JP2020030050A - Optical measuring device - Google Patents

Optical measuring device Download PDF

Info

Publication number
JP2020030050A
JP2020030050A JP2018153866A JP2018153866A JP2020030050A JP 2020030050 A JP2020030050 A JP 2020030050A JP 2018153866 A JP2018153866 A JP 2018153866A JP 2018153866 A JP2018153866 A JP 2018153866A JP 2020030050 A JP2020030050 A JP 2020030050A
Authority
JP
Japan
Prior art keywords
light
measured
light receiving
amount
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018153866A
Other languages
Japanese (ja)
Other versions
JP7163102B2 (en
Inventor
知行 丸山
Tomoyuki Maruyama
知行 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2018153866A priority Critical patent/JP7163102B2/en
Publication of JP2020030050A publication Critical patent/JP2020030050A/en
Application granted granted Critical
Publication of JP7163102B2 publication Critical patent/JP7163102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To increase the degree of freedom for constituting components that can be adopted, without reducing the measurement accuracy.SOLUTION: An optical measuring device comprises: light receiving units 3R and 3B configured such that the ratio of the spectral sensitivity within a wavelength range to be measured of light receiving sensors 20a and 20b having photoelectric conversion units 23a and 23b is different for each wavelength; emission units 13r and 13b that limit the amount of light L to be measured incident on a converter 23a by forming emission holes 14ra and 14ba and the amount of light L to be measured on a converter 23b by forming emission holes 14rb and 14bb; data generators (I/V converters 4r and 4b, A/D converters 5r and 5b) that generate detection signal data Da and Db that can specify the signal levels of detection signals Sia and Sib; and a processing unit 8 that calculates optical parameters of the light L on the basis of the data Da and Db. The opening areas of the holes 14ra and 14ba and the holes 14rb and 14bb are made different so that the difference in the amount of the light L incident on the converters 23a and 23b falls within a predetermined light amount range.SELECTED DRAWING: Figure 1

Description

本発明は、一対の受光センサにおける光電変換部からそれぞれ出力される検出信号に基づいて検出信号の信号レベルを特定可能なデータを生成すると共に、生成したデータに基づいて被測定光についての予め規定された光学的パラメータを測定可能に構成された光測定装置に関するものである。   The present invention generates data capable of specifying the signal level of the detection signal based on the detection signals output from the photoelectric conversion units of the pair of light receiving sensors, and pre-defines the measured light based on the generated data. The present invention relates to an optical measurement device configured to be able to measure the obtained optical parameter.

この種の光測定装置として、出願人は、赤色光源から発せられる赤色光、緑色光源から発せられる緑色光、および青色光源から発せられる青色光を被測定光として、これらの光量をそれぞれ測定可能な光量測定装置(「光学的パラメータ」としての「光量」を測定可能な「光測定装置」)の発明を下記の特許文献に開示している。   As a light measuring device of this type, the applicant can measure the amounts of these red light emitted from a red light source, green light emitted from a green light source, and blue light emitted from a blue light source as light to be measured, respectively. The invention of a light amount measuring device (“light measuring device” capable of measuring “light amount” as “optical parameter”) is disclosed in the following patent documents.

出願人が開示している光量測定装置は、赤色光の受光部、緑色光の受光部、および青色光の受光部の3つの受光部を備えると共に、各受光部が、光学フィルタおよび光電変換部を有する受光センサをそれぞれ一対備えて構成されている。また、出願人が開示している光量測定装置は、各受光センサの光電変換部から出力される検出信号をI/V変換処理するI/V変換部と、I/V変換部の出力信号をA/D変換処理するA/D変換部と、A/D変換部から出力されるデータ(光電変換部から出力される検出信号の信号レベルを特定可能なデータ)に基づいて被測定光の光量を演算する(測定する)処理部とを備えている。   The light quantity measuring device disclosed by the applicant includes three light receiving units, a light receiving unit for red light, a light receiving unit for green light, and a light receiving unit for blue light, and each light receiving unit includes an optical filter and a photoelectric conversion unit. Each of the light receiving sensors has a pair of light receiving sensors. Further, the light quantity measuring device disclosed by the applicant has an I / V conversion unit for performing I / V conversion processing of a detection signal output from a photoelectric conversion unit of each light receiving sensor, and an output signal of the I / V conversion unit. A / D converter for A / D conversion processing, and the amount of light to be measured based on data output from the A / D converter (data that can specify the signal level of a detection signal output from the photoelectric converter) And a processing unit that calculates (measures).

この場合、出願人が開示している光量測定装置では、各受光部の一対の受光センサが、一方の受光センサの測定対象波長範囲内の分光感度と、他方の受光センサの測定対象波長範囲内の分光感度との比を測定対象波長範囲内の各波長の被測定光毎に相違させるための光学フィルタ(波長が長い被測定光ほど透過量が減少する光学フィルタ、および波長が短い被測定光ほど透過量が減少する光学フィルタ)をそれぞれ備えて構成されている。また、出願人が開示している光量測定装置では、上記の一対の受光センサの一方における光電変換部から出力される検出信号をI/V変換処理するI/V変換部と、一対の受光センサの他方における光電変換部から出力される検出信号をI/V変換処理するI/V変換部とを別個に備えると共に、両I/V変換部に対して、その出力信号を順次A/D変換処理するA/D変換部が切替えスイッチを介して接続されている。   In this case, in the light amount measuring device disclosed by the applicant, a pair of light receiving sensors of each light receiving unit is configured such that the spectral sensitivity within the wavelength range to be measured by one light receiving sensor and the wavelength range to be measured by the other light receiving sensor. An optical filter for making the ratio with the spectral sensitivity of light different for each light to be measured of each wavelength within the wavelength range to be measured (an optical filter whose transmission amount decreases as the light to be measured having a longer wavelength, and a light to be measured which has a shorter wavelength) (The optical filter whose transmission amount decreases as the amount decreases). Further, in the light amount measuring device disclosed by the applicant, an I / V conversion unit for performing I / V conversion processing on a detection signal output from a photoelectric conversion unit in one of the pair of light receiving sensors, and a pair of light receiving sensors And a separate I / V conversion unit for performing I / V conversion processing on a detection signal output from the photoelectric conversion unit on the other side, and sequentially A / D-converts the output signal to both I / V conversion units. An A / D conversion unit to be processed is connected via a changeover switch.

これにより、出願人が開示している光量測定装置では、一対の受光センサ(光電変換部)の検出信号の信号レベルを特定可能なデータが各受光部毎にA/D変換部からそれぞれ出力されると共に、各A/D変換部から出力されるデータに基づき、赤色光の光量、緑色光の光量、および青色光の光量がそれぞれ演算(測定)される。   Accordingly, in the light amount measuring device disclosed by the applicant, data capable of specifying the signal level of the detection signal of the pair of light receiving sensors (photoelectric conversion units) is output from the A / D conversion unit for each light receiving unit. At the same time, the amounts of red light, green light, and blue light are calculated (measured) based on the data output from each A / D converter.

特開2016−166797号公報(第9−25頁、第1−5図)JP-A-2006-166797 (pages 9-25, FIG. 1-5)

ところが、出願人が上記特許文献に開示している光量測定装置には、以下の改善すべき課題がある。具体的には、出願人が開示している光量測定装置では、各受光部の受光センサ(光電変換部)から出力される検出信号をI/V変換部によってI/V変換処理した後にA/D変換部によってA/D変換処理したデータに基づいて被測定光の光量を演算する(測定する)構成が採用されている。   However, the light quantity measuring device disclosed by the applicant in the above-mentioned patent document has the following problems to be improved. Specifically, in the light amount measuring device disclosed by the applicant, the detection signal output from the light receiving sensor (photoelectric conversion unit) of each light receiving unit is subjected to I / V conversion processing by the I / V conversion unit, and then A / V conversion is performed. A configuration is employed in which the amount of light to be measured is calculated (measured) based on data subjected to A / D conversion processing by the D conversion unit.

また、この光量測定装置では、一対の受光センサにおける光学フィルタの光学特性を各受光部毎(被測定光の測定対象波長範囲毎)に最適化する(各受光部毎に光学特性が相違する光学センサを採用する)ことにより、両受光センサの分光感度、すなわち、一対の受光センサにおける光電変換部に対する被測定光の入射量が各受光部毎に同程度となるように構成されている。しかしながら、例えば、前述の測定対象波長範囲内の分光感度の比を測定対象波長範囲内の各波長の被測定光毎に相違させるための光学フィルタを赤色光の受光部、緑色光の受光部、および青色光の受光部において共用したとき(各受光部において同じ光学フィルタを採用したとき)には、各受光部のうちのいずれかにおいて、両受光センサの光電変換部に対する被測定光の入射量が大きく相違する状態となる。   Further, in this light quantity measuring device, the optical characteristics of the optical filters in the pair of light receiving sensors are optimized for each light receiving unit (each wavelength range of the light to be measured) (optical characteristics different for each light receiving unit). By employing a sensor, the spectral sensitivity of both light receiving sensors, that is, the amount of light to be measured incident on the photoelectric conversion units of the pair of light receiving sensors is substantially the same for each light receiving unit. However, for example, an optical filter for making the ratio of the spectral sensitivity within the measurement target wavelength range different for each measurement light of each wavelength within the measurement target wavelength range, a red light receiving unit, a green light receiving unit, And when they are shared by the light receiving units for blue light (when the same optical filter is used in each of the light receiving units), the incident amount of the light to be measured to the photoelectric conversion units of both light receiving sensors in one of the light receiving units Are greatly different from each other.

一方、この種の装置において受光センサ(光電変換部)の検出信号をI/V変換処理可能なI/V変換部(I/V変換素子)として、一対の受光センサ(光電変換部)の検出信号を並行して処理可能な「2チャンネルI/V変換部(2チャンネルI/V変換素子)」が存在する。また、「2チャンネルI/V変換部」のなかには、両チャネル毎の利得の設定値が共通のもの(利得を別個に設定することができないもの)がある。この場合、利得の設定値が共通の「2チャンネルI/V変換部」を採用し、かつ各受光部において同じ光学フィルタを採用したときには、両受光センサの光電変換部に対する被測定光の入射量が大きく相違する状態となっている受光部において、両受光センサ(光電変換部)についての異なる信号レベルの検出信号が同様にI/V変換処理される結果、一方の受光センサについての信号のSN比と、他方の受光センサについての信号のSN比とが大きく相違する状態となる。   On the other hand, in this type of device, a detection signal of a pair of light receiving sensors (photoelectric conversion units) is used as an I / V conversion unit (I / V conversion element) capable of performing I / V conversion processing on a detection signal of the light receiving sensors (photoelectric conversion units). There is a “two-channel I / V conversion unit (two-channel I / V conversion element)” that can process signals in parallel. Some of the “two-channel I / V converters” have a common gain setting value for both channels (the gain cannot be set separately). In this case, when a "two-channel I / V converter" having a common gain setting value is employed and the same optical filter is employed in each light receiving unit, the amount of incident light of the light to be measured to the photoelectric conversion units of both light receiving sensors Are greatly different from each other, the detection signals of different signal levels of the two light receiving sensors (photoelectric conversion units) are similarly subjected to I / V conversion processing, and as a result, the SN of the signal of one light receiving sensor is changed. The ratio is largely different from the SN ratio of the signal for the other light receiving sensor.

また、出願人が開示している光量測定装置とは異なるが、各受光部毎の両受光センサ(光電変換部)と、1つのI/V変換部とを切り替えスイッチを介して接続することにより、両受光センサ(光電変換部)の検出信号を1つのI/V変換部によって順次I/V変換処理する構成を採用することもできる。この場合、1つのI/V変換部によって両受光センサ(光電変換部)の検出信号をI/V変換処理する構成を採用し、かつ各受光部において同じ光学フィルタを採用したときにも、両受光センサの光電変換部に対する被測定光の入射量が大きく相違する状態となっている受光部において、両受光センサ(光電変換部)についての異なる信号レベルの検出信号が同様にI/V変換処理される結果、一方の受光センサについての信号のSN比と、他方の受光センサについての信号のSN比とが大きく相違する状態となる。   Further, although different from the light quantity measuring device disclosed by the applicant, by connecting both light receiving sensors (photoelectric conversion units) for each light receiving unit and one I / V conversion unit via a changeover switch. Alternatively, a configuration in which detection signals of both light receiving sensors (photoelectric conversion units) are sequentially subjected to I / V conversion processing by one I / V conversion unit may be employed. In this case, even when a configuration is employed in which the detection signals of both light receiving sensors (photoelectric conversion units) are subjected to I / V conversion processing by one I / V conversion unit and the same optical filter is employed in each light receiving unit, both I / V conversion units may be used. In the light-receiving unit in which the amounts of light to be measured incident on the photoelectric conversion unit of the light-receiving sensor are greatly different, detection signals of different signal levels of both light-receiving sensors (photoelectric conversion units) are similarly subjected to I / V conversion processing. As a result, the S / N ratio of the signal for one light receiving sensor and the S / N ratio of the signal for the other light receiving sensor are greatly different.

