JP2020037887A - Hermetic electric compressor - Google Patents

Hermetic electric compressor Download PDF

Info

Publication number
JP2020037887A
JP2020037887A JP2018164751A JP2018164751A JP2020037887A JP 2020037887 A JP2020037887 A JP 2020037887A JP 2018164751 A JP2018164751 A JP 2018164751A JP 2018164751 A JP2018164751 A JP 2018164751A JP 2020037887 A JP2020037887 A JP 2020037887A
Authority
JP
Japan
Prior art keywords
bearing
crankshaft
electric compressor
sub
hermetic electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018164751A
Other languages
Japanese (ja)
Inventor
敬悟 渡邉
Keigo Watanabe
敬悟 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2018164751A priority Critical patent/JP2020037887A/en
Publication of JP2020037887A publication Critical patent/JP2020037887A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a hermetic electric compressor which is improved in oil supply performance, and high in the reliability of wear resistance.SOLUTION: This hermetic electric compressor C comprises an electric motor D, a crankshaft 5, a compression mechanism part K having a main bearing 6 and a sub-bearing 10, and lubricated with a lubricant on a slide face, and an accommodation part 1 for accommodating the electric motor D and the compression mechanism part K. The main bearing 6 and the sub-bearing 10 have substantially-spiral grooves 6r, 10r for transporting the lubricant to a direction of the main bearing 6 from the sub-bearing 10 by the rotation of the crankshaft 5 at the crankshaft 5 sides or bearing sides of the main bearing 6 and the sub-bearing 10. When setting cross sections of the substantially-spiral grooves 6r, 10r as A, A, setting shaft diameters as D, D, and setting angles of the substantially-spiral grooves 6r, 10r with respect to horizontality in a rotation direction of the crankshaft 5 as θ, θ, a relationship of A×D×cosθ≤A×D×cosθis established.SELECTED DRAWING: Figure 1

Description

本発明は、密閉型電動圧縮機に関する。   The present invention relates to a hermetic electric compressor.

従来、密閉型電動圧縮機におけるポンプへの給油方式として、シャフト外周または軸受内周に給油溝を設けた粘性ポンプを用いたものがある。粘性ポンプでは、シャフトが回転することにより、密閉容器底部に貯まった油をその粘性によって副軸部、クランク軸偏心部及び主軸部を流通させる。これにより、各軸受部に給油を行い、耐摩耗の信頼性を向上させている。   2. Description of the Related Art Conventionally, as a method of lubricating a pump in a hermetic electric compressor, there is a method using a viscous pump provided with a lubrication groove on a shaft outer circumference or a bearing inner circumference. In the viscous pump, the oil stored in the bottom of the closed vessel is caused to flow through the sub-shaft portion, the crankshaft eccentric portion, and the main shaft portion by virtue of its viscosity as the shaft rotates. As a result, each bearing portion is lubricated, and the reliability of wear resistance is improved.

特許文献1に記載の密閉型電動圧縮機は、シャフトの外周面に、一端が油貯まりに連通し、他端は密閉容器内空間に開口した給油溝を設けている。給油溝は主軸受部、副軸受部、クランク軸偏心部の少なくともひとつの部分でシャフトが回転する際、油を密閉容器内空間に搬送する方向に略らせん形状をなす。また、給油の上流側の副軸受部の給油溝の断面積に対し、給油の下流側の主軸受部の給油溝の断面積を小さくしたことを特徴としている。   The hermetic electric compressor described in Patent Literature 1 has an oil supply groove on the outer peripheral surface of the shaft, one end of which communicates with the oil reservoir, and the other end of which opens to the space inside the closed container. The oil supply groove has a substantially helical shape in a direction in which oil is conveyed to the space inside the closed container when the shaft rotates in at least one of the main bearing portion, the sub bearing portion, and the eccentric portion of the crankshaft. Further, the sectional area of the oil supply groove of the main bearing portion on the downstream side of the oil supply is smaller than the sectional area of the oil supply groove of the auxiliary bearing portion on the upstream side of the oil supply.

特許文献1に記載された密閉型電動圧縮機は、給油溝の断面積を下流側の主軸受部に対して上流側の副軸受部が大きくなるように設定している。そのため、上流側の給油溝の油の流路を大きくできて、副軸受部の給油溝を通過した油の一部がローラ上下面から圧力差により圧縮室内に給油された後でも、下流側の主軸受部の給油溝を油で密封しやすくできる。   In the hermetic electric compressor described in Patent Document 1, the sectional area of the oil supply groove is set so that the upstream sub-bearing portion is larger than the downstream main bearing portion. Therefore, the flow path of the oil in the oil supply groove on the upstream side can be enlarged, and even after a part of the oil passing through the oil supply groove in the sub-bearing portion is supplied into the compression chamber by the pressure difference from the upper and lower surfaces of the rollers, the oil on the downstream side can be obtained. The oil groove in the main bearing can be easily sealed with oil.

特開2000-291578号公報JP 2000-291578 A

ところで、特許文献1の構成は、主軸受部に対して副軸受部の給油溝の断面積が大きいことから、副軸受部の給油を多くし易くすることが可能である
しかしながら、主軸受、副軸受の軸径、及び、給油溝の略らせん形状のピッチが異なる多種多様な密閉型電動圧縮機において、主軸受部に対して副軸受部の給油溝は大きくできるが、下流側の主軸受部における給油量は多くならない懸念があった。
By the way, in the configuration of Patent Literature 1, since the cross-sectional area of the oil supply groove of the sub-bearing portion is larger than that of the main bearing portion, it is possible to easily supply more oil to the sub-bearing portion. In a variety of hermetic electric compressors with different bearing shaft diameters and substantially spiral pitches of the oil supply grooves, the oil supply grooves in the sub-bearing can be larger than the main bearing, but the main bearing in the downstream side There was a concern that the refueling volume would not increase.

また、特許文献1の図1に記載の構成は、主軸受部に対して副軸受部の給油量は増加できるが、クランク軸偏心部に対して副軸受部の給油量が小さい。そのため、副軸受部の給油溝内で減圧が生じることによって油内に溶け込んだ冷媒が発泡し、各軸受部が油で密封できなくなることによる各軸受部の信頼性の低下が懸念される。   Further, the configuration described in FIG. 1 of Patent Document 1 can increase the amount of lubrication of the sub-bearing portion relative to the main bearing portion, but is smaller than the eccentric portion of the crankshaft. For this reason, there is a concern that when the pressure is reduced in the oil supply groove of the sub-bearing portion, the refrigerant dissolved in the oil foams and the bearing portions cannot be sealed with the oil, thereby lowering the reliability of each bearing portion.

本発明は上記実状に鑑み創案されたものであり、副軸受部、クランク軸偏心部及び主軸受部の給油性を向上させ、耐摩耗の信頼性が高い密閉型電動圧縮機の提供を目的とする。   The present invention has been made in view of the above situation, and has an object to provide a hermetic electric compressor in which the auxiliary bearing portion, the crankshaft eccentric portion, and the main bearing portion have improved lubricating properties and have high wear resistance. I do.

前記課題を解決するため、第1の本発明の密閉型電動圧縮機は、電動機と、前記電動機で回転駆動されるクランク軸および前記クランク軸を支持する主軸受及び副軸受を有し、前記クランク軸と前記主軸受及び前記副軸受との摺動面が潤滑油で潤滑される圧縮機構部と、前記電動機および前記圧縮機構部を収容する収容部とを備え、前記主軸受及び前記副軸受は、前記クランク軸の回転により、前記副軸受から前記主軸受の方向に、前記潤滑油を搬送する略らせん形状の溝を、前記主軸受及び前記副軸受の前記クランク軸側または軸受側に有し、前記主軸受及び前記副軸受それぞれの前記略らせん形状の溝の断面積をA、A、軸径をD1、D、前記略らせん形状の溝の前記クランク軸の回転方向水平に対する角度をθ、θとした際の関係が、
×D×cosθ≦A×D×cosθ
ここで、前記主軸受及び前記副軸受に設けた前記溝は、回転方向水平を0°とした場合、0°<θ、θ<90°であり、前記クランク軸に設けた前記溝は、回転方向水平を0°とした場合、−90°<θ、θ<0°となるように形成されている。
In order to solve the above problems, a hermetic electric compressor according to a first aspect of the present invention includes an electric motor, a crankshaft that is driven to rotate by the electric motor, and a main bearing and an auxiliary bearing that support the crankshaft. A compression mechanism portion in which a shaft and a sliding surface of the main bearing and the sub-bearing are lubricated with lubricating oil, and a housing portion that houses the electric motor and the compression mechanism portion, wherein the main bearing and the sub-bearing are A rotation of the crankshaft, in the direction from the sub-bearing to the main bearing, a substantially helical groove for conveying the lubricating oil on the crankshaft side or the bearing side of the main bearing and the sub-bearing. , The cross-sectional areas of the substantially helical grooves of the main bearing and the sub-bearing are A 1 and A 2 , the shaft diameters are D 1 and D 2 , and the substantially helical grooves are horizontal to the rotation direction of the crankshaft. Let the angles be θ 1 and θ 2 Relationship when
A 1 × D 1 × cos θ 1 ≦ A 2 × D 2 × cos θ 2
Here, the grooves provided in the main bearing and the sub-bearing satisfy 0 ° <θ 1 , θ 2 <90 ° when the horizontal in the rotation direction is 0 °, and the grooves provided in the crankshaft are When the horizontal in the rotation direction is set to 0 °, they are formed so as to satisfy −90 ° <θ 1 and θ 2 <0 °.

