JP2020037103A - Conjugate and separation membrane module having the same - Google Patents

Conjugate and separation membrane module having the same Download PDF

Info

Publication number
JP2020037103A
JP2020037103A JP2019154313A JP2019154313A JP2020037103A JP 2020037103 A JP2020037103 A JP 2020037103A JP 2019154313 A JP2019154313 A JP 2019154313A JP 2019154313 A JP2019154313 A JP 2019154313A JP 2020037103 A JP2020037103 A JP 2020037103A
Authority
JP
Japan
Prior art keywords
joined body
zeolite
less
inorganic glass
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154313A
Other languages
Japanese (ja)
Other versions
JP7403997B2 (en
Inventor
正道 大貫
Masamichi Onuki
正道 大貫
出 堤内
Izuru Tsutsumiuchi
出 堤内
尚之 坂本
Naoyuki Sakamoto
尚之 坂本
浩悦 遠藤
Hiroyoshi Endo
浩悦 遠藤
直子 藤田
Naoko Fujita
直子 藤田
美沙 原
Misa Hara
美沙 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Mitsubishi Chemical Corp
Publication of JP2020037103A publication Critical patent/JP2020037103A/en
Application granted granted Critical
Publication of JP7403997B2 publication Critical patent/JP7403997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a conjugate which has high airtightness and excellent durability under high temperature and high pressure conditions when manufacturing a conjugate comprising a complex of zeolite and inorganic porous support, which is a separation membrane, and a dense component.SOLUTION: When manufacturing a conjugate in which a complex of zeolite and inorganic porous support, and a dense component are conjugated with inorganic glass, a metallic component is used as the dense component, and a specific inorganic glass, of which a thermal expansion coefficient is 30×10/K or more and 90×10/K or less and a softening point is 550°C or less, is used, whereby damage received by zeolite when bonding is reduced, and a conjugate, which has high airtightness and sufficient durability under high temperature and high pressure conditions, can be provided.SELECTED DRAWING: None

Description

本発明は、接合体及びそれを有する分離膜モジュールに関する。   The present invention relates to a joined body and a separation membrane module having the same.

ガス分離能を有する膜は通常、無機多孔質支持体上に形成された上で、ガスの透過しない緻密部材と接合して使用する。その際に気密性が高い状態で接合することが必要である。特許文献1では金属製のガス分離膜と金属部材とが熱膨張係数50×10−7/K〜80×10−7/Kのガラスで接合された接合体が開示されている。また、特許文献2ではB及びPbOを所定量含有した特定のガラスとアルミナからなる分離膜シール用組成物を用いてゼオライト膜とアルミナのガス導管とを接合できることが開示されている。つまり、これまでは、熱膨張係数を考え、金属の分離膜の場合には金属部材、セラミックスの支持体を用いる場合にはセラミックスの緻密部材を用いることが一般的に行われていた。また、特許文献3ではセラミックス部材とFe−Ni−Co系合金部材とを熱膨張係数が55×10−7/K〜65×10−7/Kのガラスで封止した構造体が開示されている。 Usually, a membrane having gas separation ability is formed on an inorganic porous support and then used by being bonded to a dense member through which gas does not pass. At that time, it is necessary to join in a highly airtight state. Conjugate joined in Patent Document 1 and the metal of the gas separation membrane and the metal member is a glass thermal expansion coefficient of 50 × 10 -7 / K~80 × 10 -7 / K is disclosed. Further, Patent Document 2 discloses that a zeolite membrane and an alumina gas conduit can be joined by using a separation glass sealing composition comprising a specific glass containing predetermined amounts of B 2 O 3 and PbO and alumina. That is, conventionally, in consideration of the coefficient of thermal expansion, a metal member is generally used in the case of a metal separation membrane, and a dense ceramic member is used in the case of using a ceramic support. Further, Patent Document 3, the ceramic member and the Fe-Ni-Co alloy member and the thermal expansion coefficient of sealing glass of 55 × 10 -7 / K~65 × 10 -7 / K structure is disclosed I have.

ここで、ガス分離能を有する膜としてゼオライト膜を用いる場合、ゼオライト膜の耐熱性に懸念があるため高温での処理は好ましくない。特許文献1及び3には、900℃以上の高温により接合する処理はゼオライト膜に破損等の構造上の劣化をもたらし、分離性能の低下を招く虞がある。また高温での接合は加熱及び冷却に時間を要することとなるのみならず、温度変化により接合部自体にもダメージが入り、接合体としての分離の性能や寿命に影響を与え、さらには接合体を大量に生産する上で効率低下及びコストアップにつながる。   Here, when a zeolite membrane is used as the membrane having gas separation ability, treatment at a high temperature is not preferable because there is a concern about heat resistance of the zeolite membrane. According to Patent Literatures 1 and 3, the treatment of joining at a high temperature of 900 ° C. or more may cause structural deterioration such as breakage of the zeolite membrane, and may cause deterioration of separation performance. In addition, joining at a high temperature not only requires time for heating and cooling, but also damages the joint itself due to temperature changes, affecting the performance and life of separation as a joined body. Leads to a decrease in efficiency and an increase in cost in mass production of

一方、分離膜を接合した接合体は、十分な気密性を持つと同時に、使用温度、使用圧力に耐えて長時間使用できることが必要である。しかしながら、これらの点で従来の接合体は満足できるものではなかった。例えば、特許文献2に開示されているようなアルミナ等のセラミックスを分離膜と接合させた接合体は、強度や耐久性が十分でなかった。特に高温高圧下で長期間使用すると、流体との接触により生じる振動等の要因が重なってヒビ割れが生じ、さらには破損する場合すらあった。   On the other hand, it is necessary that the joined body obtained by joining the separation membranes has sufficient airtightness and can withstand a use temperature and a use pressure for a long time. However, conventional joints were not satisfactory in these respects. For example, a joined body in which ceramics such as alumina as disclosed in Patent Document 2 is joined to a separation membrane has insufficient strength and durability. In particular, when used under a high temperature and a high pressure for a long period of time, factors such as vibration caused by contact with a fluid are superimposed to cause cracks and even breakage.

特開平7−163827号広報Public information of JP-A-7-163827 特開平10−180060号広報JP 10-180060 PR 特開2013−203602号広報JP 2013-203602 PR

本発明は、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合した接合体を提供するにあたり、高い気密性を実現させること、接合時のゼオライトのダメージを実質的に解消させること、さらには特に高温高圧条件下での耐久性に優れたものとすることを目的としている。   The present invention provides a bonded body in which a composite of a zeolite and an inorganic porous support and a dense member are bonded, realizing high airtightness, and substantially eliminating the damage of the zeolite during bonding. It is another object of the present invention to further improve durability under high-temperature and high-pressure conditions.

本発明者らは、鋭意研究を進め、ゼオライトと無機多孔質支持体との複合体と、緻密部材とが、過不足なく接合するためには、緻密部材を金属部材とし、かつ、特定の熱膨張係
数及び軟化点を有するガラスにより接合されることにより、上記課題を解決できることを見出し、本発明に到達した。本発明は、以下のものを含む。
The present inventors have conducted intensive research, and in order to join the composite of zeolite and the inorganic porous support to the dense member without excess or shortage, the dense member is made of a metal member, and a specific heat is used. The inventors have found that the above-mentioned problems can be solved by joining with a glass having an expansion coefficient and a softening point, and have reached the present invention. The present invention includes the following.

<1>ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスを介して接合した接合体であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10−7/K以上90×10−7/K以下、かつ軟化点が550℃以下である、接合体。
<2>前記複合体と緻密部材との接合部分が、封孔被膜により覆われている、<1>に記載の接合体。
<3>前記封孔被膜が、シリカ被膜である、<2>に記載の接合体。
<4>前記無機ガラスがSnO及び/又はBを含有している、<1>〜<3>の何れかに記載の接合体。
<5>前記緻密部材の熱膨張係数が30×10−7/K以上200×10−7/K以下である、<1>〜<4>の何れかに記載の接合体。
<6>100℃〜500℃の高温条件下及び/又は0.5〜10MPaの高圧条件下で<1>〜<5>の何れかに記載の接合体を使用する、接合体の使用方法。
<7><1>〜<5>の何れかに記載の接合体を有する、分離膜モジュール。
<8><7>に記載の分離膜モジュールを有する、反応器。
<9>無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10−7/K以上90×10−7/K以下、かつ軟化点が550℃以下である、接合方法。
<1> A bonded body in which a composite of zeolite and an inorganic porous support is bonded to a dense member via an inorganic glass, wherein the dense member is a metal member, and the thermal expansion coefficient of the inorganic glass is A joined body having a hardness of 30 × 10 −7 / K or more and 90 × 10 −7 / K or less and a softening point of 550 ° C. or less.
<2> The joined body according to <1>, wherein a joint portion between the composite and the dense member is covered with a sealing film.
<3> The joined body according to <2>, wherein the sealing film is a silica film.
<4> The joined body according to any one of <1> to <3>, wherein the inorganic glass contains SnO and / or B 2 O 3 .
<5> The joined body according to any one of <1> to <4>, wherein the dense member has a coefficient of thermal expansion of 30 × 10 −7 / K or more and 200 × 10 −7 / K or less.
<6> A method of using the joined body, wherein the joined body according to any one of <1> to <5> is used under a high temperature condition of 100 ° C to 500 ° C and / or a high pressure condition of 0.5 to 10 MPa.
<7> A separation membrane module having the joined body according to any one of <1> to <5>.
<8> A reactor having the separation membrane module according to <7>.
<9> A joining method for joining a composite of zeolite and an inorganic porous support and a dense member using an inorganic glass, wherein the dense member is a metal member, and the thermal expansion coefficient of the inorganic glass is Is 30 × 10 −7 / K or more and 90 × 10 −7 / K or less, and the softening point is 550 ° C. or less.

