JP2020033991A - Pumping-up hydraulic power generation method according to siphon principle, and pumping-up hydraulic power generation structure body for temperature difference power generation and ocean industry use by common use and multi-use application of pumping-up - Google Patents

Pumping-up hydraulic power generation method according to siphon principle, and pumping-up hydraulic power generation structure body for temperature difference power generation and ocean industry use by common use and multi-use application of pumping-up Download PDF

Info

Publication number
JP2020033991A
JP2020033991A JP2018173011A JP2018173011A JP2020033991A JP 2020033991 A JP2020033991 A JP 2020033991A JP 2018173011 A JP2018173011 A JP 2018173011A JP 2018173011 A JP2018173011 A JP 2018173011A JP 2020033991 A JP2020033991 A JP 2020033991A
Authority
JP
Japan
Prior art keywords
water
pressure
power generation
pumping
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018173011A
Other languages
Japanese (ja)
Other versions
JP7241494B2 (en
Inventor
陽 凍田
Yo Korida
陽 凍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018173011A priority Critical patent/JP7241494B2/en
Publication of JP2020033991A publication Critical patent/JP2020033991A/en
Application granted granted Critical
Publication of JP7241494B2 publication Critical patent/JP7241494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

To provide a pumping-up hydraulic power generation structure body which converts hydraulic pressure of an abyss/depths region into high-pressure flowing water by performing pumping-up, regards the interior of an under-water hollow body as a dam lake and dam equipment and performs multi-purpose use of hydraulic power generation in the hollow body temperature difference power generation by means of water equipment after pumping-up and depths water as raw material and resources.SOLUTION: In a pumping-up hydraulic power generation structure body having a purpose for ocean industry, aqua culture and resources development in which pumped-up water is used as raw water and resources, a pumping-up hydraulic power generation hollow body is arranged on under-water upper layer water region, high-pressure water is sucked from an intake port arranged on depths water region and is distributed into a plurality of dividing pipes in a distribution chamber, water flow power generation by means of high-pressure and high-speed water in a plurality of inner pipe-lines is performed, thereafter, hydraulic pressure power generation by means of direct injection discharge water on an injection nozzle is performed, the discharge water is stored in a hollow body lower space, thereafter, is pumped up by the pumping-up pump, the enlarged inner space is maintained in the reduced pressure state, a suction force is retained so as to make pumping-up quantity and flowing-in quantity equal to each other, thereby, suction force is retained to provide a stable electric power and power generation quantity with high power generation effect, at the same time, common use of large-amount pumped-up water is performed, power generation efficiency is improved by performing power generation while using low-temperature depths water, and ocean industry and aqua culture using pumped-up water as raw material/resources are provided.SELECTED DRAWING: Figure 1

Description

本発明は、海洋、湖沼の深層水域に存在する水圧エネルギーの深層高圧水を、耐圧空胴体内に揚水する事で高圧流動水に変換、水中の耐圧空洞体内を減圧状態にして圧力差によるサイフォン原理で深層高圧水を吸引導入し水圧発電後、空洞体内に貯留の低温水を揚水して浮体構造物上で温度差発電の冷却水として共有供用し、両発電方式の電力を併せて水素生産、揚水した多量の海洋水を多目的利用の為の揚水式水圧発電構造体である。The present invention converts deep-pressure high-pressure water of hydraulic energy existing in deep water areas of the ocean, lakes and marshes into high-pressure flowing water by pumping it into a pressure-resistant cavity, and depressurizes the water-resistant pressure cavity to produce a siphon due to a pressure difference. After suction and introduction of deep-layer high-pressure water and hydraulic power generation, low-temperature water stored in the cavity is pumped and shared as cooling water for temperature difference power generation on a floating structure, and hydrogen is generated by combining the power of both power generation methods This is a pumped-storage hydroelectric power generation structure for multipurpose use of a large amount of pumped ocean water.

陸上水力ダム発電は、河川水をダムに貯留、落差による位置エネルギーで発電、水道・農工業・利水・生活用水など、多目的活用で高い発電効率、利便性、経済効果を得るが、現状は環境、気象の変動に左右され建設適地不足による奥地の建設は建設期間の長期化、費用の増大、環境の悪化を招く。Land-based hydro dam power generation stores river water in dams, generates electricity using potential energy from heads, and achieves high power generation efficiency, convenience, and economic effects through multiple uses, such as water supply, agriculture, industrial water use, and domestic water use. However, the construction of the hinterland due to the shortage of land suitable for construction, which is affected by weather fluctuations, leads to a prolonged construction period, an increase in costs, and a deterioration in the environment.

陸上に関連の揚水発電は、他発電の夜間の余剰電力で揚水し必要時間帯に発電するが火力発電による環境の悪化と適地不足及び、稼働時間が短く発電効率が悪い。Pumped-storage power generation on land is pumped by the surplus power of other power generation at night, and power is generated at the required time. However, thermal power generation deteriorates the environment, lacks suitable sites, and has a short operating time and poor power generation efficiency.

従来の水圧発電構造体は、何れも全体構造を一体で構成され、水上か海底、或は上下共に自然環境へ依存し制約を受け、水上附近の一体構造物は、全体構造を波浪、気象、海況に大きく影響を受け、海底に定着の部分は高圧下の水中土木作業は困難で、取水時に地形、砂泥、生物、夾雑物による多大な影響を受ける。Conventional hydraulic power generation structures all have an integral structure, and are dependent on and restricted by the natural environment both above and below the sea, or above and below the sea. It is greatly affected by sea conditions, and it is difficult to work on underwater civil engineering under high pressure in areas that are anchored on the seabed. At the time of water intake, it is greatly affected by topography, sand mud, organisms, and contaminants.

上記の水圧発電構造の水面、海底、地形に依存し制約を受ける一体構造物は、高い水圧下での深層水域、海底の建設と設置は必然的に巨大化・長大化を生じ、建設と設置の困難で、建設費の増大とメンテナンスの困難、維持管理費の増加の為、高水圧による高効率発電と経済効率は望めない。The above-mentioned integrated structure, which depends on the water surface, the seabed, and the topography of the hydraulic power generation structure and is limited, has a large water area and deep seabed under high water pressure, and the construction and installation of the seabed inevitably becomes huge and long. Due to the difficulties of construction, construction costs and maintenance are difficult, and maintenance and management costs are increasing, so high efficiency power generation with high water pressure and economic efficiency cannot be expected.

現在開発中の自然エネルギーでは、太陽発電、風力発電が有力であるが、地形、環境、気候、気象に大きく影響を受け広い面積と不安定な発電の課題があり、海流・波浪・水流発電は発電量、地形、規模に問題あり未開発である。水圧発電・温度差発電は年間を通じ24時間発電による安定発電と、事実上無限に存在の水圧・水量による発電規模の拡大で大電力量も可能あり設置適地も広大であるが、揚水に対する電力消費と発生電力の差が少なく発電効率が落ちる。Solar power and wind power are the major renewable energy currently under development, but there are issues of large area and unstable power generation which are greatly affected by topography, environment, climate and weather. Undeveloped due to problems in power generation, topography and scale. The hydraulic power generation and the temperature difference power generation are stable power generation by 24 hours a year, and the power generation scale is expanded by the virtually unlimited water pressure and water volume. And the generated power is small and the power generation efficiency drops.

特開 2009−299577JP 2009-299577 特開 2009−191851JP 2009-191851 特開 平−5−256248JP-A-5-256248

現在、化石エネルギーと原子力エネルギーは地球温暖化と環境の悪化、又原子力災害の甚大により自然エネルギーと水素エネルギーへの転換が必要である。自然エネルギー発電は、気候、気象への不安定性と経済効率に課題があり、水圧発電と温度差発電も発電効率と費用対効果で現在の時点で実用化に問題がある。At present, fossil energy and nuclear energy need to be converted to renewable energy and hydrogen energy due to global warming and deteriorating environment and severe nuclear disaster. Renewable energy power generation has problems with climate and weather instability and economic efficiency, and hydraulic power generation and temperature difference power generation also have problems in practical use at the present time due to power generation efficiency and cost effectiveness.

水圧発電は、地球に無限に存在する深海、深層水域の水圧を揚水する事で高圧流動水へと転換し発電に利用が可能であるが、揚水での電力消費が多く、発生電力への発電効率の悪さが課題であり新たな発想が必要である。Hydraulic power generation can be used for power generation by converting water pressure into high-pressure fluidized water by pumping the water pressure in the deep sea and deep water areas that exist infinitely on the earth, but the power consumption in pumping is large, and power generation to generated power Inefficiency is a challenge and new ideas are needed.

無限に存在する深層高圧水を揚水し、水中の耐圧空洞体の全面に同一水準、同一水深線上では、面に対し垂直に同一圧力が掛かる水圧原理を利用し内部空間で同水圧・同水量の分流高圧水で複数の発電機で高発電効率を得る為の水圧発電構造を構築する。Pump infinite deep high-pressure water, and apply the same pressure to the entire surface of the pressure-resistant cavity in the water, and at the same depth line, apply the same pressure perpendicular to the surface. A hydraulic power generation structure is constructed to obtain high power generation efficiency with multiple generators using diverted high-pressure water.

水圧発電では、発電量は揚水量と消費電力に比例するが、同一発電量では高い水圧対し揚水量は反比例して少なくて済む、高い水圧を求めて深海、深層水域に取水口を配置するには、発電構造本体を一体構造で深海に降ろす方法と、取水口を分離、導入管を延伸し取水口だけを配置する方法がある。取水口直接附属の一体構造物の深海、深層水域での建造、建設と維持管理と保守点検は困難であり高圧水利用に難が有る。In hydraulic power generation, the amount of power generation is proportional to the amount of pumped water and power consumption, but for the same amount of generated power, the amount of pumped water can be reduced in inverse proportion to the high water pressure.In order to obtain high water pressure, intake ports should be located in deep seas and deep waters. There are two methods: one is to lower the power generation structure body into the deep sea in an integrated structure, and the other is to separate the intake and extend the inlet pipe to arrange only the intake. It is difficult to construct, construct, maintain, and maintain and inspect the integrated structure directly attached to the intake in the deep sea and deep water, and there is a difficulty in using high-pressure water.

