量が、前記パイルアップ現象の発生確率が低く、またパルス信号累積数がノイズレベルより十分大きい適正範囲内に入るように、X線発生部22から出射されるX線の線量(具体的には、X線発生部22のX線管の管電流や管電圧を制御する制御値)をスキャン時間毎に変更する。   The X-ray dose varying means 70 having received the thickness H detected by the thickness detecting means 60 transmits the X-ray dose transmitted through the inspection object having the thickness H and incident on the X-ray sensor to the pile-up. The dose of X-rays emitted from the X-ray generation unit 22 (specifically, the X-ray generation unit 22) is set so that the probability of occurrence of the phenomenon is low and the cumulative number of pulse signals falls within an appropriate range sufficiently larger than the noise level. The control value for controlling the tube current and the tube voltage of the X-ray tube is changed for each scan time.

この可変処理の方法は種々あるが、例えば、被検査物の種類(材質)および厚さの区分毎に予めサンプル品によって最適なX線の線量を与える制御値を記憶しておき、厚さ検出手段60で検出された厚さHが含まれる区分に対応した制御値を読み出してX線発生部22に設定する方法や、厚さと最適制御値との関係を示す式に、厚さ検出手段60で検出された厚さHを代入して制御値を算出し、これをX線発生部22に設定する方法等が採用できる。   There are various methods of this variable processing. For example, a control value for giving an optimal X-ray dose depending on the sample product is stored in advance for each type (material) and thickness of the inspection object, and the thickness is detected. The method of reading out the control value corresponding to the section including the thickness H detected by the means 60 and setting the control value in the X-ray generation unit 22 and the expression indicating the relationship between the thickness and the optimum control value are included in the thickness detection means 60. A method of calculating a control value by substituting the thickness H detected in step (1) and setting the control value in the X-ray generation unit 22 can be adopted.

図4は、厚さ検出手段60によって検出される被検査物の厚さの変化と、X線発生部22が出射するX線の線量の変化の関係を示すものである。厚さ検出手段60は、被検査物
の厚さを、スキャン時間と同じ、または、スキャン時間よりも短い周期で検出して検出結果を出力する。X線線量可変手段70は、この検出結果を受けて、出射すべきX線の線量に対応した管電流や管電圧の値を決定し、その値となるようにスキャン時間毎に制御する。その結果、X線発生部22は、被検査物の通過方向に対する厚さの変化に応じた線量のX線を出射する。
FIG. 4 shows a relationship between a change in the thickness of the inspection object detected by the thickness detecting means 60 and a change in the dose of the X-ray emitted from the X-ray generation unit 22. The thickness detecting means 60 detects the thickness of the inspection object at a period equal to or shorter than the scan time and outputs a detection result. The X-ray dose varying means 70 receives the detection result, determines the values of the tube current and the tube voltage corresponding to the dose of the X-ray to be emitted, and controls each scan time so as to obtain the values. As a result, the X-ray generation unit 22 emits X-rays at a dose corresponding to a change in thickness in the passing direction of the inspection object.

ところで、厚さ検出手段60は、X線照射位置の直前に配置するのが望ましい。しかし、異物検出装置20の構造や、厚さ検出手段60をX線から防護するため等の理由により、厚さ検出手段60を、X線照射位置から、通過路沿いに離れた位置に配置しなければならない場合がある。厚さ検出手段60が検出を行ってから、X線発生部22がこの検出結果に対応した線量のX線を出射するまでの処理時間が無視できる程に短いとすると、被検査物が、厚さ検出手段60の検出位置を通過してからX線照射位置へ到達するまでの移動時間の分だけ、タイミングにズレが生じる。この問題を解決するため、X線線量可変手段70は、上記の移動時間を遅延時間として予め設定可能となっている。そして、X線線量可変手段70は、厚さ検出手段60から検出結果を受けると、この遅延時間経過後に、X線の線量を検出結果に対応した量に変化させるようにしている。   Incidentally, it is desirable that the thickness detecting means 60 is disposed immediately before the X-ray irradiation position. However, for reasons such as the structure of the foreign matter detecting device 20 and protection of the thickness detecting means 60 from X-rays, the thickness detecting means 60 is disposed at a position away from the X-ray irradiation position along the passage. May need to be done. Assuming that the processing time from when the thickness detecting means 60 performs detection to when the X-ray generation unit 22 emits X-rays of a dose corresponding to this detection result is negligibly short, the object to be inspected has a thickness of The timing is shifted by the moving time from the passage of the detection position of the detection means 60 to the arrival of the X-ray irradiation position. In order to solve this problem, the X-ray dose varying means 70 can set the above moving time as a delay time in advance. Upon receiving the detection result from the thickness detecting means 60, the X-ray dose changing means 70 changes the X-ray dose to an amount corresponding to the detection result after the delay time has elapsed.