本発明によれば、分離膜であるゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合体を製造するに際し、緻密部材を金属部材とし、ガラス系接着剤として特定の無機ガラスを使用することにより、接着時にゼオライトが受けるダメージを低減し、高い気密性及び高温高圧条件下での十分な耐久性有する接合体を提供することができる。   According to the present invention, a composite of zeolite and an inorganic porous support, which is a separation membrane, and a dense member are produced when a bonded body is produced.When the dense member is a metal member, a specific inorganic glass is used as a glass-based adhesive. By using, it is possible to reduce the damage to the zeolite at the time of bonding, and to provide a joined body having high airtightness and sufficient durability under high temperature and high pressure conditions.

ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスで接合した接合体の断面模式図である。FIG. 2 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with inorganic glass. ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスで接合した接合体の断面模式図である。FIG. 2 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with inorganic glass. ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスで接合した接合体の断面模式図である。FIG. 2 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with inorganic glass.

以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the present invention will be described in detail. However, the description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents. Various modifications can be made within the scope of the gist.

<ゼオライト>
ゼオライト膜を構成する主たるゼオライトは、酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトを含むものが好ましく、酸素10員環以下、6員環以上の細孔構造を有するゼオライトを含むものがより好ましい。
ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。
<Zeolite>
The main zeolite constituting the zeolite membrane preferably contains a zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings, and a zeolite having a pore structure of 10 or less oxygen rings and 6 or more oxygen rings. Are more preferable.
Here, the value of n of the zeolite having an oxygen n-membered ring is such that the number of oxygen is the largest among pores formed of oxygen forming the zeolite skeleton and T element (element other than oxygen forming the skeleton). Show things. For example, when pores having a 12-membered oxygen ring and an 8-membered ring exist as in a MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.

酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトとしては、International Zeolite Association (IZA)が定めるコードで、例えば、AEI、AEL、AFI、AFG、ANA、ATO、BEA、BRE、CAS、CDO、CHA、CON、DDR、DOH、EAB、EPI、ERI、ESV、EUO、FAR、FAU、FER、FRA、HEU、GIS、GIU、GME、GOO、ITE、KFI、LEV、LIO、LOS、LTA、LTL、LTN、MAR、MEP、MER、MEL、MFI、MON、MOR、MSO、MTF、MTN、MTW、MWW、NON、NES、OFF、PAU、PHI、RHO、RTE、RTH、RUT、SGT、SOD、STI、STT、TOL、TON、TSC、UFI、VNI、WEI、YUGなどがあげられる。これらの中から選ばれるいずれかであるのが好ましい。
また、本発明が特に好適に用いられるのは、ゼオライトが選択吸着することにより、単なる分子篩、つまり単に分子のサイズの差により、篩として分子を透過させるのではなく、選択吸着により、例えばサイズが大きい方の分子を透過させたり、あるいは同程度の大きさのものを分離したりする目的で使用できるものであることがより好ましい。つまりゼオライトの表面への選択吸着により、分離するものであることがより好ましい。このようなゼオライトは、温度が高くなるとその選択吸着能力が弱まってしまうため、本発明の効果がより顕著に発揮される。
The zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings is a code defined by International Zeolite Association (IZA), for example, AEI, AEL, AFI, AFG, ANA, ATO, BEA, BRE, CAS, CDO, CHA, CON, DDR, DOH, EAB, EPI, ERI, ESV, EUO, FAR, FAU, FER, FRA, HEU, GIS, GIU, GME, GOO, ITE, KFI, LEV, LIO, LOS, LTA, LTL, LTN, MAR, MEP, MER, MEL, MFI, MON, MOR, MSO, MTF, MTN, MTW, MWW, NON, NES, OFF, PAU, PHI, RHO, RTE, RTH, RUT, SGT, SOD, STI, STT, TOL, ON, TSC, UFI, VNI, WEI, such as YUG, and the like. It is preferably one selected from these.
In addition, the present invention is particularly preferably used because zeolite is selectively adsorbed, is not a simple molecular sieve, i.e., simply because of the difference in the size of the molecule, but not as a sieve, but is selectively adsorbed. More preferably, it can be used for the purpose of allowing the larger molecule to permeate or separating those having the same size. That is, it is more preferable that the zeolite be separated by selective adsorption on the surface of the zeolite. In such a zeolite, when the temperature is increased, its selective adsorption ability is weakened, so that the effect of the present invention is more remarkably exhibited.

<無機多孔質支持体>
ゼオライトは可塑性に乏しいため、膜化する場合は、何らかの基板上に支持される形で作製される。支持体は、ガス分子が侵入できる多孔性であり、例えば、3次元状に連続した多数の微細な小孔を有する。
<Inorganic porous support>
Since zeolite has poor plasticity, when it is formed into a film, it is produced while being supported on some substrate. The support is porous so that gas molecules can enter, and has, for example, a large number of fine pores continuous in a three-dimensional shape.

本実施形態において、支持体を構成する材質としては、処理対象のガスが反応しない化学的に安定で、かつ機械的強度に優れたものであることが好ましく、具体的には、各種アルミナ、シリカ、シリカ−アルミナ、ムライト、コージェライト、ジルコニアといった酸化物セラミックスのほか、シリコンカーバイド、カーボン、ガラスなどを用いることができる。
また、支持体の形状は、ゼオライト膜の用途により異なるが、特に円筒形の支持体上のゼオライト膜は、外側からの圧力に対する強度が強く、バッチプロセスや流通プロセス(リサイクルプロセスを含む)等で簡便に用いる上で好適である。
In the present embodiment, the material constituting the support is preferably chemically stable, in which the gas to be treated does not react, and excellent in mechanical strength, specifically, various types of alumina and silica. , Silica-alumina, mullite, cordierite, zirconia, and oxide ceramics, as well as silicon carbide, carbon, and glass.
The shape of the support varies depending on the use of the zeolite membrane. Particularly, the zeolite membrane on the cylindrical support has high strength against external pressure, and is used in a batch process, a distribution process (including a recycling process), and the like. It is suitable for simple use.

<ゼオライトと無機多孔質支持体との複合体>
本実施形態では、例えば、円筒形の支持体を準備し、まずゼオライトの微結晶を細孔内に担持する。担持する方法は、ディップ法、ラビング法、吸引法、含浸法等を用いることができる。該微結晶は、ゼオライト膜を構成する結晶を成長させるときの核の役割を果たし、種結晶ともいう。ゼオライトの成長工程には、ゼオライト合成時と同様、水熱合成を用いることができる。
ゼオライト膜複合体におけるゼオライト膜の膜厚は特段限定されないが、通常0.1μm以上、好ましくは0.5μm以上であり、また通常50μm以下、好ましくは20μm以下である。膜厚を適当な厚さにすることで、緻密性を保ち、膜の選択性を高く維持できる。また圧力を必要以上に上げることなく取り出したいガスを十分に透過させることができる。
また、基体が管形状を有するとき、ゼオライトが被覆する面は、管の外側でも、内側でも、この両者でもよい。
支持体へのゼオライト結晶成長までの工程では、支持体の両末端は開放したままバッチプロセスで行うことができる。
<Composite of zeolite and inorganic porous support>
In the present embodiment, for example, a cylindrical support is prepared, and first, microcrystals of zeolite are supported in pores. A dipping method, a rubbing method, a suction method, an impregnation method, or the like can be used as a method for carrying the particles. The microcrystal serves as a nucleus when growing a crystal constituting the zeolite membrane, and is also referred to as a seed crystal. In the zeolite growth step, hydrothermal synthesis can be used as in the case of zeolite synthesis.
The thickness of the zeolite membrane in the zeolite membrane composite is not particularly limited, but is usually 0.1 μm or more, preferably 0.5 μm or more, and is usually 50 μm or less, preferably 20 μm or less. By setting the film thickness to an appropriate thickness, denseness can be maintained and high film selectivity can be maintained. Further, the gas to be taken out can be sufficiently transmitted without increasing the pressure more than necessary.
When the substrate has a tubular shape, the surface coated with zeolite may be on the outside, inside or both of the tubes.
In the process up to the growth of zeolite crystals on the support, a batch process can be performed with both ends of the support open.