水圧発電の設置個所は海洋、湖沼、人工池、水圧の利用できる貯留水、であり、海洋での設置は過酷であり、簡素で,堅牢・耐久性な構造と機能性が求められ、耐圧構造を要する為に建造初期費用や、揚水の為の電力消費経費に対し、無限の水圧・水量を利用し、複数の発電機と発電方法で発電効率を高めて、同時に多量の揚水を原料・資源として海洋産業の開発を目的として、水上の浮体構造プラットフォームで多目的に活用して高い経済効果と経済効率を得て実用性の向上が必要である。The locations where hydraulic power generation is installed are in the ocean, lakes and marshes, artificial ponds, and stored water where water pressure can be used. Installation in the ocean is severe, and a simple, robust, durable structure and functionality are required, and a pressure-resistant structure is required. In order to increase the efficiency of power generation by using multiple generators and power generation methods, use infinite water pressure and water volume to reduce initial construction costs and power consumption costs for pumping water, and simultaneously use a large amount of For the purpose of developing the marine industry, it is necessary to improve the practicality by obtaining high economic effects and economic efficiencies by versatile use of the floating structure platform on water.

課題を解決すべき手段Means to solve the problem

陸上の水力ダム発電方式は河川水をダムに貯水し、工程の落差を利用し位置エネルギーによる発電で電力を得、又、水道、農工業、生活用水等に多目的に活用、それにより、高い発電効率と多目的利用での社会的利便性、経済効果は大であるが、発電に環境、気象・気候、地形の影響を受け、適地不足と建設費用の増大、建設期間の長期化による経済効率と環境の悪化が問題である。The land-based hydro dam power generation system stores river water in a dam, uses the head of the process to generate electric power by potential energy, and uses it for various purposes in water supply, agriculture, industrial water, etc. Although the efficiency and social convenience and economic effects of multi-purpose use are great, the power generation is affected by the environment, weather, climate, and terrain, and shortage of suitable land, increased construction costs, Environmental degradation is a problem.

本発明は、揚水式水圧発電方式として、水力ダム発電を逆転発想して、海洋・湖沼の深層水域の高圧水を、水中に沈下し中立状態で配置した耐圧空洞体内の下部空間をダム湖と仮定して、減圧状態の内部空間と深層高圧水との高い圧力差で、サイフォン原理で吸引導入し、高圧高速水を複数の内部耐圧配管内に装備した複数発電機の回転体に通して水流発電後に高圧噴射ノズルからの直噴射放出水でタービンで水圧発電による二重発電方式と、複数発電機の連動発電との複合発電方式によって十分な余剰電力を得る。The present invention, as a pumped-storage type hydraulic power generation system, is based on the idea of reversing the concept of hydroelectric power generation, and the lower space inside the pressure-resistant cavity, in which high-pressure water in deep water areas of oceans and lakes is submerged and placed in a neutral state, is called a dam lake. Assuming a high pressure difference between the depressurized internal space and the deep high-pressure water, suction is introduced by the siphon principle, and high-pressure, high-speed water is passed through the rotating bodies of multiple generators installed in multiple internal pressure-resistant pipes to flow water. After power generation, sufficient surplus electric power is obtained by a combined power generation system of a double power generation system using hydraulic power generation by a turbine using direct injection discharge water from a high-pressure injection nozzle and an interlocking power generation of a plurality of generators.

揚水式水圧発電構造体の設置環境は、海洋・湖沼であり過酷な環境、激しい気候、気象の影響を避け、発電装置と揚水管の主要設備を、耐圧殻を有する空洞体内に収容設置し水中に自沈し中立状態で任意の水深に定置する。The installation environment of the pumped-storage type hydraulic power generation structure is marine / lake, avoiding harsh environment, severe climate, and weather influence. And submerge in a neutral state and place at an arbitrary water depth.

揚水式水圧発電構造は、大別して水中の耐圧空胴体部分・浮体構造の水上施設プラットフォーム部分・分配室、導入管と取水口部分の機能別に、構造体として合体、連結して構成され、全装備が一体型構造体建造の場合の巨大化・長大化を避けることで建造費用の軽減による経済効率と実用性を得る。又、深海・深層水域に深く導入管を延伸して取水口を配置して高圧水を得る。水上の浮体構造は、メガフロート、水上プラットフォームとして揚水ポンプ、温度差発電、水素発生生産の各施設による揚水の多目的利用による経済効率と費用対効果と実用性向上を可能である。The pumped-storage type hydraulic power generation structure is roughly divided into the following structures: the underwater pressure-resistant cavity, the floating facility platform part of the floating structure, the distribution room, and the functions of the inlet pipe and the intake port. By avoiding the enlargement and lengthening of the one-piece structure, economic efficiency and practicality can be obtained by reducing the construction cost. Also, the high pressure water is obtained by extending the introduction pipe deep into the deep sea / deep water area and disposing the intake port. The floating structure above the water can improve economic efficiency, cost effectiveness and practicality by multipurpose use of pumping water by each facility of megafloat, water pump, temperature difference power generation and hydrogen generation and production as a floating platform.

上記の耐圧空胴体は、二分割建造方式による上部構造と下部構造及び付属設備により構成され、造船施設・重工関係施設により、大・中・小の型式による分割建造で量産が可能であり、船舶・フロートにより搬送され設置現場で合体結合する。The above-mentioned pressure-resistant airframe is composed of an upper structure, a lower structure, and ancillary equipment in a two-segment building system, and can be mass-produced by shipbuilding facilities / heavy construction-related facilities in large, medium, and small types of separate buildings.・ Conveyed by float and united at the installation site.

上部構造は、天頂に揚水のための、外部から内部配管に達する貫通孔と電磁弁と並列してガス体排出の貫通孔と電磁弁を設備し、上部構造の上辺円周の同一水準の位置に同一間隔で外部から内部に達する複数の貫通孔と電磁弁を設備し、接続の各内部配管内に装備の発電機回転体に外部の高圧高速水流を通して複数発電機による連動の水流・水圧発電構造を内蔵する。又、天頂の貫通孔から下部構造に達する揚水管と、天頂を経て連通管を水上のプラットフォームの揚水ポンプに連結する。The upper structure is equipped with a through hole for discharging gaseous gas and a solenoid valve in parallel with a through hole reaching the internal piping from the outside and a solenoid valve for pumping at the zenith, and the same level position on the upper side circumference of the upper structure A plurality of through-holes and solenoid valves that reach from the outside to the inside at the same interval are installed, and an external high-pressure high-speed water flow is passed through the generator rotating body installed in each internal piping of the connection. Built-in structure. In addition, a pumping pipe reaching the lower structure from the through-hole of the zenith and a communication pipe via the zenith are connected to a pumping pump of a platform above the water.

上記の耐圧空洞体の下部構造は、深海・深層水域の高圧水を上部構造の等間隔に設備の貫通孔一体電磁弁を経て吸引導入、各内部配管内の発電機で水流・水圧発電後の放出水を下部空間に貯留する。空洞体内の底部近くに吸引口を配置し、空洞体中心を貫いて天頂の貫通孔一体電磁弁に達する揚水管で貯留水を水上プラットホームの揚水ポンプ施設で揚水の結果、水量減少による内部空間の拡大よる気圧低下を利用し外部高圧水を吸引導入、内部減圧と外部高圧の相対的な圧力差によるサイフォン効果で吸引し、高圧発電で高い発電効率を得るための構造。The lower structure of the above-mentioned pressure-resistant cavity body sucks and introduces high-pressure water in the deep sea / deep water area at equal intervals in the upper structure through the through-hole integrated electromagnetic valve of the equipment, and the generator in each internal piping after the water flow / hydraulic power generation. Store the released water in the lower space. A suction port is located near the bottom inside the cavity, and the pumped water reaches the solenoid valve at the zenith through the center of the cavity. A structure to obtain high power generation efficiency by high-pressure power generation by suctioning and introducing external high-pressure water using the pressure drop due to expansion, suctioning by the siphon effect due to the relative pressure difference between internal decompression and external high pressure.

本発明は、揚水式水圧発電である為、空洞体内の貯留水を浮体構造プラットホームの揚水ポンプ施設で揚水して、ポンプ施設と深層低温水を冷却水として共有供用して温度差発電に利用、その発生電力と空洞体内の水流・水圧発電の発生電力と併せて現地産業施設の動力源とし、又、送電線設備の無い地域では浮体構造プラットホーム上の施設で電解法による水素発生生産と貯蔵による水素エネルギー基地と共に、海洋産業・海洋養殖施設への原料・資源として揚水を多目的に活用し高い経済効率を得る。Since the present invention is a pumping type hydraulic power generation, the water stored in the cavity is pumped by a pumping facility of a floating structure platform, and the pump facility and deep low-temperature water are shared as cooling water and used for temperature difference power generation. The generated power and the power generated by the water flow and hydraulic power generation in the cavity are used as a power source for local industrial facilities, and in areas where there is no transmission line equipment, hydrogen is generated and stored by electrolysis at facilities on floating platforms. Along with the Hydrogen Energy Base, water pumping will be used for multiple purposes as raw materials and resources for marine industry and marine aquaculture facilities, and high economic efficiency will be obtained.