なお、X線センサに入射されるX線の線量の適正範囲としては、例えば、1つのX線センサがスキャン時間内に出力することができる規格上の最大パルス数(例えば、スキャン時間1ミリ秒で1000個)に対して設定された範囲(例えば、400〜600)とすることができる。   The appropriate range of the dose of X-rays incident on the X-ray sensor is, for example, the maximum number of pulses (for example, scan time of 1 millisecond) in a standard that one X-ray sensor can output within the scan time. In the range (for example, 400 to 600).

このように、この実施形態の異物検出装置20は、被検査物の厚さの変化を検出し、その厚さに応じてX線センサに入射されるX線の線量が適正範囲に入るように、X線発生部22が出射するX線の線量を所定時間(スキャン時間)毎に可変することで、厚さが通過方向に沿って変化するような形状である被検査物であっても、異物検出を精度よく行うことができる。   As described above, the foreign object detection device 20 of this embodiment detects a change in the thickness of the inspection object and adjusts the dose of the X-ray incident on the X-ray sensor according to the thickness so as to fall within an appropriate range. By changing the dose of the X-ray emitted by the X-ray generation unit 22 for each predetermined time (scan time), even if the inspection target has a shape whose thickness changes along the passing direction, Foreign matter detection can be performed accurately.

また、複数の透過画像データの保存形式は任意であるが、波高値の領域ごとに異なる色を割当て、その領域に割り当てた色の輝度を、パルス信号の累積数に対応させることで、透過画像を観察する場合に観測者が分かりやすくなる。   The storage format of the plurality of transmission image data is arbitrary, but different colors are assigned to each peak value area, and the brightness of the color assigned to the area is made to correspond to the cumulative number of pulse signals. When observing, the observer can easily understand.

例えば、波高値の領域を3つとし、各領域に赤(R)、緑(G)、青(B)の3原色を割当て、それぞれの色の輝度値にパルス累積数を割当てる。ただし、各色の輝度に割り当てる値は例えば8ビットで表せる範囲(0〜255)とし、実際のパルス累積数の範囲が8ビットで表せる範囲内に収まるように正規化(圧縮処理または伸張処理)する。この場合、3つの透過画像データを一つのRGBカラー画像データとして保存することができる。このため、透過画像データの記憶領域を節約することができる。また、データ形式が、一般的なRGBカラー画像データであるため、画像処理や画像表示が容易に行なえる。   For example, three peak value areas are set, three primary colors of red (R), green (G), and blue (B) are assigned to each area, and the cumulative number of pulses is assigned to the luminance value of each color. However, the value assigned to the luminance of each color is, for example, a range (0 to 255) that can be represented by 8 bits, and normalization (compression processing or expansion processing) is performed so that the range of the actual number of accumulated pulses falls within the range that can be represented by 8 bits. . In this case, three pieces of transmission image data can be stored as one piece of RGB color image data. For this reason, the storage area of the transmission image data can be saved. In addition, since the data format is general RGB color image data, image processing and image display can be easily performed.

また、このように各領域に異なる色を割当て、その色の輝度をパルス信号の累積数で表すデータ保存形式を用いれば、各領域の透過画像をそれぞれ異なる色の画像で表すことができ、それらを図示しない表示装置に並列的に並べて表示する場合の識別性が非常に高くなる。   Also, by assigning a different color to each region and using a data storage format in which the luminance of the color is represented by the cumulative number of pulse signals, the transmission image of each region can be represented by an image of a different color. Are very high when displayed side by side on a display device (not shown) in parallel.

20……異物検出装置、21……搬送装置、22……X線発生部、30……ラインセンサ、31〜31……X線センサ、40……透過画像データ生成手段、41〜41……A/D変換器、42〜42……波高値検出手段、43〜43……領域判定手段、44〜44……領域別累積手段、45……透過画像データメモリ、50……判定
手段、60……厚さ検出手段、70……X線線量可変手段
Reference Signs List 20 foreign matter detection device 21 conveyance device 22 X-ray generation unit 30 line sensor 31 1 to 31 N X-ray sensor 40 transmission image data generation means 41 1 to 41 41 N ... A / D converter, 42 1 to 42 N ... Peak value detecting means, 43 1 to 43 N ... Area determining means, 44 1 to 44 N ... Area accumulating means, 45. Data memory, 50: determination means, 60: thickness detection means, 70: X-ray dose variable means

Claims (7)