上記の例のように、両受光センサ(光電変換部)についての信号のSN比が大きく相違した状態では、被測定光の波長や光量の演算を高精度で行うのが困難となる。このため、出願人が開示している光量測定装置では、高精度な測定結果を得ることができる状態とするために、採用可能な光学フィルタやI/V変換部(測定結果を得るためのデータを生成するための要素:データ生成部)の自由度が低下している現状がある。このため、この点を改善するのが好ましい。   As in the above example, when the signal-to-noise ratios of the two light receiving sensors (photoelectric conversion units) are greatly different, it is difficult to calculate the wavelength and the light amount of the light to be measured with high accuracy. For this reason, in the light amount measuring device disclosed by the applicant, an optical filter and an I / V conversion unit (data for obtaining the measurement result) that can be adopted are used in order to obtain a state in which a highly accurate measurement result can be obtained. There is a situation in which the degree of freedom of the element for generating the data (data generation unit) is reduced. Therefore, it is preferable to improve this point.

なお、赤色光、緑色光および青色光の3種類の被測定光についての測定を行う光測定装置において本願発明が解決しようとする課題について説明したが、任意の色の単色光についての光学的パラメータを測定する光測定装置や、可視光範囲等の波長範囲が広い被測定光の光学的パラメータを測定する光測定装置などにおいても、一対の受光センサに対する被測定光の入射量が大きく相違する状態で、両受光センサについての異なる信号レベルの検出信号を同様にI/V変換処理する構成においては、上記の説明事項と同様の課題が生じることとなる。   The problem to be solved by the present invention in a light measurement device that measures three types of light to be measured, red light, green light, and blue light, has been described. In a light measuring device that measures light, or a light measuring device that measures optical parameters of light to be measured having a wide wavelength range such as a visible light range, the amount of incident light of the light to be measured on a pair of light receiving sensors is greatly different. Therefore, in the configuration in which the detection signals of the different signal levels of the two light receiving sensors are similarly subjected to the I / V conversion processing, the same problems as those described above occur.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、測定精度を低下させることなく、採用し得る構成部品の自由度を十分に高めることが可能な光測定装置を提供することを主目的とする。   The present invention has been made in view of such problems to be improved, and it is an object of the present invention to provide an optical measurement device capable of sufficiently increasing the degree of freedom of applicable components without lowering measurement accuracy. Main purpose.

上記目的を達成すべく、請求項1記載の光測定装置は、被測定光の入射量に応じた第1の検出信号を出力する第1の光電変換部を有する第1の受光センサ、および前記被測定光の入射量に応じた第2の検出信号を出力する第2の光電変換部を有する第2の受光センサを備えると共に、前記第1の受光センサの測定対象波長範囲内の分光感度と前記第2の受光センサの当該測定対象波長範囲内の分光感度との比が当該測定対象波長範囲内の各波長の前記被測定光毎に相違するように構成された受光部と、前記被測定光の通過が可能な第1の光通過孔が形成されて前記第1の光電変換部に対する当該被測定光の入射量を制限する第1の入射量制限部、および前記被測定光の通過が可能な第2の光通過孔が形成されて前記第2の光電変換部に対する当該被測定光の入射量を制限する第2の入射量制限部と、前記第1の検出信号に基づいて当該第1の検出信号の信号レベルを特定可能な第1のデータを生成すると共に、前記第2の検出信号に基づいて当該第2の検出信号の信号レベルを特定可能な第2のデータを生成するデータ生成部と、前記第1のデータに基づいて特定した前記第1の検出信号の信号レベル、および前記第2のデータに基づいて特定した前記第2の検出信号の信号レベルに基づいて前記被測定光についての予め規定された光学的パラメータを演算する処理部とを備え、前記第1の入射量制限部および前記第2の入射量制限部は、前記測定対象波長範囲内の各波長の前記被測定光の前記第1の光電変換部に対する入射量と前記第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように前記第1の光通過孔の第1の開口面積と前記第2の光通過孔の第2の開口面積とが相違させられている。   In order to achieve the above object, the light measuring device according to claim 1 has a first light receiving sensor having a first photoelectric conversion unit that outputs a first detection signal according to an amount of incident light to be measured, and A second light receiving sensor having a second photoelectric conversion unit that outputs a second detection signal according to the amount of incident light to be measured is provided, and the first light receiving sensor has a spectral sensitivity within a wavelength range to be measured. A light receiving unit configured such that a ratio of the second light receiving sensor to the spectral sensitivity within the wavelength range to be measured is different for each light to be measured at each wavelength within the wavelength range to be measured; and A first light-passing hole through which light can pass; a first incident-amount limiting unit that limits an incident amount of the measured light to the first photoelectric conversion unit; A possible second light passage hole is formed for the second photoelectric conversion unit. A second incident amount limiting unit that limits an incident amount of the measured light, and first data that can specify a signal level of the first detection signal based on the first detection signal; A data generation unit configured to generate second data capable of specifying a signal level of the second detection signal based on the second detection signal; and the first detection signal specified based on the first data A processing unit that calculates a predetermined optical parameter of the measured light based on the signal level of the measured light based on the signal level of the second detection signal specified based on the second data, The first incident amount limiting unit and the second incident amount limiting unit are configured to determine an incident amount of the measured light of each wavelength within the wavelength range to be measured to the first photoelectric conversion unit and the second photoelectric conversion. Difference with the incident amount to the part A second opening area of the first opening area and the second light passage hole of the first light passage hole such that the light quantity in the constant light amount range is made different.

また、請求項2記載の光測定装置は、請求項1記載の光測定装置において、前記第1の受光センサおよび前記第2の受光センサに対する前記被測定光の入射方向および当該被測定光の入射量を均一化するための拡散光学系を備え、前記第1の入射量制限部は、前記拡散光学系において前記第1の受光センサへの前記被測定光を出射する第1の出射部に設けられ、前記第2の入射量制限部は、前記拡散光学系において前記第2の受光センサへの前記被測定光を出射する第2の出射部に設けられている。   According to a second aspect of the present invention, in the light measuring device according to the first aspect, an incident direction of the measured light and an incident direction of the measured light with respect to the first light receiving sensor and the second light receiving sensor. A diffusing optical system for equalizing the amount of light, wherein the first incident amount limiting unit is provided in a first emitting unit that emits the measured light to the first light receiving sensor in the diffusing optical system. The second incident amount limiting unit is provided in a second emission unit that emits the measured light to the second light receiving sensor in the diffusion optical system.

また、請求項3記載の光測定装置は、請求項1または2記載の光測定装置において、前記処理部は、前記被測定光についての前記予め規定された光学的パラメータとして、前記第1のデータに基づいて特定した前記第1の検出信号の信号レベルおよび前記第2のデータに基づいて特定した前記第2の検出信号の信号レベルのいずれか一方に対する他方の比に基づいて前記被測定光の波長を演算すると共に、演算した波長と、前記いずれか一方とに基づいて前記被測定光の放射量を演算する。   The light measuring device according to claim 3 is the light measuring device according to claim 1 or 2, wherein the processing unit is configured to determine the first data as the predetermined optical parameter of the measured light. Based on one of the signal level of the first detection signal specified based on the second level and the signal level of the second detection signal specified based on the second data. A wavelength is calculated, and a radiation amount of the measured light is calculated based on the calculated wavelength and one of the wavelengths.

請求項1記載の光測定装置では、被測定光の通過が可能な第1の光通過孔が形成されて第1の受光センサにおける第1の光電変換部に対する被測定光の入射量を制限する第1の入射量制限部、および被測定光の通過が可能な第2の光通過孔が形成されて第2の受光センサにおける第2の光電変換部に対する被測定光の入射量を制限する第2の入射量制限部を備え、第1の入射量制限部および第2の入射量制限部が、測定対象波長範囲内の各波長の被測定光の第1の光電変換部に対する入射量と第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように第1の光通過孔の第1の開口面積と第2の光通過孔の第2の開口面積とが相違させられている。   In the optical measurement device according to the first aspect, the first light passage hole through which the light to be measured can pass is formed to limit the incident amount of the light to be measured to the first photoelectric conversion unit in the first light receiving sensor. A first incident amount limiting section and a second light passage hole through which the measured light can pass are formed to limit the incident amount of the measured light to the second photoelectric conversion section in the second light receiving sensor. A first incident amount limiting unit and a second incident amount limiting unit, wherein the first incident amount limiting unit and the second incident amount limiting unit determine an incident amount of the measured light of each wavelength within the wavelength range to be measured with respect to the first photoelectric conversion unit. The first opening area of the first light passage hole and the second opening area of the second light passage hole such that the difference between the amount of light incident on the second photoelectric conversion unit and the amount of light incident on the second photoelectric conversion unit falls within a predetermined light amount range. Is different.

したがって、請求項1記載の測定装置によれば、測定対象波長範囲内の各波長の被測定光の透過率が大きく異なる光学フィルタを採用したとしても、第1の光通過孔の通過時および第2の光通過孔の通過時に第1の光電変換部および第2の光電変換部に入射する被測定光の光量が好適に調整されるため、任意の光学特定を有する光学フィルタを採用して光測定装置を構成することができる。また、第1の受光センサ(第1の光電変換部)の第1の検出信号、および第2の受光センサ(第2の光電変換部)の第2の検出信号を同じ処理条件でI/V変換するI/V変換部(利得の調整値が共通の2チャンネルI/V変換部等)を備えてデータ生成部を構成しても、両検出信号の信号レベルが同程度となっていることで、第1の検出信号のSN比(A/D変換処理されて生成される検出信号データのSN比)、および第2の検出信号のSN比(A/D変換処理されて生成される検出信号データのSN比)を同程度の状態とすることができる。したがって、両検出信号(両検出信号データ)に基づいて被測定光についての高精度な波長や放射量を演算(測定)することができるため、測定精度を低下させることなく、採用し得る構成部品(光電変換部やI/V変換部等)の自由度を十分に高めることができるため、必要とされる光学特性や部品コストに応じて任意の部品を選択して製造することができる。   Therefore, according to the measuring apparatus of the first aspect, even when the optical filter having the transmittance of the measured light of each wavelength within the wavelength range to be measured is greatly different from that of the optical filter at the time of passing through the first light passage hole and the second filter, Since the amount of light to be measured incident on the first photoelectric conversion unit and the second photoelectric conversion unit when passing through the second light passage hole is appropriately adjusted, an optical filter having an arbitrary optical specification is adopted. A measuring device can be configured. In addition, the first detection signal of the first light receiving sensor (first photoelectric conversion unit) and the second detection signal of the second light receiving sensor (second photoelectric conversion unit) are I / V under the same processing conditions. Even if the data generator is configured with an I / V converter for conversion (such as a two-channel I / V converter having a common gain adjustment value), the signal levels of both detection signals are substantially the same. Thus, the SN ratio of the first detection signal (SN ratio of detection signal data generated by A / D conversion processing) and the SN ratio of the second detection signal (detection generated by A / D conversion processing) (SN ratio of signal data) can be set to the same level. Therefore, a highly accurate wavelength and radiation amount of the light to be measured can be calculated (measured) based on both the detection signals (both detection signal data), and the components that can be employed without reducing the measurement accuracy Since the degree of freedom of (a photoelectric conversion unit, an I / V conversion unit, and the like) can be sufficiently increased, an arbitrary component can be selected and manufactured according to required optical characteristics and component cost.

請求項2記載の光測定装置では、第1の受光センサおよび第2の受光センサに対する被測定光の入射方向および被測定光の入射量を均一化するための拡散光学系において第1の受光センサへの被測定光を出射する第1の出射部に第1の入射量制限部が設けられると共に、拡散光学系において第2の受光センサへの被測定光を出射する第2の出射部に第2の入射量制限部が設けられている。   The light measuring device according to claim 2, wherein the first light receiving sensor is provided in a diffusion optical system for equalizing the incident direction of the light to be measured and the incident amount of the light to be measured with respect to the first light receiving sensor and the second light receiving sensor. A first incident portion for emitting the measured light to the second light receiving sensor is provided in the first emitting portion for emitting the measured light to the second light receiving sensor in the diffusion optical system. Two incident amount limiting units are provided.