本発明によれば、副軸受部、クランク軸偏心部及び主軸受部の給油性を向上させ、耐摩耗の信頼性が高い密閉型電動圧縮機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lubrication property of a sub-bearing part, a crankshaft eccentric part, and a main bearing part is improved, and the hermetic electric compressor with high reliability of abrasion resistance can be provided.

本発明に係る実施形態1の電動圧縮機の縦断面図。1 is a longitudinal sectional view of an electric compressor according to a first embodiment of the present invention. (a)は副軸受の縦断面図、(b)は副軸受の内周面の展開図、(c)は(a)のA−A断面図。(A) is a longitudinal sectional view of an auxiliary bearing, (b) is a developed view of an inner peripheral surface of the auxiliary bearing, and (c) is an AA sectional view of (a). (a)は主軸受の縦断面図、(b)は主軸受の内周面の展開図、(c)は(a)のB−B断面図。(A) is a longitudinal sectional view of a main bearing, (b) is a developed view of an inner peripheral surface of the main bearing, and (c) is a BB sectional view of (a). クランク軸の外観図。The external view of a crankshaft. 実施形態2の電動圧縮機の縦断面図。FIG. 6 is a vertical sectional view of the electric compressor according to the second embodiment. 実施形態3に係る密閉型電動圧縮機の縦断面図。FIG. 7 is a vertical sectional view of a hermetic electric compressor according to a third embodiment. (a)は実施形態3の変形例に係る密閉型電動圧縮機のクランク軸の中心側から見たらせん溝を示す、(b)は(a)のらせん溝の拡大図、(c)は実施形態3の圧縮機の副軸受の中心側から見たらせん溝を示す断面図、(d)は(c)のらせん溝の拡大図。(A) shows a spiral groove viewed from the center side of a crankshaft of a hermetic electric compressor according to a modification of the third embodiment, (b) is an enlarged view of the spiral groove of (a), and (c) is an embodiment. Sectional drawing which shows the spiral groove seen from the center side of the auxiliary bearing of the compressor of form 3, (d) is an enlarged view of the spiral groove of (c). 実施形態4に係る密閉型電動圧縮機の縦断面図。FIG. 10 is a longitudinal sectional view of a hermetic electric compressor according to a fourth embodiment. (a)、(b)、(c)はそれぞれ実施形態4の主軸受の断面図、副軸受の断面図、クランク軸の外観図。(A), (b), (c) is a sectional view of a main bearing, a sectional view of a sub-bearing, and an external view of a crankshaft of a fourth embodiment, respectively. 実施形態5、変形例に係る密閉型電動圧縮機の縦断面図。FIG. 5 is a longitudinal sectional view of a hermetic electric compressor according to a fifth embodiment and a modification. (a)は主軸受の縦断面図、(b)は副軸受の縦断面図。(A) is a longitudinal sectional view of a main bearing, (b) is a longitudinal sectional view of an auxiliary bearing. (a)は実施形態5の変形例の密閉型電動圧縮機のクランク軸の外観図、(b)は(a)のC−C断面図、(c)は偏心部の展開図。(A) is an external view of the crankshaft of the hermetic electric compressor of the modification of Embodiment 5, (b) is a CC sectional view of (a), and (c) is a developed view of an eccentric portion.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

<<実施形態1>>
図1に、本発明に係る実施形態1の電動圧縮機Cの縦断面図を示す。
実施形態1の密閉型の電動圧縮機Cは、電動要素Dと圧縮機構部Kとが密閉容器1に内包されている。
<< First Embodiment >>
FIG. 1 shows a longitudinal sectional view of an electric compressor C of Embodiment 1 according to the present invention.
In the hermetic electric compressor C according to the first embodiment, an electric element D and a compression mechanism K are contained in a hermetic container 1.

圧縮機構部Kは、クランク軸5により電動要素Dに連結されている。圧縮機構部Kは、内容積を小さくすることで、ガス冷媒を圧縮する圧縮室が形成される。   The compression mechanism K is connected to the electric element D by the crankshaft 5. In the compression mechanism K, a compression chamber for compressing the gas refrigerant is formed by reducing the internal volume.

密閉容器1は、筒体1A、蓋体1B、および、底体1Cにより構成されている。密閉容器1の内部は密閉空間が形成される。
筒体1Aは、鋼板で上下が開口した円筒形状に形成されている。蓋体1Bは天板を形成する。底体1Cは底板を形成する。
筒体1Aに蓋体1Bと底体1Cとが嵌合、溶接され内部が密閉されている。
The closed container 1 includes a cylinder 1A, a lid 1B, and a bottom 1C. A closed space is formed inside the closed container 1.
The cylindrical body 1A is formed of a steel plate into a cylindrical shape with upper and lower openings. The lid 1B forms a top plate. The bottom body 1C forms a bottom plate.
The lid 1B and the bottom 1C are fitted and welded to the cylindrical body 1A to seal the inside.

電動要素Dは圧縮機Cの駆動源を構成する。電動要素Dは、密閉容器1に焼嵌等で固定された固定子3と、クランク軸5が嵌着された回転子4とを有して構成されている。
圧縮機構部Kは、吸込まれた(図1の矢印α1)ガス冷媒を圧縮して目的圧の吐出圧まで高める。
The electric element D constitutes a drive source of the compressor C. The electric element D includes a stator 3 fixed to the closed casing 1 by shrink fitting or the like, and a rotor 4 to which a crankshaft 5 is fitted.
The compression mechanism K compresses the sucked gas refrigerant (arrow α1 in FIG. 1) to increase the pressure to the target pressure.

圧縮機構部Kは、主軸受6、クランク軸5、副軸受10、シリンダ7、ローラ11、ベーン13を主要要素として構成される。
クランク軸5は、一方に主軸受6に嵌入される主軸受嵌入部20を有し、他方に副軸受10に嵌入される副軸受嵌入部21を有している。クランク軸5は、主軸受6と副軸受10とで密閉容器1に回転自在に支持される。
The compression mechanism portion K is configured with the main bearing 6, the crankshaft 5, the auxiliary bearing 10, the cylinder 7, the roller 11, and the vane 13 as main elements.
The crankshaft 5 has a main bearing insertion portion 20 that is inserted into the main bearing 6 on one side, and an auxiliary bearing insertion portion 21 that is inserted into the auxiliary bearing 10 on the other side. The crankshaft 5 is rotatably supported on the closed casing 1 by a main bearing 6 and a sub-bearing 10.

クランク軸5は、主軸受嵌入部20と副軸受嵌入部21との間に、回転中心Oと異なる位置に重心が偏心した偏心部5hが一体で形成されている。偏心部5hには、ローラ11が回転自在に嵌入される。ローラ11は、偏心部5hの偏心回転により公転運動する。   The crankshaft 5 is formed integrally with an eccentric portion 5h whose center of gravity is eccentric at a position different from the rotation center O between the main bearing insertion portion 20 and the sub bearing insertion portion 21. The roller 11 is rotatably fitted into the eccentric portion 5h. The roller 11 revolves by the eccentric rotation of the eccentric portion 5h.

シリンダ7は、ローラ11の外周面11gとの間にガス冷媒の吸込み室と圧縮室とが形成される筒状の部材である。
シリンダ7の内部に配置されるローラ11の外周面11gに当接するように、ベーン13がシリンダ7に嵌合されている。ベーン13は、ばね13aによってローラ11の外周面11gに押圧されている。ローラ11の外周面11gとベーン13との間は、油膜によりシールされる。偏心部5hの回転運動により、ガス冷媒を吸込む吸込み室と吸込んだガス冷媒を吐出圧まで高める圧縮室とが、シリンダ7内のローラ11の外周面11gとベーン13とシリンダ7とで囲われた空間に形成される。
The cylinder 7 is a cylindrical member in which a gas refrigerant suction chamber and a compression chamber are formed between the cylinder 7 and the outer peripheral surface 11 g of the roller 11.
The vane 13 is fitted to the cylinder 7 so as to contact the outer peripheral surface 11g of the roller 11 disposed inside the cylinder 7. The vane 13 is pressed against the outer peripheral surface 11g of the roller 11 by a spring 13a. The gap between the outer peripheral surface 11g of the roller 11 and the vane 13 is sealed by an oil film. Due to the rotational movement of the eccentric portion 5h, the suction chamber for sucking the gas refrigerant and the compression chamber for increasing the sucked gas refrigerant to the discharge pressure are surrounded by the outer peripheral surface 11g of the roller 11 in the cylinder 7, the vane 13, and the cylinder 7. Formed in space.