<緻密部材>
緻密部材は、分離されたガスを外部に取り出すために使用されるもの、例えば管であり、処理対象のガスが、部材から漏れることが無い程度の緻密性(機密性)を有しており、本発明では金属部材が用いられる。ここでいう金属の例としては、耐熱性と耐食性を併せ持つものが好ましく、ステンレス鋼からなるSUS材や、ニッケル−モリブデン−鉄合金(たとえばハステロイ(登録商標))、インコネル(ニッケル−クロム−鉄合金)、銅、銅合金(黄銅、丹銅、キュプロニッケル)、アルミニウム、アルミニウム合金、チタンなどであり、そして特に好ましくはコバール(鉄−コバルトーニッケル合金)である。
緻密部材の熱膨張係数は通常30×10−7/K以上、200×10−7/K以下であり、下限は35×10−7/K以上が好ましく、40×10−7/K以上がより好ましく、45×10−7/K以上が更に好ましい。上限は150×10−7/K以下が好ましく、120×10−7/K以下がより好ましく、85×10−7/K以下がさらに好ましい。緻密部材の熱膨張係数が上記範囲であることで、無機ガラスの熱膨張係数との差がより小さく、良好な気密性と耐久性を保つことができる。
なお、本発明において熱膨張係数とは線膨張係数のことであり、温度上昇に伴って生じる固体の長さ方向の変化割合を示したものである。JIS Z 2285(金属材料)、JIS R 1618(セラミックス)等に記載の方法に従って実施する。熱膨張係数は、通常、温度変化に対して長さの変化が比例する範囲で測定し、本明細書において、熱膨張係数は、通常30〜250℃で測定される値である。
<Dense components>
The dense member is used to take out the separated gas to the outside, for example, a tube, and has a degree of denseness (confidentiality) such that the gas to be treated does not leak from the member. In the present invention, a metal member is used. Examples of the metal mentioned here are preferably those having both heat resistance and corrosion resistance, such as a SUS material made of stainless steel, a nickel-molybdenum-iron alloy (for example, Hastelloy (registered trademark)), and inconel (a nickel-chromium-iron alloy). ), Copper, copper alloys (brass, copper, cupronickel), aluminum, aluminum alloys, titanium and the like, and particularly preferably Kovar (iron-cobalt-nickel alloy).
The thermal expansion coefficient of the dense member is usually 30 × 10 −7 / K or more and 200 × 10 −7 / K or less, and the lower limit is preferably 35 × 10 −7 / K or more, and more preferably 40 × 10 −7 / K or more. It is more preferably 45 × 10 −7 / K or more. The upper limit is preferably 150 × 10 −7 / K or less, more preferably 120 × 10 −7 / K or less, and even more preferably 85 × 10 −7 / K or less. When the coefficient of thermal expansion of the dense member is in the above range, the difference from the coefficient of thermal expansion of the inorganic glass is smaller, and good airtightness and durability can be maintained.
In the present invention, the coefficient of thermal expansion refers to a coefficient of linear expansion, and indicates a rate of change in the length direction of a solid caused by a rise in temperature. It is carried out according to the method described in JIS Z 2285 (metal material), JIS R 1618 (ceramics) and the like. The coefficient of thermal expansion is usually measured in a range where the change in length is proportional to a change in temperature. In this specification, the coefficient of thermal expansion is a value usually measured at 30 to 250 ° C.

<無機ガラス>
本実施形態に係る無機ガラスは、熱膨張係数が通常30×10−7/K以上、好ましくは40×10−7/K以上、より好ましくは45×10−7/K以上であり、また、通常90×10−7/K以下、好ましくは80×10−7/K以下、より好ましくは75×10−7/K以下である。
<Inorganic glass>
The inorganic glass according to the present embodiment has a thermal expansion coefficient of usually 30 × 10 −7 / K or more, preferably 40 × 10 −7 / K or more, more preferably 45 × 10 −7 / K or more. It is usually at most 90 × 10 −7 / K, preferably at most 80 × 10 −7 / K, more preferably at most 75 × 10 −7 / K.

本実施形態では、無機ガラスの熱膨張係数は、通常緻密部材の熱膨張係数の60%以上、好ましくは70%以上、より好ましくは80%以上であり、また、通常200%以下、好ましくは150%以下、より好ましくは120%以下である。無機ガラスの熱膨張係数が上記上限値以下であることにより、無機ガラスが溶融する温度で接合をしてから温度を降下するときに、接合部分周辺に内部応力が生じにくく、接合部分のクラックが抑制される。一方、ガラスの熱膨張係数が上記下限値以上であることにより、接合体の使用温度範囲で、複合体と緻密部材との間に隙間が生じにくく、分離対象ガスがその隙間から精製ガス側に漏洩することを抑制できる。
この様にして得られた接合体は、好ましくは接合後の空気透過量が、本明細書実施例の欄に記載された試験方法において、10sccm以下、より好ましくは8sccm以下であることが好ましく、最も好ましくは5sccm以下であることである。
また、接合後の接合体は、オートクレーブ中に内容積に対し、体積にして1/16のメタノールと、1/16の脱塩水を加え、1時間で280℃まで昇温し、この状態で48時間維持した後、自然冷却し、これを常圧で120℃4時間乾燥した後、再び空気透過量測定を行っても、空気透過量が10sccm以下、より好ましくは8sccm以下であることが好ましく、最も好ましくは5sccm以下であるものである。熱膨張率の条件に加え、このような条件を満たすことにより、より長時間にわたってメタノールの生産を行っても、接合部に問題を生じるようなことが無いため、より好ましい。
In the present embodiment, the thermal expansion coefficient of the inorganic glass is usually 60% or more, preferably 70% or more, more preferably 80% or more of the thermal expansion coefficient of the dense member, and is usually 200% or less, preferably 150% or more. %, More preferably 120% or less. When the thermal expansion coefficient of the inorganic glass is equal to or less than the above upper limit, when the temperature is lowered after joining at a temperature at which the inorganic glass melts, internal stress is less likely to occur around the joined portion, and cracks at the joined portion are reduced. Is suppressed. On the other hand, since the coefficient of thermal expansion of the glass is equal to or more than the lower limit, a gap is hardly generated between the composite and the dense member in the operating temperature range of the joined body, and the separation target gas flows from the gap to the purified gas side. Leakage can be suppressed.
The bonded body thus obtained preferably has an air permeation amount after bonding of 10 sccm or less, more preferably 8 sccm or less, in the test method described in the section of Examples of the present specification, Most preferably, it is 5 sccm or less.
Further, the joined body after joining was added with 1/16 by volume of methanol and 1/16 of demineralized water with respect to the internal volume in an autoclave, and the temperature was raised to 280 ° C. in one hour. After maintaining for a period of time, the mixture is naturally cooled, dried at normal pressure at 120 ° C. for 4 hours, and even if the air permeation amount is measured again, the air permeation amount is preferably 10 sccm or less, more preferably 8 sccm or less. Most preferably, it is 5 sccm or less. By satisfying such a condition in addition to the condition of the coefficient of thermal expansion, even if the production of methanol is performed for a longer time, there is no problem in the joint portion, so that it is more preferable.

本実施形態に係る接合体を有する分離モジュールを工業的に使用する場合、室温と使用温度との間を何回も往復させることがあり、また、使用温度で、長時間、運転されることもある。そのため、無機ガラスにより形成される接合部分には、これらの高温高圧条件下においても分離対象ガスが漏洩しないことが求められるところ、無機ガラスの熱膨張係数を上述のように設定することにより、分離対象ガスの漏洩を抑制できる。   When the separation module having the joined body according to the present embodiment is used industrially, the separation module may be reciprocated many times between room temperature and the use temperature, and may be operated for a long time at the use temperature. is there. Therefore, it is required that the gas to be separated does not leak even under these high-temperature and high-pressure conditions at the joint formed by the inorganic glass. By setting the thermal expansion coefficient of the inorganic glass as described above, Leakage of the target gas can be suppressed.

本実施形態に係る無機ガラスは、軟化点が550℃以下、好ましくは530℃以下、より好ましくは480℃以下である。一般的に、無機ガラスのガラスフリットは、軟化点よりも50℃程度高い温度で焼成することにより、該ガラスフリットを流動させることができる。従って、無機ガラスの軟化点を上記範囲内とすることにより、600℃程度以下の比較的低温でゼオライトと無機ガラスとを化学的に結合させることができ、かつ、複合体の細孔内に無機ガラスが入り込み、複合体と緻密部材とが機械的に強固に接合され得る。また、接合温度を比較的低温とすることによって、ゼオライトが接合時の加熱により受けるダメージを低減できる。また、接合自体を低温で行うことにより接合部の冷却時のダメージを減らし、特性の向上や長寿命化も期待できる。   The inorganic glass according to the present embodiment has a softening point of 550 ° C or lower, preferably 530 ° C or lower, more preferably 480 ° C or lower. Generally, glass frit of inorganic glass can be made to flow by baking at a temperature about 50 ° C. higher than the softening point. Therefore, by setting the softening point of the inorganic glass within the above range, the zeolite and the inorganic glass can be chemically bonded at a relatively low temperature of about 600 ° C. or lower, and the inorganic The glass enters, and the composite and the dense member can be mechanically and strongly joined. Further, by setting the joining temperature to a relatively low temperature, it is possible to reduce the damage to the zeolite due to heating during joining. In addition, by performing the bonding itself at a low temperature, it is possible to reduce damage at the time of cooling the bonded portion, and it is expected that the characteristics are improved and the life is extended.