したがって、請求項2記載の光測定装置によれば、拡散光学系を備えた光測定装置において必須の出射部を第1の光通過孔および第2の光通過孔として第1の開口面積および第2の開口面積を異ならせることで、出射部を第1の入射量制限部および第2の入射量制限部として機能させることができるため、拡散光学系の出射部とは別個に第1の入射量制限部および第2の入射量制限部を設けた構成と比較して、第1の光電変換部および第2の光電変換部に対する被測定光の入射量を調整するための光学部品の数を少数化することができる結果、製造コストの低減を図ることができると共に、光測定装置を十分に小形化することができる。   Therefore, according to the optical measuring device of the second aspect, in the optical measuring device provided with the diffusion optical system, the indispensable light emitting portions are defined as the first light passing hole and the second light passing hole, and the first opening area and the second light passing hole are used. By differentiating the opening areas of the two, the emission unit can function as the first incident amount limiting unit and the second incident amount limiting unit. The number of optical components for adjusting the incident amount of the light to be measured to the first photoelectric conversion unit and the second photoelectric conversion unit is smaller than that of the configuration in which the amount limiting unit and the second incident amount limiting unit are provided. As a result, the manufacturing cost can be reduced, and the optical measurement device can be sufficiently miniaturized.

請求項3記載の光測定装置では、処理部が、被測定光についての予め規定された光学的パラメータとして、第1のデータに基づいて特定した第1の検出信号の信号レベルおよび第2のデータに基づいて特定した第2の検出信号の信号レベルのいずれか一方に対する他方の比に基づいて被測定光の波長を演算すると共に、演算した波長と、いずれか一方とに基づいて被測定光の放射量を演算する。したがって、請求項3記載の測定装置によれば、両受光センサ(両光電変換部)から出力される両検出信号のSN比が大きく相違する場合に高精度な測定結果を得るのが困難な波長および放射量について、十分に高精度な測定結果を演算(測定)することができる。   4. The optical measurement device according to claim 3, wherein the processing unit sets the signal level of the first detection signal specified based on the first data and the second data as predetermined optical parameters of the measured light. The wavelength of the measured light is calculated based on the ratio of one of the signal levels of the second detection signal to the signal level of the second detected signal based on the calculated wavelength, and the wavelength of the measured light is calculated based on the calculated wavelength and one of the calculated wavelengths. Calculate the radiation amount. Therefore, according to the measuring device of the third aspect, it is difficult to obtain a highly accurate measurement result when the SN ratios of the two detection signals output from the two light receiving sensors (the two photoelectric conversion units) are significantly different. In addition, a sufficiently high-precision measurement result can be calculated (measured) for the radiation amount.

光測定装置1の構成を示す構成図である。FIG. 2 is a configuration diagram illustrating a configuration of the optical measurement device 1. 拡散光学系2からの被測定光Lの出射量、光電変換部23a,23bへの被測定光Lの入射量、および受光センサ20a,20bの分光感度特性と、拡散光学系2(出射孔14ra,14rb,14ga,14gb,14ba,14bb)との関係について説明するための説明図である。The output amount of the measured light L from the diffusion optical system 2, the incident amount of the measured light L to the photoelectric conversion units 23a and 23b, the spectral sensitivity characteristics of the light receiving sensors 20a and 20b, and the diffusion optical system 2 (the output hole 14ra , 14rb, 14ga, 14gb, 14ba, 14bb). 光測定装置1A〜1Cの構成を示す構成図である。It is a block diagram which shows the structure of 1 A of optical measuring devices-1C.

以下、光測定装置の実施の形態について、添付図面を参照して説明する。   Hereinafter, an embodiment of a light measuring device will be described with reference to the accompanying drawings.

図1に示す光測定装置1は、「光測定装置」の一例であって、拡散光学系2、受光部3R,3G,3B、I/V変換部4r,4g,4b、A/D変換部5r,5g,5b、操作部6、表示部7、処理部8および記憶部9を備え、被測定光Lについての「予め規定された光学的パラメータ」の一例である「波長(重心波長)」や「放射量」、およびそれらに基づいて演算される各種パラメータを測定可能に構成されている。この場合、被測定光Lは、「被測定光」の一例であって、本例では、視聴覚機器(プロジェクタ)や照明器具などの赤色光源から発せられる赤色光、緑色光源から発せられる緑色光、および青色光源から発せられる青色光の3種類の被測定光Lを対象とする測定処理を行うものとする。   The light measuring device 1 shown in FIG. 1 is an example of a “light measuring device”, and includes a diffusion optical system 2, light receiving units 3R, 3G, 3B, I / V converting units 4r, 4g, 4b, and an A / D converting unit. “Wavelength (centroid wavelength)” which includes 5r, 5g, 5b, an operation unit 6, a display unit 7, a processing unit 8, and a storage unit 9 and is an example of “predetermined optical parameters” for the measured light L And "radiation dose" and various parameters calculated based on them. In this case, the measured light L is an example of “measured light”, and in this example, red light emitted from a red light source such as audio-visual equipment (projector) or lighting equipment, green light emitted from a green light source, It is assumed that measurement processing is performed on three types of measured light L of blue light emitted from a blue light source.

一方、拡散光学系2は、「拡散光学系」の一例であって、本例の光測定装置1では、拡散光学系2が「積分球」で構成されている。この拡散光学系2は、入射部11に開口された入射孔12から入射した被測定光Lを拡散させることにより、受光部3Rにおける後述の受光センサ20a,20b、受光部3Gにおける後述の受光センサ20a,20b、および受光部3Bにおける後述の受光センサ20a,20bに対する被測定光Lの入射方向および入射量を均一化可能に構成されている。また、本例の光測定装置1では、図1に示すように、受光部3Rに対して被測定光Lを出射する出射部13rに出射孔14ra,14rbが形成され、受光部3Gに対して被測定光Lを出射する出射部13gに出射孔14ga,14gbが形成され、かつ受光部3Bに対して被測定光Lを出射する出射部13bに出射孔14ba,14bbが形成されている。   On the other hand, the diffusion optical system 2 is an example of a “diffusion optical system”, and in the light measurement device 1 of the present example, the diffusion optical system 2 is configured by an “integrating sphere”. The diffusing optical system 2 diffuses the light L to be measured incident from an incident hole 12 opened in an incident portion 11 to thereby receive light receiving sensors 20a and 20b in the light receiving portion 3R and a light receiving sensor described later in the light receiving portion 3G. The incident direction and the incident amount of the measured light L on the light receiving sensors 20a and 20b, which will be described later, in the light receiving units 20a and 20b and the light receiving unit 3B are configured to be uniform. Further, in the light measuring device 1 of the present example, as shown in FIG. 1, emission holes 14ra and 14rb are formed in an emission portion 13r that emits the measured light L with respect to the light receiving portion 3R, and the light emitting portion 3G is formed with respect to the light receiving portion 3G. Outgoing holes 14ga and 14gb are formed in the outgoing portion 13g that emits the measured light L, and outgoing holes 14ba and 14bb are formed in the outgoing portion 13b that emits the measured light L to the light receiving portion 3B.

この場合、本例の光測定装置1(拡散光学系2)では、出射部13r,13g,13b(以下、これらを区別しないときには「出射部13」ともいう)における上記の出射孔14ra,14ga,14ba(以下、これらを区別しないときには「出射孔14a」ともいう)の形成部位が「第1の出射部」および「第1の入射量制限部」に相当し、これら各出射孔14aが「第1の光通過孔」に相当する。また、本例の光測定装置1(拡散光学系2)では、各出射部13における上記の出射孔14rb,14gb,14bb(以下、これらを区別しないときには「出射孔14b」ともいう)の形成部位が「第2の出射部」および「第2の入射量制限部」に相当し、これら各出射孔14bが「第2の光通過孔」に相当する。なお、本例の光測定装置1(拡散光学系2)では、各出射孔14a,14bの開口面積(開口径:孔径)が各受光部3R,3G,3B毎に最適化されているが、この点については、後に詳細に説明する。   In this case, in the light measuring device 1 (diffusion optical system 2) of the present example, the emission holes 14ra, 14ga, and 14ga in the emission portions 13r, 13g, and 13b (hereinafter, also referred to as “the emission portion 13” when these are not distinguished). 14ba (hereinafter, also referred to as “emission hole 14a” when these are not distinguished) corresponds to a “first emission part” and a “first incident amount limiting part”, and each of these emission holes 14a is a “first emission part”. One light passage hole ". Further, in the light measuring device 1 (diffusion optical system 2) of the present example, the formation site of the emission holes 14rb, 14gb, 14bb (hereinafter, also referred to as “the emission hole 14b” when these are not distinguished) in each emission unit 13. Correspond to a “second light emitting portion” and a “second incident amount limiting portion”, and each of the light emitting holes 14b corresponds to a “second light passing hole”. In the light measuring device 1 (diffusion optical system 2) of the present embodiment, the opening area (opening diameter: hole diameter) of each of the emission holes 14a and 14b is optimized for each of the light receiving units 3R, 3G, and 3B. This will be described later in detail.

受光部3R,3G,3Bは、それぞれが「受光部」に相当し、上記したように、赤色光、緑色光および青色光の3種類を被測定光Lとする測定処理を実行可能な本例の光測定装置1では、赤色光を受光する受光部3R、緑色光を受光する受光部3G、および青色光を受光する受光部3Bの3つを備えて構成されている。また、受光部3Rは、受光センサ20a,20bおよび光学フィルタ21rを備えて構成され、受光部3Gは、受光センサ20a,20bおよび光学フィルタ21gを備えて構成され、受光部3Bは、受光センサ20a,20bおよび光学フィルタ21bを備えて構成されている。以下、これら受光部3R,3G,3Bを区別しないときには「受光部3」ともいう。   Each of the light receiving units 3R, 3G, and 3B corresponds to a “light receiving unit”, and as described above, can perform a measurement process using three types of light, ie, red light, green light, and blue light, as the light L to be measured. The light measuring device 1 includes three light receiving units 3R for receiving red light, 3G for receiving green light, and 3B for receiving blue light. The light receiving unit 3R includes light receiving sensors 20a and 20b and an optical filter 21r, the light receiving unit 3G includes light receiving sensors 20a and 20b, and an optical filter 21g, and the light receiving unit 3B includes the light receiving sensor 20a. , 20b and an optical filter 21b. Hereinafter, when the light receiving units 3R, 3G, and 3B are not distinguished, they are also referred to as “light receiving units 3”.

この場合、光学フィルタ21r,21g,21bは、各受光部3毎に予め規定された「測定対象波長範囲」内の波長の被測定光Lの受光センサ20a,20bに対する入射を許容しつつ、「測定対象波長範囲」よりも短い波長の光や、「測定対象波長範囲」よりも長い波長の光の受光センサ20a,20bに対する入射を規制するように構成されている。具体的には、光学フィルタ21rは、一例として、図2に示す波長λrsから波長λrlまでの波長範囲Hr(「測定対象波長範囲」の一例)内の波長の被測定光L(赤色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。   In this case, the optical filters 21r, 21g, and 21b allow the light to be measured L having a wavelength within the “measurement target wavelength range” defined for each light receiving unit 3 to enter the light receiving sensors 20a and 20b. It is configured such that light having a wavelength shorter than the "wavelength range to be measured" or light having a wavelength longer than the "wavelength range to be measured" is incident on the light receiving sensors 20a and 20b. Specifically, as an example, the optical filter 21r outputs the measured light L (red light) having a wavelength within the wavelength range Hr (an example of the “measurement target wavelength range”) from the wavelength λrs to the wavelength λrl shown in FIG. While permitting incidence on the light receiving sensors 20a and 20b, the incidence of light of other wavelengths on the light receiving sensors 20a and 20b is regulated.

