JP2020033287A - Diester compound method for producing the same - Google Patents

Diester compound method for producing the same Download PDF

Info

Publication number
JP2020033287A
JP2020033287A JP2018160088A JP2018160088A JP2020033287A JP 2020033287 A JP2020033287 A JP 2020033287A JP 2018160088 A JP2018160088 A JP 2018160088A JP 2018160088 A JP2018160088 A JP 2018160088A JP 2020033287 A JP2020033287 A JP 2020033287A
Authority
JP
Japan
Prior art keywords
formula
compound represented
diester compound
represented
naphthol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018160088A
Other languages
Japanese (ja)
Other versions
JP7007999B2 (en
Inventor
良太 本岡
Ryota Motooka
良太 本岡
美緒 土谷
Mio Tsuchiya
美緒 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Original Assignee
Ueno Fine Chemicals Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2018160088A priority Critical patent/JP7007999B2/en
Publication of JP2020033287A publication Critical patent/JP2020033287A/en
Application granted granted Critical
Publication of JP7007999B2 publication Critical patent/JP7007999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide a new diester compound which is useful as an additive for various resins.SOLUTION: There is provided a diester compound represented by formula (1).SELECTED DRAWING: None

Description

本発明は、新規なジエステル化合物に関する。   The present invention relates to novel diester compounds.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の
高集積化・微細化がますます加速している。これに伴い、積層板及びプリント配線板等の電子部品には、誘電率、誘電正接、熱膨張率、耐熱性、耐薬品性等の物性が改良された様々な樹脂組成物が用いられている。
In recent years, high integration and miniaturization of semiconductors widely used in electronic devices, communication devices, personal computers, and the like have been increasingly accelerated. Along with this, various resin compositions with improved physical properties such as dielectric constant, dielectric loss tangent, coefficient of thermal expansion, heat resistance, and chemical resistance are used for electronic components such as laminated boards and printed wiring boards. .

このような樹脂組成物に用いられる硬化剤として、例えば、ジ(α−ナフチル)イソフタレート等のエステル化合物が知られている(特許文献1〜3)が、ナフタレンジカルボン酸とナフトールとのジエステル化合物については未だ知られていない。   As a curing agent used in such a resin composition, for example, an ester compound such as di (α-naphthyl) isophthalate is known (Patent Documents 1 to 3), but a diester compound of naphthalenedicarboxylic acid and naphthol is known. Is not yet known.

特開2003−082063号公報JP-A-2003-082063 特開2018−044040号公報JP 2018-044040 A 国際公開2018/008415号公報International Publication WO2018 / 008415

本発明の目的は、様々な樹脂用の添加剤、特に硬化剤等の添加剤として有用な、新規なジエステル化合物を提供することにある。また、本発明の他の目的は新規なジエステル化合物の製造方法を提供することにある。   An object of the present invention is to provide a novel diester compound useful as an additive for various resins, particularly as an additive such as a curing agent. Another object of the present invention is to provide a method for producing a novel diester compound.

本発明は、式(1)で表されるジエステル化合物に関する。

Figure 2020033287
The present invention relates to a diester compound represented by the formula (1).
Figure 2020033287

また、本発明は式(2)で表される化合物と式(3)で表されるナフトールとを反応させる工程を含む、式(1)で表されるジエステル化合物の製造方法に関する。

Figure 2020033287
(式中、Xは塩素原子、臭素原子またはヨウ素原子を示す。)
Figure 2020033287
The present invention also relates to a method for producing a diester compound represented by the formula (1), comprising a step of reacting the compound represented by the formula (2) with a naphthol represented by the formula (3).
Figure 2020033287
(In the formula, X represents a chlorine atom, a bromine atom or an iodine atom.)
Figure 2020033287

本発明のジエステル化合物は、様々な樹脂の硬化剤、紫外線吸収剤、結晶核剤等の添加剤として使用できる。   The diester compound of the present invention can be used as an additive such as a curing agent for various resins, an ultraviolet absorber, and a nucleating agent.