前記無機ガラスとしては、上記熱膨張係数及び軟化点を有する限り特に制限されない。無機ガラスに含まれる成分としては、例えば、SiO、Al、ZnO、P、Bi、BaO、TiO、TeO、V、B、SnO、PbO等が挙げられる。これらの中でも、気密性向上の観点から、特にB及び/又はSnOを含有することが好ましい。B及び/又はSnOを含有する無機ガラスとしては、具体的にはSnO−P系ガラス、Bi−ZnO系ガラス、Bi−B系ガラス、Bi−B−SiO系ガラス、Bi−ZnO−B系ガラス、等が挙げられる。このような無機ガラスのガラスフリットの市販品としては、「FP−74」、「KP312E」、「FP−67」、「BNL115BB」、「ASF−1094」、「ASF−1098」、「ASF−1109」(以上、AGC社製);「BF−0606」、「BF−0901」(以上、日本電気硝子社製);等が挙げられる。 The inorganic glass is not particularly limited as long as it has the above-mentioned coefficient of thermal expansion and softening point. Examples of the components contained in the inorganic glass include SiO 2 , Al 2 O 3 , ZnO, P 2 O 5 , Bi 2 O 3 , BaO, TiO 2 , TeO 2 , V 2 O 5 , B 2 O 3 , and SnO. , PbO and the like. Among these, it is particularly preferable to contain B 2 O 3 and / or SnO from the viewpoint of improving airtightness. The B 2 O 3 and / or inorganic glass containing SnO, specifically, SnO-P 2 O 5 based glass, Bi 2 O 3 -ZnO based glass, Bi 2 O 3 -B 2 O 3 based glass, Bi 2 O 3 -B 2 O 3 -SiO 2 based glass, Bi 2 O 3 -ZnO-B 2 O 3 type glass, and the like. Commercially available glass frit of such inorganic glass includes “FP-74”, “KP312E”, “FP-67”, “BNL115BB”, “ASF-1094”, “ASF-1098”, “ASF-1109”. (Manufactured by AGC); "BF-0606", "BF-0901" (manufactured by Nippon Electric Glass) and the like.

無機ガラスがSnOを含有する場合、その含有量は特に制限されないが、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下であり、また、通常10質量%以下、好ましくは20質量%以上、より好ましくは30質量%以上である。
SnOの含有量をこの範囲にすることでガラスの流動性が十分に保たれ、十分な気密性能が得られやすい。SnOの添加効果については、詳細は不明であるが、SnOは還元剤として働くことが知られており、緻密部材の表面の酸化被膜を改質したり、接合処理中に酸化被膜の厚みが増加するのを抑制して気密性向上につながっていると推察している。
When the inorganic glass contains SnO, its content is not particularly limited, but is usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, and usually 10% by mass or less, preferably Is at least 20% by mass, more preferably at least 30% by mass.
By setting the SnO content within this range, the fluidity of the glass is sufficiently maintained, and sufficient airtightness is easily obtained. The details of the effect of adding SnO are unknown, but it is known that SnO acts as a reducing agent, and thus the oxide film on the surface of the dense member is modified or the thickness of the oxide film increases during the bonding process. It is speculated that this has led to improved airtightness.

一方、無機ガラスがBを含有する場合、その含有量は通常25質量%以下、好ましくは20質量%以下、より好ましくは18質量%以下であり、さらに好ましくは15質量%以下である。また、通常1質量%以下、好ましくは2質量%以上、より好ましくは3質量%以上である。
を添加することにより、緻密部材との濡れ性が良くなり、気密性が向上しやすい。一方Bの含有量が多いと軟化点が上昇しやすく、軟化点を550℃以下にするために他の成分の配合の自由度が減るため、上述の範囲内から選択することが好ましい。またBは水、アルコールに可溶であるから、高温または高圧条件下でこれらの物質に曝される可能性がある場合には、上述の上限値以下とすることが好ましい。
On the other hand, when the inorganic glass contains B 2 O 3 , the content is usually 25% by mass or less, preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less. . Further, it is usually at most 1% by mass, preferably at least 2% by mass, more preferably at least 3% by mass.
By adding B 2 O 3 , the wettability with the dense member is improved, and the airtightness is easily improved. On the other hand, if the content of B 2 O 3 is large, the softening point tends to increase, and the degree of freedom of mixing other components is reduced in order to reduce the softening point to 550 ° C. or lower. Therefore, it is preferable to select from the above range. . In addition, since B 2 O 3 is soluble in water and alcohol, when there is a possibility of exposure to these substances under high-temperature or high-pressure conditions, it is preferable that the above-mentioned upper limit value or less be used.

なお、SnO及びBの含有量の定量方法については、XRF(蛍光X線分析)法、ICP(誘導結合プラズマ発光分光分析)法等が挙げられる。 The methods for quantifying the contents of SnO and B 2 O 3 include XRF (X-ray fluorescence analysis), ICP (Inductively Coupled Plasma Emission Spectroscopy), and the like.

無機ガラスの形態については、特に制限はなく、粉末のガラスフリット、ガラスフリットを打錠成形などの方法で成形したタブレット、ガラスフリットを焼結させた成形品であるタブレット、ガラスフリットを有機溶媒やバインダ中に均一に分散させたガラスペースト等が使用可能である。接合体を大量に生産する際には、これらの中でも特にタブレットやペースト状のものが生産効率の向上につながるために好ましい。   There is no particular limitation on the form of the inorganic glass, and powdered glass frit, a tablet obtained by molding a glass frit by tableting, a tablet obtained by sintering a glass frit, an organic solvent or a glass frit. A glass paste or the like uniformly dispersed in a binder can be used. When a large number of joined bodies are produced, a tablet or a paste is particularly preferable among these, because it leads to an improvement in production efficiency.

また、本実施形態において無機ガラスは、好ましくは鉛(Pb)の含有量がPbO換算
で10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、さらにより好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0質量%の無機ガラスである。
鉛の含有量もXRF(蛍光X線分析)法、ICP(誘導結合プラズマ発光分光分析)法等により測定することができる。
In the present embodiment, the inorganic glass preferably has a lead (Pb) content of 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, even more preferably 2% by mass in terms of PbO. %, Particularly preferably 1% by weight or less, most preferably 0% by weight of inorganic glass.
The lead content can also be measured by XRF (X-ray fluorescence analysis), ICP (Inductively Coupled Plasma Emission Spectroscopy) or the like.

<ゼオライトと無機多孔質支持体との複合体と緻密部材との接合体>
本実施形態において接合は、複合体が円筒形支持体の場合はその両末端について行ってもよい。例えば、複合体が円筒形であるゼオライト膜を用いて混合ガス分離プロセスを行う場合、ゼオライト膜を有する円筒型支持体の外部を混合ガスで満たし、圧力をかけることで、あるいは内部の真空排気を行うことで分離を遂行する。したがって、一方の末端はキャップにより封止し、もう一方の末端に配管を接続してもよく、両末端に配管を接続してもよい。
<Joint of a composite of zeolite and inorganic porous support and dense member>
In this embodiment, when the composite is a cylindrical support, the bonding may be performed at both ends. For example, when performing a mixed gas separation process using a zeolite membrane in which the composite is cylindrical, the outside of the cylindrical support having the zeolite membrane is filled with the mixed gas and pressure is applied, or the inside is evacuated. Performs the separation. Therefore, one end may be sealed with a cap and a pipe may be connected to the other end, or a pipe may be connected to both ends.

ゼオライト膜を表面に持つ複合体と緻密部材からなるキャップ、あるいはキャップに類似した末端構造を持つ緻密部材からなる配管との接合方法は、複合体とキャップとの間を無機ガラスで接合できる方法であればどのような方法でもよいが、例えば、緻密部材の凹部に無機ガラスを充填し、その上にゼオライト膜を表面に持つ複合体を載せ、ついで複合体の上部に重りを載せて荷重をかけた状態で焼成して接合する方法などが例示される。   A method of joining a composite having a zeolite membrane on its surface and a cap made of a dense member, or a pipe made of a dense member having a terminal structure similar to the cap, is a method that can join the composite and the cap with inorganic glass. Any method may be used, for example, filling the concave portion of the dense member with inorganic glass, placing a composite having a zeolite membrane on the surface thereon, and then placing a weight on the upper portion of the composite to apply a load. And a method of bonding by baking in a state of being heated.