また、光学フィルタ21gは、一例として、波長λgsから波長λglまでの波長範囲Hg(「測定対象波長範囲」の他の一例)内の波長の被測定光L(緑色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。さらに、光学フィルタ21bは、一例として、波長λbsから波長λblまでの波長範囲Hb(「測定対象波長範囲」のさらに他の一例)内の波長の被測定光L(青色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。なお、以下の説明において光学フィルタ21r,21g,21bを区別しないときには「光学フィルタ21」ともいう。   The optical filter 21g is, for example, the light-receiving sensors 20a and 20b of the measured light L (green light) having a wavelength within the wavelength range Hg from the wavelength λgs to the wavelength λgl (another example of the “measurement target wavelength range”). While restricting the incidence of light of other wavelengths on the light receiving sensors 20a and 20b. Further, the optical filter 21b includes, as an example, the light receiving sensor 20a of the measured light L (blue light) having a wavelength within the wavelength range Hb from the wavelength λbs to the wavelength λbl (still another example of the “measurement target wavelength range”). While permitting incidence on the light receiving sensors 20a and 20b, the incidence on the light receiving sensors 20a and 20b is restricted while allowing incidence on the light receiving sensors 20a and 20b. In the following description, when the optical filters 21r, 21g, and 21b are not distinguished, they are also referred to as “optical filters 21”.

受光センサ20aは、「第1の受光センサ」の一例であって、光学フィルタ22aおよび光電変換部23aを備えて構成されている。なお、本例の光測定装置1では、受光センサ20aの光電変換部23aが「第1の光電変換部」に相当し、この光電変換部23aから被測定光Lの入射量に応じて出力される検出信号Siaが「第1の検出信号」に相当する。また、受光センサ20bは、「第2の受光センサ」の一例であって、光学フィルタ22bおよび光電変換部23bを備えて構成されている。なお、本例の光測定装置1では、受光センサ20bの光電変換部23bが「第2の光電変換部」に相当し、この光電変換部23bから被測定光Lの入射量に応じて出力される検出信号Sibが「第2の検出信号」に相当する。   The light receiving sensor 20a is an example of a “first light receiving sensor”, and includes an optical filter 22a and a photoelectric conversion unit 23a. In the light measuring device 1 of the present embodiment, the photoelectric conversion unit 23a of the light receiving sensor 20a corresponds to a “first photoelectric conversion unit”, and the photoelectric conversion unit 23a outputs the light according to the incident amount of the light L to be measured. The detected signal Sia corresponds to the “first detected signal”. Further, the light receiving sensor 20b is an example of a “second light receiving sensor”, and includes an optical filter 22b and a photoelectric conversion unit 23b. In the light measuring device 1 of the present example, the photoelectric conversion unit 23b of the light receiving sensor 20b corresponds to a “second photoelectric conversion unit”, and the photoelectric conversion unit 23b outputs the light according to the amount of incident light L to be measured. The detected signal Sib corresponds to a “second detected signal”.

この場合、本例の光測定装置1では、一例として、受光部3Rの受光センサ20aにおける光学フィルタ22a、受光部3Gの受光センサ20aにおける光学フィルタ22a、および受光部3Bの受光センサ20aにおける光学フィルタ22aが、同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)でそれぞれ構成されている。具体的には、各受光部3の受光センサ20aを構成する光学フィルタ22aは、図2に実線L2aで示すように、上記の波長範囲Hr,Hg,Hb(以下、区別しないときには「波長範囲H」ともいう)を含む波長範囲内の波長の光に関する受光センサ20aの分光感度特性が「長い波長の光ほど高感度」との条件(すなわち、「長い波長の光ほど光電変換部23aへの光の入射量が多くなる」との条件)を満たすように、「長い波長の光ほど透過率が高い」との光学特性を備えたフィルタで構成されている。   In this case, in the light measuring device 1 of the present example, as an example, the optical filter 22a in the light receiving sensor 20a of the light receiving unit 3R, the optical filter 22a in the light receiving sensor 20a of the light receiving unit 3G, and the optical filter 22a in the light receiving sensor 20a of the light receiving unit 3B. Reference numeral 22a denotes the same optical filter (optical filter having the same transmittance of the measured light L for each wavelength). Specifically, as shown by a solid line L2a in FIG. 2, the optical filter 22a constituting the light receiving sensor 20a of each light receiving unit 3 has the above-mentioned wavelength range Hr, Hg, Hb (hereinafter referred to as “wavelength range H ) With respect to light having a wavelength within a wavelength range that includes the wavelength (including the light having a longer wavelength has higher sensitivity to the photoelectric conversion unit 23a). To increase the amount of incident light), and a filter having an optical characteristic that "the longer the wavelength of light, the higher the transmittance".

なお、同図では、光学フィルタ21や光学フィルタ22a,22bが存在しない場合の受光センサ20a,20bの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lのすべてが光電変換部23a,23bに入射した場合の光電変換部23aや光電変換部23bへの被測定光Lの入射量)を実線L1で示している。また、同図では、光学フィルタ21が存在せず、光学フィルタ22aだけが存在する場合の受光センサ20aの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lが光学フィルタ22aだけを通過して光電変換部23aに入射した場合の光電変換部23aへの被測定光Lの入射量)を実線L2aで示している。   Note that, in the figure, the spectral sensitivity characteristics of the light receiving sensors 20a and 20b when the optical filter 21 and the optical filters 22a and 22b are not present (that is, all of the measured light L emitted from the diffusion optical system 2 are photoelectrically converted) The solid line L1 indicates the amount of light to be measured L incident on the photoelectric conversion units 23a and 23b when they are incident on the photoelectric conversion units 23a and 23b. Also, in the figure, the spectral sensitivity characteristic of the light receiving sensor 20a when the optical filter 21 is not present and only the optical filter 22a is present (that is, the measured light L emitted from the diffusion optical system 2 is only the optical filter 22a) Is incident on the photoelectric conversion unit 23a after passing through the light-receiving portion), and is indicated by a solid line L2a.

また、本例の光測定装置1では、一例として、受光部3Rの受光センサ20bにおける光学フィルタ22b、受光部3Gの受光センサ20bにおける光学フィルタ22b、および受光部3Bの受光センサ20bにおける光学フィルタ22bが、同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)でそれぞれ構成されている。具体的には、各受光部3の受光センサ20bを構成する光学フィルタ22bは、図2に実線L2bで示すように、上記の各波長範囲Hを含む波長範囲内の波長の光に関する受光センサ20bの分光感度特性が「短い波長の光ほど高感度」との条件(すなわち、「短い波長の光ほど光電変換部23bへの光の入射量が多くなる」との条件)を満たすように、「短い波長の光ほど透過率が高い」との光学特性を備えたフィルタで構成されている。   In the light measuring device 1 of the present example, as an example, the optical filter 22b in the light receiving sensor 20b of the light receiving unit 3R, the optical filter 22b in the light receiving sensor 20b of the light receiving unit 3G, and the optical filter 22b in the light receiving sensor 20b of the light receiving unit 3B. Are configured with the same optical filters (optical filters having the same transmittance of the measured light L for each wavelength). Specifically, as shown by a solid line L2b in FIG. 2, the optical filter 22b constituting the light receiving sensor 20b of each light receiving unit 3 includes a light receiving sensor 20b for light having a wavelength within the wavelength range including each of the above wavelength ranges H. To satisfy the condition that the spectral sensitivity characteristics of the light-emitting device satisfy “the shorter the wavelength of light, the higher the sensitivity” (that is, the condition that “the shorter the wavelength of the light, the larger the amount of light incident on the photoelectric conversion unit 23b”). The transmittance is higher for light of shorter wavelength. "

なお、同図では、光学フィルタ21が存在せず、光学フィルタ22bだけが存在する場合の受光センサ20bの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lが光学フィルタ22bだけを通過して光電変換部23bに入射した場合の光電変換部23bへの被測定光Lの入射量)を実線L2bで示している。   Note that, in the figure, the spectral sensitivity characteristics of the light receiving sensor 20b when the optical filter 21 is not present and only the optical filter 22b is present (that is, the measured light L emitted from the diffusion optical system 2 is only the optical filter 22b) Is incident on the photoelectric conversion unit 23b after passing through the photoelectric conversion unit 23b) is indicated by a solid line L2b.

このような光学フィルタ22a,22bを備えた本例の光測定装置1の各受光部3では、受光センサ20aの測定対象波長範囲(波長範囲H)内の分光感度と、受光センサ20bの測定対象波長範囲(波長範囲H)内の分光感度との比が、測定対象波長範囲内の各波長の被測定光L毎にそれぞれ相違する状態となっている。   In each light receiving section 3 of the optical measuring device 1 of the present example having such optical filters 22a and 22b, the spectral sensitivity within the wavelength range (wavelength range H) to be measured by the light receiving sensor 20a and the measurement target by the light receiving sensor 20b The ratio with the spectral sensitivity within the wavelength range (wavelength range H) is different for each measured light L of each wavelength within the wavelength range to be measured.

光電変換部23aは、光学フィルタ21,22aを透過した被測定光Lを受光可能に配設されて受光量に応じた検出信号Siaを出力し、光電変換部23bは、光学フィルタ21,22bを透過した被測定光Lを受光可能に配設されて受光量に応じた検出信号Sibを出力する。なお、本例では、一例として、同じ製品で構成された光電変換部23a,23bが採用されて両受光センサ20a,20bがそれぞれ構成されている。これにより、受光センサ20aに対する被測定光Lの入射量と、受光センサ20bに対する被測定光Lの入射量とが等しいときには、同じ信号レベルの検出信号Sia,Sibが受光センサ20a,20bからそれぞれ出力される。   The photoelectric conversion unit 23a is arranged so as to be able to receive the measured light L transmitted through the optical filters 21 and 22a, and outputs a detection signal Sia according to the amount of received light. The photoelectric conversion unit 23b controls the optical filters 21 and 22b. The transmitted measurement light L is disposed so as to be able to receive the light, and outputs a detection signal Sib corresponding to the amount of received light. In this example, as an example, the photoelectric conversion units 23a and 23b made of the same product are employed to configure the light receiving sensors 20a and 20b, respectively. Thereby, when the incident amount of the measured light L on the light receiving sensor 20a is equal to the incident amount of the measured light L on the light receiving sensor 20b, the detection signals Sia and Sib of the same signal level are output from the light receiving sensors 20a and 20b, respectively. Is done.

各I/V変換部4r,4g,4b(以下、区別しないときには「I/V変換部4」ともいう)は、A/D変換部5r,5g,5b(以下、区別しないときには「A/D変換部5」ともいう)と相俟って「データ生成部」を構成し、I/V変換部4rが受光部3Rの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力し、I/V変換部4gが受光部3Gの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力し、かつI/V変換部4bが受光部3Bの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力する。   The I / V converters 4r, 4g, 4b (hereinafter also referred to as “I / V converter 4” when not distinguished) are A / D converters 5r, 5g, 5b (hereinafter, “A / D converters when not distinguished”). In addition, the I / V conversion unit 4r is configured to detect the data output from the photoelectric conversion units 23a and 23b (light receiving sensors 20a and 20b) of the light receiving unit 3R. The signals Sia and Sib are I / V converted to output detection signals Sva and Svb, and the I / V conversion unit 4g outputs the detection signals output from the photoelectric conversion units 23a and 23b (light receiving sensors 20a and 20b) of the light receiving unit 3G. I / V conversion of Sia and Sib to output detection signals Sva and Svb, and detection signal output from I / V conversion section 4b from photoelectric conversion sections 23a and 23b (light receiving sensors 20a and 20b) of light receiving section 3B. Sia and Sib are I / Converted to detection signals Sva, outputs the Svb.

この場合、本例の光測定装置1では、上記の各I/V変換部4が、両受光センサ20a,20bからの検出信号Sia,Sibを並行してI/V変換処理可能な「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。このI/V変換部4は、両チャンネルについて共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。これにより、本例の光測定装置1では、受光センサ20a,20bからの検出信号Sia,Sibが、同様の変換条件で変換されて検出信号Sva,Svbが出力される。   In this case, in the optical measurement device 1 of the present example, each of the I / V conversion units 4 can perform “I / V conversion processing” on the detection signals Sia and Sib from the light receiving sensors 20a and 20b in parallel. I / V conversion section (two-channel I / V conversion element) ". The I / V conversion unit 4 is composed of a “two-channel I / V conversion unit (two-channel I / V conversion element)” that operates with a common gain set for both channels. As a result, in the light measuring device 1 of the present embodiment, the detection signals Sia and Sib from the light receiving sensors 20a and 20b are converted under the same conversion conditions, and the detection signals Sva and Svb are output.