本発明は、式(1)で表されるジエステル化合物に関する。

Figure 2020033287
The present invention relates to a diester compound represented by the formula (1).
Figure 2020033287

本発明の好ましい態様において、式(1)で表される化合物としては、式(1)−1、式(1)−2、式(1)−3、及び式(1)−4で表される化合物が挙げられる。

Figure 2020033287
Figure 2020033287
Figure 2020033287
Figure 2020033287
In a preferred embodiment of the present invention, the compound represented by the formula (1) is represented by the formula (1) -1, the formula (1) -2, the formula (1) -3, and the formula (1) -4. Compounds.
Figure 2020033287
Figure 2020033287
Figure 2020033287
Figure 2020033287

本発明の式(1)で表されるジエステル化合物の製造方法は、例えば式(2)で表される化合物と式(3)で表されるナフトールとを反応させる工程を含む。

Figure 2020033287
(式中、Xは塩素原子、臭素原子またはヨウ素原子を示す。)
Figure 2020033287
The method for producing a diester compound represented by the formula (1) of the present invention includes, for example, a step of reacting a compound represented by the formula (2) with a naphthol represented by the formula (3).
Figure 2020033287
(In the formula, X represents a chlorine atom, a bromine atom or an iodine atom.)
Figure 2020033287

式(2)で表される化合物および式(3)で表されるナフトールとしては、市販のものや、当業者に知られた方法で製造したものを用いることができる。   As the compound represented by the formula (2) and the naphthol represented by the formula (3), a commercially available product or a product produced by a method known to those skilled in the art can be used.

式(2)で表される化合物としては、式(2)−1または式(2)−2で表される化合物が好ましい。

Figure 2020033287
Figure 2020033287
As the compound represented by the formula (2), a compound represented by the formula (2) -1 or (2) -2 is preferable.
Figure 2020033287
Figure 2020033287

式(2)−1で表される化合物の製造方法としては、式(4)で表される化合物と塩化チオニルを反応させる方法が挙げられる。式(2)−2で表される化合物についても、同様の方法により製造することができる。

Figure 2020033287
Examples of the method for producing the compound represented by the formula (2) -1 include a method of reacting the compound represented by the formula (4) with thionyl chloride. The compound represented by the formula (2) -2 can also be produced by the same method.
Figure 2020033287

式(3)で表されるナフトールとしては、式(3)−1(2−ナフトールまたはβ−ナフトール)または式(3)−2(1−ナフトールまたはα−ナフトール)で表される化合物が挙げられる。

Figure 2020033287
Figure 2020033287
Examples of the naphthol represented by the formula (3) include compounds represented by the formula (3) -1 (2-naphthol or β-naphthol) or the formula (3) -2 (1-naphthol or α-naphthol). Can be
Figure 2020033287
Figure 2020033287

具体的には、式(1)−1で表される化合物は、式(2)−1で表される化合物と式(3)−1で表されるβ−ナフトールとを反応させることにより得ることができ、式(1)−2で表される化合物は、式(2)−1で表される化合物と式(3)−2で表されるα−ナフトールとを反応させることにより得ることができる。
同様に、式(1)−3で表される化合物は、式(2)−2で表される化合物と式(3)−1で表されるβ−ナフトールとを反応させることにより得ることができ、式(1)−4で表される化合物は、式(2)−2で表される化合物と式(3)−2で表されるα−ナフトールとを反応させることにより得ることができる。
Specifically, the compound represented by the formula (1) -1 is obtained by reacting the compound represented by the formula (2) -1 with β-naphthol represented by the formula (3) -1. The compound represented by the formula (1) -2 can be obtained by reacting the compound represented by the formula (2) -1 with α-naphthol represented by the formula (3) -2. Can be.
Similarly, the compound represented by the formula (1) -3 can be obtained by reacting the compound represented by the formula (2) -2 with β-naphthol represented by the formula (3) -1. The compound represented by the formula (1) -4 can be obtained by reacting the compound represented by the formula (2) -2 with α-naphthol represented by the formula (3) -2. .

式(2)で表される化合物および式(3)で表されるナフトールを反応させる工程は、脱酸剤および/または溶媒の存在下で実施するのがよい。   The step of reacting the compound represented by the formula (2) and the naphthol represented by the formula (3) is preferably performed in the presence of a deoxidizing agent and / or a solvent.

脱酸剤としては、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、ピリジンおよびトリエチルアミンからなる群から選択される一種以上を用いてよい。   As the deoxidizing agent, at least one selected from the group consisting of sodium hydrogencarbonate, sodium carbonate, potassium carbonate, pyridine and triethylamine may be used.