複合体と緻密部材とを無機ガラスにて接合する際の焼成温度については、使用する無機ガラスの軟化点以上にすることが必須である。したがって、焼成温度は通常、軟化点プラス10℃以上、好ましくは軟化点プラス30℃以上、さらに好ましくは軟化点プラス50℃以上である。また、ゼオライト膜への熱的ダメージを避けるために、通常は600℃以下であり、好ましくは580℃以下、さらに好ましくは560℃以下である。また、接合の焼成時間は焼成温度到達後通常5分〜90分であり、好ましくは10分以上、さらに好ましくは20分以上、また、好ましくは60分以下、さらに好ましくは40分以下である。   It is essential that the firing temperature at the time of joining the composite and the dense member with the inorganic glass be higher than the softening point of the inorganic glass used. Therefore, the firing temperature is usually at least the softening point plus 10 ° C., preferably at least the softening point plus 30 ° C., more preferably at least the softening point plus 50 ° C. In order to avoid thermal damage to the zeolite membrane, the temperature is usually 600 ° C. or lower, preferably 580 ° C. or lower, more preferably 560 ° C. or lower. The firing time of the bonding is usually 5 minutes to 90 minutes after reaching the firing temperature, preferably 10 minutes or more, more preferably 20 minutes or more, preferably 60 minutes or less, and more preferably 40 minutes or less.

以下に、ゼオライトと無機多孔質支持体との複合体と緻密部材とが無機ガラスを介して接合された例を図1〜図3を用いて説明する。
図1に示すように、ゼオライトと無機多孔質支持体との複合体1とフランジ2とを、無機ガラス4を介して直接接合することもできる。このような形態では、部材間の接続の経時的劣化に伴うガス漏れなどのリスクを低減することができる。この場合フランジ2が、金属部材からなる緻密部材になる。
一方、図2に示すように、ゼオライトと無機多孔質支持体との複合体1と配管3とが、単に無機ガラス4を介して接合していてもよい。本実施形態の無機ガラスは、高い気密性と耐久性を有することから、このような接合も可能である。この場合は配管3が金属部材からなる緻密部材になる。
図3は、ゼオライトと無機多孔質支持体との複合体1と配管3とが無機ガラス4を介して接合された一例を示す断面模式図である。ゼオライトと無機多孔質支持体との複合体1は無機ガラス4を介して、配管3と接合する。配管3はゼオライトと無機多孔質支持体との複合体1を覆うように接合されている。
An example in which a composite of zeolite and an inorganic porous support and a dense member are joined via an inorganic glass will be described below with reference to FIGS.
As shown in FIG. 1, a composite 1 of zeolite and an inorganic porous support and a flange 2 can be directly joined via an inorganic glass 4. In such an embodiment, it is possible to reduce a risk such as gas leakage due to the deterioration of the connection between members over time. In this case, the flange 2 is a dense member made of a metal member.
On the other hand, as shown in FIG. 2, the composite 1 of zeolite and the inorganic porous support and the pipe 3 may be simply joined via the inorganic glass 4. Since the inorganic glass of this embodiment has high airtightness and durability, such bonding is also possible. In this case, the pipe 3 is a dense member made of a metal member.
FIG. 3 is a schematic cross-sectional view showing an example in which a composite 1 of zeolite and an inorganic porous support and a pipe 3 are joined via an inorganic glass 4. The composite 1 of zeolite and the inorganic porous support is joined to the pipe 3 via the inorganic glass 4. The pipe 3 is joined so as to cover the composite 1 of zeolite and the inorganic porous support.

<封孔被膜>
本実施形態において、複合体と緻密部材との接合部分は、封孔被膜により覆われていることが好ましい。接合部分は接合に用いた無機ガラスを硬化するための焼成に起因して、接合部分の表面にマイクロクラック、ピンホール等の微細孔が形成されている場合がある。よって、接合部分に封孔処理を施し、これらの微細孔を塞ぐことが気密性を向上させる観点から好ましい。また、封孔処理によって形成される封孔被膜が、接合部分の劣化、ピ
ンホール等の損傷を抑制し得る点でも接合部分を封孔被膜で覆うことが望ましい。
<Sealing coating>
In this embodiment, it is preferable that the joint between the composite and the dense member is covered with a sealing film. In the joint portion, micro holes such as micro cracks and pinholes may be formed on the surface of the joint portion due to baking for curing the inorganic glass used for the joint. Therefore, it is preferable from the viewpoint of improving the airtightness that a sealing process is performed on the joint portion to close these fine holes. In addition, it is preferable that the joint portion is covered with the sealing film also in that the sealing film formed by the sealing treatment can suppress deterioration of the joint portion and damage such as pinholes.

封孔被膜を形成し得る封孔剤としては、シリカ、各種アルミナ等の無機材料;シリコーン樹脂、エポキシ樹脂、フッ素系樹脂等の有機系高分子;などを含むものが挙げられ、溶剤を含んでいてもよく、無溶剤でもよい。本実施形態においては、無機ガラスとの密着性及びガスバリア性の観点から、無機系の封孔剤、特にシリカを使用することが好ましい。封孔剤の付着量は、所望の封孔被膜の膜厚に応じて適宜決めればよい。
封孔剤の取り扱い性、特に垂れを防ぐ観点から粘度としては2(mPa・s,25℃)以上が好ましく、より好ましくは5(mPa・s,25℃)以上、さらに好ましくは10(mPa・s,25℃)以上である。また、孔内に封孔剤が浸透易い点から、200(mPa・s,25℃)以下、好ましくは100(mPa・s,25℃)以下、さらに好ましくは50(mPa・s,25℃)以下である。この範囲とすることで気密性が向上し、かつ取り扱い性にも優れる。
Examples of the sealing agent capable of forming the sealing film include those containing an inorganic material such as silica and various aluminas; organic polymers such as a silicone resin, an epoxy resin, and a fluorine-based resin; And may be solventless. In the present embodiment, it is preferable to use an inorganic sealing agent, particularly silica, from the viewpoint of adhesion to inorganic glass and gas barrier properties. The amount of the sealing agent to be applied may be appropriately determined according to the desired film thickness of the sealing film.
The viscosity is preferably 2 (mPa · s, 25 ° C.) or more, more preferably 5 (mPa · s, 25 ° C.) or more, and still more preferably 10 (mPa · s), from the viewpoint of the handleability of the sealing agent, and particularly the prevention of dripping. s, 25 ° C) or higher. In addition, from the viewpoint that the sealing agent easily penetrates into the pores, 200 (mPa · s, 25 ° C) or less, preferably 100 (mPa · s, 25 ° C) or less, more preferably 50 (mPa · s, 25 ° C). It is as follows. By setting the content in this range, the airtightness is improved, and the handleability is also excellent.

具体的な封孔処理の方法としては、まず、接合部分に対し、封孔剤を塗布、噴霧等により付着させ、塗膜を得る。このとき、気密性を向上させる目的で接合部分の封孔剤を付着させる逆側を減圧させてもよい。減圧は、封孔剤を接合体表面に付着させるに先立って行ってもよく、付着と同時に行ってもよく、付着後に行ってもよい。このような減圧により、封孔剤を接合部分の細孔内に隙間なく浸透させ、接合部分表面の細孔を塞ぎ得る。   As a specific sealing method, first, a sealing agent is applied to the joint portion, and is applied by spraying or the like to obtain a coating film. At this time, for the purpose of improving the airtightness, the pressure may be reduced on the opposite side of the joint portion where the sealing agent is adhered. The decompression may be performed before the sealing agent is adhered to the surface of the joined body, may be performed simultaneously with the adhesion, or may be performed after the adhesion. Due to such reduced pressure, the sealing agent can penetrate into the pores of the joint without any gap, thereby closing the pores on the surface of the joint.

次いで、得られた塗膜を硬化し、封孔被膜を形成する。硬化方法としては、封孔剤の種類に応じて適切な方法を採用すればよい。封孔剤として、高分子材料の溶液や無機微粒子の懸濁液を使用する場合には、100〜300℃で60〜300分乾燥すればよく、高分子材料と架橋剤とを含む組成物を使用した場合には、熱硬化、光硬化等を行ってもよい。また、封孔剤として有機系又は無機系のモノマーやオリゴマーを使用する場合には、これらを100〜300℃で30〜180分重合することにより硬化してもよい。   Next, the obtained coating film is cured to form a sealing film. As a curing method, an appropriate method may be employed depending on the type of the sealing agent. When a solution of a polymer material or a suspension of inorganic fine particles is used as the sealing agent, the composition may be dried at 100 to 300 ° C. for 60 to 300 minutes, and the composition containing the polymer material and the crosslinking agent may be used. When used, heat curing, light curing and the like may be performed. When an organic or inorganic monomer or oligomer is used as the sealing agent, it may be cured by polymerizing them at 100 to 300 ° C. for 30 to 180 minutes.