被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(31〜31)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、前記被検査物について異物の検出に最適な領域の組合せとなる複数の透過画像データを生成するように構成され、
前記判定手段は、
前記透過画像データ生成手段で得られた複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定するように構成されていることを特徴とする異物検出装置。
An X-ray generator (22) that emits X-rays into a passage through which the inspection object passes;
At a position for receiving X-rays emitted from the X-ray generator to the passage and transmitted through the inspection object, the X-ray generation units are arranged so as to be arranged in a direction intersecting with the passing direction of the inspection object, and receive X-rays, respectively. A plurality of X-ray sensors (31 1 to 31 N ) for converting into electric signals;
While the inspection object is passing between the X-ray generating unit and the plurality of X-ray sensors, a signal output from each of the plurality of X-ray sensors is divided for a predetermined period to perform predetermined signal processing. A two-dimensional position information determined by a passing direction of the inspection object and a direction in which the X-ray sensors are arranged, and transmission image data generating means for generating transmission image data of the inspection object based on a signal processing result for each position; (40)
A foreign matter detection device having a determination means (50) for determining the presence or absence of a foreign matter in the inspection object based on the transmission image data generated by the transmission image data generation means;
The X-ray sensor is a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon every time a photon of the X-ray is input,
The transmission image data generating means,
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls into any of a plurality of regions in which the predetermined range is divided in advance. Is configured to accumulate the number of input pulse signals for each of the regions, and to generate a plurality of transmission image data that is a combination of regions optimal for detecting foreign matter with respect to the inspection object using the accumulation result for each of the regions. And
The determining means includes:
By performing predetermined image processing including subtraction processing on a plurality of transmission image data obtained by the transmission image data generating means, it is configured to determine the presence or absence of foreign matter in the inspection object. Characteristic foreign matter detection device.
前記予め所定範囲内を複数に区分けした領域の数が3以上であることを特徴とする、請求項1に記載の異物検出装置。   2. The foreign matter detection device according to claim 1, wherein the number of regions in which the predetermined range is previously divided into a plurality of regions is three or more. 前記透過画像データ生成手段は、前記予め所定範囲内を複数に区分けした各領域毎の透過画像データを生成し、前記被検査物について異物の検出に最適な透過画像データの組合せを見つけるように構成されていることを特徴とする請求項1または2に記載の異物検出装置。   The transmission image data generation unit is configured to generate transmission image data for each of the plurality of areas divided in advance in the predetermined range, and to find a combination of transmission image data that is optimal for detecting a foreign substance with respect to the inspection object. The foreign matter detection device according to claim 1 or 2, wherein 前記透過画像データ生成手段は、前記予め所定範囲内を複数に区分けした各領域毎の透過画像データを生成し、該生成した複数の前記透過画像データの一部を合成して新たな透過画像データを作成することを特徴とする請求項3に記載の異物検出装置。   The transmission image data generating means generates transmission image data for each area obtained by previously dividing the predetermined range into a plurality of areas, and synthesizes a part of the plurality of the generated transmission image data to form new transmission image data. The foreign matter detection device according to claim 3, wherein 前記透過画像データ生成手段は、前記被検査物に対して異物検出に最適な透過画像データの組合せが既知の場合には、当該組み合わせにかかる領域についての透過画像データのみを生成することを特徴とする請求項1または2に記載の異物検出装置。   The transmission image data generating means, when a combination of transmission image data that is optimal for foreign object detection with respect to the inspection object is known, generates only transmission image data for an area related to the combination. The foreign matter detection device according to claim 1 or 2, wherein 前記透過画像データ生成手段は、複数の領域の領域識別信号の累積数を加算して新たな透過画像データを作成することを特徴とする請求項5に記載の異物検出装置。   6. The foreign matter detection device according to claim 5, wherein the transmission image data generation means generates new transmission image data by adding the cumulative number of area identification signals of a plurality of areas. X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(31〜31)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、前記被検査物について異物の検出に最適な領域の組合せとなる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、
前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定することを特徴とする異物検出方法。
Emitting X-rays from the X-ray generator (22) to a passage through which the inspection object passes;
X-rays emitted to the passage and transmitted through the inspection object are received by a plurality of X-ray sensors (31 1 to 31 N ) arranged in a direction intersecting the passing direction of the inspection object and converted into electric signals. Stages and
While the inspection object is passing between the X-ray generating unit and the plurality of X-ray sensors, a signal output from each of the plurality of X-ray sensors is divided for a predetermined period to perform predetermined signal processing. Generating two-dimensional position information determined by a passing direction of the inspection object and a direction in which the X-ray sensors are arranged, and transmitting image data of the inspection object including a signal processing result for each position;
Based on the generated transmission image data, determining the presence or absence of a foreign substance in the inspection object,
Each time an X-ray photon is input, a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon is used as the X-ray sensor,
In the step of generating the transmission image data,
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls into any of a plurality of regions in which the predetermined range is divided in advance. The number of pulse signal inputs is accumulated for each region, and using the accumulation result for each region, a plurality of transmission image data that is a combination of regions optimal for detecting a foreign substance with respect to the inspection object is generated.
In the step of determining the presence or absence of foreign matter in the inspection object,
A foreign matter detection method, comprising: performing predetermined image processing including subtraction processing on the plurality of generated transmission image data to determine the presence or absence of foreign matter in the inspection object.
JP2019213765A 2019-11-27 2019-11-27 Foreign matter detection device and foreign matter detection method Active JP7001327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213765A JP7001327B2 (en) 2019-11-27 2019-11-27 Foreign matter detection device and foreign matter detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213765A JP7001327B2 (en) 2019-11-27 2019-11-27 Foreign matter detection device and foreign matter detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016068920A Division JP6625470B2 (en) 2016-03-30 2016-03-30 Foreign object detection device and foreign object detection method