脱酸剤の使用量としては、特に限定されないが、通常、原料である式(2)で表される化合物1モル当量に対して0.1〜10モル当量が好ましく、0.6〜3.0モル当量がより好ましい。   The amount of the deoxidizing agent to be used is not particularly limited, but is usually preferably 0.1 to 10 molar equivalents, and more preferably 0.6 to 3.0 molar equivalents per 1 molar equivalent of the raw material compound represented by the formula (2). 0 molar equivalents are more preferred.

溶媒としては、例えば、THF(テトラヒドロフラン)、DMF(N,N−ジメチルホルムアミド)、DMA(N,N−ジメチルアセトアミド)、メタノール、エタノール、イソプロパノール、アセトン、ジエチルエーテル、クロロベンゼン、ヘキサン、ヘプタン、デカン、ニトロベンゼン、二硫化炭素、ニトロメタン、ジクロロメタン、ジクロロエタン、テトラヒドロフラン、ジオキサン、ベンゼン、トルエン、キシレン、四塩化炭素、ニトロメタン、アセトニトリルおよび軽油からなる群から選択される一種以上を用いてよく、反応性に優れる点でテトラヒドロフランが好ましく用いられる。   Examples of the solvent include THF (tetrahydrofuran), DMF (N, N-dimethylformamide), DMA (N, N-dimethylacetamide), methanol, ethanol, isopropanol, acetone, diethyl ether, chlorobenzene, hexane, heptane, decane, One or more selected from the group consisting of nitrobenzene, carbon disulfide, nitromethane, dichloromethane, dichloroethane, tetrahydrofuran, dioxane, benzene, toluene, xylene, carbon tetrachloride, nitromethane, acetonitrile and light oil may be used, and the reactivity is excellent. And tetrahydrofuran is preferably used.

溶媒の使用量としては、特に限定されないが、通常、原料である式(2)で表される化合物100質量部に対して200〜2000質量部であるのが好ましく、400〜1000質量部であるのがより好ましい。   The amount of the solvent to be used is not particularly limited, but is usually preferably from 200 to 2,000 parts by mass, more preferably from 400 to 1,000 parts by mass, based on 100 parts by mass of the compound represented by the formula (2) as a raw material. Is more preferred.

式(2)で表される化合物は、式(3)で表されるナフトール1モル当量に対して1.5〜2.5モル当量存在させて反応することが好ましく、1.8〜2.2モル当量存在させて反応することがより好ましい。式(2)で表される化合物が式(3)で表されるナフトール1モル当量に対して1.5モル当量未満である場合、反応が十分に進行しない傾向があり、式(2)で表される化合物が式(3)で表されるナフトール1モル当量に対して2.5モル当量を超過する場合、原料の無駄が多く、副生物が生成する傾向がある。   The compound represented by the formula (2) is preferably reacted in the presence of 1.5 to 2.5 molar equivalents relative to 1 molar equivalent of the naphthol represented by the formula (3), and the reaction is preferably performed in the range of 1.8 to 2. More preferably, the reaction is carried out in the presence of 2 molar equivalents. When the amount of the compound represented by the formula (2) is less than 1.5 molar equivalents relative to 1 molar equivalent of the naphthol represented by the formula (3), the reaction tends not to proceed sufficiently. When the compound represented by formula (3) exceeds 2.5 molar equivalents relative to 1 molar equivalent of the naphthol represented by the formula (3), waste of raw materials is large and by-products tend to be generated.

反応温度は原料や溶媒などによって異なるため、特に限定されないが、通常30〜100℃で反応が行われる。   The reaction temperature is not particularly limited because it varies depending on the raw material, the solvent, and the like, but the reaction is usually performed at 30 to 100 ° C.

反応時間は原料や溶媒などによって異なるため、特に限定されないが、通常0.5〜3時間である。   The reaction time is not particularly limited because it varies depending on the raw material and the solvent, but is usually 0.5 to 3 hours.

反応後、得られたジエステル化合物は、さらに精製によって純度を向上させることができる。精製は、濾過、洗浄、濃縮、抽出、蒸留、カラムクロマト分離等の一般的な精製操作を経て行われ、適宜目的とする純度まで精製することができる。   After the reaction, the purity of the obtained diester compound can be further improved by purification. Purification is performed through general purification operations such as filtration, washing, concentration, extraction, distillation, and column chromatography, and can be appropriately performed to the desired purity.