上記の水圧発電後の放出水を下部空間で貯留、空洞体全体のバラスト水として存在後、貯留水量を揚水量と流入量との増減で調節して、空洞体を水中に沈下・中立・浮上の上下活動で任意の水深位置に移動が可能であり、海上気象・海況による疲労・損傷破壊を避ける水深・水域に配置する。The water discharged after the above-mentioned hydraulic power generation is stored in the lower space, and as the ballast water of the whole hollow body, the amount of stored water is adjusted by increasing and decreasing the amount of pumped water and inflow, and the hollow body is submerged, neutralized, and floated in the water It is possible to move to an arbitrary water depth by the vertical movement of the water, and it is placed in the water depth and water area to avoid fatigue, damage and destruction by sea weather and sea conditions.

高い発電効率を得るため、水圧を求め深海、深層水域の海底近くの砂泥や地形、夾雑物や海底生物の影響を受けない水域に、耐圧空胴体外底部に接続の分配室から導入管を延伸して取水口を降ろして配置し、耐圧空洞体内の減圧状態との圧力差を利用し取水口から吸引し、圧力減衰しない導入管を通じて分配室から耐圧空胴体の外殻に沿う導入管へ同圧同水量の高圧高速水を分配、各貫通孔と電磁弁を経て内部配管へ高圧水を分配複数の発電機よる連動発電で高い発電効率を得る。In order to obtain high power generation efficiency, the water pressure is determined and the introduction pipe from the distribution chamber connected to the outer bottom of the pressure-resistant cavity is installed in the water area that is not affected by sand and mud, topography, impurities and marine organisms near the seabed in the deep sea and deep water area. Stretched and lowered the water intake, arranged it, suctioned it from the water intake using the pressure difference from the depressurized state in the pressure-resistant cavity, and from the distribution chamber to the introduction pipe along the outer shell of the pressure-resistant cavity through the pressure-attenuated introduction pipe High-pressure high-speed water with the same pressure and the same volume is distributed, and high-pressure water is distributed to the internal piping via each through hole and solenoid valve. High power generation efficiency is obtained by linked power generation by multiple generators.

深海・深層水域の高圧水を利用して耐圧空洞体内で発電をしつつ、海底近くに設置の取水口から深層高圧水を吸引導入の高圧高速水に、深海底に豊富に存在するガス体・メタンハイドレートを海底から採取しパイプを取水口に接続し混入、上昇水流と共に耐圧空洞体内で発電後に放出水と分離、天頂附近に設置のガス排出孔一体電磁弁と連通管により、水上プラットホームのガス回収ポンプ施設で回収・貯蔵後消費地に搬送。While generating electricity in the pressure-resistant cavity using high-pressure water in the deep sea and deep water, the deep-sea high-pressure high-speed water sucks and introduces deep high-pressure water from the intake port installed near the seabed. Methane hydrate is collected from the seabed, the pipe is connected to the water inlet, mixed with the rising water flow, separated from the discharged water after power generation in the pressure-resistant cavity, and the gas discharge hole integrated solenoid valve installed near the zenith and the communication pipe are used for the water platform. After collection and storage at the gas recovery pump facility, transport to the consumption area.

本発明は、機能別に設置環境対応の3部分構造を設定することで、水中の耐圧空洞体を簡素で堅牢・耐久性の有る構造とし、水上プラットホームでは発電・水素エネルギー基地、及び海洋成分利用産業・海洋養殖等の海洋開発の支援基地に活用、構造体は3部分の機能別構成により、海洋資源開発、海洋養殖センターとして施設の追加設置による発展性と、水中移動と分解・合体での移送・移動設置の自由を容易に確保できる。The present invention provides a simple, robust and durable underwater pressure-resistant cavity by setting a three-part structure corresponding to the installation environment for each function, and a water-based power generation / hydrogen energy base and an ocean component utilization industry・ Used as a support base for marine development such as marine aquaculture, the structure is composed of three parts according to functions, marine resources development, developability by installing additional facilities as a marine aquaculture center, and underwater movement, disassembly and transfer by coalescence -Freedom of moving installation can be easily secured.

上記の耐圧空胴体は水中での構造体とし、耐圧殻内の発電装置と貫通孔一体電磁弁と各種センサーを上部構造に集め、下部構造では揚水管以外は貯留水空間として、上部構造の発電装置の下に床を設置し発電後に床下の下部空間に噴出放水して発電装置を水分から守ると共に、上下空間の密閉ではなく通気を共有する。The above-mentioned pressure-resistant cavity is a submerged structure, and the power generation device, through-hole solenoid valve and various sensors in the pressure-resistant shell are gathered in the upper structure. A floor will be installed under the device, and after power generation, water will be squirted into the lower space under the floor to protect the power generation device from moisture and to share ventilation rather than sealing the upper and lower spaces.

海洋・湖沼・深海・海底での維持管理と保守点検は自然環境の厳しい状況下で困難と経費の点で重要である。人工頭脳の自動管理とロボット保守点検が重要でありセンサーと自動電磁弁での、人工頭脳による空間気圧の調節を各電磁弁の一元管理で行い。空洞体内の保守点検はガス排出孔の不使用時に点検カメラとロボットを挿入による内視鏡点検で行い、大規模定期補修は水上への浮上で行う。空胴体外殻の甲殻類・海藻清掃はロボット掃除機か、浮上して行う。海底近くに配置の取水口は生物・夾雑物の防御籠で保護されているが目詰まり等はロボット保守、又は水上回収も可能である。Maintenance and inspection in the ocean, lakes, marshes, deep seas and the sea floor are important in terms of difficulty and cost under severe conditions of the natural environment. Automatic management of the artificial brain and maintenance and inspection of the robot are important, and the spatial pressure adjustment by the artificial brain with the sensor and the automatic solenoid valve is performed by centralized management of each solenoid valve. Maintenance and inspection inside the cavity is performed by inserting an inspection camera and robot into the endoscope when the gas exhaust hole is not used, and large-scale periodic repairs are performed by floating above the water. The crustaceans and seaweed on the outer shell of the airframe are cleaned by a robot vacuum or by floating. The water intake located near the seabed is protected by a protection basket for organisms and contaminants, but clogging and the like can be maintained by a robot or recovered from the water.

本発明は、海洋・湖沼・人工湖水・貯留水での、高い水圧の期待できる自然環境、人工環境の中で、大部分の構造を既存の技術、工作製造物で建造・設備が可能であり、人口頭脳の一元管理での自動電磁弁の操作での内部気圧調節以外の高度な機械、歯車・配管が少なくメンテナンスが容易である、浮体構造部分の施設を、陸地、離島。無人島に代替設置、又は係留が可能である。The present invention enables the construction and installation of most structures using existing technologies and work products in natural environments and artificial environments where high water pressure can be expected in oceans, lakes, marshes, artificial lakes, and stored water. In addition to advanced machinery other than internal pressure control by the operation of an automatic solenoid valve in the integrated management of the artificial brain, there are few facilities such as floating structures, land and remote islands that are easy to maintain with few gears and piping. Alternative installation or mooring on uninhabited islands is possible.

発明の効果The invention's effect

化石エネルギーと原子力エネルギーは現在、地球温暖化、環境悪化、原子力災害の甚大により再生可能自然エネルギーと水素エネルギーへの転換が必要ある。潜在エネルギーとして極めて高い水圧は、揚水により高圧流動体へ変換、減圧状態の空洞体内へ深層水域の高圧水を圧力差で吸引導入し、高圧と高速水流で複数の発電機による水圧発電で、水圧の存在する所で普遍的に発電が可能である。Fossil and nuclear energy now need to be converted to renewable and hydrogen energy due to global warming, environmental degradation and the consequences of the nuclear disaster. Extremely high water pressure as potential energy is converted into a high-pressure fluid by pumping, high-pressure water in deep water is sucked into the cavity in a decompressed state with a pressure difference, and hydraulic pressure is generated by multiple generators at high pressure and high-speed water flow. Can be generated universally where there is.

大、中、小規模での建造体での発電形態と深浅水域での運用が自由に設定でき、空洞体内の揚水量と流入量を等量にして、内部空間の気圧を相対的に減圧状態に安定して維持する事で年間を通じ24時間操業の高効率発電が可能である。The power generation form of large, medium and small scale buildings and operation in deep and shallow water areas can be freely set, and the amount of pumped water and the amount of inflow in the cavity are made equal, and the pressure in the internal space is relatively reduced. It is possible to generate electricity 24 hours a day by operating it stably.

耐圧空胴体の発電後の貯留水を浮体構造水上施設の揚水ポンプで揚水、温度差発電の冷却水として供給、揚水施設を共有併用による消費電力経費の大幅な低減により温度差発電の高い発電効率と実用性が向上、水中での水圧発電電力と併せて十分な余剰電力を得て、現地施設への電力の供給と水素生産でエネルギー・燃料基地とする。High-efficiency power generation of temperature difference power generation by pumping the stored water after power generation of the pressure-resistant cavity using the pump of the floating structure floating facility and supplying it as cooling water for temperature difference generation And the practicality is improved, and sufficient surplus power is obtained in addition to hydraulic power generated in water, and power and hydrogen production are supplied to local facilities to become an energy and fuel base.

水圧発電と温度差発電との揚水施設の共有併用で発電効率の向上により、浮体構造水上施設での水素生産及び海洋水を原料・資源とし多目的に活用、海水成分利用産業、海洋養殖・海洋漁業基地、外洋燃料補給基地、海洋・湖沼の活性浄化の中心施設になる。Improve power generation efficiency by sharing and using pumping facilities for hydraulic power generation and temperature difference power generation.Hydrogen production at floating structure floating facilities and versatile utilization of marine water as raw materials and resources, seawater component utilization industry, marine aquaculture and marine fishing Bases, open sea refueling bases, and central facilities for active purification of oceans and lakes.