圧縮機構部Kの軸方向上下に、クランク軸5の一部である主軸受嵌入部20および副軸受嵌入部21が配置される。主軸受嵌入部20および副軸受嵌入部21をそれぞれ主軸受6および副軸受10に嵌入することにより、クランク軸5が密閉容器1内に回転自在に支持される。シリンダ7の一方の端面(図1のシリンダ7の上方の端面)には主軸受6が固定され、シリンダ7の他方の端面(図1のシリンダ7の下方の端面)には副軸受10が固定されている。   Above and below the compression mechanism K in the axial direction, a main bearing fitting portion 20 and a sub bearing fitting portion 21 which are parts of the crankshaft 5 are arranged. The crankshaft 5 is rotatably supported in the closed casing 1 by fitting the main bearing fitting portion 20 and the sub bearing fitting portion 21 into the main bearing 6 and the sub bearing 10 respectively. A main bearing 6 is fixed to one end face of the cylinder 7 (an upper end face of the cylinder 7 in FIG. 1), and a sub-bearing 10 is fixed to the other end face of the cylinder 7 (a lower end face of the cylinder 7 in FIG. 1). Have been.

密閉容器1の底体1Cの内部には、必要量の冷凍機油(図示せず)が封入されている。冷凍機油は、密閉容器1内の機構要素を円滑に動作させるとともに、シールが必要な箇所で油膜を作りシールする。   A required amount of refrigerating machine oil (not shown) is sealed inside the bottom 1C of the closed container 1. The refrigerating machine oil operates the mechanical elements in the closed container 1 smoothly and forms an oil film at a place where a seal is required to seal.

<電動圧縮機Cの動作>
アキュムレータ2は、冷媒を気液に分離する。
電動圧縮機C(以下、圧縮機Cと称す)の運転時には、気体冷媒がアキュムレータ2を通り、圧縮機構部Kに流入する(図1の矢印α1)。流入したガス冷媒は、圧縮機構部Kで圧縮された後、密閉容器1の内部に吐出される。こうして、密閉容器1内は、圧縮機構部Kから吐出されたガス冷媒の吐出圧力で満たされている。その後、圧縮されたガス冷媒は、吐出パイプ17を通って密閉容器1の外部へ吐出される(図1の矢印α2)。
<Operation of the electric compressor C>
The accumulator 2 separates the refrigerant into gas and liquid.
During operation of the electric compressor C (hereinafter, referred to as the compressor C), the gas refrigerant flows into the compression mechanism K through the accumulator 2 (arrow α1 in FIG. 1). The inflowing gas refrigerant is discharged into the closed container 1 after being compressed by the compression mechanism K. Thus, the inside of the closed container 1 is filled with the discharge pressure of the gas refrigerant discharged from the compression mechanism K. Thereafter, the compressed gas refrigerant is discharged to the outside of the sealed container 1 through the discharge pipe 17 (arrow α2 in FIG. 1).

また、密閉容器1の底体1C内の冷凍機油はクランク軸5の給油路5Bを通り給油される。   Further, the refrigerating machine oil in the bottom body 1 </ b> C of the closed container 1 is supplied through the oil supply passage 5 </ b> B of the crankshaft 5.

<圧縮機構部Kの潤滑>
図2(a)は、副軸受10の縦断面図であり、図2(b)は、副軸受10の内周面10nの展開図であり、図2(c)は、図2(a)のA−A断面図である。
<Lubrication of compression mechanism K>
2A is a longitudinal sectional view of the auxiliary bearing 10, FIG. 2B is a developed view of the inner peripheral surface 10n of the auxiliary bearing 10, and FIG. 2C is FIG. It is AA sectional drawing of.

図3(a)は、主軸受6の縦断面図であり、図3(b)は、主軸受6の内周面6nの展開図であり、図3(c)は、図3(a)のB−B断面図である。
なお、図2(a)〜(c)および図3(a)〜(c)は、上面視で、クランク軸5が反時計周りに回転する場合を示す。そのため、クランク軸5が時計周りに回転する場合には、らせん溝10r、6rの傾きが図2(a)〜(c)および図3(a)〜(c)とは逆向きとなる。
3A is a longitudinal sectional view of the main bearing 6, FIG. 3B is a developed view of the inner peripheral surface 6n of the main bearing 6, and FIG. 3C is FIG. FIG.
2 (a) to 2 (c) and 3 (a) to 3 (c) show a case where the crankshaft 5 rotates counterclockwise when viewed from above. Therefore, when the crankshaft 5 rotates clockwise, the inclinations of the spiral grooves 10r and 6r are opposite to those in FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c).

図4は、クランク軸5の外観図である。
圧縮機Cは、図2(a)、図3(a)に示すように(図1も参照)、副軸受10から主軸受6にかけて、油を搬送する方向の略らせん形状のらせん溝10r、6rがそれぞれ設けられる。つまり、電動圧縮機Cは、図2(a)に示すように、副軸受10の内周面10nに油を搬送する略らせん形状のらせん溝10rが設けられている。また、図3(a)に示すように、主軸受6の内周面6nに油を搬送する略らせん形状のらせん溝6rが設けられている。
FIG. 4 is an external view of the crankshaft 5.
As shown in FIGS. 2 (a) and 3 (a) (see also FIG. 1), the compressor C has a spiral groove 10r having a substantially spiral shape in a direction of conveying oil from the auxiliary bearing 10 to the main bearing 6. 6r are provided. That is, in the electric compressor C, as shown in FIG. 2A, a spiral groove 10r having a substantially spiral shape for conveying oil is provided on the inner peripheral surface 10n of the auxiliary bearing 10. As shown in FIG. 3A, a spiral groove 6r having a substantially spiral shape for conveying oil is provided on the inner peripheral surface 6n of the main bearing 6.

副軸受10のらせん溝10rから主軸受6のらせん溝6rを用いた給油方式である粘性ポンプについて説明する。
らせん溝10r、6rを用いた粘性ポンプによる単位時間(min)当たりの給油量Q[mm/min]は、クランク軸径D[mm]、クランク軸回転速度N[min−1]、らせん溝の断面積A[mm]、らせん溝の回転方向水平(回転軸に垂直な面)に対する角度θ[度](0<θ<90度 )を用いると、以下の式(1)で表すことができる。
A description will be given of a viscous pump that is an oiling system using the spiral groove 6r of the main bearing 6 from the spiral groove 10r of the auxiliary bearing 10.
The lubrication amount Q [mm 3 / min] per unit time (min) by the viscous pump using the spiral grooves 10r and 6r is the crankshaft diameter D [mm], the crankshaft rotation speed N [min −1 ], the spiral groove Using the cross-sectional area A [mm 2 ] and the angle θ [degrees] (0 <θ <90 degrees) with respect to the horizontal direction (the plane perpendicular to the rotation axis) of the spiral groove, the following expression (1) can be obtained. Can be.

Q=A×π×(D/2)×N×cosθ・・・(1)
圧縮機Cのらせん溝10r、6rによる圧縮機室及び軸受(10、6)への給油は、以下のように行われる。
Q = A × π × (D / 2) × N × cos θ (1)
The oil supply to the compressor chamber and the bearings (10, 6) by the spiral grooves 10r, 6r of the compressor C is performed as follows.

主に圧縮荷重に対する反負荷面に設けられた副軸受10のらせん溝10rによって密閉容器1の底部の底体1Cに貯まった油を副軸受10の上部、つまり、クランク軸5の下部に流通する。そして、油により、クランク軸5の潤滑及びローラ11の上下の差圧によって圧縮室内の部材間の潤滑及びシールが行われる。   Oil accumulated in the bottom body 1C at the bottom of the closed casing 1 is circulated to the upper part of the sub-bearing 10, ie, the lower part of the crankshaft 5, mainly by the spiral groove 10r of the sub-bearing 10 provided on the anti-load surface against the compressive load. . Then, the lubrication of the crankshaft 5 and the lubrication and sealing between the members in the compression chamber are performed by the differential pressure between the upper and lower portions of the roller 11 with the oil.

クランク軸5の中央部に供給された残りの油は、主に圧縮荷重に対する反負荷面に設けられた主軸受6のらせん溝6rによってクランク軸5の上部に流通する。そして、残りの油は、主軸受6近傍の潤滑を行い、主軸受6のらせん溝6rを流通する。そして、主軸受6の上部から密閉容器1内中央部へ排出された油は、再度密閉容器1内底部の底体1Cに戻る。このような油の潤滑によって、圧縮機Cの耐摩耗性の信頼性を向上させている。   The remaining oil supplied to the central part of the crankshaft 5 flows to the upper part of the crankshaft 5 mainly by the spiral groove 6r of the main bearing 6 provided on the counter load surface against the compressive load. Then, the remaining oil lubricates the vicinity of the main bearing 6 and flows through the spiral groove 6r of the main bearing 6. Then, the oil discharged from the upper portion of the main bearing 6 to the central portion in the closed container 1 returns to the bottom body 1C at the bottom portion in the closed container 1 again. The reliability of the wear resistance of the compressor C is improved by such lubrication of the oil.

<油への冷媒溶け込み対策>
しかしながら、クランク軸5部の潤滑を行う油には、圧縮対象の冷媒が溶け込んでおり、冷媒を含んだ油が減圧されることで冷媒の発泡現象が生じることが懸念される。冷媒の発泡現象が生じると、油中に冷媒ガスの気泡が生じ、クランク軸5部の潤滑を阻害する。そのため、摩耗に対する信頼性の低下が懸念される。
<Measures for refrigerant dissolution into oil>
However, refrigerant to be compressed is dissolved in the oil that lubricates the crankshaft 5, and there is a concern that the refrigerant containing the refrigerant may be decompressed to cause a foaming phenomenon of the refrigerant. When the refrigerant foaming phenomenon occurs, bubbles of the refrigerant gas are generated in the oil, and hinder lubrication of the crankshaft 5 part. For this reason, there is a concern that the reliability with respect to wear may be reduced.