このようにして得られた式(1)で表されるジエステル化合物は、これを様々な樹脂に配合し、樹脂硬化剤、紫外線吸収剤、結晶核剤等の添加剤として好適に用いることができる。   The diester compound represented by the formula (1) thus obtained can be suitably used as an additive such as a resin curing agent, an ultraviolet absorber, and a crystal nucleating agent by blending it with various resins. .

式(1)で表されるジエステル化合物が配合される樹脂としては、例えば、エポキシ樹脂等の熱硬化性樹脂、ポリプロピレン、ポリエチレン、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、アクリロニトリル−スチレン共重合樹脂(AS樹脂)およびポリエステルなどの樹脂またはその共重合樹脂が挙げられ、これらの樹脂または共重合体樹脂からなる群から選択される一種又は二種以上を組み合わせて用いることができる。式(1)で表されるジエステル化合物を樹脂硬化剤として用いる場合、式(1)で表されるジエステル化合物、特に式(1)−1〜式(1)−4のいずれかで表される化合物を含むエポキシ樹脂硬化剤とすることが好ましい。また、式(1)で表されるジエステル化合物、特に式(1)−1〜式(1)−4のいずれかで表されるジエステル化合物を含むエポキシ樹脂硬化剤とエポキシ樹脂とを含む樹脂組成物は、積層板及びプリント配線板等の電子部品等に好適に用いられる。   Examples of the resin in which the diester compound represented by the formula (1) is blended include a thermosetting resin such as an epoxy resin, polypropylene, polyethylene, polyoxymethylene, polyamide, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene. Resins such as copolymer resins (ABS resins), acrylonitrile-styrene copolymer resins (AS resins) and polyesters or copolymer resins thereof; and one or two selected from the group consisting of these resins or copolymer resins. More than one species can be used in combination. When the diester compound represented by the formula (1) is used as a resin curing agent, the diester compound represented by the formula (1), particularly, any one of the formulas (1) -1 to (1) -4 It is preferable to use an epoxy resin curing agent containing a compound. Further, a resin composition containing an epoxy resin curing agent containing a diester compound represented by the formula (1), particularly a diester compound represented by any of the formulas (1) -1 to (1) -4, and an epoxy resin The product is suitably used for electronic components such as laminates and printed wiring boards.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

各化合物は以下の方法によって分析した。   Each compound was analyzed by the following method.

H−NMRスペクトル>
サンプル10mgをクロロホルムで溶解し、Bruker Biospin AV400M(Bruker社製)を用いて、溶液状態でのH−NMRスペクトルを測定した。
<1 H-NMR spectrum>
A sample (10 mg) was dissolved in chloroform, and the 1 H-NMR spectrum in a solution state was measured using Bruker Biospin AV400M (manufactured by Bruker).

<FT−IRスペクトル>
Spectrum One(PerkinElmer社製)を用いてFT−IRスペクトルを測定した。
<FT-IR spectrum>
The FT-IR spectrum was measured using Spectrum One (manufactured by PerkinElmer).

<マススペクトル(MS)>
Waters 2690/2996 Alliance−TQ Detectorを用いてMSスペクトルを測定した。
<Mass spectrum (MS)>
MS spectra were measured using a Waters 2690/2996 Alliance-TQ Detector.

<高速液体クロマトグラフィー(HPLC)>
装置: Watersアライアンス 2690/2998
カラム型番: L−Column
液量: 1.0mL/分
溶媒比: HO(pH2.3)/CHOH=50/50(12分)→10/90(27分)、グラジエント分析
波長: 229nm
カラム温度: 40℃
尚、ジエステル化合物の純度は、HPLCチャートの面積%から算出した。
<High performance liquid chromatography (HPLC)>
Apparatus: Waters Alliance 2690/2998
Column model number: L-Column
Liquid volume: 1.0 mL / min Solvent ratio: H 2 O (pH 2.3) / CH 3 OH = 50/50 (12 min) → 10/90 (27 min), gradient analysis Wavelength: 229 nm
Column temperature: 40 ° C
In addition, the purity of the diester compound was calculated from the area% of the HPLC chart.