封孔被膜としてシリカ被膜を使用する場合、シリケートオリゴマー処理と称される封孔処理を行うことができる。シリケートオリゴマー処理は、例えば以下のようにして行われる。まず、アルコキシシラン化合物に代表されるシリケートオリゴマーを含む封孔剤を、接合部分に塗布する。このようなシリケートオリゴマーの市販品としては、MKCシリケート(登録商標)MS−51、MS−56、MS−57,MS−56S(いずれも三菱ケミカル社製、メチルシリケートオリゴマー)、エチルシリケート40、エチルシリケート48(いずれもコルコート社製、エチルシリケートオリゴマー)、シリケート40、シリケート45(多摩化学工業)、メチルシリケートとエチルシリケートの混合オリゴマーであるEMS−485(コルコート社製)等が挙げられる。次いで、得られた塗膜を150〜280℃で30〜180分加熱し、ゾルゲル法による加水分解及び重縮合反応を行うことにより、シリカ被膜が得られる。
封孔被膜としてシリコーン樹脂を使用する場合は、アルコキシアルキルシランのオリゴマーを含有した封孔剤を用いればよい。このような封孔剤としては、パーミエイトHS−80、HS−90、HS−100、HS−200、HS−300、HS−330、HS−350、HS−360,HS−820(いずれもディ・アンド・ディ社製)等が挙げられる。これらを塗布して得られた塗膜を100℃〜250℃で30分から180分加熱することでシリコーン樹脂被膜が得られる。
When a silica coating is used as the sealing coating, a sealing treatment called a silicate oligomer treatment can be performed. The silicate oligomer treatment is performed, for example, as follows. First, a sealing agent containing a silicate oligomer represented by an alkoxysilane compound is applied to the joint. Commercial products of such a silicate oligomer include MKC silicate (registered trademark) MS-51, MS-56, MS-57, and MS-56S (all manufactured by Mitsubishi Chemical Corporation, methyl silicate oligomer), ethyl silicate 40, ethyl Examples thereof include silicate 48 (all manufactured by Colcoat, ethyl silicate oligomer), silicate 40, silicate 45 (Tama Chemical Industry), and EMS-485 (manufactured by Colcoat) which is a mixed oligomer of methyl silicate and ethyl silicate. Next, the obtained coating film is heated at 150 to 280 ° C. for 30 to 180 minutes, and a hydrolysis and polycondensation reaction by a sol-gel method is performed to obtain a silica coating.
When a silicone resin is used as the sealing film, a sealing agent containing an alkoxyalkylsilane oligomer may be used. Examples of such sealing agents include Permeate HS-80, HS-90, HS-100, HS-200, HS-300, HS-330, HS-350, HS-360, and HS-820 (all And D Corp.). The silicone resin film is obtained by heating the coating film obtained by applying these at 100 ° C. to 250 ° C. for 30 minutes to 180 minutes.

<分離膜モジュール>
別の実施形態である分離膜モジュールはゼオライトと無機多孔質支持体との複合体と緻密部材を有し、その他、導入、排出口を備えた容器、フランジ、配管等を含むことができる。
分離膜モジュールは高圧容器内に設置して圧力をかけることで、あるいは透過側の真空
排気を行うことでガスや溶媒を分離できる。また分離膜モジュールは、反応と同時に分離する形態で用いてもよい。
<Separation membrane module>
A separation membrane module according to another embodiment includes a composite of zeolite and an inorganic porous support and a dense member, and may further include a container having an inlet and an outlet, a flange, a pipe, and the like.
The separation membrane module can separate gases and solvents by installing it in a high-pressure vessel and applying pressure, or by evacuating the permeate side. Further, the separation membrane module may be used in a form that separates simultaneously with the reaction.

<反応器>
この実施形態の分離膜モジュールを反応器中に設置することにより、逆反応の起こり得る反応を利用したものの製造方法において、生成物及び/または副生物を反応器から抜き出すことで、生成物の収率が向上し、かつ破損等の恐れも少なく、長時間にわたって使用することができる。
<Reactor>
By installing the separation membrane module of this embodiment in a reactor, a product and / or by-product is extracted from the reactor in a production method utilizing a reaction that may cause a reverse reaction, so that a product is collected. The rate is improved, and there is little possibility of breakage and the like, and it can be used for a long time.

<使用条件>
本実施形態の接合体を化学反応プロセスで用いる場合、温度は通常100〜450℃であり、200〜350℃が好ましい。150℃〜500℃の高温条件でも使用可能である。また、圧力は通常0.5〜8MPaであり、2〜6MPaが好ましい。0.5〜10MPaの高圧条件でも使用可能である。
<Use conditions>
When the joined body of this embodiment is used in a chemical reaction process, the temperature is usually 100 to 450 ° C, preferably 200 to 350 ° C. It can be used under high temperature conditions of 150 ° C to 500 ° C. The pressure is usually 0.5 to 8 MPa, preferably 2 to 6 MPa. It can be used under high pressure conditions of 0.5 to 10 MPa.

以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例における各種測定及び評価は、以下のように行った。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless departing from the gist of the present invention. Various measurements and evaluations in the examples were performed as follows.

<無機ガラス及び緻密部材の熱膨張係数>
無機ガラスのガラスフリットおよび緻密部材の30〜250℃における熱膨張係数(線膨張係数)は、試料から直径約5mm長さ約10〜20mmの円柱状の試験片を用意し、上記温度範囲における試験片の膨張量を示差熱膨張計((株)リガク製、TMA8310)で測定し、平均線膨張係数を算出する。なお、本実施例ではカタログ値又はメーカー成績書の値を使用した。
<Coefficient of thermal expansion of inorganic glass and dense member>
The coefficient of thermal expansion (linear expansion coefficient) of the glass frit of inorganic glass and the dense member at 30 to 250 ° C. is determined by preparing a cylindrical test piece having a diameter of about 5 mm and a length of about 10 to 20 mm from a sample, and performing a test in the above temperature range. The amount of expansion of the piece is measured with a differential thermal dilatometer (TMA8310, manufactured by Rigaku Corporation), and the average linear expansion coefficient is calculated. In this example, catalog values or values from the manufacturer's report were used.

<無機ガラスの軟化点>
示差熱分析装置(リガク社製TG8120)により軟化点を測定する。乳鉢で粉砕したガラスフリットを10℃/minで昇温し、得られるDTA曲線の第二変曲点を軟化点とする。
尚、本実施例の値は、カタログ値又はメーカー成績書の値を記載した。
<Softening point of inorganic glass>
The softening point is measured with a differential thermal analyzer (TG8120, manufactured by Rigaku Corporation). The glass frit ground in a mortar is heated at a rate of 10 ° C./min, and the second inflection point of the obtained DTA curve is defined as a softening point.
In addition, the value of this Example described the value of a catalog or a maker report.

<空気透過量測定>
大気圧下で接合体の端(キャップが接合していない方)を、気密性を保持した状態で5kPaの真空ラインに接続して、真空ラインと接合体の間に設置したマスフローメーターでゼオライト膜複合体を透過した空気の流量を測定した。なお、sccmとは0℃、1気圧換算のcc/minを表す。マスフローメーターとしては、ブルックスインスツルメント社製GF40(最大流量20sccm)を用いた。
<Air permeability measurement>
Under atmospheric pressure, the end of the joined body (the side to which the cap was not joined) was connected to a 5 kPa vacuum line while maintaining airtightness, and the zeolite membrane was placed using a mass flow meter installed between the vacuum line and the joined body. The flow rate of air passing through the composite was measured. In addition, sccm represents cc / min in terms of 0 ° C. and 1 atm. As a mass flow meter, GF40 (maximum flow rate 20 sccm) manufactured by Brooks Instruments was used.

<耐久性試験>
上記内容積80mlのSUS−316製オートクレーブに実施例及び比較例で得られた接合体を入れ、さらにメタノール5ml及び脱塩水5mlを加えた後、密閉させて電気炉にセットし、電気炉を280℃まで1時間で加熱昇温した。このとき、オートクレーブ内の圧力は、3.5MPaであった。280℃に到達してから48時間後に加熱を終了し電気炉からオートクレーブを取り出して、自然冷却させた。2時間以上冷却した後にオートクレーブを開放し接合体を取り出した。これを常圧にて120℃で4時間乾燥させた後に、上記空気透過量測定を実施した。
<Durability test>
The conjugate obtained in the example and the comparative example was put into the SUS-316 autoclave having an inner volume of 80 ml, and 5 ml of methanol and 5 ml of demineralized water were further added. The temperature was increased to 1 ° C. by heating for 1 hour. At this time, the pressure inside the autoclave was 3.5 MPa. 48 hours after the temperature reached 280 ° C., the heating was terminated, and the autoclave was taken out of the electric furnace and allowed to cool naturally. After cooling for 2 hours or more, the autoclave was opened and the joined body was taken out. After drying this at 120 ° C. for 4 hours at normal pressure, the above-mentioned measurement of the amount of air permeation was carried out.