そこで、圧縮機Cのらせん溝10r、6rによる給油において、密閉容器1の底部から主軸受6の上部への油の流通の過程で油が減圧されない構成が望ましい。つまり、主軸受6に対して副軸受10の給油量を多くし、副軸受10の側から主軸受6の側に向かい、油が押し出される構成とすることが望ましい。   Therefore, it is desirable that the oil is not depressurized in the course of oil flow from the bottom of the closed casing 1 to the upper part of the main bearing 6 in the oil supply by the spiral grooves 10r and 6r of the compressor C. That is, it is desirable that the amount of oil supplied to the sub-bearing 10 be larger than that of the main bearing 6 so that oil is pushed out from the sub-bearing 10 toward the main bearing 6.

式(1)に記載の通り、主軸受6及び副軸受10それぞれの給油量をQ、Q、クランク軸径をD1、D、クランク軸回転速度をN、N、らせん溝6r、10rの断面積をA、A、らせん溝6r、10rのクランク軸5の回転方向水平(回転軸に垂直な面)に対する角度(以降、らせん溝角度と呼ぶ)をθ、 θとした際に、理想的な給油量の関係は、副軸受10は主軸受6より上流側にあり、給油量が多く必要なので、
(主軸受6の給油量)≦Q(副軸受10の給油量)
とする。よって、
×π×(D/2)×N×cosθ1≦A×π×(D/2)×N×cosθ・・・(2)
ここで、θ1、θは、回転軸に垂直な面を0°とした場合のらせん溝6r、10rの角度であり、0<θ1<90°、 0<θ<90° である。
As described in the equation (1), the lubrication amounts of the main bearing 6 and the sub-bearing 10 are Q 1 and Q 2 , the crankshaft diameters are D 1 and D 2 , the crankshaft rotation speeds are N 1 and N 2 , and the spiral groove is The cross-sectional areas of 6r and 10r are A 1 and A 2 , and the angles of the spiral grooves 6r and 10r with respect to the horizontal direction of rotation of the crankshaft 5 (the plane perpendicular to the rotation axis) (hereinafter referred to as spiral groove angles) are θ 1 and θ. In the case of 2 , the ideal lubrication amount relationship is that the auxiliary bearing 10 is located upstream of the main bearing 6 and requires a large lubrication amount.
Q 1 (lubricating amount of main bearing 6) ≦ Q 2 (lubricating amount of auxiliary bearing 10)
And Therefore,
A 1 × π × (D 1 /2) × N 1 × cosθ1 ≦ A 2 × π × (D 2/2) × N 2 × cosθ 2 ··· (2)
Here, .theta.1, theta 2 is helical grooves 6r when the plane perpendicular to the rotation axis and the 0 °, the angle of 10r, 0 <θ1 <90 ° , is 0 <θ 2 <90 °.

式(2)を変形して、
×D×N×cosθ≦A×D×N×cosθ
ここで、クランク軸5の回転速度は主軸受6と副軸受10とで同一であることからN=N。よって、
×D×cosθ≦A×D×cosθ・・・(3)
となる。
By transforming equation (2),
A 1 × D 1 × N 1 × cos θ 1 ≦ A 2 × D 2 × N 2 × cos θ 2
Here, since the rotation speed of the crankshaft 5 is the same for the main bearing 6 and the sub-bearing 10, N 1 = N 2 . Therefore,
A 1 × D 1 × cos θ 1 ≦ A 2 × D 2 × cos θ 2 (3)
Becomes

以上より、上流の副軸受10から下流の主軸受6に給油を円滑に行え、圧縮機Cにおける耐摩耗の信頼性を向上できる。   As described above, lubrication can be smoothly performed from the upstream sub-bearing 10 to the downstream main bearing 6, and the reliability of wear resistance of the compressor C can be improved.

<<実施形態2>>
図5に、実施形態2の電動圧縮機C1の縦断面図を示す。
実施形態2に係る圧縮機C1は、圧縮機C1の中で、圧縮荷重を受ける主軸受6a及び副軸受10aのうち、圧縮荷重の小さい副軸受10aの軸径を圧縮荷重の大きい主軸受6aに対して小さくする。これにより、圧縮荷重に対する軸受(6a、10a)の信頼性を確保した上で、軸受6a、10aで発生する摺動損失を小さくしている。
<< Embodiment 2 >>
FIG. 5 shows a vertical sectional view of the electric compressor C1 of the second embodiment.
In the compressor C1 according to the second embodiment, among the main bearing 6a and the sub-bearing 10a that receive a compressive load in the compressor C1, the shaft diameter of the sub-bearing 10a with a small compressive load is changed to the main bearing 6a with a large compressive load. Make it smaller. Thereby, the sliding loss generated in the bearings 6a and 10a is reduced while ensuring the reliability of the bearings (6a and 10a) against the compressive load.

圧縮機C1の副軸受10aは、その軸径Dが主軸受6aの軸径Dより小さいことから、主軸受6aに対して、式(1)の給油量Q=A×π×(D/2)×N×cosθのD(径)(=D)が小さくなる。
このため、副軸受10aのらせん溝10arの断面積A、らせん溝角度θが主軸受6aのらせん溝6arと同一の場合、Q>Qとなり副軸受10aの給油量Qが小さくなる。らせん溝10ar、6arは、それぞれ略らせん形状を有している。
Auxiliary bearing 10a of the compressor C1, since the shaft diameter D 2 is smaller than the shaft diameter D 1 of the main bearing 6a, the main bearing 6a, the oil supply amount Q = A × π × of formula (1) (D / 2) × N × cos θ D (diameter) (= D 1 ) becomes smaller.
Therefore, the cross-sectional area A of the helical groove 10ar sub bearing 10a, if the spiral groove angle θ is equal to the spiral groove 6ar main bearing 6a, the oil supply amount Q 2 of Q 1> Q 2 next sub-bearing 10a is reduced. The spiral grooves 10ar and 6ar each have a substantially spiral shape.

よって、冷媒の発泡現象による圧縮機C1の耐摩耗の信頼性の低下が懸念される。
そこで、D>Dにおいても、
×D×cosθ≦A×D×cosθ・・・(4)
の関係を保つ。ここで、θ1、θは、それぞれ回転軸に垂直な面を0°とした場合のらせん溝6ar、10arの角度であり、0<θ1<90°、0<θ<90°
これにより、圧縮機C1の耐摩耗の信頼性が向上する。
Therefore, there is a concern that the reliability of the wear resistance of the compressor C1 may be reduced due to the foaming phenomenon of the refrigerant.
Therefore, even when D 1 > D 2 ,
A 1 × D 1 × cos θ 1 ≦ A 2 × D 2 × cos θ 2 (4)
Keep the relationship. Here, .theta.1, theta 2 is helical grooves 6ar in the case of a plane perpendicular to 0 ° to each rotary shaft, the angle of 10ar, 0 <θ1 <90 ° , 0 <θ 2 <90 °
Thereby, the reliability of the wear resistance of the compressor C1 is improved.

<<実施形態3>>
図6に実施形態3に係る密閉型電動圧縮機C2の縦断面図を示す。
実施形態3に係る密閉型電動圧縮機C2と、実施形態2に係る圧縮機C1との違いは、圧縮機C2は、少なくとも副軸受10bのらせん溝10brを軸受側に設けた構成を有する点である。
<< Embodiment 3 >>
FIG. 6 shows a longitudinal sectional view of a hermetic electric compressor C2 according to the third embodiment.
The difference between the hermetic electric compressor C2 according to the third embodiment and the compressor C1 according to the second embodiment is that the compressor C2 has a configuration in which at least the spiral groove 10br of the auxiliary bearing 10b is provided on the bearing side. is there.

実施形態2に係る圧縮機C1は、副軸受10aの軸径Dが主軸受6aの軸径Dに対して小さいため、A×D×cosθ≦A×D×cosθの関係を保つためには、副軸受10aのらせん溝10arの断面積Aを大きく、または、主軸受6aのらせん溝6arの角度θを小さくする必要がある。しかし、副軸受10aのクランク軸5の側にらせん溝を設け、且つ、らせん溝断面積Aを大きく、または、主軸受6aのらせん溝角度θを小さくすることは、副軸受の軸剛性の低下を招く。実施形態3の符号6brは、主軸受6bのらせん溝を示す。 Compressor C1 according to the second embodiment, since the shaft diameter D 2 of the sub-bearing 10a is smaller than the shaft diameter D 1 of the main bearing 6a, A 1 × D 1 × cosθ 1 ≦ A 2 × D 2 × cosθ 2 in order to maintain the relationship, increasing the cross-sectional area a 2 of the spiral grooves 10ar sub bearing 10a, or, it is necessary to reduce the angle theta 1 of the spiral groove 6ar main bearing 6a. However, a helical groove provided on the side of the crankshaft 5 of the auxiliary bearing 10a, and, increasing the spiral groove cross-sectional area A 2, or reducing the spiral groove angle theta 1 of the main bearing 6a, the axis stiffness of the auxiliary bearing Causes a decrease in Reference numeral 6br in the third embodiment indicates a spiral groove of the main bearing 6b.