本発明の揚水による水圧発電構造体は、設置環境、と機能別に3部分で構成され、水中、水上、深層水域部として、各部を導管とケーブル、チェーンで連結する事で一体構造物の複雑化、巨大化を避け、簡素で堅牢・耐久性の構造と、機能の単純化と役割分担で、維持管理,保守点検、補修をセンサーと人工頭脳とロボットでの管理を容易にする。The hydraulic power generation structure by pumping according to the present invention is composed of three parts according to the installation environment and functions, and as an underwater, over the water, or deep water area, each part is connected with a conduit, a cable, and a chain to complicate the integrated structure. With a simple, robust and durable structure, avoiding huge size, simplification of functions and division of roles, maintenance, maintenance, inspection, and repair are facilitated by sensors, artificial brains, and robots.

水中構造の設置現場に応じ大中小の型式建造での建造費の軽減、水上施設の各設備、産業の発展・開発余地の確保、耐圧空胴体から導入管を延伸し取水口を深層水域に設置する事で数百〜数千mの水圧を利用、取水口からの高速高圧水の吸引導入に混入して海底資源のガス体、メタンハイドレートを吸引後に空洞体内に回収、発電後に空洞体内に海洋水を放出の際に分離して、ガス体排出孔で水上に回収し貯蔵する。Reduce construction costs for large, medium and small type buildings according to the installation site of the underwater structure, secure facilities for water facilities, secure room for industrial development and development, extend the introduction pipe from the pressure-resistant airframe, and install the intake port in deep water By using the water pressure of several hundred to several thousand meters, it is mixed with the suction of high-speed high-pressure water from the intake, and the gas body and methane hydrate of seabed resources are collected in the hollow body after suction, and in the hollow body after power generation. Ocean water is separated at discharge and collected and stored on the water at gas outlets.

水圧発電構造体は機能別3部分の構成と、浮体構造のため環境や必要性に応じ機能を追加、分離と変化が可能であり、離島・沿岸湾岸・湖沼では浮体構造上施設を陸上に設置、又は浮体構造フロートを係留して状況に即して移動が可能である。大型は外洋・遠洋、中型は近海・離島、小型は沿岸・湾岸、湖沼の必要に応じ、大型は大電力による水素エネルギー基地・遠洋養殖基地・海洋開発基地・中型は電力・養殖・消費地電力供給、小型は現場電力供給と沿海・湖沼養殖・赤潮・無酸素水域の水質浄化等で汎用性と利便性が高い。Hydraulic power generation structure is composed of three parts by function, and because of the floating structure, additional functions can be added, separated and changed according to the environment and necessity. Floating structures are installed on land on remote islands, coastal shores and lakes. Alternatively, the floating structure float can be moored and moved according to the situation. Large-scale is open ocean / pelagic, medium-sized is near-shore / island, small-sized is nearshore / gulf, lakes and marshes. The power supply and small size are highly versatile and convenient for on-site power supply and water purification of coastal waters, lake ponds, red tides, and anoxic waters.

揚水式水圧発電構造体。水中、水上の全体構造断面概要図Pumped water pressure power generation structure. Underwater and above water above water 耐圧空洞体部分。水中空洞体と発電構造・貯留部分の断面概要図Pressure-resistant cavity part. Cross-sectional schematic diagram of underwater cavity and power generation structure / storage part 浮体構造水上フロート部分。水上プラットホームの施設概要一覧図Floating structure Water float. List of facilities on the water platform 分流導入管・分配室・深層水導入管・取水口部分。取水口から内部配管までの水流分配図Branch pipe, distribution room, deep water pipe, intake port. Water flow distribution diagram from intake to internal piping 空洞体上部構造。上部構造の配管・発電構造a−dの内aとcの断面概要図Superstructure of hollow body. Sectional schematic view of a and c in piping and power generation structures ad of the upper structure 空洞体下部構造。下部構造の揚水管・貯留空間a−d内aとcの断面概要図Substructure of hollow body. Schematic cross-sectional view of a and c in pumping pipe and storage space ad of lower structure 空洞体中央平面図。上下構造中央フロアー発電部分の平面概要図The center plan view of a hollow body. Schematic plan view of the power generation part of the upper and lower structure center floor 取水口図 深層水域配置図とガス体吸引口部分図Intake port diagram Deep water area layout and gas body suction port partial view

考案を実施する為の形態Forms for implementing the invention

本発明は、揚水式水圧発電構造体図1として、揚水による水圧発電の為の各種の耐圧構造の内の、球形の空洞体を中心部分とした形状状態で説明をする。大別して設置環境と機能別に3部分の構造体図1として構成され、水中の耐圧空洞体部分図2、と浮体構造水上施設部分図3と、取水口30深層水導入管28、分流分配室26、分流導入管4部分図4として連結して全体構造図1を構成する。The present invention will be described with reference to FIG. 1 as a pumped-storage hydraulic power generation structure in a state of a spherical hollow body as a center portion of various pressure-resistant structures for hydraulic power generation by pumping. The structure is roughly divided into three parts according to the installation environment and function, and is configured as a three-part structure FIG. , The partial flow introducing pipe 4 is partially connected as FIG.

上記の、揚水式水圧発電構造体図1は、外洋、遠洋、近海、沿岸湾岸、湖沼、人口貯留水の自然環境と設置現場状況に応じて、大、中、小の型式での製造が可能であり、船舶建造に類似の為に造船所、重工業関係の大、中規模の施設で建造可能で、上部構造図5・下部構造図6の分割建造後に船舶か台船で搬送、設置現場で合体結合する。The above-mentioned pumped-storage hydraulic power generation structure Fig. 1 can be manufactured in large, medium, and small models according to the natural environment of the open sea, ocean, inshore, coastal bay, lakes and marshes, and the conditions of the installation site. Because it is similar to ship construction, it can be built in large or medium-sized facilities related to shipyards and heavy industries, and transported by ship or barge after split construction of the upper structure diagram 5 and lower structure diagram 6, at the installation site Merge and combine.

上部構造図5は、耐圧殻を有する空洞体の天頂中心に、揚水管2の貫通孔と一体の自動電磁弁3と、天頂附近に、貫通孔と一体の自動電磁弁を装備したガス体排出孔を設置し、上部構造5の天頂より3分の1程度下に、高圧水導入の為に深層水域に設置した取水口30a−30dから吸引の高速高圧水流を、深層水導入管28から、分流分配室26で4本の分流導入管4a−4dへ配分、貫通孔一体電磁弁8a−8dを耐圧空胴体図2の、同心円周上に等間隔に設備して、内部耐圧配管9a−9dへ接続、配管内で4機の発電回転体10a−10dに分流高圧水流を通し4機の連動で水流発電11a−11d後、高圧水放出ダクト12a−12dの高圧噴射ノズル一体自動電磁弁13a−13dから直噴射放出水で4機のタービン14a−14dの連動で水圧発電15a−15d後、放出水は下部構造空間24で貯留後し下部構造図6の揚水機能と連動する。FIG. 5 shows a gas discharge equipped with an automatic solenoid valve 3 integrated with the through hole of the pumping pipe 2 at the center of the zenith of the hollow body having the pressure-resistant shell, and an automatic solenoid valve integrated with the through hole near the zenith. A hole is provided, and a high-speed high-pressure water flow sucked from the intake ports 30a-30d installed in the deep water area for the introduction of high-pressure water about one-third below the zenith of the upper structure 5 is passed through the deep water introduction pipe 28. The distribution valves 26 are distributed to the four distribution flow introduction pipes 4a-4d in the distribution flow distribution chamber 26, and the through-hole integrated solenoid valves 8a-8d are installed at equal intervals on the concentric circumference of the pressure-resistant cavity shown in FIG. The diverted high-pressure water flow is passed through four power generation rotating bodies 10a to 10d in the piping, and after the water flow power generation 11a to 11d in conjunction with the four power generation rotating bodies 10a to 10d, the high pressure injection nozzle integrated automatic solenoid valve 13a- of the high pressure water discharge ducts 12a to 12d is connected. Four turbines 14a-1 with direct injection discharge water from 13d After pressure generator 15a-15d in conjunction of d, release water works with Shi after storage pumping function of the substructure 6 in substructure space 24.

水圧は、水中の耐圧空洞体図2の内部に対し垂直に働き、その全表面に水圧が加わるが同一水準、水深位置では同一の水圧が加わる。深海・深層水域dwの高圧水を、上部構造図5の下方の円周上の同一水準・水深の位置に吸引導入し、分配室を経て4本の分流導入管4a−4dに配分し耐圧空洞体図2の上部の円周上に均等に設置の貫通孔一体自動電磁弁8aー8dから内部耐圧配管9a−9dへ同水圧・同水量の高圧高速水で4機連動による水流発電と高圧放出水で4機連動のタービン水圧発電での計8機の発電機による高効率発電を耐圧空胴体部分図2で得る。The water pressure acts perpendicularly to the inside of the pressure-resistant cavity body 2 in the water, and the water pressure is applied to the entire surface thereof, but the same water pressure is applied at the same level and at the water depth position. The high-pressure water in the deep sea / deep water area dw is suction-introduced to a position at the same level and water depth on the lower circumference of the upper structure diagram 5 and distributed to the four branch introduction pipes 4a-4d via the distribution chamber, thereby forming a pressure-resistant cavity. Water flow power generation and high-pressure discharge by interlocking four units with the same water pressure and the same amount of high-pressure, high-speed water from the through-hole integrated automatic solenoid valves 8a-8d evenly installed on the upper circumference of the body figure 2 to the internal pressure-resistant pipes 9a-9d High-efficiency power generation by a total of eight generators in turbine hydraulic power generation in conjunction with four turbines using water is obtained in FIG. 2 of the pressure-resistant cavity.