<実施例1>
(ゼオライトとアルミナ多孔質支持体との複合体の作製)
予め種結晶を付着させた円筒状のアルミナ多孔質支持体(外径12mm、内径9mm、全長40mm)を、組成(モル比)SiO:NaO:Al:HO=100:27.8:0.021:4000の水性反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬して、オートクレーブを密閉し、180℃で12時間水熱合成を行った。所定時間経過後、常温まで放冷した後、多孔質支持体−ゼオライト複合体を反応混合物から取り出し、洗浄後、120℃で4時間以上乾燥させ、MFI型ゼオライトとアルミナ多孔質支持体との複合体を得た。
<Example 1>
(Preparation of composite of zeolite and porous alumina support)
A cylindrical alumina porous support (outer diameter: 12 mm, inner diameter: 9 mm, overall length: 40 mm) to which a seed crystal was previously attached was prepared using a composition (molar ratio) of SiO 2 : Na 2 O: Al 2 O 3 : H 2 O = 100. : 27.8: 0.021: 4000, vertically immersed in a Teflon (registered trademark) inner cylinder containing an aqueous reaction mixture, the autoclave was sealed, and hydrothermal synthesis was performed at 180 ° C. for 12 hours. After elapse of a predetermined time, the mixture is allowed to cool to room temperature, the porous support-zeolite composite is taken out of the reaction mixture, washed, and dried at 120 ° C. for 4 hours or more to form a composite of the MFI zeolite and the alumina porous support. I got a body.

(接合体の作製)
コバール製キャップ(熱膨張係数52×10−7/K、外径14.0mm、内径12.2mm、高さ4mm)の凹部に無機ガラスとしてAGC社製ガラスフリット「FP−74」(熱膨張係数63×10−7/K、軟化点355℃、SnO含有量42%)を0.3g充填し、その上に上記MFI型ゼオライトとアルミナ多孔質支持体との複合体を載せた。ついで複合体の上部に560gの重りを載せて荷重をかけた状態でマッフル炉に入れて、480℃まで100分かけて昇温した後、480℃の状態を30分保持して焼成した。その後加熱を停止し、自然冷却を行い、接合体を得た。
(Preparation of bonded body)
AGC glass frit “FP-74” (coefficient of thermal expansion) as an inorganic glass in a concave portion of a cap made of Kovar (coefficient of thermal expansion 52 × 10 −7 / K, outer diameter 14.0 mm, inner diameter 12.2 mm, height 4 mm) 0.3 × 10 −7 / K, softening point: 355 ° C., SnO content: 42%), and the composite of the MFI-type zeolite and the alumina porous support was placed thereon. Then, a 560 g weight was placed on the upper part of the composite and placed in a muffle furnace with a load applied thereto. The temperature was raised to 480 ° C. over 100 minutes, and then the state of 480 ° C. was maintained for 30 minutes and fired. After that, the heating was stopped, and natural cooling was performed to obtain a joined body.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeability of the joined body before the durability test was 0.1 sccm or less. In addition, the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.

<実施例2>
無機ガラスとしてAGC社製ガラスフリット「KP312E」(熱膨張係数71×10−7/K、軟化点344℃、SnO含有量52%)を用い、マッフル炉での焼成温度を430℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 2>
AGC glass frit “KP312E” (coefficient of thermal expansion: 71 × 10 −7 / K, softening point: 344 ° C., SnO content: 52%) manufactured by AGC was used as the inorganic glass except that the firing temperature in the muffle furnace was set to 430 ° C. A joined body was obtained in the same manner as in Example 1.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeability of the joined body before the durability test was 0.1 sccm or less. In addition, the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.

<実施例3>
無機ガラスとしてAGC社製ガラスフリット「FP−67」(熱膨張係数79×10−7/K、軟化点357℃、SnO含有量50%)を用いた以外は実施例1と同様の方法により接合体を得た。
<Example 3>
Joining was performed in the same manner as in Example 1, except that AGC Glass Frit “FP-67” (thermal expansion coefficient 79 × 10 −7 / K, softening point 357 ° C., SnO content 50%) was used as the inorganic glass. I got a body.

得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は0.1sccm以下であった。   About the obtained joined body, the amount of air permeation was measured. As a result, the air permeation amount of the joined body was 0.1 sccm or less.

<実施例4>
無機ガラスとしてAGC社製ガラスフリット「BNL115BB」(熱膨張係数74×10−7/K、軟化点397℃、B含有量5.0%)を用い、マッフル炉での焼成温度を500℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 4>
AGC glass frit “BNL115BB” (thermal expansion coefficient 74 × 10 −7 / K, softening point 397 ° C., B 2 O 3 content 5.0%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 500. A joined body was obtained in the same manner as in Example 1 except that the temperature was changed to ° C.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.4sccmであった。また、耐久性試験後の接合体の空気透過量は0.4sccmであり、気密性に変化はなかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeation amount of the joined body before the durability test was 0.4 sccm. Further, the air permeability of the joined body after the durability test was 0.4 sccm, and there was no change in the airtightness.

<実施例5>
実施例4の接合体に封孔処理を実施した。具体的にはMFI型ゼオライトとアルミナ多孔質支持体との複合体とキャップとの接合部分に、内部を減圧にしつつ三菱ケミカル社製メチルシリケートオリゴマー「MKCシリケート(登録商標)MS−56」を塗布した。1時間室温に放置した後に、250℃で30分加熱処理して封孔処理を完了した。
<Example 5>
A sealing treatment was performed on the joined body of Example 4. Specifically, a methyl silicate oligomer “MKC silicate (registered trademark) MS-56” manufactured by Mitsubishi Chemical Co., Ltd. is applied to the joint between the cap and the composite of the MFI zeolite and the alumina porous support while reducing the pressure inside. did. After leaving it at room temperature for 1 hour, it was heated at 250 ° C. for 30 minutes to complete the sealing treatment.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下となり封孔処理により気密性が向上することがわかった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeation amount of the joined body before the durability test was 0.1 sccm or less, and it was found that the hermeticity was improved by the sealing treatment. In addition, the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.

<実施例6>
無機ガラスとして日本電気硝子社製ガラスフリット「BF−0606」(熱膨張係数72×10−7/K、軟化点450℃、B含有量6.4%)を用い、マッフル炉での焼成温度を485℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 6>
A glass frit “BF-0606” manufactured by NEC Corporation (coefficient of thermal expansion: 72 × 10 −7 / K, softening point: 450 ° C., B 2 O 3 content: 6.4%) was used as an inorganic glass in a muffle furnace. A joined body was obtained in the same manner as in Example 1 except that the firing temperature was 485 ° C.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.2sccmであった。また、耐久性試験後の接合体の空気透過量は0.2sccmであり、気密性に変化はなかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeation amount of the joined body before the durability test was 0.2 sccm. The air permeability of the joined body after the durability test was 0.2 sccm, and there was no change in the airtightness.

<実施例7>
無機ガラスとして日本電気硝子社製ガラスフリット「BF−0901」(熱膨張係数48×10−7/K、軟化点528℃、B含有量9.7%)を用い、マッフル炉での焼成温度を560℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 7>
A glass frit “BF-0901” manufactured by NEC Corporation (thermal expansion coefficient: 48 × 10 −7 / K, softening point: 528 ° C., B 2 O 3 content: 9.7%) was used as an inorganic glass in a muffle furnace. A joined body was obtained in the same manner as in Example 1 except that the firing temperature was 560 ° C.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeability of the joined body before the durability test was 0.1 sccm or less. In addition, the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.

<実施例8>
無機ガラスとしてAGC社製ガラスフリット「ASF−1094」(熱膨張係数79×10−7/K、軟化点533℃、B含有量15%)を用い、マッフル炉での焼成温度を550℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 8>
AGC glass frit “ASF-1094” (thermal expansion coefficient 79 × 10 −7 / K, softening point 533 ° C., B 2 O 3 content 15%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 550. A joined body was obtained in the same manner as in Example 1 except that the temperature was changed to ° C.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.3sccmであった。また、耐久性試験後の接合体の空気透過量は0.3sccmであり、気密性に変化はなかった。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeation amount of the joined body before the durability test was 0.3 sccm. The air permeability of the joined body after the durability test was 0.3 sccm, and there was no change in airtightness.

<実施例9>
無機ガラスとしてAGC社製ガラスフリット「ASF−1098」(熱膨張係数54×10−7/K、軟化点515℃、B含有量16%)を用い、マッフル炉での焼成温度を560℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 9>
The glass frit “ASF-1098” manufactured by AGC (thermal expansion coefficient: 54 × 10 −7 / K, softening point: 515 ° C., B 2 O 3 content: 16%) was used as the inorganic glass, and the firing temperature in the muffle furnace was set to 560. A joined body was obtained in the same manner as in Example 1 except that the temperature was changed to ° C.

得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は0.7sccm以下であった。   About the obtained joined body, the amount of air permeation was measured. As a result, the air permeation amount of the joined body was 0.7 sccm or less.

<実施例10>
無機ガラスとしてAGC社製ガラスフリット「ASF−1109」(熱膨張係数65×10−7/K、軟化点545℃、B含有量19%)を用い、マッフル炉での焼成温
度を560℃とした以外は実施例1と同様の方法により接合体を得た。
<Example 10>
AGC glass frit “ASF-1109” (coefficient of thermal expansion 65 × 10 −7 / K, softening point 545 ° C., B 2 O 3 content 19%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 560. A joined body was obtained in the same manner as in Example 1 except that the temperature was changed to ° C.