このため、実施形態3では、クランク5の副軸受10bの軸受側に、略らせん形状のらせん溝10brを設け、副軸受10b部のらせん溝設置によるクランク軸5の軸剛性低下を抑止している。これにより、圧縮荷重に対するクランク軸5の変形を抑制できる。そのため、圧縮機C2の耐摩耗性の信頼性が向上する。   For this reason, in the third embodiment, a substantially helical spiral groove 10br is provided on the bearing side of the auxiliary bearing 10b of the crank 5, and a decrease in the shaft rigidity of the crankshaft 5 due to the installation of the spiral groove in the auxiliary bearing 10b is suppressed. . Thereby, the deformation of the crankshaft 5 due to the compression load can be suppressed. Therefore, the reliability of the wear resistance of the compressor C2 is improved.

<実施形態3の変形例>
図7(a)に実施形態3の変形例に係る密閉型電動圧縮機C3のクランク軸5cの中心側から見たらせん溝5crを示し、図7(b)にその拡大図を示す。図7(c)に実施形態3の圧縮機C2の副軸受10bの中心側から見たらせん溝10brを示し、図7(d)にその拡大図を示す。
<Modification of Third Embodiment>
FIG. 7A shows a spiral groove 5cr viewed from the center side of a crankshaft 5c of a hermetic electric compressor C3 according to a modification of the third embodiment, and FIG. 7B shows an enlarged view thereof. FIG. 7C shows a spiral groove 10br viewed from the center side of the auxiliary bearing 10b of the compressor C2 according to the third embodiment, and FIG. 7D shows an enlarged view thereof.

実施形態3の変形例に係る密閉型電動圧縮機C3と、実施形態2に係る圧縮機C1との違いは、圧縮機C3は、少なくとも副軸受10aのらせん溝10arに代えて、図7(a)に示すように、クランク軸5c側に略らせん形状のらせん溝5crを設け、クランク軸5cを中実とした構成を有する点である。   The difference between the hermetic electric compressor C3 according to the modification of the third embodiment and the compressor C1 according to the second embodiment is that the compressor C3 has at least the spiral groove 10ar of the sub-bearing 10a instead of the spiral groove 10ar of FIG. ), A substantially spiral spiral groove 5cr is provided on the crankshaft 5c side so that the crankshaft 5c is solid.

副軸受10bのクランク軸5cは中実とすることで強度を向上できる。また、クランク軸5cは中実とすることで、らせん溝断面積Aを大きく、または、らせん溝角度θを小さくすることによる副軸受10bに対向するクランク軸5cの剛性の低下を緩和する。 By making the crankshaft 5c of the auxiliary bearing 10b solid, the strength can be improved. Further, the crank shaft 5c than be solid, increasing the spiral groove cross-sectional area A 2, or to mitigate the decrease in the rigidity of the crank shaft 5c which faces the auxiliary bearing 10b by reducing the spiral groove angle theta 2 .

これにより、圧縮荷重に対するクランク軸5cの変形を抑制でき、機械的信頼性が向上する。
以下、クランク軸側のらせん溝と軸受側のらせん溝との傾斜角度θの違いについて説明する。
Thereby, the deformation of the crankshaft 5c due to the compressive load can be suppressed, and the mechanical reliability is improved.
Hereinafter, the difference in the inclination angle θ between the spiral groove on the crankshaft side and the spiral groove on the bearing side will be described.

図7(a)に示すように、変形例の圧縮機C3でクランク軸5c側にらせん溝5crを設けた場合、図7(c)に示す実施形態3の副軸受10bの軸受側にらせん溝10brを設けた場合とでは、傾斜角度θが逆(符号が逆+−)となる。なお、−90°<−θ<0 である。
これは、上面視でクランク軸5c(5b)が反時計周りに回転した場合(図7(a)、(b)の矢印α1)、らせん溝5cr内の油Oは、相対速度v1をもつ。
相対速度v1はらせん溝5crに沿った速度成分v1aを有するので、らせん溝5cr内の油Oは、上方向にらせん溝5crに沿って主軸受6方向に流れる。
As shown in FIG. 7A, when the spiral groove 5cr is provided on the crankshaft 5c side in the compressor C3 of the modified example, the spiral groove is formed on the bearing side of the auxiliary bearing 10b of the third embodiment shown in FIG. 7C. in the case of providing the 10bR, tilt angle theta 2 is reversed (opposite sign + -) becomes. Note that -90 ° <-θ 2 <0.
This is because when the crankshaft 5c (5b) rotates counterclockwise in a top view (arrows α1 in FIGS. 7A and 7B), the oil O in the spiral groove 5cr has a relative speed v1.
Since the relative speed v1 has a speed component v1a along the spiral groove 5cr, the oil O in the spiral groove 5cr flows upward toward the main bearing 6 along the spiral groove 5cr.

一方、図7(c)に示すように、実施形態3のクランク5の副軸受10bにらせん溝10brを設けた場合には、らせん溝10br内の油Oは、相対速度v2をもつ。
相対速度v2はらせん溝10brに沿った速度成分v2aをもつので、らせん溝10br内の油Oは、上方向にらせん溝10brに沿って主軸受6方向に流れる。
On the other hand, as shown in FIG. 7C, when the spiral groove 10br is provided in the auxiliary bearing 10b of the crank 5 of the third embodiment, the oil O in the spiral groove 10br has a relative speed v2.
Since the relative speed v2 has a speed component v2a along the spiral groove 10br, the oil O in the spiral groove 10br flows upward toward the main bearing 6 along the spiral groove 10br.

ここで、クランク軸5c(図7(a))側にらせん溝を設ける場合には、式(1)〜式(4)のθは、−θとなり、副軸受10にらせん溝を設けた場合のらせん溝角度θと符号が+−逆になる。なお、−90°<−θ<0 である。 Here, when a spiral groove is provided on the side of the crankshaft 5c (FIG. 7 (a)), θ 2 in Expressions (1) to (4) becomes −θ 2 and a spiral groove is provided in the sub bearing 10. spiral groove angle theta 2 and sign + in the case were - reversed. Note that -90 ° <-θ 2 <0.

<<実施形態4>>
図8に実施形態4に係る密閉型電動圧縮機C4の縦断面図を示す。図9(a)、(b)、(c)はそれぞれ実施形態4の主軸受6dの断面図、副軸受10dの断面図、クランク軸5dの外観図である。
実施形態4に係る密閉型電動圧縮機C4と、実施形態1,2に係る圧縮機C1,2との違いは、圧縮機C4は、副軸受10dの略らせん形状のらせん溝10drを2つ以上有する点である。
<< Embodiment 4 >>
FIG. 8 shows a longitudinal sectional view of a hermetic electric compressor C4 according to the fourth embodiment. FIGS. 9A, 9B, and 9C are a cross-sectional view of a main bearing 6d, a cross-sectional view of a sub-bearing 10d, and an external view of a crankshaft 5d of the fourth embodiment, respectively.
The difference between the hermetic electric compressor C4 according to the fourth embodiment and the compressors C1 and C2 according to the first and second embodiments is that the compressor C4 includes two or more spiral grooves 10dr having a substantially spiral shape in the sub-bearing 10d. It has a point.

圧縮機C4の主軸受6d及び副軸受10dの軸径D、Dは、圧縮荷重に対する軸剛性及び軸受部で発生する摺動損失の影響を大きく受ける。そのため、式(3)のA×D×cosθ≦A×D×cosθの関係を保つための各パラメータの調整は、摺動損失に係る軸径D、D以外のらせん溝断面積A、A、または、らせん溝角度θ、θで行うことが望ましい。 The shaft diameters D 1 and D 2 of the main bearing 6d and the sub-bearing 10d of the compressor C4 are greatly affected by the shaft rigidity and the sliding loss generated in the bearing portion with respect to the compression load. Therefore, the adjustment of each parameter to maintain the relationship of A 1 × D 1 × cos θ 1 ≦ A 2 × D 2 × cos θ 2 in the equation (3) is performed by adjusting the parameters other than the shaft diameters D 1 and D 2 related to the sliding loss. It is desirable to perform the process with the spiral groove cross-sectional areas A 1 and A 2 or the spiral groove angles θ 1 and θ 2 .

しかしながら、単一のらせん溝による断面積A、Aの不一致は、らせん溝加工時の刃具仕様の増加となることが多い。また、らせん溝角度θ、θは主軸受6d及び副軸受10dの軸受面のらせん溝設置幅角度に影響するため、副軸受10dのらせん溝10drは圧縮荷重を受けるクランク軸5dの軸受面に接触しない。そこで、副軸受10dの給油量増加を狙って、らせん溝角度θを小さくする場合、らせん溝角度θに下限が存在する。 However, inconsistency of the cross-sectional areas A 1 and A 2 due to a single spiral groove often causes an increase in the specifications of the cutting tool at the time of spiral groove processing. Further, since the spiral groove angles θ 1 and θ 2 affect the spiral groove installation width angles of the bearing surfaces of the main bearing 6d and the sub bearing 10d, the spiral groove 10dr of the sub bearing 10d has a bearing surface of the crankshaft 5d which receives a compressive load. Do not touch Therefore, aiming to oil amount increases in the sub-bearing 10d, the case of reducing the spiral groove angle theta 2, the lower limit is present in the spiral groove angle theta 2.