設置現場で上部構造図5と下部構造図6を合体後、分流導入管4a〜4d、分流分配室2の順に耐圧空胴体図2の外殻に装備し、搬送の支援船から水上に降ろし、分流分配室26下部から深海・深層水域に深層水導入管を延伸し取水口30a−30dを配置。水上の浮体構造プラットホーム図3と耐圧構造体図2はロール状ケーブル・鎖34a,34bで懸垂,可動連通管35a−35cで接続。中央ベルトでボルト、パッキングで結合、必要に応じ分離し、大型補修等の定期点検、移動時には浮上し、終了後に再結合し,再始動により沈下、再注入と揚水での減圧状態の維持により発電再開は容易である。After the upper structure diagram 5 and the lower structure diagram 6 are combined at the installation site, the diversion introduction pipes 4a to 4d and the diversion distribution chamber 2 are sequentially mounted on the outer shell of the pressure-resistant cavity diagram 2 and lowered from the support boat for transportation onto the water, A deep water inlet pipe extends from the lower part of the split flow distribution chamber 26 to the deep sea / deep water area, and intake ports 30a to 30d are arranged. The floating structure platform above water and the pressure resistant structure shown in FIG. 3 are suspended by rolled cables / chains 34a and 34b and connected by movable communication pipes 35a to 35c. Combined with bolts and packing with a central belt, separated as necessary, periodic inspections such as large-scale repairs, surfaced when moving, reassembled after completion, subsidence by restart, re-injection and power generation by maintaining reduced pressure by pumping Restarting is easy.

下部構造図6は、深層水域の高圧水を、上部構造図5の等間隔に設備の貫通孔一体電磁弁8a−8dを経て吸引導入、各内部耐圧配管9a−9d内蔵の発電機で水流・水圧発電、後の放出水を下部空間24に貯留する。耐圧空洞体図2内の底部近くに吸引口を配置し、空洞体図2中心を貫いて天頂の貫通孔一体電磁弁3に達する揚水管2で貯留水を浮体構造プラットホーム図3の揚水ポンプ施設39に揚水し水量減少による内部空間の拡大による気圧の低下で深層高圧水を吸引導入、内部減圧と外部高圧の相対的な圧力差によるサイフォン原理で吸引し、発電効率を得るための下部構造である。The lower structure FIG. 6 sucks and introduces high pressure water in the deep water area at equal intervals in the upper structure FIG. 5 through the through-hole integrated electromagnetic valves 8a-8d of the equipment. Water discharged after hydraulic power generation is stored in the lower space 24. A suction port is arranged near the bottom in the pressure-resistant hollow body figure 2, and the stored water is pumped through the center of the hollow body figure 2 to the through-hole integrated solenoid valve 3 at the zenith by the water pumping pipe 2. Pumping to 39 and introducing deep high-pressure water by pressure reduction due to expansion of internal space due to reduced water volume, suction by the siphon principle due to the relative pressure difference between internal decompression and external high pressure, with a lower structure to obtain power generation efficiency is there.

上部構造図5と下部構造図6を合体後、浮上状態で取水部分の分流分配室26・深層水導入管28・取水口30部分を接続、水圧発電初動の準備操作として、耐圧空胴体図2の全電磁弁を開放し、揚水管2とガス体排出孔6から浮体構造プラットホーム図3のポンプ施設39と初動支援船の揚水ポンプを逆転させて注水。気圧調節管一体電磁弁18の開放で内部気圧を大気圧に維持し、下部構造空間24の満水状態での沈下により取水口から外部水が耐圧空胴体図2に流入、浮体構造体図3で水中に懸垂定置と同時に、揚水管2とガス体排出孔6以外の全電磁弁を閉鎖の状態で、水上の揚水ポンプ36a逆の逆転で、下部空間24の満水状態の注入水を下限一杯まで急速に排水で生じる内部空間の拡大と、水上の真空ポンプ37でガス体排出孔6から内部空気の吸引によって生じる、強い減圧状態を、耐圧殻1の性能範囲内で維持し、取水口30から内部配管まで充満の滞留水を内部配管の全電磁弁を一挙に開放して強力に減圧空間へ抜き取り、それに追従する深層水域dwの取水口30からの高速高圧水を内部配管9に吸引、揚水による流出水量と流入水量の均衡を人工頭脳で調節し、高い減圧状態を維持して外部圧力との相対的圧力差による発電での高い発電効率と、安定・継続発電が初動直後より可能である。After the upper structure diagram 5 and the lower structure diagram 6 are combined, in a floating state, the diversion / distribution chamber 26, the deep water introduction pipe 28, and the intake port 30 of the intake portion are connected, and as a preparatory operation for the initial operation of hydraulic power generation, the pressure-resistant cavity diagram 2 All the solenoid valves are opened, and the pumping facility 39 of the floating structure platform and the pump for the first support vessel are reversed from the pumping pipe 2 and the gas discharge hole 6 to inject water. The internal pressure is maintained at the atmospheric pressure by opening the pressure control pipe integrated electromagnetic valve 18, and the external water flows into the pressure-resistant cavity body FIG. 2 from the intake port due to the sinking of the lower structure space 24 in a full state, and the floating body structure FIG. Simultaneously with suspension in water, with all solenoid valves other than the water pump 2 and the gas discharge hole 6 closed, the reverse of the water pump 36a on the water is reversed to fill the lower space 24 with the filled water to the lower limit. The strong decompression state, which is caused by the rapid expansion of the internal space caused by drainage and the suction of internal air from the gas discharge hole 6 by the vacuum pump 37 above the water, is maintained within the performance range of the pressure-resistant shell 1, and from the intake port 30. All the solenoid valves of the internal pipe are opened at a stroke and the high-pressure high-pressure water from the intake port 30 of the deep water area dw is sucked into the internal pipe 9 and pumped up. Of inflow and outflow Adjust the 衡 in artificial intelligence, and high power generation efficiency in the power generation due to the relative pressure difference between the external pressure to maintain a high vacuum state, stable and continuous power generation can be immediately after initial.

本発明は、揚水式水圧発電図1である為、耐圧空洞体図2内の貯留水を大量に浮体構造揚水ポンプ施設39で揚水して、深層低温水を冷却水として温度差発電40に利用、その発生電力と耐圧空洞体図2内の水流・水圧発電の電力と併せて現地産業施設の動力源とし、又、送電線設備の無い地域では浮体構造プラットホーム図3の施設で、電解法による水素発生41と貯蔵42、による水素エネルギー基地と共に、原料・資源として揚水を多目的に活用し、費用対効果・経済効率の向上で実用性を高める事ができる。  Since the present invention is a pumping type hydraulic power generation system shown in FIG. 1, a large amount of water stored in a pressure-resistant hollow body diagram 2 is pumped by a floating structure pumping pump facility 39 and deep low-temperature water is used as cooling water for a temperature difference power generation 40. The generated power and the power of the water flow and hydraulic power generation in Fig. 2 are used as a power source for local industrial facilities, and in areas where there is no transmission line equipment, the facilities shown in Fig. 3 of the floating structure are used for the electrolysis method. Along with the hydrogen energy base by the hydrogen generation 41 and the storage 42, pumping can be utilized for various purposes as raw materials and resources, and the practicality can be improved by improving cost-effectiveness and economic efficiency.

水圧を求め深海、深層水域dwの海底近くの砂泥や地形、夾雑物、海底生物の影響を受けない深度・水域に、耐圧空胴体外底部に接続の分配室26から深層水導入管28を延伸して取水口を降ろして配置し、耐圧空洞体図2内の減圧状態との圧力差を利用し取水口30a−30dから吸引し、圧力減衰しない深層水導入管28を通じて分配室26から耐圧空胴体図2の外殻に沿う分流導入管4aー4dへ同圧同水量の高圧高速水を分流、各貫通孔一体電磁弁を経て内部耐圧配管9a−9dへ分配、複数の発電機10a−10dでの連動発電で高い発電効率を得る。A deep water inlet pipe 28 is connected from the distribution chamber 26 connected to the outer bottom of the pressure-resistant airframe at a depth and water area where the water pressure is determined and is not affected by sand and mud, topography, impurities, and marine organisms near the seabed in the deep sea and deep water area dw. It is stretched and the intake port is lowered and arranged, and the pressure is taken from the intake ports 30a-30d using the pressure difference from the depressurized state in the pressure-resistant cavity body FIG. The high-pressure high-speed water of the same pressure and the same amount is diverted to the diverting introduction pipes 4a-4d along the outer shell of the cavity body FIG. 2 and distributed to the internal pressure-resistant pipes 9a-9d via the solenoid valves integrated with the through holes, and a plurality of generators 10a- High power generation efficiency is obtained by linked power generation at 10d.