<示差走査熱量測定(DSC)>
セイコーインスツルメンツ株式会社製EXSTAR6000を用いて、[25℃から250℃まで20℃/分で昇温]→[250℃で10分間保持]→[25℃まで20℃/分で冷却]→[再び20℃/分で250℃まで昇温]の操作により、各温度での示差走査熱量を測定した。
<Differential scanning calorimetry (DSC)>
Using EXSTAR 6000 manufactured by Seiko Instruments Inc., [heat from 25 ° C. to 250 ° C. at 20 ° C./min.]→[hold at 250 ° C. for 10 minutes] → [cool to 20 ° C./min. The temperature was raised to 250 ° C at a rate of ° C / min.

[実施例1]
[2,6−ナフタレンジカルボン酸β−ナフチルの合成]
撹拌機、温度センサーおよび還流管を備えた500mLの4口フラスコに、2,6−ナフタレンジカルボン酸40g(0.18mol)、塩化チオニル53g(0.45mol)、DMF(N,N−ジメチルホルムアミド)0.2gおよびTHF(テトラヒドロフラン)120gを加えて、窒素気流下、65℃に昇温し4時間撹拌した。撹拌終了後、反応液を室温まで冷却し、10hPaに減圧した後、そのまま徐々に50℃に昇温し、THFを留去した。
[Example 1]
[Synthesis of β-naphthyl 2,6-naphthalenedicarboxylate]
In a 500 mL four-necked flask equipped with a stirrer, a temperature sensor and a reflux tube, 40 g (0.18 mol) of 2,6-naphthalenedicarboxylic acid, 53 g (0.45 mol) of thionyl chloride, DMF (N, N-dimethylformamide) 0.2 g and 120 g of THF (tetrahydrofuran) were added, and the mixture was heated to 65 ° C. under a nitrogen stream and stirred for 4 hours. After completion of the stirring, the reaction solution was cooled to room temperature, and the pressure was reduced to 10 hPa. Then, the temperature was gradually increased to 50 ° C., and THF was distilled off.

得られた濃縮物を1Lの4口フラスコに移し、再びTHF723gを加え、窒素気流下、室温で撹拌しながらβ−ナフトール53g(0.37mol)を加えた後、続けてトリエチルアミン41g(0.41mol)を滴下した。続けて65℃まで昇温し、同温度で4時間撹拌した。撹拌終了後、反応液を室温まで冷却し、ろ過を行った。   The obtained concentrate was transferred to a 1-L four-necked flask, to which 723 g of THF was added again, and 53 g (0.37 mol) of β-naphthol was added while stirring at room temperature under a nitrogen stream, followed by 41 g (0.41 mol) of triethylamine. ) Was added dropwise. Subsequently, the temperature was raised to 65 ° C., and the mixture was stirred at the same temperature for 4 hours. After completion of the stirring, the reaction solution was cooled to room temperature and filtered.

得られた固体を水500gおよびメタノール360gで洗浄後、10hPaに減圧した後、そのまま徐々に50℃に昇温して減圧乾燥し、式(1)−1で表されるジエステル化合物として2,6−ナフタレンジカルボン酸β−ナフチル66gを得た(収率76%、純度94.3%)。   The obtained solid was washed with 500 g of water and 360 g of methanol, and then depressurized to 10 hPa, then gradually heated to 50 ° C. and dried under reduced pressure to obtain 2,6,6 as a diester compound represented by the formula (1) -1. 66 g of β-naphthyl-naphthalenedicarboxylate was obtained (yield: 76%, purity: 94.3%).

得られたジエステル化合物についてH−NMRスペクトル、FT−IRスペクトルおよびマススペクトルを測定した。H−NMRスペクトル、FT−IRスペクトル、マススペクトルを以下に示す。 1 H-NMR spectrum, FT-IR spectrum and mass spectrum of the obtained diester compound were measured. The 1 H-NMR spectrum, FT-IR spectrum, and mass spectrum are shown below.