このため、副軸受10dに略同一形状、かつ、略平行のらせん溝10drを2つ以上設ける。これにより、らせん溝加工時の刃具仕様の増加と、副軸受10dのらせん溝10drが圧縮荷重を受けるクランク軸5dの軸受面に接触することを抑制できる。なお、らせん溝10drは略らせん形状を有している。   Therefore, two or more spiral grooves 10dr of substantially the same shape and substantially parallel are provided in the sub bearing 10d. Thereby, it is possible to suppress an increase in the specifications of the cutting tool at the time of the spiral groove processing and to prevent the spiral groove 10dr of the auxiliary bearing 10d from contacting the bearing surface of the crankshaft 5d which receives a compressive load. The spiral groove 10dr has a substantially spiral shape.

ただし、副軸受10dに略同一形状、且つ、略平行のらせん溝10drを2つ以上設ける際に、複数のらせん溝10drが互いに重なり合う位置関係であっても同一の効果が得られる。
なお、主軸受6dに略同一形状、且つ、略平行のらせん溝6dr(図9(a)の二点鎖線)を2つ以上設けてもよい。
However, when two or more spiral grooves 10dr of substantially the same shape and substantially parallel are provided in the auxiliary bearing 10d, the same effect can be obtained even if the plurality of spiral grooves 10dr overlap each other.
The main bearing 6d may be provided with two or more spiral grooves 6dr (two-dot chain line in FIG. 9A) having substantially the same shape and being substantially parallel.

<<実施形態5>>
図10に実施形態5、変形例に係る密閉型電動圧縮機C5の縦断面図を示す。図11(a)に実施形態5の主軸受6eの縦断面図を示し、図11(b)に実施形態5の副軸受10eの縦断面図を示す。
実施形態5に係る密閉型電動圧縮機C5と、実施形態1,2に係る圧縮機C1,2との違いは、圧縮機C5は、クランク軸5eの偏心部5e1にらせん溝5erを有する構成を有する点である。実施形態5の符号6erは主軸受6eのらせん溝を示す。
<< Embodiment 5 >>
FIG. 10 is a longitudinal sectional view of a hermetic electric compressor C5 according to the fifth embodiment and a modification. FIG. 11A shows a longitudinal sectional view of the main bearing 6e of the fifth embodiment, and FIG. 11B shows a longitudinal sectional view of the auxiliary bearing 10e of the fifth embodiment.
The difference between the hermetic electric compressor C5 according to the fifth embodiment and the compressors C1 and C2 according to the first and second embodiments is that the compressor C5 has a configuration in which the eccentric portion 5e1 of the crankshaft 5e has a spiral groove 5er. It has a point. Reference numeral 6er in the fifth embodiment indicates a spiral groove of the main bearing 6e.

実施形態1,2に係る圧縮機C1(C2)は、副軸受10(10a)のらせん溝10r(10ar)によりクランク軸5の偏心部5h下部に供給された油は、クランク軸5の偏心部5hで貯油される。そして、副軸受6(6a)のらせん溝6r(6ar)からの更なる給油により油面が押し上げられる。そして、主軸受6(6a)下部に到達し、主軸受6(6a)のらせん溝6r(6ar)により上部へ流通される。このため、クランク軸5の偏心部5hでの油の流通は、副軸受6(6a)のらせん溝6r(6ar)からの給油力による押し上げによる受動的な効果のみで行われる。   In the compressor C1 (C2) according to the first and second embodiments, the oil supplied to the lower portion of the eccentric portion 5h of the crankshaft 5 by the spiral groove 10r (10ar) of the auxiliary bearing 10 (10a) The oil is stored in 5 hours. Then, the oil level is pushed up by further oil supply from the spiral groove 6r (6ar) of the sub bearing 6 (6a). Then, it reaches the lower part of the main bearing 6 (6a), and is circulated to the upper part by the spiral groove 6r (6ar) of the main bearing 6 (6a). For this reason, the circulation of the oil in the eccentric part 5h of the crankshaft 5 is performed only by the passive effect of pushing up by the oil supply force from the spiral groove 6r (6ar) of the auxiliary bearing 6 (6a).

しかしながら、実施形態5に係る密閉型電動圧縮機C5は、クランク軸5eの偏心部5e1の主に圧縮荷重に対する反負荷面に、クランク軸5eの回転により、副軸受10eから主軸受6eの方向に、油を搬送する略らせん形状のらせん溝5erを設けている。これにより、クランク軸5eの偏心部5e1の下部に到達した油を、クランク軸5eの偏心部5e1の回転とらせん溝5erからなる粘性ポンプによって、クランク軸5eの偏心部5e1上部へ流通させることができる。   However, the hermetic electric compressor C5 according to the fifth embodiment is configured such that the eccentric portion 5e1 of the crankshaft 5e mainly faces the counter load surface against the compressive load, and the rotation of the crankshaft 5e moves from the auxiliary bearing 10e to the main bearing 6e. And a spiral groove 5er having a substantially spiral shape for conveying oil. Thus, the oil that has reached the lower part of the eccentric part 5e1 of the crankshaft 5e can be circulated to the upper part of the eccentric part 5e1 of the crankshaft 5e by the viscous pump including the rotation of the eccentric part 5e1 of the crankshaft 5e and the spiral groove 5er. it can.

これにより、特にクランク軸5eの回転速度が小さい、つまり、副軸受10eに設けた略らせん形状のらせん溝10erの給油力による押し上げ力が小さい場合においても、クランク軸5eの偏心部5e1のらせん溝5erによって、クランク軸5eの偏心部5e1の下部から上部へ油を流通させることが可能となる。そのため、クランク軸5eの偏心部5e1等の耐摩耗性の信頼性が向上する。   Accordingly, even when the rotational speed of the crankshaft 5e is low, that is, when the pushing force due to the lubricating force of the substantially spiral spiral groove 10er provided in the sub-bearing 10e is small, the spiral groove of the eccentric portion 5e1 of the crankshaft 5e. 5er allows the oil to flow from the lower part to the upper part of the eccentric part 5e1 of the crankshaft 5e. Therefore, the reliability of wear resistance of the eccentric portion 5e1 and the like of the crankshaft 5e is improved.

<変形例>
図12(a)に実施形態5の変形例の密閉型電動圧縮機C6のクランク軸5eの外観図を示し、図12(b)に図12(a)のC−C断面を示し、図12(c)に偏心部5e1の展開図を示す。
実施形態5の変形例に係る圧縮機C6と、実施形態5に係る圧縮機C5との違いは、圧縮機C6は、クランク軸5eの偏心部5e1のらせん溝5erの断面積をA、軸径をD、らせん溝5erのクランク軸5eの回転方向水平(回転軸に垂直な面)に対する角度をθとした際の関係が、
×D×cosθ≦A×D×cosθ≦A×D×cosθ・・・ 式(5)
となるように形成した点である。 ここで、−90°<θ<0
なお、らせん溝5erを複数にしてもよい。
<Modification>
FIG. 12A is an external view of a crankshaft 5e of a hermetic electric compressor C6 according to a modification of the fifth embodiment, and FIG. 12B is a cross-sectional view taken along the line CC of FIG. (c) shows a development view of the eccentric portion 5e1.
The difference between the compressor C6 according to the modification of the fifth embodiment and the compressor C5 according to the fifth embodiment is that the compressor C6 has a cross section of the helical groove 5er of the eccentric part 5e1 of the crankshaft 5e as A 3 , The relationship when the diameter is D 3 and the angle of the spiral groove 5er with respect to the rotation direction horizontal (the plane perpendicular to the rotation axis) of the crankshaft 5e is θ 3 is as follows:
A 1 × D 1 × cos θ 1 ≦ A 3 × D 3 × cos θ 3 ≦ A 2 × D 2 × cos θ 2 ... Equation (5)
This is the point formed. Here, −90 ° <θ 3 <0
The spiral groove 5er may be plural.

変形例によれば、クランク軸5eの偏心部5e1においても冷媒の発泡現象を抑制し、摩耗に対する信頼性を向上できる。   According to the modified example, even in the eccentric portion 5e1 of the crankshaft 5e, the foaming phenomenon of the refrigerant can be suppressed, and the reliability against wear can be improved.

以上の構成によれば、主軸受6と副軸受部10の軸径D1、、給油溝断面積A、A及び給油溝角度θ、θがそれぞれ異なる場合においても、給油量を主軸受6部≦副軸受10部とできる。そのため、クランク軸5の偏心部5hへの油の流通及びローラ11上下面からの差圧による圧縮室内への給油が行われる。また、給油溝(6r、10r)内で給油量の差による減圧を抑止できる。よって、油内に溶け込んだ冷媒の発泡を抑制し、給油溝(6r、10r)内を油で充填できることにより、摩耗に対する信頼性を向上できる。 According to the above configuration, even when the shaft diameters D 1 and D 2 , the cross-sectional areas A 1 and A 2 of the oil supply grooves and the angles θ 1 and θ 2 of the oil supply grooves of the main bearing 6 and the sub-bearing portion 10 are different from each other, lubrication is performed. The amount can be 6 parts of main bearings ≦ 10 parts of auxiliary bearings. Therefore, oil is supplied to the compression chamber by the flow of oil to the eccentric portion 5h of the crankshaft 5 and the differential pressure from the upper and lower surfaces of the roller 11. Further, pressure reduction due to a difference in the amount of refueling in the refueling grooves (6r, 10r) can be suppressed. Therefore, foaming of the refrigerant dissolved in the oil is suppressed, and the oil supply grooves (6r, 10r) can be filled with the oil, so that the reliability against wear can be improved.