得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は1.2sccm以下であった。   About the obtained joined body, the amount of air permeation was measured. As a result, the air permeation amount of the joined body was 1.2 sccm or less.

<比較例1>
無機ガラスとしてAGC社製ガラスフリット「SK−231−300」(熱膨張係数84×10−7/K、軟化点559℃、B含有量13%)を用い、マッフル炉での焼成温度を580℃とした以外は実施例1と同様の方法により接合体を得た。
<Comparative Example 1>
AGC glass frit “SK-231-300” (thermal expansion coefficient: 84 × 10 −7 / K, softening point: 559 ° C., B 2 O 3 content: 13%) was used as the inorganic glass, and the firing temperature in a muffle furnace was used. Was set to 580 ° C., and a joined body was obtained in the same manner as in Example 1.

得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は5.5sccm以下であった。   About the obtained joined body, the amount of air permeation was measured. As a result, the air permeation amount of the joined body was 5.5 sccm or less.

<比較例2>
無機ガラスとしてAGC社製ガラスフリット「KF9173」(熱膨張係数98×10−7/K、軟化点462℃、B含有量11%)を用い、マッフル炉での焼成温度を520℃とした以外は実施例1と同様の方法により接合体を得た。
<Comparative Example 2>
AGC company glass frit “KF9173” (thermal expansion coefficient: 98 × 10 −7 / K, softening point: 462 ° C., B 2 O 3 content: 11%) was used as the inorganic glass, and the firing temperature in the muffle furnace was 520 ° C. A joined body was obtained in the same manner as in Example 1 except that the procedure was repeated.

得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は7.3sccmであった。また、耐久性試験後の接合体の空気透過量は20sccm以上(測定レンジオーバー)であり、気密性が悪化した。   About the obtained joined body, the air permeation amount measurement and the durability test were performed. As a result, the air permeation amount of the joined body before the durability test was 7.3 sccm. Further, the air permeability of the joined body after the durability test was 20 sccm or more (measurement range exceeded), and the airtightness was deteriorated.

1 ゼオライトと無機多孔質支持体との複合体
2 緻密部材からなるフランジ
3 緻密部材
4 無機ガラス
REFERENCE SIGNS LIST 1 composite of zeolite and inorganic porous support 2 flange made of dense member 3 dense member 4 inorganic glass

Claims (9)

ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスを介して接合した接合体であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10−7/K以上90×10−7/K以下、かつ軟化点が550℃以下である、接合体。 A bonded body in which a composite of zeolite and an inorganic porous support and a dense member are bonded via an inorganic glass, wherein the dense member is a metal member, and the inorganic glass has a coefficient of thermal expansion of 30 × 10 A joined body having a temperature of −7 / K or more and 90 × 10 −7 / K or less and a softening point of 550 ° C. or less. 前記複合体と緻密部材との接合部分が、封孔被膜により覆われている、請求項1に記載の接合体。   The joined body according to claim 1, wherein a joint between the complex and the dense member is covered with a sealing film. 前記封孔被膜が、シリカ被膜である、請求項2に記載の接合体。   The joined body according to claim 2, wherein the sealing film is a silica film. 前記無機ガラスがSnO及び/又はBを含有している、請求項1〜3の何れか1項に記載の接合体。 Wherein the inorganic glass is contained SnO and / or B 2 O 3, assembly according to any one of claims 1 to 3. 前記緻密部材の熱膨張係数が30×10−7/K以上200×10−7/K以下である、請求項1〜4の何れか1項に記載の接合体。 The joined body according to any one of claims 1 to 4, wherein the dense member has a coefficient of thermal expansion of 30 x 10-7 / K or more and 200 x 10-7 / K or less. 100℃〜500℃の高温条件下及び/又は0.5〜10MPaの高圧条件下で請求項1〜5の何れか1項に記載の接合体を使用する、接合体の使用方法。   A method of using the joined body, wherein the joined body according to any one of claims 1 to 5 is used under a high temperature condition of 100 ° C to 500 ° C and / or a high pressure condition of 0.5 to 10 MPa. 請求項1〜5の何れか1項に記載の接合体を有する、分離膜モジュール。   A separation membrane module comprising the joined body according to claim 1. 請求項7に記載の分離膜モジュールを有する、反応器。   A reactor comprising the separation membrane module according to claim 7. 無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10−7/K以上90×10−7/K以下、かつ軟化点が550℃以下である、接合方法。 A method of joining a composite of zeolite and an inorganic porous support, using an inorganic glass, and a dense member, wherein the dense member is a metal member, and the coefficient of thermal expansion of the inorganic glass is 30 × A bonding method, wherein the bonding point is 10 −7 / K or more and 90 × 10 −7 / K or less and the softening point is 550 ° C. or less.
JP2019154313A 2018-09-03 2019-08-27 A conjugate and a separation membrane module having the same Active JP7403997B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018164260 2018-09-03
JP2018164260 2018-09-03

Publications (2)

Publication Number Publication Date
JP2020037103A true JP2020037103A (en) 2020-03-12
JP7403997B2 JP7403997B2 (en) 2023-12-25

Family

ID=69738464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154313A Active JP7403997B2 (en) 2018-09-03 2019-08-27 A conjugate and a separation membrane module having the same

Country Status (1)

Country Link
JP (1) JP7403997B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109690A (en) * 1998-10-06 2000-04-18 Noritake Co Ltd Heat-resistant resin sealing medium for zeolite membrane
JP2004243246A (en) * 2003-02-14 2004-09-02 Ngk Insulators Ltd Gas separation membrane structure, gas separation membrane assembly, and gas separating apparatus
JP2009066528A (en) * 2007-09-13 2009-04-02 Hitachi Zosen Corp Zeolite separation membrane, its manufacturing method, and sealant
WO2009113715A1 (en) * 2008-03-12 2009-09-17 日本碍子株式会社 Method for manufacturing a structure provided with a ddr zeolite membrane
JP2016052959A (en) * 2014-09-02 2016-04-14 株式会社ノリタケカンパニーリミテド Glass coating alumina structure, separation membrane element, and glass bonding agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109690A (en) * 1998-10-06 2000-04-18 Noritake Co Ltd Heat-resistant resin sealing medium for zeolite membrane
JP2004243246A (en) * 2003-02-14 2004-09-02 Ngk Insulators Ltd Gas separation membrane structure, gas separation membrane assembly, and gas separating apparatus
JP2009066528A (en) * 2007-09-13 2009-04-02 Hitachi Zosen Corp Zeolite separation membrane, its manufacturing method, and sealant
WO2009113715A1 (en) * 2008-03-12 2009-09-17 日本碍子株式会社 Method for manufacturing a structure provided with a ddr zeolite membrane
JP2016052959A (en) * 2014-09-02 2016-04-14 株式会社ノリタケカンパニーリミテド Glass coating alumina structure, separation membrane element, and glass bonding agent

Also Published As

Publication number Publication date
JP7403997B2 (en) 2023-12-25

Similar Documents

Publication Publication Date Title
JP4990076B2 (en) Zeolite separation membrane, method for producing the same, and bonding agent
US20210154623A1 (en) Bonded body, separation membrane module equipped with same, and method for producing alcohol
WO2010038281A1 (en) Zeolite separation membrane, process for producing the same, and binder
US6174490B1 (en) Method for producing an exchanger
US10427108B2 (en) Zeolite film structure
JP2016052959A (en) Glass coating alumina structure, separation membrane element, and glass bonding agent
US20090007532A1 (en) Composite ceramic body, method of manufacturing the same and ceramic filter assembly
CN105073236B (en) Ceramic separation film structure and its manufacture method
JP7403997B2 (en) A conjugate and a separation membrane module having the same
JP7403986B2 (en) A conjugate and a separation membrane module having the same
JP7430498B2 (en) Methanol production method
JP7359590B2 (en) A conjugate and a separation membrane module having the same
JP2016193426A (en) Manufacturing method of molecular sieve membrane structure
JP2012532090A (en) Airtight sealant
JP5278933B2 (en) Zeolite membrane solvent-resistant sealing structure
JPH10180060A (en) Composition for sealing inorganic separating membrane
CN111556856B (en) Sealing material and multi-layer glass panel using same
CN106966761B (en) Multilayer composite environmental barrier coating with crack self-healing function and preparation method thereof
CN1042444A (en) Optical fibre composite insulator and manufacture method thereof
CN214766533U (en) Inverse opal coating preparation device
KR102295705B1 (en) Heat resistant Coating Composition For Protection of Metal And Manufacturing Methods For The Same
JP3419271B2 (en) Ceramic hollow fiber module
JP2005022935A (en) Bonding method of quartz glass, and structure of quartz glass
JP2001212435A (en) Filter module
JP2010539673A (en) Arc tube with end structure

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7403997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150