H−NMR(400MHz,CDCl):δ8.91(s,2H,H),8.34(d,2H,H,J=8.9Hz),8.16(d,2H,H,J=8.2Hz),7.94(d,2H,H、J=8.8Hz),7.89(d,2H,H,J=8.9Hz)、7.86(d,2H,H,J=8.5Hz)、7.75(s,2H,H)、7.48−7.54(m,4H,H,H)7.42(d,2H,H,J=8.5Hz)

Figure 2020033287
FT−IR:3060cm−1(ν-CH)、1729cm−1(ν-C=O)
MS:m/z=468[M+H] 1 H-NMR (400MHz, CDCl 3): δ8.91 (s, 2H, H b), 8.34 (d, 2H, H c, J = 8.9Hz), 8.16 (d, 2H, H f, J = 8.2Hz), 7.94 (d, 2H, H i, J = 8.8Hz), 7.89 (d, 2H, H a, J = 8.9Hz), 7.86 (d , 2H, H e, J = 8.5Hz), 7.75 (s, 2H, H j), 7.48-7.54 (m, 4H, H g, H h) 7.42 (d, 2H , H d , J = 8.5 Hz)
Figure 2020033287
FT-IR: 3060 cm -1 (ν-CH), 1729 cm -1 (ν-C = O)
MS: m / z = 468 [M + H] +

[実施例2]
[2,6−ナフタレンジカルボン酸α−ナフチルの合成]
撹拌機、温度センサーおよび還流管を備えた500mLの4口フラスコに、2,6−ナフタレンジカルボン酸40g(0.18mol)、塩化チオニル53g(0.45mol)、DMF0.2gおよびTHF120gを加えて、窒素気流下、65℃に昇温し4時間撹拌した。撹拌終了後、反応液を室温まで冷却し、10hPaに減圧した後、そのまま徐々に50℃に昇温し、THFを留去した。
[Example 2]
[Synthesis of α-naphthyl 2,6-naphthalenedicarboxylate]
To a 500 mL four-necked flask equipped with a stirrer, a temperature sensor and a reflux tube were added 40 g (0.18 mol) of 2,6-naphthalenedicarboxylic acid, 53 g (0.45 mol) of thionyl chloride, 0.2 g of DMF and 120 g of THF. The mixture was heated to 65 ° C. and stirred for 4 hours under a nitrogen stream. After completion of the stirring, the reaction solution was cooled to room temperature, and the pressure was reduced to 10 hPa. Then, the temperature was gradually increased to 50 ° C., and THF was distilled off.

得られた固体を水800gおよびメタノール700gで洗浄後、10hPaに減圧した後、そのまま徐々に50℃に昇温して減圧乾燥し、式(1)−2で表されるジエステル化合物として2,6−ナフタレンジカルボン酸α−ナフチル61gを得た(収率76%、純度99.2%)。   The obtained solid was washed with 800 g of water and 700 g of methanol, and then depressurized to 10 hPa, then gradually heated to 50 ° C. and dried under reduced pressure to obtain 2,6,6 as a diester compound represented by Formula (1) -2. 61 g of naphthalenedicarboxylic acid α-naphthyl was obtained (yield: 76%, purity: 99.2%).

得られたジエステル化合物についてH−NMRスペクトル、FT−IRスペクトルおよびMSスペクトルを測定した。H−NMRスペクトル、FT−IRスペクトル、MSスペクトルを以下に示す。 1 H-NMR spectrum, FT-IR spectrum and MS spectrum were measured for the obtained diester compound. The 1 H-NMR spectrum, FT-IR spectrum, and MS spectrum are shown below.

H−NMR(400MHz,CDCl):δ9.02(s,2H,H),8.43(d,2H,H,J=8.3Hz),8.22(d,2H,H,J=8.5Hz),7.99(d,2H,H、J=7.4Hz),7.93(d,2H,H,J=8.3Hz),7.82(d,2H,H,J=8.2Hz),7.55(dd,2H,H,J=6.5Hz,7.4Hz),7.54(dd,2H,H,J=6.5Hz,8.5Hz),7.52(dd,2H,H,J=7.4Hz,8.2Hz),7.44(d,2H,H,J=7.4Hz)