A/D変換部5rは、I/V変換部4rから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」の一例)を生成すると共に、I/V変換部4rから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。   The A / D conversion unit 5r performs A / D conversion processing on the detection signal Sva output from the I / V conversion unit 4r at a predetermined cycle and performs detection signal data Da (“the signal level of the first detection signal can be specified. And an A / D conversion process of the detection signal Svb output from the I / V conversion unit 4r at a predetermined cycle, and generates detection signal data Db (“second detection signal”). An example) is generated, and the generated detection signal data Da and Db are output to the processing unit 8.

A/D変換部5gは、I/V変換部4gから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」の他の一例)を生成すると共に、I/V変換部4gから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」の他の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。   The A / D conversion unit 5g performs A / D conversion processing on the detection signal Sva output from the I / V conversion unit 4g at a predetermined cycle, and performs detection signal data Da (“the signal level of the first detection signal can be specified. Another example of the “first data” is generated, and the detection signal Svb output from the I / V conversion unit 4g is A / D-converted at a predetermined cycle to generate detection signal data Db (“the second signal”). Another example of “second data that can specify the signal level of the detection signal” is generated, and the generated detection signal data Da and Db are output to the processing unit 8.

A/D変換部5bは、I/V変換部4bから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」のさらに他の一例)を生成すると共に、I/V変換部4bから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」のさらに他の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。   The A / D converter 5b subjects the detection signal Sva output from the I / V converter 4b to A / D conversion processing at a predetermined cycle and performs detection signal data Da (“The signal level of the first detection signal can be specified. Another example of the “first data” is generated, and the detection signal Svb output from the I / V conversion unit 4b is A / D-converted at a predetermined cycle to generate detection signal data Db (“second data”). Of the second data that can specify the signal level of the detection signal of the above (2), and outputs the generated detection signal data Da and Db to the processing unit 8.

操作部6は、後述する測定処理の条件の設定操作や、測定処理の開始/停止を指示する各種の操作スイッチを備え、スイッチ操作に応じた操作信号を処理部8に出力する。表示部7は、処理部8の制御に従い、測定条件設定画面や測定結果表示画面など(いずれも図示せず)を表示する。   The operation unit 6 includes various operation switches for setting a measurement process condition to be described later and instructing start / stop of the measurement process, and outputs an operation signal corresponding to the switch operation to the processing unit 8. The display unit 7 displays a measurement condition setting screen, a measurement result display screen, and the like (both not shown) under the control of the processing unit 8.

処理部8は、光測定装置1を総括的に制御する。具体的には、処理部8は、「処理部」に相当し、操作部6の操作によって測定処理の開始を指示されたときに、各A/D変換部5から出力される検出信号データDa,Dbを記憶部9に記憶させる。また、処理部8は、A/D変換部5rから出力された検出信号データDa,Dbに基づき、受光部3Rに入射している被測定光L(赤色光)の波長および放射量を測定する。さらに、処理部8は、A/D変換部5gから出力された検出信号データDa,Dbに基づき、受光部3Gに入射している被測定光L(緑色光)の波長および放射量を測定する。また、処理部8は、A/D変換部5bから出力された検出信号データDa,Dbに基づき、受光部3Bに入射している被測定光L(青色光)の波長および放射量を測定する。   The processing unit 8 controls the light measuring device 1 as a whole. Specifically, the processing unit 8 corresponds to a “processing unit”, and when the start of the measurement process is instructed by the operation of the operation unit 6, the detection signal data Da output from each A / D conversion unit 5 , Db are stored in the storage unit 9. Further, the processing unit 8 measures the wavelength and the radiation amount of the measured light L (red light) incident on the light receiving unit 3R based on the detection signal data Da and Db output from the A / D conversion unit 5r. . Further, the processing unit 8 measures the wavelength and the radiation amount of the light to be measured L (green light) incident on the light receiving unit 3G based on the detection signal data Da and Db output from the A / D conversion unit 5g. . Further, the processing unit 8 measures the wavelength and the radiation amount of the light L to be measured (blue light) incident on the light receiving unit 3B based on the detection signal data Da and Db output from the A / D conversion unit 5b. .

この場合、本例の光測定装置1では、処理部8が、一例として、記憶部9に記憶させた検出信号データDa,Dbに基づき、各受光部3の光電変換部23a,23bから出力された検出信号Sia,Sibの信号レベルをそれぞれ特定すると共に、特定した検出信号Siaの信号レベルおよび検出信号Sibの信号レベルの比(両信号レベルのいずれか一方に対する他方の比)に基づき、受光部3に入射している被測定光L(赤色光、緑色光および青色光)の波長をそれぞれ演算(測定)する。また、処理部8は、演算した波長と、上記の特定した両信号レベルのいずれか予め規定された一方とに基づいて被測定光Lの放射量を演算(測定)する。   In this case, in the optical measurement device 1 of the present example, the processing unit 8 outputs, for example, from the photoelectric conversion units 23a and 23b of each light receiving unit 3 based on the detection signal data Da and Db stored in the storage unit 9. The signal levels of the detected detection signals Sia and Sib are specified, respectively, and the light receiving unit is determined based on the specified signal level of the detection signal Sia and the ratio of the signal levels of the detection signal Sib (the ratio of one of the two signal levels to the other). The wavelengths of the measured light L (red light, green light, and blue light) incident on 3 are calculated (measured). Further, the processing unit 8 calculates (measures) the radiation amount of the measured light L based on the calculated wavelength and one of the two specified signal levels, which is defined in advance.

記憶部9は、処理部8の動作プログラムや、各A/D変換部5から出力された検出信号データDa,Dbなどを記憶する。   The storage unit 9 stores an operation program of the processing unit 8, detection signal data Da and Db output from each A / D conversion unit 5, and the like.

次に、光測定装置1による被測定光Lの波長や放射量の測定処理について、貼付図面を参照して説明する。   Next, a process of measuring the wavelength and the amount of radiation of the measured light L by the light measuring device 1 will be described with reference to the attached drawings.

この光測定装置1による測定処理に際しては、まず、拡散光学系2の入射部11における入射孔12に対して被測定光L(赤色光、緑色光および青色光など)が入射するように光測定装置1を設置する。この際には、入射孔12から入射した被測定光Lが拡散光学系2内において拡散されて、各出射部13の各出射孔14a,14bから各受光部3に向けて被測定光Lが出射される。   In the measurement processing by the light measuring device 1, first, the light measurement is performed such that the measured light L (red light, green light, blue light, etc.) is incident on the entrance hole 12 in the entrance section 11 of the diffusion optical system 2. The device 1 is installed. At this time, the light L to be measured incident from the entrance hole 12 is diffused in the diffusion optical system 2, and the light L to be measured is directed from each of the emission holes 14 a and 14 b of each of the emission units 13 to each of the light receiving units 3. Is emitted.

この場合、本例の光測定装置1では、前述したように、各受光部3の受光センサ20aに同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)で構成された光学フィルタ22aが配設されると共に、各受光部3の受光センサ20bに同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)で構成された光学フィルタ22bが配設されている。また、本例の光測定装置1では、拡散光学系2から受光センサ20a,20bに対して同量の被測定光Lが出射されたときに、一例として、各受光部3のうちの受光部3Gの測定対象波長範囲である波長範囲Hg内の受光センサ20a,20bの分光感度特性が同程度の感度となるように(すなわち、波長範囲Hg内の各波長の被測定光Lの光電変換部23a,23bに対する入射量が同程度となるように)両光学フィルタ22a,22bの光学特性が規定されている。つまり、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hg内の各波長の被測定光Lの透過量が同程度となっている。   In this case, in the light measuring device 1 of the present embodiment, as described above, the light receiving sensor 20a of each light receiving unit 3 is configured by the same optical filter (an optical filter having the same transmittance of the measured light L for each wavelength). And an optical filter 22b composed of the same optical filter (an optical filter having the same transmittance of the measured light L for each wavelength) is provided for the light receiving sensor 20b of each light receiving unit 3. Has been established. In the light measuring device 1 of the present embodiment, when the same amount of light to be measured L is emitted from the diffusion optical system 2 to the light receiving sensors 20a and 20b, as an example, the light receiving unit of each light receiving unit 3 The spectral sensitivity characteristics of the light receiving sensors 20a and 20b within the wavelength range Hg, which is the 3G measurement target wavelength range, are substantially the same (that is, the photoelectric conversion unit of the measured light L of each wavelength within the wavelength range Hg). The optical characteristics of the two optical filters 22a and 22b are defined so that the amounts of incidence on the optical filters 23a and 23b are substantially the same. That is, in the optical filters 22a and 22b employed in the optical measurement device 1 of the present example, the transmission amounts of the measured light L of each wavelength within the wavelength range Hg are substantially the same.

したがって、拡散光学系2(積分球)の出射部13に設けた出射孔14aの開口面積(第1の開口面積)、および出射孔14bの開口面積(第2の開口面積)を等しい面積としたとき(すなわち、受光センサ20a,20bに対する拡散光学系2からの被測定光Lの出射量を同量としたとき)には、図2に実線L2a,L2bで示すように、波長範囲Hgを測定対象波長範囲とする受光部3Gにおいては、両受光センサ20a,20bの分光感度特性が同程度となり、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。   Therefore, the opening area (first opening area) of the emission hole 14a provided in the emission part 13 of the diffusion optical system 2 (integrating sphere) and the opening area (second opening area) of the emission hole 14b are made equal. At this time (that is, when the amount of light to be measured L from the diffusion optical system 2 with respect to the light receiving sensors 20a and 20b is the same), the wavelength range Hg is measured as shown by the solid lines L2a and L2b in FIG. In the light receiving section 3G within the target wavelength range, the spectral sensitivity characteristics of the two light receiving sensors 20a and 20b are almost the same, and the incident amount of the light L to be measured to the photoelectric conversion sections 23a and 23b (that is, from the photoelectric conversion sections 23a and 23b). The output detection signals Sia and Sib have the same signal level.

このため、受光部3Gにおいては、受光センサ20aについてのSN比(光学フィルタ21,22aを透過して光電変換部23aに入射した被測定光Lの入射量に応じた本来的な信号成分と、外乱の影響等で検出信号Siaに混入したノイズ成分との比)と、受光センサ20bについてのSN比(光学フィルタ21,22bを透過して光電変換部23bに入射した被測定光Lの入射量に応じた本来的な信号成分と、外乱の影響等で検出信号Sibに混入したノイズ成分との比)とが同程度となる。   For this reason, in the light receiving unit 3G, the S / N ratio of the light receiving sensor 20a (an original signal component corresponding to the incident amount of the measured light L transmitted through the optical filters 21 and 22a and incident on the photoelectric conversion unit 23a; The ratio of the noise component mixed into the detection signal Sia due to the influence of disturbance or the like, and the S / N ratio of the light receiving sensor 20b (the incident amount of the measured light L transmitted through the optical filters 21 and 22b and incident on the photoelectric conversion unit 23b) And the ratio of the original signal component corresponding to the noise component to the noise component mixed into the detection signal Sib due to the influence of disturbance or the like.

しかしながら、本例の光測定装置1では、前述したように、「長い波長の光ほど光電変換部23aへの光の入射量が多くなる」との条件)を満たす光学特性の光学フィルタ22a、および「短い波長の光ほど光電変換部23bへの光の入射量が多くなる」との条件)を満たす光学特性の光学フィルタ22bを採用して受光センサ20a,20bを構成している。   However, in the optical measurement device 1 of the present example, as described above, the optical filter 22a having optical characteristics satisfying the condition that “the longer the wavelength of the light, the greater the amount of light incident on the photoelectric conversion unit 23a”, and The light receiving sensors 20a and 20b are configured using an optical filter 22b having optical characteristics that satisfy the condition that "the shorter the wavelength of light, the greater the amount of light incident on the photoelectric conversion unit 23b".

この結果、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22aの透過量が、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22bの透過量よりも多く(波長範囲Hr内の各波長の被測定光Lの光学フィルタ22bの透過量が、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22aの透過量よりも少なく)なっている。また、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22aの透過量が、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22bの透過量よりも少なく(波長範囲Hb内の各波長の被測定光Lの光学フィルタ22bの透過量が、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22aの透過量よりも多く)なっている。   As a result, in the optical filters 22a and 22b employed in the optical measurement device 1 of the present example, the transmission amount of the measured light L of each wavelength within the wavelength range Hr through the optical filter 22a is reduced by each wavelength within the wavelength range Hr. (The transmission amount of the measured light L of each wavelength within the wavelength range Hr is greater than the transmission amount of the measured light L of each wavelength within the wavelength range Hr. (Less than the transmission amount of the optical filter 22a). Further, in the optical filters 22a and 22b employed in the optical measurement device 1 of the present example, the transmission amount of the measured light L of each wavelength within the wavelength range Hb through the optical filter 22a is reduced. The transmission amount of the measured light L in the wavelength range Hb is smaller than the transmission amount of the measured light L in the wavelength range Hb. Larger than the transmission amount of the filter 22a).