深海・深層水域dwの高圧水を利用して耐圧空洞体図2内で発電をしつつ、海底sf近くに設置の取水口30a―30dから深層高圧水を吸引導入の高圧高速水に、深海底sfに豊富に存在するガス体・メタンハイドレートを採取して、採取装置から取水口30aに配管を接続して混入、上昇水流と共に耐圧空洞体図2内で水圧発電a―d後放出水と分離、天頂附近に設置のガス排出孔一体自動電磁弁6と連通管を通じ水上浮体構造フロート図3のガス回収ポンプ37で回収・貯蔵後消費地に搬送。
While generating power in the pressure-resistant cavity body diagram 2 using high-pressure water in the deep sea / deep water area dw, deep high-pressure water is suction-introduced from the intake 30a-30d installed near the sea floor sf to high-pressure high-speed water, Sampling gas and methane hydrate abundantly present in the sf, connecting piping from the sampling device to the water intake 30a, mixing the water with the rising water flow and the discharge water after the hydraulic power generation ad in the pressure-resistant cavity body FIG. Separation, floating above water float through the automatic solenoid valve 6 with gas discharge hole installed near the zenith and the communication pipe.
0

本発明は、機能別に設置環境対応の3部分構造を設定することで、水中の耐圧空洞体図2を簡素で堅牢・耐久性の構造とし、浮体構造プラットホーム図3で温度差発電40・水素エネルギー41基地として機能施設、海洋成分利用産業45・水産センター46、海洋養殖設備47等の海洋開発の支援基地として活用。又、取水口を耐圧空胴体から分離して深層水導入管28と共に深海・深層水域dwに延伸して設置の結果、全体一体型構造体に比べ、十分な高圧水で高発電効率と経済効率を得る事ができる。The present invention sets a three-part structure corresponding to the installation environment for each function, thereby making the underwater pressure-resistant cavity FIG. 2 a simple, robust and durable structure, and using the floating structure platform in FIG. Utilized as 41 bases, functional facilities, marine component utilization industry 45, fisheries center 46, marine aquaculture facilities 47 and other marine development support bases. In addition, the water intake is separated from the pressure-resistant cavity, and extended to the deep sea / deep water area dw together with the deep water inlet pipe 28. As a result, high power generation efficiency and economic efficiency are achieved with sufficient high pressure water compared to the whole integrated structure. Can be obtained.

耐圧空胴体図2は、耐圧殻1内の稼働部分を発電装置と貫通孔一体装備の電磁弁と各種センサーとを上部構造図5に集め、下部構造図6の揚水管2以外は貯留水空間24として、上部構造図5の発電装置15a〜dに床を設置し発電後に床下の下部貯留空間24に噴出放水して水圧発電装置1a〜dを水分から守ると共に上下空間の密閉ではなく半ばを開放して空間と気圧を共有する。In the pressure-resistant cavity FIG. 2, the working part in the pressure-resistant shell 1 is composed of a power generator, a solenoid valve integrally provided with a through hole, and various sensors in an upper structure diagram 5. 24, the floors are installed on the power generators 15a to 15d of the upper structure diagram 5, and after power generation, water is spouted and discharged into the lower storage space 24 below the floor to protect the hydraulic power generators 1a to 1d from moisture, and to seal not the upper and lower spaces but the middle. Open to share pressure with space.

海洋・湖沼・での維持管理と保守点検は自然環境の厳しい状況下で困難と経費の点で重要である、本発明はコントロール、センター44で自動管理とロボット保守点検が重要でありセンサーと自動電磁弁による内部気圧の調節を各電磁弁の一元管理で行い空洞体図2内の保守点検はガス排出孔6の不使用時に点検カメラ、とロボットを挿入して内視鏡点検で行い、空胴体外殻の甲殻類・海藻清掃はロボット掃除機か、浮上して行う。海底近くに配置の取水口30a―dは、生物・夾雑物の防御ケース31a―dで保護されているが目詰まり等はロボット保守、又は水上回収も可能である。Maintenance, maintenance and inspection in the ocean, lake and marsh are important in terms of difficulty and cost under severe conditions of the natural environment. In the present invention, automatic control and robot maintenance and inspection in the control and center 44 are important, and sensors and automatic inspection are important. Adjustment of the internal air pressure by the solenoid valve is performed under the unified management of each solenoid valve, and maintenance and inspection in the hollow body figure 2 is performed by inserting an inspection camera and a robot when the gas exhaust hole 6 is not used, and performing an endoscope inspection, and Clean the crustaceans and seaweed on the outer shell of the fuselage using a robot cleaner or floating. The water intakes 30a-d arranged near the sea floor are protected by biological / contaminant protection cases 31a-d, but clogging and the like can be maintained by a robot or collected on the water.

本発明は、全体構造図1が移動可能な水中浮遊・中立状態部分と水上部分図3の構成の結果、必要とする水域に、全体構造図1のまま水中を船舶で曳航、又は、水中部分図2と水上部分図3を分離状態で曳航し、水圧発電空洞体図2と取水設備図4と浮体構造プラットホーム図3設備を移動させ再構築する事で、海洋開発現場や資源の存在する現場水域で直接、現地発電電力・エネルギー供給とプラットホーム図3施設・揚水施設39の基地・拠点として利用が可能であり、開発現場や資源量の変化や環境の変化に応じて展開、撤収、移動が可能で利便性が極めて高い。The present invention is based on the configuration shown in FIG. 3 where the entire structure diagram 1 is movable underwater and in a floating state, and as a result of the configuration shown in FIG. Figure 2 and the above-water partial view 3 are towed in a separated state, and the hydropower generation cavity figure 2, the intake facility figure 4, and the floating structure platform figure 3 are moved and reconstructed, so that the marine development site and the site where resources exist It can be used directly in the water area as a base / base for local power generation / energy supply and platform Fig. 3 facilities / pumping facilities 39. Deployment, withdrawal, and transfer can be carried out in response to changes in development sites, resources, and the environment. Possible and extremely convenient.

W 海面、水面
Wh 上層高温水域
Wl 海洋気象・海況の影響を受けぬ上層水域
dw 深海、深層低温水域
Sf 海底・水底
Sm メタンハイドレート地層
1 耐圧殻
2 揚水管
3 揚水管一体自動電磁弁
4 深層水分流導入管 4a、4b、4c、4d、
5 上下構造結合ベルト 5a、5b、
6 ガス体排出孔一体自動電磁弁
7 内圧調節管兼用電力ケーブル管
8 分流水導入管貫通孔一体電磁弁 8a、8b、8c、8d、
9 内部耐圧ダクト配管 9a、9b、9c、9d、
10 配管内水流発電機 10a、10b、10c、10d、
11 水流発電室 11a、11b、11c、11d、
12 高圧水放出ダクト 12a、12b、12c、12d、
13 直噴射放出ノズル一体電磁弁 13a、13b、13c、13d、
14 タービン発電機 14a、14b、14c、14d、
15 水圧発電室, 15a、15b、15c、15d、
16 発電室防水保護及び内部気圧調節室
17 気圧調節電磁弁
18 内部気圧調節管一体電磁弁
19 内部支柱一体上段フロアー
20 遮水中央フロアー
22 上部構造空間
23 放出水ダクト 23a、23b、23c、23d、
24 下部構造貯留水空間
25 下層支柱 25a、25b、25c、25d、
26 深層水分流分配室
27 分配室取水口一体自動電磁弁
28 深層水導入管
29 取水口一体自動電磁弁
30 深層水取水口 30a,30b、30c、30d、
31 夾雑物防御ケース 31a、31b、31c、31d
32 係留鎖・ケーブル、
W Sea surface, water surface Wh Upper high-temperature water area Wl Upper water area dw unaffected by marine weather and sea conditions Deep sea, deep low-temperature water area Sf Seafloor / bottom Sm Methane hydrate formation 1 Pressure proof shell 2 Pumping pipe 3 Pumping pipe integrated automatic solenoid valve 4 Deep Moisture flow introducing pipes 4a, 4b, 4c, 4d,
5 Upper and lower structural connecting belts 5a, 5b,
6 Automatic electromagnetic valve integrated with gas discharge hole 7 Power cable tube also used as internal pressure control pipe 8 Electromagnetic valve integrated with through hole for through-flow water introduction pipe 8a, 8b, 8c, 8d,
9 Internal pressure-resistant duct piping 9a, 9b, 9c, 9d,
10 In-pipe water flow generators 10a, 10b, 10c, 10d,
11 water flow power generation room 11a, 11b, 11c, 11d,
12 high pressure water discharge ducts 12a, 12b, 12c, 12d,
13 Direct injection discharge nozzle integrated solenoid valve 13a, 13b, 13c, 13d,
14 Turbine generators 14a, 14b, 14c, 14d,
15 hydraulic power generation room, 15a, 15b, 15c, 15d,
16 Waterproofing protection and internal pressure control room for power generation room 17 Pressure control solenoid valve 18 Pressure control solenoid valve integrated with internal pressure control valve 19 Internal floor control integrated floor upper floor 20 Waterproof central floor 22 Upper structure space 23 Discharge water duct 23a, 23b, 23c, 23d,
24 Lower structure storage water space 25 Lower strut 25a, 25b, 25c, 25d,
26 Deep water flow distribution chamber 27 Distribution chamber automatic intake valve integrated solenoid valve 28 Deep water introduction pipe 29 Automatic electromagnetic valve integrated with intake port 30 Deep water intake port 30a, 30b, 30c, 30d,
31 Contaminant protection cases 31a, 31b, 31c, 31d
32 mooring chains / cables,

33 海底・水底係留杭
34 懸垂ケーブル、チェーン 34a、34b、
35 連通管 35a、35b、35c、
36 揚水ポンプ 36a、36b、
37 ガス体・エアー吸引ポンプ 37a、
38 内部気圧調節真空ポンプ
39 ポンプセンター
40 温度差発電センター
41 水素発生センター
42 水素貯留タンク
43 ガス体貯留タンク
44 コントロールセンター
45 海洋成分利用分離センター
46 水産センター
47 外洋養殖設備
48 耐圧空胴体内貯留水位 上限
49 体圧空洞体内貯留水位 下限
33 Seabed / waterbed mooring pile 34 Suspended cables, chains 34a, 34b,
35 communication pipes 35a, 35b, 35c,
36 pumps 36a, 36b,
37 Gas / air suction pump 37a,
38 Internal pressure control vacuum pump 39 Pump center 40 Temperature difference power generation center 41 Hydrogen generation center 42 Hydrogen storage tank 43 Gas storage tank 44 Control center 45 Marine component utilization separation center 46 Fisheries center 47 Ocean culture facility 48 Water level in pressure-resistant cavity Upper limit 49 Retention water level in body pressure cavity Lower limit