Publications (2)

Publication Number Publication Date
JP2020038221A true JP2020038221A (en) 2020-03-12
JP7001327B2 JP7001327B2 (en) 2022-01-19

Family

ID=69737863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213765A Active JP7001327B2 (en) 2019-11-27 2019-11-27 Foreign matter detection device and foreign matter detection method

Country Status (1)

Country Link
JP (1) JP7001327B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281716A (en) * 2021-03-16 2021-08-20 中国人民解放军战略支援部队信息工程大学 Photon counting laser radar data denoising method
KR20230023120A (en) * 2021-08-09 2023-02-17 주식회사 나노엑스코리아 System and method for determining the material of an object using x-ray

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309578A (en) * 1988-06-08 1989-12-13 Shimadzu Corp Radiation image receiving device
JP2007256096A (en) * 2006-03-23 2007-10-04 Hamamatsu Photonics Kk Radiation detector and radiation detection method
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
WO2015111728A1 (en) * 2014-01-23 2015-07-30 株式会社ジョブ X-ray inspection apparatus and x-ray inspection method
JP2017181306A (en) * 2016-03-30 2017-10-05 アンリツインフィビス株式会社 Foreign matter detection device and foreign matter detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309578A (en) * 1988-06-08 1989-12-13 Shimadzu Corp Radiation image receiving device
JP2007256096A (en) * 2006-03-23 2007-10-04 Hamamatsu Photonics Kk Radiation detector and radiation detection method
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
WO2015111728A1 (en) * 2014-01-23 2015-07-30 株式会社ジョブ X-ray inspection apparatus and x-ray inspection method
JP2017181306A (en) * 2016-03-30 2017-10-05 アンリツインフィビス株式会社 Foreign matter detection device and foreign matter detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281716A (en) * 2021-03-16 2021-08-20 中国人民解放军战略支援部队信息工程大学 Photon counting laser radar data denoising method
CN113281716B (en) * 2021-03-16 2023-08-08 中国人民解放军战略支援部队信息工程大学 Photon counting laser radar data denoising method
KR20230023120A (en) * 2021-08-09 2023-02-17 주식회사 나노엑스코리아 System and method for determining the material of an object using x-ray
KR102539659B1 (en) 2021-08-09 2023-06-08 주식회사 나노엑스코리아 System and method for determining the material of an object using x-ray

Also Published As

Publication number Publication date
JP7001327B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6717784B2 (en) Article inspection apparatus and calibration method thereof
US7580505B2 (en) Method for inspecting object using multi-energy radiations and apparatus thereof
JP5206297B2 (en) Optical distance measuring apparatus and method
CN101996344B (en) System and method counting photons
JP6663374B2 (en) X-ray inspection equipment
JP6625470B2 (en) Foreign object detection device and foreign object detection method
US8989344B2 (en) System and method for measuring ash content and calorified value of coal
EP3614174A1 (en) Distance measuring device and distance measuring method
CN109804239B (en) X-ray inspection apparatus
JP7001327B2 (en) Foreign matter detection device and foreign matter detection method
US20220244391A1 (en) Time-of-flight depth sensing with improved linearity
US4704522A (en) Two dimensional weak emitted light measuring device
US10775320B2 (en) Afterglow detection device and afterglow detection method
JP7060446B2 (en) X-ray line sensor and X-ray foreign matter detection device using it
JP6797539B2 (en) Foreign matter detection device and foreign matter detection method
US11079344B2 (en) Radiation detection device, radiation image acquisition device, and radiation image acquisition method
JP6491125B2 (en) Foreign object detection device and foreign object detection method
JP5356184B2 (en) Inspection equipment
KR102542126B1 (en) Lider sensor and method for removing noise of the same
JP6606454B2 (en) Foreign object detection device and foreign object detection method
JP6964877B2 (en) Positron annihilation life measuring device, adjustment method of radiation measuring instrument, radiation measuring instrument
JP6587645B2 (en) Article inspection apparatus and inspection condition switching method thereof
WO2024180606A1 (en) X-ray inspection device and program
JP6655570B2 (en) Article inspection apparatus and method of switching inspection target varieties
RU2788304C1 (en) Inspection installation and method for recognizing the material composition of the inspected object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7001327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150