したがって、出射孔14a,14bの開口面積(第1の開口面積および第2の開口面積)を等しい面積としたとき(拡散光学系2からの被測定光Lの出射量を同量としたとき)に、波長範囲Hrを測定対象波長範囲とする受光部3Rにおいては、光電変換部23aに対する被測定光Lの入射量が光電変換部23bに対する被測定光Lの入射量よりも多くなり(光電変換部23bに対する被測定光Lの入射量が光電変換部23aに対する被測定光Lの入射量よりも少なくなり)、両受光センサ20aの分光感度特性が受光センサ20bの分光感度特性よりも高くなる(両受光センサ20bの分光感度特性が受光センサ20aの分光感度特性よりも低くなる)結果、検出信号Siaの信号レベルが検出信号Sibの信号レベルよりも高くなる(検出信号Sibの信号レベルが検出信号Siaの信号レベルよりも低くなる)。このため、受光部3Rにおいては、受光センサ20aについてのSN比と、の受光センサ20aについてのSN比とが異なる状態となってしまう。   Therefore, when the opening areas (the first opening area and the second opening area) of the emission holes 14a and 14b are equal to each other (when the emission amount of the measured light L from the diffusion optical system 2 is equal). In the light receiving unit 3R having the wavelength range Hr as the wavelength range to be measured, the incident amount of the measured light L on the photoelectric conversion unit 23a is larger than the incident amount of the measured light L on the photoelectric conversion unit 23b (photoelectric conversion The incident amount of the measured light L to the unit 23b is smaller than the incident amount of the measured light L to the photoelectric conversion unit 23a), and the spectral sensitivity characteristics of both light receiving sensors 20a are higher than the spectral sensitivity characteristics of the light receiving sensor 20b ( As a result, the spectral sensitivity characteristics of both light receiving sensors 20b are lower than the spectral sensitivity characteristics of light receiving sensor 20a. As a result, the signal level of detection signal Sia becomes higher than the signal level of detection signal Sib (detection). The signal level of the signal Sib is lower than the signal level of the detection signal Sia). For this reason, in the light receiving unit 3R, the SN ratio of the light receiving sensor 20a is different from the SN ratio of the light receiving sensor 20a.

また、出射孔14a,14bの開口面積(第1の開口面積および第2の開口面積)を等しい面積としたとき(拡散光学系2からの被測定光Lの出射量を同量としたとき)に、波長範囲Hbを測定対象波長範囲とする受光部3Bにおいては、光電変換部23aに対する被測定光Lの入射量が光電変換部23bに対する被測定光Lの入射量よりも少なくなり(光電変換部23bに対する被測定光Lの入射量が光電変換部23aに対する被測定光Lの入射量よりも多くなり)、両受光センサ20aの分光感度特性が受光センサ20bの分光感度特性よりも低くなる(両受光センサ20bの分光感度特性が受光センサ20aの分光感度特性よりも高くなる)結果、検出信号Siaの信号レベルが検出信号Sibの信号レベルよりも低くなる(検出信号Sibの信号レベルが検出信号Siaの信号レベルよりも高くなる)。このため、受光部3Bにおいても、受光センサ20aについてのSN比と、の受光センサ20aについてのSN比とが異なる状態となってしまう。   Further, when the opening areas (the first opening area and the second opening area) of the emission holes 14a and 14b are equal to each other (when the emission amount of the measured light L from the diffusion optical system 2 is equal). In the light receiving section 3B having the wavelength range Hb as the measurement target wavelength range, the incident amount of the measured light L on the photoelectric conversion section 23a becomes smaller than the incident amount of the measured light L on the photoelectric conversion section 23b (photoelectric conversion). The incident amount of the measured light L to the unit 23b is larger than the incident amount of the measured light L to the photoelectric conversion unit 23a), and the spectral sensitivity characteristics of both light receiving sensors 20a are lower than the spectral sensitivity characteristics of the light receiving sensor 20b ( As a result, the spectral sensitivity characteristics of both light receiving sensors 20b become higher than the spectral sensitivity characteristics of light receiving sensor 20a. As a result, the signal level of detection signal Sia becomes lower than the signal level of detection signal Sib (detection signal ib signal level is higher than the signal level of the detection signal Sia). Therefore, also in the light receiving unit 3B, the SN ratio of the light receiving sensor 20a is different from the SN ratio of the light receiving sensor 20a.

そこで、本例の光測定装置1では、受光部3R,3Bにおける受光センサ20a,20bについてのSN比が異なる状態となるのを回避すべく、拡散光学系2の「出射部」に設けた「第1の入射量制限部」における「第1の光通過孔(出射孔14a)」の「第1の開口面積」、および「第2の入射量制限部」における「第2の光通過孔(出射孔14b)」の「第2の開口面積」が最適化されて、受光センサ20a,20bに対する被測定光Lの入射量が調整されている。   Therefore, in the light measuring device 1 of the present embodiment, in order to avoid a situation where the SN ratios of the light receiving sensors 20a and 20b in the light receiving units 3R and 3B are different, a “light emitting unit” provided in the diffusion optical system 2 is provided. The “first opening area” of the “first light passage hole (outgoing hole 14a)” in the “first incident amount limiting section” and the “second light passing hole ( The "second opening area" of the "outgoing hole 14b)" is optimized, and the incident amount of the measured light L to the light receiving sensors 20a and 20b is adjusted.

具体的には、前述したように、波長範囲Hg内の各波長の被測定光Lの透過量が同程度の光学特性となっている光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hgを測定対象波長範囲とする受光部3Gについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量、および拡散光学系2から受光センサ20bへの被測定光Lの出射量が同量の状態において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。したがって、受光部3Gに対して被測定光Lを出射する出射部13gでは、開口面積が等しくなるように出射孔14ga,14gbが開口されている。この場合、一例として、出射孔14ga,14gbを丸孔で形成する場合には、両出射孔14ga,14gbの開口径を同径とすることにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。   Specifically, as described above, the optical measurement device 1 of the present example including the optical filters 22a and 22b having the same optical characteristics as the transmission amount of the measured light L of each wavelength within the wavelength range Hg. In the light receiving section 3G having the wavelength range Hg as the wavelength range to be measured, the amount of the measured light L emitted from the diffusion optical system 2 to the light receiving sensor 20a and the measured light from the diffusion optical system 2 to the light receiving sensor 20b are measured. In the state where the emission amounts of L are the same, the amounts of incidence of the measured light L on the photoelectric conversion units 23a and 23b (that is, the signal levels of the detection signals Sia and Sib output from the photoelectric conversion units 23a and 23b) are approximately the same. Becomes Therefore, the emission holes 14ga and 14gb are opened in the emission unit 13g that emits the measured light L to the light receiving unit 3G so that the aperture areas are equal. In this case, as an example, when the emission holes 14ga and 14gb are formed as round holes, the emission diameter of the light L to be measured with respect to the photoelectric conversion units 23a and 23b is set by making the opening diameters of both the emission holes 14ga and 14gb the same. The amount of incidence can be about the same.

また、前述したように、波長範囲Hr内の各波長の被測定光Lの受光センサ20aの透過量が、波長範囲Hr内の各波長の被測定光Lの受光センサ20bの透過量よりも多くなる光学特性を有する光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hrを測定対象波長範囲とする受光部3Rについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量が、拡散光学系2から受光センサ20bへの被測定光Lの出射量よりも少ない状態(拡散光学系2から受光センサ20bへの被測定光Lの出射量が、拡散光学系2から受光センサ20aへの被測定光Lの出射量よりも多い状態)において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。   Further, as described above, the amount of transmission of the measured light L of each wavelength within the wavelength range Hr by the light receiving sensor 20a is greater than the amount of transmission of the measured light L of each wavelength within the wavelength range Hr by the light receiving sensor 20b. In the optical measuring device 1 of the present example provided with the optical filters 22a and 22b having the following optical characteristics, the light receiving unit 3R whose wavelength range is the wavelength range Hr to be measured is measured from the diffusion optical system 2 to the light receiving sensor 20a. A state in which the emission amount of the light L is smaller than the emission amount of the measured light L from the diffusion optical system 2 to the light receiving sensor 20b (the emission amount of the measured light L from the diffusion optical system 2 to the light receiving sensor 20b is In a state where the amount of the measured light L emitted from the system 2 to the light receiving sensor 20a is larger than the amount of the measured light L incident on the photoelectric conversion units 23a and 23b (that is, detection output from the photoelectric conversion units 23a and 23b). Faith Sia, the signal level of Sib) is comparable.

したがって、受光部3Rに対して被測定光Lを出射する出射部13rでは、出射孔14raの開口面積が出射孔14rbの開口面積よりも小さくなるように、(出射孔14rbの開口面積が出射孔14raの開口面積よりも大きくなるように)出射孔14ra,14rbが開口されている(「測定対象波長範囲内の各波長の被測定光の第1の光電変換部に対する入射量と第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように第1の光通過孔の第1の開口面積と第2の光通過孔の開口面積とが相違させられている」との構成の一例)。この場合、一例として、出射孔14ra,14rbを丸孔で形成する場合には、出射孔14raの開口径を出射孔14rbの開口径よりも小径とする(出射孔14rbの開口径を出射孔14raの開口径よりも大径とする)ことにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。   Therefore, in the emission part 13r that emits the measured light L to the light receiving part 3R, the opening area of the emission hole 14ra is smaller than the opening area of the emission hole 14rb so that the opening area of the emission hole 14rb is smaller. The emission holes 14ra and 14rb are opened (to be larger than the opening area of 14ra) (“the amount of light to be measured of each wavelength within the wavelength range to be measured with respect to the first photoelectric conversion unit and the second photoelectric conversion amount”). The first opening area of the first light passage hole and the opening area of the second light passage hole are made different so that the difference between the amount of light incident on the converter and the amount of light within a light amount range that is defined in advance. Configuration). In this case, as an example, when the emission holes 14ra and 14rb are formed as round holes, the opening diameter of the emission hole 14ra is set to be smaller than the opening diameter of the emission hole 14rb (the opening diameter of the emission hole 14rb is set to the emission hole 14ra). Of the light to be measured L to the photoelectric conversion units 23a and 23b can be made substantially equal.

なお、本例の光測定装置1では、一例として、出射孔14rbからの被測定光Lの出射量(実線L1で示す量)よりも出射孔14raからの被測定光Lの出射量(一点鎖線L3aで示す量)が少量となるように、出射孔14raの開口面積(開口径)が出射孔14rbの開口面積(開口径)よりも小さくなっている。これにより、本例の光測定装置1では、拡散光学系2の出射孔14raから出射されて光学フィルタ21rおよび受光部3Rの受光センサ20aにおける光学フィルタ22aを透過して光電変換部23aに入射する被測定光Lの入射量(波長範囲Hr内の波長の光電変換部23aへの入射量:一点鎖線L4aで示す量)と、拡散光学系2の出射孔14rbから出射されて光学フィルタ21rおよび受光部3Rの受光センサ20bにおける光学フィルタ22bを透過して光電変換部23bに入射する被測定光Lの入射量(波長範囲Hr内の波長の光電変換部23bへの入射量:実線L2bで示す量)とが同程度となっている。   In the optical measurement device 1 of the present embodiment, as an example, the emission amount of the measured light L from the emission hole 14ra (dashed line) is smaller than the emission amount of the measured light L from the emission hole 14rb (the amount indicated by the solid line L1). The opening area (opening diameter) of the exit hole 14ra is smaller than the opening area (opening diameter) of the exit hole 14rb so that the amount indicated by L3a) is small. Thereby, in the light measuring device 1 of this example, the light is emitted from the emission hole 14ra of the diffusion optical system 2, passes through the optical filter 21r and the optical filter 22a of the light receiving sensor 20a of the light receiving unit 3R, and enters the photoelectric conversion unit 23a. The incident amount of the measured light L (the incident amount of the wavelength within the wavelength range Hr to the photoelectric conversion unit 23a: the amount indicated by the one-dot chain line L4a) and the light emitted from the emission hole 14rb of the diffusion optical system 2 and the optical filter 21r and received light Amount of light to be measured L transmitted through the optical filter 22b in the light receiving sensor 20b of the light receiving sensor 20b of the unit 3R and incident on the photoelectric conversion unit 23b (incident amount of a wavelength within the wavelength range Hr to the photoelectric conversion unit 23b: amount indicated by a solid line L2b) ) Is about the same.