Claims (10)

水圧発電構造の設置環境は、海洋・湖沼・人工貯留池であり、水中に配置の耐圧殻を有する空胴体部分と、分流導入管・分流分配室・深層水導入管・深層水取水口部分と、浮体構造プラットホーム施設部分で構成され、設置環境と機能別に3部分の構造体として連結し、耐圧空洞体は、上部構造と下部構造と外殻への附帯設備を設置現場で合体され、取水部分は外殻に沿って上部から、分流導入管、外殻底に接続の分配室、深層水域に延伸の深層水導入管、取水口で構成、浮体構造プラットホームは揚水ポンプ施設、温度差発電・水素発生、貯蔵施設を設備、耐圧空洞体内の貯留水を揚水する事で生じる減圧空間へ、深層高圧水を複数の貫通孔から内部配管に分流配分して複数発電機による連動で、水流・水圧の2方式複合発電を特徴とする揚水式水圧発電構造体である。The installation environment of the hydraulic power generation structure is the ocean, lake, marsh, and artificial reservoir, and the cavity part with a pressure hull placed in the water, the branch introduction pipe, the branch distribution chamber, the deep water intake pipe, the deep water intake part. It consists of a floating structure platform facility part, which is connected as a three-part structure according to the installation environment and function. The pressure-resistant cavity is combined with the upper structure, lower structure, and auxiliary equipment to the outer shell at the installation site, and the water intake part From the top along the outer shell, consists of a diversion inlet pipe, a distribution chamber connected to the bottom of the outer shell, a deep water inlet pipe extending to the deep water area, and an intake port.The floating structure platform is a pumping pump facility, temperature difference power generation and hydrogen Generation, storage facilities, and distribution of deep high-pressure water from multiple through-holes to internal piping to a decompression space created by pumping stored water in the pressure-resistant cavity, and interlocking water flow and water pressure with multiple generators Characterized by two-system combined power generation A water-type hydraulic power generating structure. 水中の耐圧空胴体に対し、水圧は全表面に作用し、面に垂直に圧力が加わり、同一水深・水準線上では等圧に作用する水圧原理を利用し、耐圧空胴体の上部構造天頂中心から少し下方の同心円周の同一水深・水準線上に外殻から内部耐圧配管に達する貫通孔と一体自動電磁弁を等間隔に複数配置、深層水域の高圧水を取水口から分流分配室を経て分流導入管に配分し揚水による内部空間拡大で生じる減圧状態を利用して、サイフォンの原理で同圧同水量の分流を貫通孔から複数の内部耐圧配管へ吸引導入し、配管内に設置の発電機に高圧高速水流を通し複数機連動での水流発電後、高圧噴射ノズルで直噴射放出水での複数機連動のタービン発電機による水圧発電での高効率発電を特徴とする揚水式水圧発電構造である。Water pressure acts on the entire surface of a pressure-resistant cavity in water, and pressure is applied perpendicularly to the surface.Using the principle of water pressure acting at the same depth and level line, the water pressure acts from the center of the upper structure zenith of the pressure-resistant cavity. A plurality of through holes and an integrated automatic solenoid valve are arranged at equal intervals from the outer shell to the internal pressure-resistant pipe on the same water depth / level line slightly below the concentric circle, and high-pressure water in deep water is diverted from the water inlet through the diversion / distribution chamber. Utilizing the reduced pressure generated by the expansion of the internal space by pumping and distributing to the pipes, the same pressure and the same amount of water are suctioned into multiple internal pressure-resistant pipes through the through-holes using the siphon principle, and the generator installed inside the pipes This is a pumping type hydraulic power generation structure that features high-efficiency power generation by hydraulic power generation using multiple turbines linked with multiple turbines using high-pressure injection nozzles and direct injection discharge water after high-speed high-speed water flow and multiple jets. . 上部構造は天頂中心に、揚水管と貫通孔一体自動電磁弁を設備、附近にガス体排出孔一体自動電磁弁及び内部気圧調節管と貫通孔一体自動電磁弁を設備、複数の内部耐圧配管内に水流発電設備、配管から内部放出時に複数のタービン発電機の水圧発電設備を配置し、上部構造に配管、発電設備、貫通孔、電磁弁を集中装備し、下部構造との合体で、上部構造空間を気圧調節に利用し、下部構造空間は全体を貯留水空間として構成、揚水によって上部構造の空間気圧を高い減圧状態に維持し、揚水量と流入量の増減調節を自動電磁弁と、内部気圧調節管の電磁弁で内部気圧を強い減圧状態に設定調節して、連続発電と発電量の安定を特徴とする揚水式水圧発電上部構造である。The upper structure is equipped with an automatic solenoid valve integrated with a pumping pipe and a through-hole at the center of the zenith, equipped with an automatic solenoid valve integrated with a gas discharge hole, an internal pressure regulating pipe and an automatic solenoid valve integrated with a through-hole, and inside multiple internal pressure-resistant pipes. Water flow power generation equipment, hydraulic power generation equipment for multiple turbine generators at the time of internal discharge from pipes, and concentrated installation of pipes, power generation equipment, through holes, solenoid valves in the upper structure, combined with the lower structure, upper structure The space is used for pressure control, the lower structure space is configured as a reservoir water space, the space pressure of the upper structure is maintained at a high pressure by pumping, and the increase and decrease of pumping and inflow are controlled by an automatic solenoid valve. This is a pumped-storage hydraulic power generation upper structure that features continuous power generation and stable power generation by setting and adjusting the internal pressure to a strongly depressurized state with the solenoid valve of the pressure control pipe. 下部構造は、耐圧空洞体底近くに配置の揚水管口から天頂中心の貫通孔一体自動電磁弁へ接続の揚水管以外は、発電後の放出水の貯留空間として存在し上部構造と合体。上部構造に吸引導入の深層高圧水を、同圧同水量で各内部耐圧配管に分配し、水流発電後に高圧放出水で水圧発電後に下部空間に放出、貯留後に揚水管で水上に揚水する事で貯留水減少による減圧状態の内部空間と取水口から導入の深層高圧水との相対的圧力差で吸引、流入水量と揚水量を自動電磁弁で等量に調節、内部気圧を減圧状態で一定に保つことで、年間24時間連続発電を特徴とする揚水式水圧発電下部構造である。The lower structure exists as a storage space for the discharged water after power generation, except for the pumping pipe connected from the pumping pipe port located near the bottom of the pressure-resistant cavity to the through-hole integrated automatic solenoid valve at the center of the zenith, and is integrated with the upper structure. By distributing the deep high-pressure water with suction into the upper structure at the same pressure and the same amount to each internal pressure-resistant pipe, discharging it into the lower space after hydraulic power generation with high-pressure discharge water after water flow power generation, and pumping it over the water with a water pump after storage. Suction is performed by the relative pressure difference between the internal space in the decompressed state due to the decrease of the stored water and the deep high-pressure water introduced from the intake, the inflow water and the pumped water are adjusted to the same amount by the automatic solenoid valve, and the internal pressure is kept constant in the decompressed state. It is a pumped-storage hydraulic power generation substructure characterized by maintaining power for 24 hours a year. 発電後の空洞体内貯留水を浮体構造プラットホーム揚水ポンプ施設で揚水、深層低温水を冷却水として温度差発電に利用、揚水式水圧発電と、揚水ポンプ施設を共有兼用して設備費及び揚水消費電力経費の節減で、温度差発電と揚水式水圧発電の発電効率の向上と、両発電方式の連動での、安定した大電力量を得る事を特徴とする揚水式水圧発電構造体である。Pumping water stored in the cavity after power generation at the floating platform pumping pump facility, using deep low-temperature water as cooling water for temperature difference power generation, equipment cost and pumping power consumption by sharing the pumping pump facility with the pumping type hydraulic power generation This is a pumped-storage hydraulic power generation structure that is characterized by improving power generation efficiency of temperature difference power generation and pumped-storage hydraulic power generation at a reduced cost, and obtaining a stable and large amount of power by interlocking both power generation systems. 水圧発電後の放出水を下部構造空間で貯留、耐圧空洞体全体のバラスト水として存在、揚水量と流入量の増減を、人工頭脳の一元管理の元で自動電磁弁によって調節、水中に全没沈下、中立、浮上で任意の水深、水域に移動設置し、取水口の設置深度を極力深く設定し、深層高圧水と内部気圧との相対的圧力差を耐圧構造の限度内で最大化する事で、サイフォン原理で吸引力を高めて高圧高速水流として耐圧構造内に吸引導入し、水流発電と水圧発電の発電効率と発電量の増大を特徴とする揚水式水圧発電体である。Water discharged after hydraulic power generation is stored in the substructure space, present as ballast water in the entire pressure-resistant cavity, and the increase and decrease in the amount of pumped water and the amount of inflow are adjusted by an automatic solenoid valve under the integrated management of the artificial brain, completely submerged in the water Move to any water depth and water area by subsidence, neutral, and floating, set the intake depth as deep as possible, and maximize the relative pressure difference between the deep high-pressure water and the internal pressure within the limit of the pressure-resistant structure. This is a pumping type hydraulic power generator characterized by increasing the power of suction based on the siphon principle and introducing it into the pressure-resistant structure as a high-pressure high-speed water flow, thereby increasing the power generation efficiency and power generation of water flow power generation and hydraulic power generation. 水圧を求め深海、深層水域の海底近くの高圧水域に、耐圧空胴体外殻底に接続の分流分配室底から圧力の減衰しない導入管を深く延伸し取水口を設置、耐圧空洞体本体から取水口を分離した結果、本体の水深位置を上層水域に配置する事で耐圧構造の負担を軽減し耐圧空洞体内空間の相対的減圧状態を高く維持しつつ、高深度の水圧を、取水口から、深層導入管・分流分配室を経て分流導入管に配分、高圧高速水を分配し複数発電機での水流発電と水圧発電の為の取水・分配構造を特徴とする揚水式水圧発電構造である。The water pressure is determined, and in the high-pressure water area near the seabed in the deep sea and deep water, the intake pipe that does not attenuate the pressure is extended deeply from the bottom of the shunt distribution chamber connected to the bottom of the pressure-resistant cavity, and the water intake is installed. As a result of separating the mouth, the depth of the main body is located in the upper water area, reducing the load on the pressure-resistant structure, maintaining a high relative pressure reduction state of the space inside the pressure-resistant cavity, and increasing the water pressure at a high depth from the intake port This is a pumped-storage type hydraulic power generation structure characterized by a water intake and distribution structure that distributes high-pressure, high-speed water through a deep-introduction pipe and a diversion distribution chamber, distributes high-pressure, high-speed water, and uses multiple generators for water-flow power generation and hydraulic power generation. 水圧発電の初動準備として、耐圧空洞体と取水部分の全貫通孔一体電磁弁を開放して、水上のポンプ施設で揚水ポンプを逆転させ耐圧空洞体内に注水、貯留水空間満水で水中沈下、懸垂状態で分流導入管から流入注水の外部水を貫通孔一体電磁弁を閉鎖して管内に滞留させ、貯留空間満杯状態で揚水を開始、ガス排出孔と気圧調節管の真空ポンプで耐圧空洞体内を強力に吸引、揚水による空間拡張と併せて内部空間を強い減圧状態に保ち、深層水域に配置の取水口から分流導入管までの滞留水を貫通孔一体電磁弁を一挙に全電磁弁を開放して内部配管内に吸引導入、滞留水の一挙吸引に追随して深層高圧水を吸引し揚水量と流入量を同量に調節での初動時の高い減圧状態の継続で、高い発電効率での安定発電と連続発電を特徴とする揚水式水圧発電空洞体である。To prepare for the initial operation of hydraulic power generation, open the pressure-resistant cavity and the solenoid valve with all through holes in the water intake section, reverse the pump at the pump facility above the water, inject water into the pressure-resistant cavity, submerge in the storage water space, submerge, and suspend In this state, the external water from the inflow water injected from the diversion inlet pipe is retained in the pipe by closing the solenoid valve with the through-hole, pumping is started when the storage space is full, and the gas discharge hole and the vacuum pump of the air pressure control pipe are used to evacuate the pressure-resistant cavity. Along with the expansion of the space by powerful suction and pumping, the internal space is kept in a strongly decompressed state, and the accumulated water from the intake port located in the deep water area to the branch flow introduction pipe is opened all at once with the solenoid valve with integrated through hole. Suction is introduced into the internal piping, and the high pressure water is sucked in accordance with the sudden suction of the accumulated water, and the pumping amount and the inflow amount are adjusted to the same amount. Pumped water characterized by stable and continuous power generation It is a power generation cavity body. 深海、深層水域の海底,水底近くに設置の取水口から吸引導入の高圧高速水流に、深海底に存在のガス体、メタンハイドレートを、気体状態で採集、採集機器からパイプ・ホースで取水口に接続、上昇水流に混入、耐圧空洞体内で発電後に放出の際分離、天頂附近に設置のガス体排出孔と貫通孔一体自動電磁弁を経て、連通管を通じて浮体構造水上施設のガス回収ポンプで回収・貯蔵、自家発生電力の利用でメタンハイドレートの採掘・回収を特徴とする揚水式水圧発電構造体。Gathers gas and methane hydrate present in the deep sea bottom into the high-pressure, high-speed water stream sucked in from the deep sea, deep sea water, and the intake located near the bottom. Connected to the ascending water flow, separated during power generation in the pressure-resistant cavity, separated when discharged, passed through the gas discharge hole and through-hole automatic solenoid valve installed near the zenith, and through the communication pipe through the gas recovery pump of the floating structure floating facility A pumped-storage hydraulic power generation structure characterized by mining and recovery of methane hydrate by collecting and storing, and using self-generated electricity. 設置環境と機能別に3部分で構成の揚水式水圧発電構造は、水中、水上、深層水域部分と連結連携し、分配室、導入管部分を耐圧空洞体外殻へ外付けし、取水口を深層水域に配置の結果、発電機と自動電磁弁以外に機械・歯車の可動部分の少ない結果、簡素で、堅牢・耐久性の高い空洞体内外部構造と上下構造の機能の単純化と役割分担での内部空間の拡大で、排出管による内視鏡保守点検と簡易補修、内部清掃を水中で行う簡便さと、分割合体構造と移動、浮上能力により、構造体の分離による大型補修、定期保守点検を水上で実施できる利便性が特徴の耐圧空胴体水中構造部分。The pumped-storage hydroelectric power generation structure, which consists of three parts according to the installation environment and functions, is connected and linked to the underwater, over-water, and deep water areas, and the distribution chamber and the inlet pipe are externally attached to the pressure-resistant hollow body shell, and the intake is deep water area. As a result, there are few moving parts of the machine and gears in addition to the generator and the automatic solenoid valve, resulting in a simple, robust, and durable cavity. Due to the expansion of the space, maintenance and inspection and simple repair of the endoscope by drainage pipes are easy to perform underwater cleaning. The underwater structure of the pressure-resistant cavity, which is characterized by the convenience that can be implemented.
JP2018173011A 2018-08-28 2018-08-28 Pumped-storage hydraulic power generation structure with two methods of water flow and hydraulic power generation. Active JP7241494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173011A JP7241494B2 (en) 2018-08-28 2018-08-28 Pumped-storage hydraulic power generation structure with two methods of water flow and hydraulic power generation.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173011A JP7241494B2 (en) 2018-08-28 2018-08-28 Pumped-storage hydraulic power generation structure with two methods of water flow and hydraulic power generation.