Figure 2020033287
FT−IR:3060cm−1(ν-CH)、1729cm−1(ν-C=O)
MS:m/z=468[M+H] 1 H-NMR (400MHz, CDCl 3): δ9.02 (s, 2H, H b), 8.43 (d, 2H, H c, J = 8.3Hz), 8.22 (d, 2H, H j, J = 8.5Hz), 7.99 (d, 2H, H g, J = 7.4Hz), 7.93 (d, 2H, H a, J = 8.3Hz), 7.82 (d , 2H, H f, J = 8.2Hz), 7.55 (dd, 2H, H h, J = 6.5Hz, 7.4Hz), 7.54 (dd, 2H, H i, J = 6. 5Hz, 8.5Hz), 7.52 (dd , 2H, H e, J = 7.4Hz, 8.2Hz), 7.44 (d, 2H, H d, J = 7.4Hz)
Figure 2020033287
FT-IR: 3060 cm -1 (ν-CH), 1729 cm -1 (ν-C = O)
MS: m / z = 468 [M + H] +

[エポキシ樹脂との硬化反応]
実施例1で得られた式(1)−1で表されるジエステル化合物である2,6−ナフタレンジカルボン酸β−ナフチルとビスフェノールA型エポキシ樹脂(東京化成工業(株)製)とを、エポキシ樹脂のエポキシ当量に対して2,6−ナフタレンジカルボン酸β−ナフチルのエステル当量が1.0の割合になるように混合し、示差走査熱量計にて熱物性を評価した。その結果、1度目の昇温時において231℃に発熱ピークが観測され、2度目の昇温時には発熱ピークが観測されなかったことから、231℃での硬化反応が確認された。すなわち、式(1)−1で表されるジエステル化合物は、エポキシ樹脂硬化剤として有用である。
[Curing reaction with epoxy resin]
Β-naphthyl 2,6-naphthalenedicarboxylate, which is a diester compound represented by the formula (1) -1 obtained in Example 1, and a bisphenol A type epoxy resin (manufactured by Tokyo Chemical Industry Co., Ltd.) The resin was mixed such that the ester equivalent of β-naphthyl 2,6-naphthalenedicarboxylate was 1.0 with respect to the epoxy equivalent of the resin, and the thermophysical properties were evaluated using a differential scanning calorimeter. As a result, an exothermic peak was observed at 231 ° C. at the first heating, and no exothermic peak was observed at the second heating, so that a curing reaction at 231 ° C. was confirmed. That is, the diester compound represented by the formula (1) -1 is useful as an epoxy resin curing agent.

実施例2で得られた式(1)−2で表されるジエステル化合物である2,6−ナフタレンジカルボン酸α−ナフチルとビスフェノールA型エポキシ樹脂(東京化成工業(株)製)とを、エポキシ樹脂のエポキシ当量に対して2,6−ナフタレンジカルボン酸α−ナフチルのエステル当量が1.0の割合になるように混合し、示差走査熱量計にて熱物性を評価した。その結果、1度目の昇温時において224℃に発熱ピークが観測され、2度目の昇温時には発熱ピークが観測されなかったことから、224℃での硬化反応が確認された。すなわち、式(1)−2で表されるジエステル化合物は、エポキシ樹脂硬化剤として有用である。   The diester compound represented by the formula (1) -2 obtained in Example 2, α-naphthyl 2,6-naphthalenedicarboxylate, and a bisphenol A type epoxy resin (manufactured by Tokyo Chemical Industry Co., Ltd.) The mixture was mixed such that the ester equivalent of 2,6-naphthalenedicarboxylic acid α-naphthyl was 1.0 with respect to the epoxy equivalent of the resin, and the thermophysical properties were evaluated using a differential scanning calorimeter. As a result, an exothermic peak was observed at 224 ° C. at the first temperature rise, and no exothermic peak was observed at the second temperature rise, so that a curing reaction at 224 ° C. was confirmed. That is, the diester compound represented by the formula (1) -2 is useful as an epoxy resin curing agent.

Claims (5)