さらに、前述したように、波長範囲Hb内の各波長の被測定光Lの受光センサ20aの透過量が、波長範囲Hb内の各波長の被測定光Lの受光センサ20bの透過量よりも少なくなる光学特性を有する光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hbを測定対象波長範囲とする受光部3Bについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量が、拡散光学系2から受光センサ20bへの被測定光Lの出射量よりも多い状態(拡散光学系2から受光センサ20bへの被測定光Lの出射量が、拡散光学系2から受光センサ20aへの被測定光Lの出射量よりも少ない状態)において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。   Furthermore, as described above, the transmission amount of the measured light L of each wavelength within the wavelength range Hb through the light receiving sensor 20a is smaller than the transmission amount of the measured light L of each wavelength within the wavelength range Hb. In the optical measuring device 1 of the present example provided with the optical filters 22a and 22b having the following optical characteristics, the light receiving unit 3B having the wavelength range Hb as the wavelength range to be measured is measured from the diffusion optical system 2 to the light receiving sensor 20a. A state in which the emission amount of the light L is larger than the emission amount of the measured light L from the diffusion optical system 2 to the light receiving sensor 20b (the emission amount of the measurement light L from the diffusion optical system 2 to the light receiving sensor 20b is In a state where the amount of the measured light L emitted from the system 2 to the light receiving sensor 20a is smaller than the amount of the measured light L incident on the photoelectric conversion units 23a and 23b (that is, the detection amount output from the photoelectric conversion units 23a and 23b). Signal Sia, the signal level of Sib) is comparable.

したがって、受光部3Bに対して被測定光Lを出射する出射部13bでは、出射孔14baの開口面積が出射孔14bbの開口面積よりも大きくなるように、(出射孔14bbの開口面積が出射孔14baの開口面積よりも小さくなるように)出射孔14ba,14bbが開口されている(「測定対象波長範囲内の各波長の被測定光の第1の光電変換部に対する入射量と第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように第1の光通過孔の第1の開口面積と第2の光通過孔の開口面積とが相違させられている」との構成の他の一例)。この場合、一例として、出射孔14ba,14bbを丸孔で形成する場合には、出射孔14baの開口径を出射孔14bbの開口径よりも大径とする(出射孔14bbの開口径を出射孔14baの開口径よりも小径とする)ことにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。   Therefore, in the emission section 13b that emits the measured light L to the light receiving section 3B, the opening area of the emission hole 14ba is larger than the opening area of the emission hole 14bb (the opening area of the emission hole 14bb is The emission holes 14ba and 14bb are opened (to be smaller than the opening area of the 14ba) (“the incident amount of the measured light of each wavelength within the wavelength range to be measured to the first photoelectric conversion unit and the second photoelectric conversion amount”). The first opening area of the first light passage hole and the opening area of the second light passage hole are made different so that the difference between the amount of light incident on the converter and the amount of light within a light amount range that is defined in advance. Another example of the configuration "is"). In this case, as an example, when the emission holes 14ba, 14bb are formed as round holes, the opening diameter of the emission hole 14ba is set to be larger than the opening diameter of the emission hole 14bb (the opening diameter of the emission hole 14bb is set to the emission hole). By making the diameter smaller than the opening diameter of 14ba), the incident amount of the measured light L to the photoelectric conversion units 23a and 23b can be made substantially equal.

なお、本例の光測定装置1では、一例として、出射孔14baからの被測定光Lの出射量(実線L1で示す量)よりも出射孔14bbからの被測定光Lの出射量(二点鎖線L3bで示す量)が少量となるように、出射孔14bbの開口面積(開口径)が出射孔14baの開口面積(開口径)よりも小さくなっている。これにより、本例の光測定装置1では、拡散光学系2の出射孔14baから出射されて光学フィルタ21bおよび受光部3Bの受光センサ20aにおける光学フィルタ22aを透過して光電変換部23aに入射する被測定光Lの入射量(波長範囲Hb内の波長の光電変換部23aへの入射量:実線L2aで示す量)と、拡散光学系2の出射孔14bbから出射されて光学フィルタ21bおよび受光部3Bの受光センサ20bにおける光学フィルタ22bを透過して光電変換部23bに入射する被測定光Lの入射量(波長範囲Hb内の波長の光電変換部23bへの入射量:二点鎖線L4bで示す量)とが同程度となっている。   In the optical measurement device 1 of the present embodiment, as an example, the emission amount of the measured light L from the emission hole 14bb (two points) is smaller than the emission amount of the measured light L from the emission hole 14ba (the amount indicated by the solid line L1). The opening area (opening diameter) of the emission hole 14bb is smaller than the opening area (opening diameter) of the emission hole 14ba so that the amount indicated by the chain line L3b) is small. Thereby, in the light measuring device 1 of the present example, the light is emitted from the emission hole 14ba of the diffusion optical system 2, passes through the optical filter 21b and the optical filter 22a of the light receiving sensor 20a of the light receiving unit 3B, and enters the photoelectric conversion unit 23a. The incident amount of the measured light L (the incident amount of the wavelength within the wavelength range Hb to the photoelectric conversion unit 23a: the amount indicated by the solid line L2a), the optical filter 21b emitted from the emission hole 14bb of the diffusion optical system 2, and the light receiving unit The incident amount of the light L to be measured that passes through the optical filter 22b in the 3B light receiving sensor 20b and enters the photoelectric conversion unit 23b (the incident amount of the wavelength within the wavelength range Hb to the photoelectric conversion unit 23b: indicated by a two-dot chain line L4b) Amount) is about the same.

この場合、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)については、光学フィルタ22a,22bの光学特性に応じて、光電変換部23aへの被測定光Lの入射量と光電変換部23bへの被測定光Lの入射量との差が「予め規定された光量範囲内の光量」となるように規定されている。具体的には、一例として、光電変換部23aに対する被測定光Lの入射量、および光電変換部23bに対する被測定光Lの入射量のうちの多い一方の1/2の量(光電変換部23aに対する被測定光Lの入射量、および光電変換部23bに対する被測定光Lの入射量のうちの少ない一方の2倍の量)を「予め規定された光量範囲」とし、光電変換部23aに対する被測定光Lの入射量と光電変換部23bに対する被測定光Lの入射量との差がこの光量範囲内となるように両出射孔14a,14bの開口面積(開口径)が相違させられている。   In this case, the opening area (opening diameter) of the emission hole 14a and the opening area (opening diameter) of the emission hole 14b are determined based on the optical characteristics of the optical filters 22a and 22b. The difference between the amount of incident light and the amount of incident light to be measured L incident on the photoelectric conversion unit 23b is defined to be “a light amount within a predetermined light amount range”. More specifically, as an example, one-half of the larger one of the incident amount of the measured light L to the photoelectric conversion unit 23a and the incident amount of the measured light L to the photoelectric conversion unit 23b (the photoelectric conversion unit 23a Of the measured light L incident on the photoelectric conversion unit 23b and the smaller one of the incident amounts of the measured light L incident on the photoelectric conversion unit 23b) are defined as a “predetermined light amount range”, The opening areas (opening diameters) of the two emission holes 14a and 14b are made different so that the difference between the amount of incidence of the measurement light L and the amount of incidence of the measured light L on the photoelectric conversion unit 23b is within this light amount range. .

また、本例の光測定装置1では、上記のような条件を満たすだけでなく、各受光部3毎に、受光センサ20a,20bの分光感度が測定波長範囲内で反転するように出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)を規定して拡散光学系2から受光センサ20a,20bへの被測定光Lの出射量を相違させている。   Further, in the light measuring device 1 of the present embodiment, not only the above conditions are satisfied, but also the emission holes 14a for each light receiving unit 3 such that the spectral sensitivity of the light receiving sensors 20a and 20b is inverted within the measurement wavelength range. The opening area (opening diameter) and the opening area (opening diameter) of the exit hole 14b are defined so that the output amounts of the measured light L from the diffusion optical system 2 to the light receiving sensors 20a and 20b are different.

具体的には、本例の光測定装置1では、測定対象波長範囲において最も短い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも少ないときに、測定対象波長範囲において最も長い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも多くなるように、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)が規定されている。これにより、図2に一点鎖線L4aおよび実線L2bで示すように、波長範囲Hrを測定対象波長範囲とする受光部3Rでは、波長λrsの被測定光Lが受光センサ20a,20bに入射したとき、および波長λrlが受光センサ20a,20bに入射したときのいずれにおいても、光電変換部23a,23bへの被測定光Lの入射量が同程度となり、その検出信号Sia,Sibの信号レベルが同程度となる。   Specifically, in the optical measurement device 1 of this example, when the incident amount of the measured light L having the shortest wavelength in the wavelength range to be measured to the photoelectric conversion unit 23a is smaller than the incident amount to the photoelectric conversion unit 23b. The opening area (opening diameter) of the emission hole 14a and the amount of light to be measured having the longest wavelength in the measurement target wavelength range to the photoelectric conversion unit 23a are larger than the amount of incidence to the photoelectric conversion unit 23b. The opening area (opening diameter) of the emission hole 14b is defined. Thereby, as shown by the dashed-dotted line L4a and the solid line L2b in FIG. 2, in the light receiving section 3R having the wavelength range Hr as the measurement target wavelength range, when the measured light L having the wavelength λrs enters the light receiving sensors 20a and 20b, And when the wavelength λrl is incident on the light receiving sensors 20a and 20b, the incident amounts of the measured light L to the photoelectric conversion units 23a and 23b are substantially the same, and the signal levels of the detection signals Sia and Sib are substantially the same. Becomes

また、本例の光測定装置1では、測定対象波長範囲において最も短い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも多いときに、測定対象波長範囲において最も長い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも少なくなるように、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)が規定されている。これにより、図2に実線L2aおよび二点鎖線L4bで示すように、波長範囲Hbを測定対象波長範囲とする受光部3Bでは、波長λbsの被測定光Lが受光センサ20a,20bに入射したとき、および波長λblが受光センサ20a,20bに入射したときのいずれにおいても、光電変換部23a,23bへの被測定光Lの入射量が同程度となり、その検出信号Sia,Sibの信号レベルが同程度となる。   In the optical measurement device 1 of the present example, when the amount of light to be measured L having the shortest wavelength in the wavelength range to be measured is incident on the photoelectric conversion unit 23a more than the amount of light incident on the photoelectric conversion unit 23b, The opening area (opening diameter) and the exit hole 14b of the exit hole 14a are set such that the incident amount of the measured light L having the longest wavelength in the wavelength range on the photoelectric conversion unit 23a is smaller than the incident amount on the photoelectric conversion unit 23b. The opening area (opening diameter) is defined. As a result, as shown by the solid line L2a and the two-dot chain line L4b in FIG. 2, in the light receiving unit 3B having the wavelength range Hb as the measurement target wavelength range, when the measured light L having the wavelength λbs enters the light receiving sensors 20a and 20b. , And the wavelength λbl are incident on the light receiving sensors 20a and 20b, the incident amounts of the measured light L on the photoelectric conversion units 23a and 23b are substantially the same, and the signal levels of the detection signals Sia and Sib are the same. About.

したがって、本例の光測定装置1では、受光部3R,3G,3Bのすべてにおいて、測定対象波長範囲(波長範囲Hr,Hg,Hb)の最も短い波長の被測定光Lが入射したとき、および測定対象波長範囲(波長範囲Hr,Hg,Hb)の最も長い波長の被測定光Lが入射したときのいずれの状態においても、検出信号Sia,SibのSN比が同程度となる。   Therefore, in the optical measurement device 1 of this example, when the measured light L having the shortest wavelength in the wavelength range to be measured (wavelength range Hr, Hg, Hb) is incident on all of the light receiving sections 3R, 3G, 3B, and In any state when the measured light L having the longest wavelength in the wavelength range to be measured (wavelength range Hr, Hg, Hb) is incident, the SN ratios of the detection signals Sia and Sib are substantially the same.