従って、多種多様な密閉型電動圧縮機において、副軸受部10、クランク軸5の偏心部5h及び主軸受6部の給油性を向上させ、摩耗に対する信頼性が高い密閉型電動圧縮機Cを提供できる。   Accordingly, in various types of hermetic electric compressors, the lubricating properties of the auxiliary bearing portion 10, the eccentric portion 5h of the crankshaft 5, and the main bearing 6 are improved, and the hermetic electric compressor C having high reliability with respect to wear is provided. it can.

<<その他の実施形態>>
1.前記実施形態、変形例では、電動圧縮機の副軸受部、クランク軸偏心部及び主軸受部にらせん溝を設ける場合を説明したが、副軸受部、クランク軸偏心部及び主軸受部のうちの少なくとも何れかにらせん溝を設ける構成としてもよい。この場合、軸受側またはクランク軸側にらせん溝を設けてもよい。クランク軸側にらせん溝を設けた場合には、実施形態3の変形例で説明したように、軸受側に設けたらせん溝の傾斜と逆向きの傾斜となる。
<< Other embodiments >>
1. In the embodiment and the modified examples, the case where the auxiliary bearing portion, the crankshaft eccentric portion, and the main bearing portion of the electric compressor are provided with the helical groove has been described, but among the auxiliary bearing portion, the crankshaft eccentric portion, and the main bearing portion, At least one of the spiral grooves may be provided. In this case, a spiral groove may be provided on the bearing side or the crankshaft side. When the spiral groove is provided on the crankshaft side, as described in the modified example of the third embodiment, the spiral groove provided on the bearing side has an inclination opposite to that of the spiral groove.

2.前記実施形態、変形例では、クランク軸が上面視で反時計周りに回転する場合を説明したが、クランク軸が上面視で時計周りに回転する場合も、本発明を適用可能である。クランク軸が上面視で時計周りに回転する場合には、らせん溝の傾斜角度は、前記実施形態、変形例で説明した傾斜と+−逆向きの傾斜となる。 2. In the above embodiments and modifications, the case where the crankshaft rotates counterclockwise as viewed from above is described. However, the present invention is also applicable to the case where the crankshaft rotates clockwise as viewed from above. When the crankshaft rotates clockwise in a top view, the inclination angle of the helical groove is the inclination in the direction opposite to the inclination described in the embodiment and the modification.

3.なお、電動圧縮機の副軸受部、クランク軸偏心部及び主軸受部に設けるらせん溝はそれぞれ単数でもよいし、複数でもよい。 3. The spiral groove provided in the sub-bearing portion, the crankshaft eccentric portion and the main bearing portion of the electric compressor may be singular or plural.

4.なお、本発明は上述した実施形態、変形例に限定されず、本発明の趣旨を逸脱しない範囲で種々変更可能である。 4. Note that the present invention is not limited to the above-described embodiments and modified examples, and can be variously modified without departing from the gist of the present invention.

1 密閉容器(収容部)
5、5b、5d、5e クランク軸
5c クランク軸(中実のクランク軸)
5er らせん溝(略らせん形状の溝)
5h クランク軸の偏心部
6、6a、6b、6c、6d 主軸受
10、10a、10b、10c、10d 副軸受
6r、6ar、6dr らせん形状の溝(略らせん形状の溝)
10r、10ar、10br、10cr らせん形状の溝(略らせん形状の溝)
10dr らせん形状の溝(副軸受の略らせん形状の溝、略同一断面形状、かつ、略平行の略らせん形状の溝)
主軸受のらせん溝の断面積(主軸受の略らせん形状の溝の断面積)
副軸受のらせん溝の断面積(副軸受の略らせん形状の溝の断面積)
らせん溝の断面積(クランク軸の偏心部の略らせん形状の溝の断面積)
C、C1、C2、C3、C4 電動圧縮機(密閉型電動圧縮機)
D 電動要素(電動機)
主軸受の軸径
副軸受けの軸径
クランク軸の偏心部の軸径
K 圧縮機構部
θ主軸受のらせん溝のクランク軸の回転方向水平に対する角度(主軸受の略らせん形状の溝のクランク軸の回転方向水平に対する角度)
θ副軸受の略らせん形状の溝のクランク軸の回転方向水平に対する角度
θ クランク軸の偏心部の溝のクランク軸の回転方向水平に対する角度
1 closed container (accommodation part)
5, 5b, 5d, 5e Crankshaft 5c Crankshaft (Solid crankshaft)
5er spiral groove (substantially spiral groove)
5h Eccentric part of crankshaft 6, 6a, 6b, 6c, 6d Main bearing 10, 10a, 10b, 10c, 10d Secondary bearing 6r, 6ar, 6dr Spiral groove (substantially spiral groove)
10r, 10ar, 10br, 10cr Spiral groove (substantially spiral groove)
10dr helical groove (substantially helical groove of the bearing, approximately the same cross-sectional shape, and approximately parallel helical groove)
Sectional area of the spiral groove of A 1 main bearing (cross-sectional area of the groove of substantially spiral shape of the main bearing)
Sectional area of the spiral groove of the A 2 sub bearing (cross-sectional area of the groove of substantially spiral shape sub bearing)
Sectional area of A 3 helical groove (cross-sectional area of the groove of substantially spiral shape of the eccentric portion of the crank shaft)
C, C1, C2, C3, C4 Electric compressor (closed electric compressor)
D Electric element (motor)
D 1 Shaft diameter of main bearing D 2 Shaft diameter of sub-bearing D 3 Shaft diameter of eccentric part of crankshaft K Compression mechanism θ 1 Angle of spiral groove of main bearing with respect to horizontal in the rotation direction of crankshaft (generally spiral of main bearing) Angle of the groove of the shape to the horizontal direction of rotation of the crankshaft)
angle with respect to theta 2 rotating direction horizontal crankshaft of the groove of the eccentric portion of the angle theta 3 crankshaft for rotation direction horizontal crankshaft groove substantially spiral shape sub bearing

Claims (10)