式(1)で表されるジエステル化合物。
Figure 2020033287
A diester compound represented by the formula (1).
Figure 2020033287
式(1)−1、式(1)−2、式(1)−3、又は式(1)−4で表される請求項1に記載のジエステル化合物。
Figure 2020033287
Figure 2020033287
Figure 2020033287
Figure 2020033287
The diester compound according to claim 1, which is represented by Formula (1) -1, Formula (1) -2, Formula (1) -3, or Formula (1) -4.
Figure 2020033287
Figure 2020033287
Figure 2020033287
Figure 2020033287
請求項1または2に記載のジエステル化合物を含むエポキシ樹脂硬化剤。   An epoxy resin curing agent containing the diester compound according to claim 1. 請求項3に記載のエポキシ樹脂硬化剤とエポキシ樹脂とを含む樹脂組成物。   A resin composition comprising the epoxy resin curing agent according to claim 3 and an epoxy resin. 式(2)
Figure 2020033287
(式中、Xは塩素原子または臭素原子またはヨウ素原子を示す)
で表される化合物と、式(3)
Figure 2020033287
で表されるナフトールと
を反応させる工程を含む、請求項1または2に記載のジエステル化合物の製造方法。
Equation (2)
Figure 2020033287
(Wherein, X represents a chlorine atom, a bromine atom or an iodine atom)
And a compound represented by the formula (3)
Figure 2020033287
The method for producing a diester compound according to claim 1, comprising a step of reacting with a naphthol represented by the formula:
JP2018160088A 2018-08-29 2018-08-29 Diester compound and its manufacturing method Active JP7007999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160088A JP7007999B2 (en) 2018-08-29 2018-08-29 Diester compound and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160088A JP7007999B2 (en) 2018-08-29 2018-08-29 Diester compound and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020033287A true JP2020033287A (en) 2020-03-05
JP7007999B2 JP7007999B2 (en) 2022-01-25

Family

ID=69667008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160088A Active JP7007999B2 (en) 2018-08-29 2018-08-29 Diester compound and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7007999B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2003252958A (en) * 2002-02-28 2003-09-10 Dainippon Ink & Chem Inc Epoxy resin composition and its hardened product
US20100144977A1 (en) * 2008-11-20 2010-06-10 Designer Molecules, Inc. Curing agents for epoxy resins
WO2018008414A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Epoxy resin and cured product thereof
WO2018008415A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Curable composition and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2003252958A (en) * 2002-02-28 2003-09-10 Dainippon Ink & Chem Inc Epoxy resin composition and its hardened product
US20100144977A1 (en) * 2008-11-20 2010-06-10 Designer Molecules, Inc. Curing agents for epoxy resins
WO2018008414A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Epoxy resin and cured product thereof
WO2018008415A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Curable composition and cured product thereof

Also Published As

Publication number Publication date
JP7007999B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP5689321B2 (en) Process for producing 2-amino-4-trifluoromethylpyridines
JP2014210738A (en) Dibenzyl trithiocarbonate derivative and method for producing the same
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP2007238472A (en) Monoglycidylisocyanuric acid compound
JP7007999B2 (en) Diester compound and its manufacturing method
JP7000279B2 (en) 1,3-Bis (4-methylbenzoyloxy) benzene and its production method
JP2009132624A (en) 2,3-dicyanonaphthalene derivative
JP6920916B2 (en) 2-Naphthalene carboxylic acid amide compound and its production method
JP6853086B2 (en) Aromatic compounds and methods for producing them
JP6853709B2 (en) Aromatic compounds and methods for producing them
JP2022034093A (en) Method of producing alkane iodide derivative
JP2019026590A (en) 4-(2-oxiranylmethoxy) benzoic acid alkenyl ester and method for producing the same
JP6812315B2 (en) 6- (2-oxylanylmethoxy) -2-naphthoic acid alkenyl ester and its production method
JP3536480B2 (en) 4,5-Dihalogeno-6-dihalogenomethylpyrimidine and process for producing the same
JP5403485B2 (en) 1,4-Dihydroanthracene-9,10-diether compound and process for producing the same
JP5178098B2 (en) Alicyclic vinyl ether compounds
WO2019003767A1 (en) Isocyanuric acid derivative having alkoxyalkyl group and production method therefor
JP6920917B2 (en) 6-Hydroxy-2-naphthoic acid alkenyl ester and its production method
JP2007246400A (en) Fluorene skeleton-containing phthalimides and diamines derived therefrom
JP2009132630A (en) Method for producing benzoxathiin compound
JP2651194B2 (en) Fluorinated 1,4-oxathiopine derivatives
JP2009256306A (en) Adamantane derivative having polymerizable unsaturated group, and method for producing the same
JP4654179B2 (en) Oxetane compounds having a naphthalene ring
WO2020130137A1 (en) Method for producing alkane iodide derivative
JP6047884B2 (en) Compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7007999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150