Publications (2)

Publication Number Publication Date
JP2020033991A true JP2020033991A (en) 2020-03-05
JP7241494B2 JP7241494B2 (en) 2023-03-17

Family

ID=69667492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173011A Active JP7241494B2 (en) 2018-08-28 2018-08-28 Pumped-storage hydraulic power generation structure with two methods of water flow and hydraulic power generation.

Country Status (1)

Country Link
JP (1) JP7241494B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845401A (en) * 1971-10-08 1973-06-29
JPH05256248A (en) * 1992-03-16 1993-10-05 Takehito Kato Seawater hydraulic generating plant
JP2005143403A (en) * 2003-11-17 2005-06-09 Ouchi Ocean Consultant Inc Drifting installation for utilizing ocean deep water
JP2015007416A (en) * 2013-06-24 2015-01-15 有限会社サンワールド Pumping-up relay housing and pumping-up system using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845401B2 (en) 2005-03-28 2011-12-28 京セラ株式会社 Information output device
JP5256248B2 (en) 2010-06-04 2013-08-07 株式会社藤商事 Game machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845401A (en) * 1971-10-08 1973-06-29
JPH05256248A (en) * 1992-03-16 1993-10-05 Takehito Kato Seawater hydraulic generating plant
JP2005143403A (en) * 2003-11-17 2005-06-09 Ouchi Ocean Consultant Inc Drifting installation for utilizing ocean deep water
JP2015007416A (en) * 2013-06-24 2015-01-15 有限会社サンワールド Pumping-up relay housing and pumping-up system using the same

Also Published As

Publication number Publication date
JP7241494B2 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
CN106103985B (en) Marine thermal energy conversion system mounted on ship
CN102124210B (en) An energy storage system
US11655794B2 (en) Marine-pumped hydroelectric energy storage
CN114622514B (en) Artificial dredging tidal bay system for ecological restoration of muddy coast
CN116473002A (en) Offshore aquaculture device and offshore aquaculture system
CN115581212A (en) Offshore aquaculture system and design method thereof
GB2445284A (en) A hydro-electric generator arrangement for underwater placement
CA3028920C (en) A system and method for extracting power from tides
KR101952561B1 (en) A modular offshore structure assembly comprising a controllable floating module, at least one controllable floating module, and a method for assembling a modular offshore structure in situ
CN102493421A (en) Tidal water lifting platform
CN203268295U (en) High-stability floating platform floating with water level
JP2020033991A (en) Pumping-up hydraulic power generation method according to siphon principle, and pumping-up hydraulic power generation structure body for temperature difference power generation and ocean industry use by common use and multi-use application of pumping-up
CN115162262A (en) Offshore oil storage device and offshore oil storage system
JP2021143669A (en) Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method
JP7440210B2 (en) Pumped storage water pressure power generation method
CN106256964A (en) Multipurpose over-water platform
CN105525602A (en) Shallow water oil-gas platform using underwater flexible storage device
JPS62228672A (en) Tide utilizing dock type pressure power generating method
CN205387698U (en) Use flexible storage device's shallow water oil gas platform under water
CN105221332B (en) The formula that snorkels tidal current energy generating equipment
Rehman FLOATING ARCHITECTURE
KR20180101650A (en) Air bubble generating apparatus using wave force energy
CN106638527A (en) Multi-purpose water platform
GB2598824A (en) Tidal hydroelectric generating system
JPH0296015A (en) Recovery device of suspended substance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211022

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211112

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211118

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211223

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220308

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220508

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220706

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221219

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230210

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230217

R150 Certificate of patent or registration of utility model

Ref document number: 7241494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150