電動機と、
前記電動機で回転駆動されるクランク軸および前記クランク軸を支持する主軸受及び副軸受を有し、前記クランク軸と前記主軸受及び前記副軸受との摺動面が潤滑油で潤滑される圧縮機構部と、
前記電動機および前記圧縮機構部を収容する収容部とを備え、
前記主軸受及び前記副軸受は、
前記クランク軸の回転により、前記副軸受から前記主軸受の方向に、前記潤滑油を搬送する略らせん形状の溝を、前記主軸受及び前記副軸受の前記クランク軸側または軸受側に有し、前記主軸受及び前記副軸受それぞれの前記略らせん形状の溝の断面積をA、A、軸径をD1、D、前記略らせん形状の溝の前記クランク軸の回転方向水平に対する角度をθ、θとした際の関係が、
×D×cosθ≦A×D×cosθ
ここで、前記主軸受及び前記副軸受に設けた前記溝は、回転方向水平を0°とした場合、0°<θ、θ<90°であり、前記クランク軸に設けた前記溝は、回転方向水平を0°とした場合、−90°<θ、θ<0°
となるように形成されている
ことを特徴とする密閉型電動圧縮機。
Electric motor,
A compression mechanism that has a crankshaft that is rotationally driven by the electric motor, a main bearing and a sub-bearing that supports the crankshaft, and a sliding surface between the crankshaft and the main and sub-bearings is lubricated with lubricating oil Department and
A housing for housing the motor and the compression mechanism,
The main bearing and the auxiliary bearing,
Due to the rotation of the crankshaft, in the direction from the sub-bearing to the main bearing, a substantially helical groove for conveying the lubricating oil is provided on the crankshaft side or the bearing side of the main bearing and the sub-bearing, The cross-sectional areas of the substantially spiral grooves of the main bearing and the sub-bearing are A 1 and A 2 , the shaft diameters are D 1 and D 2 , and the angles of the substantially spiral grooves with respect to the rotation direction horizontal of the crankshaft. The relationship when θ 1 and θ 2 is
A 1 × D 1 × cos θ 1 ≦ A 2 × D 2 × cos θ 2
Here, the grooves provided in the main bearing and the sub-bearing satisfy 0 ° <θ 1 , θ 2 <90 ° when the horizontal in the rotation direction is 0 °, and the grooves provided in the crankshaft are , When the horizontal in the rotation direction is 0 °, −90 ° <θ 1 , θ 2 <0 °
A hermetic electric compressor characterized by being formed so that
請求項1に記載の密閉型電動圧縮機において、
前記主軸受の軸径Dと前記副軸受の軸径Dの関係が、
>D
となるように形成されている
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
Relationship shaft diameter D 2 of said auxiliary bearing and shaft diameter D 1 of the said main bearing,
D 1 > D 2
A hermetic electric compressor characterized by being formed so that
請求項1に記載の密閉型電動圧縮機において、
前記主軸受の軸径Dと前記副軸受の軸径Dの関係が、
>D
となるように形成され、
少なくとも前記副軸受の前記略らせん形状の前記溝は、前記副軸受の軸受側に設けられている
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
Relationship shaft diameter D 2 of said auxiliary bearing and shaft diameter D 1 of the said main bearing,
D 1 > D 2
It is formed so that
A hermetic electric compressor, characterized in that at least the substantially spiral groove of the sub bearing is provided on the bearing side of the sub bearing.
請求項1に記載の密閉型電動圧縮機において、
前記主軸受の軸径Dと前記副軸受の軸径Dの関係が、
>D
となるように形成され、
少なくとも前記副軸受に係る前記略らせん形状の溝は、前記副軸受の前記クランク軸側に設け、かつ、前記副軸受の前記クランク軸は中実である
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
Relationship shaft diameter D 2 of said auxiliary bearing and shaft diameter D 1 of the said main bearing,
D 1 > D 2
It is formed so that
A hermetic electric compressor, wherein at least the substantially spiral groove relating to the auxiliary bearing is provided on the crankshaft side of the auxiliary bearing, and the crankshaft of the auxiliary bearing is solid.
請求項1に記載の密閉型電動圧縮機において、
前記副軸受は、略同一断面形状、かつ、略平行の前記略らせん形状の前記溝を複数有している
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The hermetic electric compressor, wherein the auxiliary bearing has a plurality of the substantially spiral grooves having substantially the same cross-sectional shape and being substantially parallel to each other.
請求項1に記載の密閉型電動圧縮機において、
前記主軸受は、略同一断面形状、かつ、略平行の前記略らせん形状の前記溝を複数有している
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The hermetic electric compressor, wherein the main bearing has a plurality of the substantially helical grooves having substantially the same cross-sectional shape and being substantially parallel.
請求項1に記載の密閉型電動圧縮機において、
前記主軸受及び前記副軸受の前記クランク軸側または軸受側の前記溝は、それぞれ単数または複数である
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The hermetic electric compressor, wherein each of the grooves on the crankshaft side or the bearing side of the main bearing and the sub-bearing is singular or plural.
請求項1に記載の密閉型電動圧縮機において、
前記クランク軸の偏心部に、前記クランク軸の回転により、前記副軸受から前記主軸受の方向に、前記潤滑油を搬送するような略らせん形状の溝を有している
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The eccentric portion of the crankshaft has a substantially helical groove for conveying the lubricating oil in a direction from the sub bearing to the main bearing by rotation of the crankshaft. Type electric compressor.
請求項1に記載の密閉型電動圧縮機において、
前記クランク軸の偏心部に、前記クランク軸の回転により、前記副軸受から前記主軸受の方向に、前記潤滑油を搬送するような略らせん形状の溝を有し、
前記クランク軸の前記偏心部の前記略らせん形状の前記溝の断面積をA、軸径をD、前記溝の前記クランク軸の回転方向水平に対する角度をθとした際の関係が、
×D×cosθ≦A×D×cosθ≦A×D×cosθ
ただし、前記クランク軸の偏心部に設けた前記溝は、回転方向水平を0°とした場合、−90°<θ<0°
となるように形成されている
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The eccentric portion of the crankshaft has a substantially helical groove for conveying the lubricating oil in the direction from the auxiliary bearing to the main bearing by the rotation of the crankshaft,
The relationship when the cross-sectional area of the substantially spiral groove of the eccentric portion of the crankshaft is A 3 , the shaft diameter is D 3 , and the angle of the groove with respect to the rotation direction horizontal direction of the crankshaft is θ 3 ,
A 1 × D 1 × cos θ 1 ≦ A 3 × D 3 × cos θ 3 ≦ A 2 × D 2 × cos θ 2
However, the groove provided in the eccentric portion of the crankshaft is -90 ° <θ 3 <0 ° when the horizontal in the rotation direction is 0 °.
A hermetic electric compressor characterized by being formed so that
請求項1に記載の密閉型電動圧縮機において、
前記クランク軸の偏心部に、前記クランク軸の回転により、前記副軸受から前記主軸受の方向に、前記潤滑油を搬送するような略らせん形状の溝を有し、
前記クランク軸の前記偏心部の前記略らせん形状の前記溝の断面積をA、軸径をD、前記らせん溝の前記クランク軸の回転方向水平に対する角度をθとした際の関係が、
×D×cosθ≦A×D×cosθ≦A×D×cosθ
ただし、前記クランク軸の偏心部に設けた前記溝は、回転方向水平を0°とした場合、
−90°<θ<0°
となるように形成され、
前記クランク軸の前記偏心部の前記溝は単数または複数である
ことを特徴とする密閉型電動圧縮機。
The hermetic electric compressor according to claim 1,
The eccentric portion of the crankshaft has a substantially helical groove for conveying the lubricating oil in the direction from the auxiliary bearing to the main bearing by the rotation of the crankshaft,
The relationship when the cross-sectional area of the substantially helical groove of the eccentric portion of the crankshaft is A 3 , the shaft diameter is D 3 , and the angle of the helical groove with respect to the rotation direction horizontal of the crankshaft is θ 3 is as follows. ,
A 1 × D 1 × cos θ 1 ≦ A 3 × D 3 × cos θ 3 ≦ A 2 × D 2 × cos θ 2
However, when the groove provided in the eccentric portion of the crankshaft has a horizontal rotation direction of 0 °,
−90 ° <θ 3 <0 °
It is formed so that
The groove of the eccentric portion of the crankshaft is singular or plural. A hermetic electric compressor.
JP2018164751A 2018-09-03 2018-09-03 Hermetic electric compressor Pending JP2020037887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164751A JP2020037887A (en) 2018-09-03 2018-09-03 Hermetic electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164751A JP2020037887A (en) 2018-09-03 2018-09-03 Hermetic electric compressor

Publications (1)

Publication Number Publication Date
JP2020037887A true JP2020037887A (en) 2020-03-12

Family

ID=69737651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164751A Pending JP2020037887A (en) 2018-09-03 2018-09-03 Hermetic electric compressor

Country Status (1)

Country Link
JP (1) JP2020037887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528287A (en) * 2019-06-28 2022-06-09 安徽美芝精密制造有限公司 Pump body assembly, compressor and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003684A (en) * 1957-05-29 1961-10-10 Gen Electric Refrigeration apparatus
JPH03134292A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Rotary compressor
EP0444221A1 (en) * 1990-02-26 1991-09-04 Matsushita Refrigeration Company Vertical rotary compressor
US5667372A (en) * 1994-06-02 1997-09-16 Lg Electronics Inc. Rolling piston rotary compressor formed with lubrication grooves
JP2016008558A (en) * 2014-06-25 2016-01-18 パナソニックIpマネジメント株式会社 Compressor
JP2017053221A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Electric compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003684A (en) * 1957-05-29 1961-10-10 Gen Electric Refrigeration apparatus
JPH03134292A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Rotary compressor
EP0444221A1 (en) * 1990-02-26 1991-09-04 Matsushita Refrigeration Company Vertical rotary compressor
US5667372A (en) * 1994-06-02 1997-09-16 Lg Electronics Inc. Rolling piston rotary compressor formed with lubrication grooves
JP2016008558A (en) * 2014-06-25 2016-01-18 パナソニックIpマネジメント株式会社 Compressor
JP2017053221A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Electric compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528287A (en) * 2019-06-28 2022-06-09 安徽美芝精密制造有限公司 Pump body assembly, compressor and air conditioner
JP7105387B2 (en) 2019-06-28 2022-07-22 安徽美芝精密制造有限公司 Pump body assembly, compressor and air conditioner
US11460028B2 (en) 2019-06-28 2022-10-04 Anhui Meizhi Precision Manufacturing Co., Ltd. Pump body assembly, compressor and air conditioner

Similar Documents

Publication Publication Date Title
KR101947305B1 (en) Scroll compressor
EP2700818B1 (en) Scroll compressor
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
CN108603500B (en) Scroll compressor having a plurality of scroll members
JP6862294B2 (en) Scroll compressor
JP4842110B2 (en) Scroll compressor
JP5370425B2 (en) Compressor
KR101606066B1 (en) Hermetic compressor
JP2020037887A (en) Hermetic electric compressor
EP2921706B1 (en) Scroll compressor
WO2019171427A1 (en) Compressor
JP6700691B2 (en) Electric compressor
JP6104396B2 (en) Scroll compressor
JP2012184694A (en) Oil-sealed rotary vacuum pump
JP5863436B2 (en) Fluid machinery
WO2020230232A1 (en) Compressor
JP4802855B2 (en) Scroll compressor
JP6611648B2 (en) Scroll compressor
KR101738460B1 (en) Hermetic compressor
US20200284257A1 (en) Scroll compressor
JPH10238482A (en) Scroll type compressor
WO2016151769A1 (en) Hermetic rotary compressor
JP6808089B2 (en) Compressor
JP2008309150A (en) Scroll compressor
WO2017145281A1 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220