一方、上記のように拡散光学系2の各出射部13から出射された被測定光Lが入射している各受光部3の受光センサ20aでは、光学フィルタ21,22aを透過した被測定光Lが光電変換部23aによって受光され、その受光量に応じた電流値の検出信号Siaが光電変換部23aから出力される。また、各受光部3の受光センサ20bでは、光学フィルタ21を透過した被測定光Lが光電変換部23bによって受光され、その受光量に応じた電流値の検出信号Sibが光電変換部23bから出力される。さらに、各I/V変換部4が受光センサ20a,20b(光電変換部23a,23b)から出力された検出信号Sia,SibをI/V変換処理して検出信号Sva,Svbを出力すると共に、各A/D変換部5が検出信号Sva,Svbを所定の周期でA/D変換処理して各受光部3毎の検出信号データDa,Dbをそれぞれ出力する。また、処理部8は、各A/D変換部5から出力された検出信号データDa,Dbを記憶部9に記憶させる。   On the other hand, as described above, in the light receiving sensor 20a of each light receiving unit 3 on which the measured light L emitted from each emitting unit 13 of the diffusion optical system 2 is incident, the measured light L transmitted through the optical filters 21 and 22a Is received by the photoelectric conversion unit 23a, and a detection signal Sia of a current value corresponding to the amount of received light is output from the photoelectric conversion unit 23a. In the light receiving sensor 20b of each light receiving unit 3, the measured light L transmitted through the optical filter 21 is received by the photoelectric conversion unit 23b, and a detection signal Sib of a current value corresponding to the amount of received light is output from the photoelectric conversion unit 23b. Is done. Further, each I / V conversion unit 4 performs I / V conversion processing on the detection signals Sia and Sib output from the light receiving sensors 20a and 20b (photoelectric conversion units 23a and 23b) and outputs detection signals Sva and Svb. Each A / D converter 5 performs A / D conversion processing on the detection signals Sva and Svb at a predetermined cycle, and outputs detection signal data Da and Db for each light receiving unit 3 respectively. Further, the processing unit 8 causes the storage unit 9 to store the detection signal data Da and Db output from each A / D conversion unit 5.

この場合、本例の光測定装置1では、上記したように、各受光部3の受光センサ20a,20bにおける光学フィルタ22a,22bの光学特性等に応じて拡散光学系2の各出射部13における出射孔14a,14bの開口面積(開口径)が最適化され、各受光部3毎の光電変換部23a,23bに対する被測定光Lの入射量が同程度となっている(両受光センサ20a,20bの波長範囲H内における分光感度特性が同様となっている)。これにより、各受光部3の受光センサ20a,20b(光電変換部23a,23b)から出力される検出信号Sia,SibのSN比が同程度となっている。   In this case, in the light measuring device 1 of the present embodiment, as described above, in each of the emission units 13 of the diffusion optical system 2 according to the optical characteristics of the optical filters 22a and 22b in the light receiving sensors 20a and 20b of each light receiving unit 3. The opening areas (opening diameters) of the emission holes 14a and 14b are optimized, and the amount of the measured light L incident on the photoelectric conversion units 23a and 23b of each light receiving unit 3 is substantially the same (both the light receiving sensors 20a and 20b). The spectral sensitivity characteristics in the wavelength range H of 20b are the same.) Thus, the SN ratios of the detection signals Sia and Sib output from the light receiving sensors 20a and 20b (photoelectric conversion units 23a and 23b) of each light receiving unit 3 are substantially the same.

また、本例の光測定装置1では、前述したように、各I/V変換部4が、共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。したがって、SN比が同程度の検出信号Sia,Sibvが同様の変換条件下でI/V変換処理された検出信号Sva,Svbについても、そのSN比が同程度となっている。これにより、この検出信号Sva,SvbをA/D変換処理した検出信号データDa,DbについてもそのSN比が同程度となっている。   Further, in the optical measurement device 1 of this example, as described above, each of the I / V converters 4 operates in a state where a common gain is set, as described in “2 channel I / V converter (2 channel I / V converter)”. Conversion element). " Accordingly, the detection signals Sva and Svb obtained by subjecting the detection signals Sia and Sibv having the same SN ratio to the I / V conversion processing under the same conversion conditions have the same SN ratio. Accordingly, the S / N ratios of the detection signal data Da and Db obtained by subjecting the detection signals Sva and Svb to A / D conversion are substantially the same.

この状態で、操作部6の操作によって測定処理の開始が指示されたときに、処理部8は、各受光部3毎の検出信号データDaの値(A/D変換部5によるサンプリング値:「第1の検出信号の信号レベル」に対応する値の一例)、および検出信号データDbの値(A/D変換部5によるサンプリング値:「第2の検出信号の信号レベル」に対応する値の一例)のいずれか予め規定された一方に対する他方の比(一例として、検出信号データDaの値に対する検出信号データDbの値の比:検出信号データDbの値/検出信号データDaの値)を演算し、演算した比に基づいて、各受光部3の受光センサ20a,20bに入射した被測定光Lの波長(赤色光、緑色光および青色光のそれぞれの波長)を特定(演算)する。   In this state, when the start of the measurement process is instructed by operating the operation unit 6, the processing unit 8 determines the value of the detection signal data Da for each light receiving unit 3 (the sampling value by the A / D conversion unit 5: “ An example of a value corresponding to the "signal level of the first detection signal") and a value of the detection signal data Db (a sampling value by the A / D converter 5: a value corresponding to the "signal level of the second detection signal") The ratio of the value of the detection signal data Db to the value of the detection signal data Da: the value of the detection signal data Db / the value of the detection signal data Da is calculated. Then, based on the calculated ratios, the wavelengths of the measured light L (the respective wavelengths of red light, green light and blue light) incident on the light receiving sensors 20a and 20b of each light receiving unit 3 are specified (calculated).

この場合、この光測定装置1では、各受光部3における両受光センサ20a,20bの光学フィルタ22a,22bが前述したような光学特性を有して光電変換部23a,23bへの光の入射量が制限される構成が採用されている。このため、受光部3に入射している被測定光Lの波長が長いときほど、受光センサ20aの感度が高くなって検出信号Siaの信号レベルが高くなり、かつ受光センサ20bの感度が低くなって検出信号Sibの信号レベルが低くなると共に、被測定光Lの波長が短いときほど、受光センサ20aの感度が低くなって検出信号Siaの信号レベルが低くなり、かつ受光センサ20bの感度が高くなって検出信号Sibの信号レベルが高くなる。   In this case, in the light measuring device 1, the optical filters 22a and 22b of the two light receiving sensors 20a and 20b in each light receiving unit 3 have the above-described optical characteristics and the amount of light incident on the photoelectric conversion units 23a and 23b. Is adopted. Therefore, as the wavelength of the light L to be measured incident on the light receiving unit 3 becomes longer, the sensitivity of the light receiving sensor 20a increases, the signal level of the detection signal Sia increases, and the sensitivity of the light receiving sensor 20b decreases. As the signal level of the detection signal Sib decreases, the shorter the wavelength of the measured light L, the lower the sensitivity of the light receiving sensor 20a, the lower the signal level of the detection signal Sia, and the higher the sensitivity of the light receiving sensor 20b. As a result, the signal level of the detection signal Sib increases.

したがって、処理部8は、検出信号データDaに基づいて特定した検出信号Siaの信号レベルと検出信号データDbに基づいて特定した検出信号Sibの信号レベルとの比(すなわち、検出信号データDaの値と検出信号データDbの値との比)の大きさに基づき、被測定光Lの波長を特定(演算)する。次いで、処理部8は、被測定光Lの放射量をそれぞれ測定する。具体的には、処理部8は、直前に演算した被測定光Lの波長と、検出信号Siaの信号レベル(検出信号データDaの値)および検出信号Sibの信号レベル(検出信号データDbの値)のいずれか一方と、その値から放射量を演算可能に予め規定された放射量算出用の係数(または、テーブル)とに基づき、被測定光L(赤色光)の放射量を演算する。この後、処理部8は、演算した(測定した)波長および放射量を測定結果として記憶部9に記憶させると共に、各受光部3毎(赤色光、緑色光および青色光毎)に表示部7に表示させ、被測定光Lについての一連の測定処理が完了する。   Therefore, the processing unit 8 determines the ratio between the signal level of the detection signal Sia specified based on the detection signal data Da and the signal level of the detection signal Sib specified based on the detection signal data Db (that is, the value of the detection signal data Da). The wavelength of the measured light L is specified (calculated) on the basis of the magnitude of the ratio of the measured signal L to the value of the detection signal data Db). Next, the processing unit 8 measures the radiation amount of the measured light L. Specifically, the processing unit 8 calculates the wavelength of the measured light L calculated immediately before, the signal level of the detection signal Sia (the value of the detection signal data Da), and the signal level of the detection signal Sib (the value of the detection signal data Db). ), And the radiation amount of the measured light L (red light) is calculated based on a radiation amount calculation coefficient (or table) that is predetermined so that the radiation amount can be calculated from the value. Thereafter, the processing unit 8 stores the calculated (measured) wavelength and radiation amount in the storage unit 9 as a measurement result, and displays the display unit 7 for each light receiving unit 3 (for each red light, green light, and blue light). , And a series of measurement processing on the measured light L is completed.

このように、この光測定装置1では、被測定光Lの通過が可能な出射孔14aが形成されて受光センサ20aにおける光電変換部23aに対する被測定光Lの入射量を制限する「第1の入射量制限部」、および被測定光Lの通過が可能な出射孔14bが形成されて受光センサ20bにおける光電変換部23bに対する被測定光Lの入射量を制限する「第2の入射量制限部」を備え、「第1の入射量制限部」および「第2の入射量制限部」が、「測定波長範囲(波長範囲H)」内の各波長の被測定光Lの光電変換部23aに対する入射量と光電変換部23bに対する入射量との差が「予め規定された光量範囲」内の光量となるように出射孔14aの「第1の開口面積」と出射孔14bの「第2の開口面積」とが相違させられている。   As described above, in the optical measurement device 1, the emission hole 14a through which the measured light L can pass is formed, and the incident amount of the measured light L to the photoelectric conversion unit 23a in the light receiving sensor 20a is limited. An “incident-amount limiting unit” and a “second incident-amount limiting unit that has an emission hole 14b through which the measured light L can pass, and limits the amount of the measured light L incident on the photoelectric conversion unit 23b in the light receiving sensor 20b. And the “first incident amount limiting unit” and the “second incident amount limiting unit” are provided for the photoelectric conversion unit 23a of the measured light L of each wavelength within the “measurement wavelength range (wavelength range H)”. The "first opening area" of the emission hole 14a and the "second opening area" of the emission hole 14b such that the difference between the amount of incidence and the amount of incidence on the photoelectric conversion unit 23b is within the "predetermined light amount range". Area ".

したがって、この測定装置によれば、測定対象波長範囲(波長範囲H)内の各波長の被測定光Lの透過率が大きく異なる光学フィルタ22a,22bを採用したとしても出射孔14aの通過時および出射孔14bの通過時に両光電変換部23a,23bに入射する被測定光Lの光量が好適に調整されるため、任意の光学特定を有する「光学フィルタ」を採用して光測定装置1を構成することができる。また、受光センサ20a,20b(両光電変換部23a,23b)の検出信号Sia,Sibを同じ処理条件でI/V変換するI/V変換部4(利得の調整値が共通の2チャンネルI/V変換部(2チャンネルI/V変換素子))を備えて「データ生成部」を構成しても、両検出信号Sia,Sibの信号レベルが同程度となっていることで、検出信号Sva,SvbのSN比(および、その後にA/D変換部5によって生成される検出信号データDa,DbのSN比)を同程度の状態とすることができる。したがって、検出信号データDa,Dbに基づいて被測定光Lについての高精度な波長や放射量を演算(測定)することができるため、測定精度を低下させることなく、採用し得る構成部品(光電変換部23a,23bやI/V変換部4)の自由度を十分に高めることができるため、必要とされる光学特性や部品コストに応じて任意の部品を選択して製造することができる。   Therefore, according to this measuring device, even when the optical filters 22a and 22b having greatly different transmittances of the measured light L of each wavelength within the wavelength range to be measured (wavelength range H) are employed, even when the optical filters 22a and 22b pass through the emission hole 14a, Since the amount of light L to be measured incident on the photoelectric conversion units 23a and 23b when passing through the emission hole 14b is appropriately adjusted, the optical measurement device 1 is configured using an “optical filter” having an arbitrary optical specification. can do. Further, an I / V converter 4 (two-channel I / V converter having a common gain adjustment value) that performs I / V conversion of the detection signals Sia and Sib of the light receiving sensors 20a and 20b (both photoelectric converters 23a and 23b) under the same processing conditions. Even if the "data generation unit" is configured with a V conversion unit (two-channel I / V conversion element), the detection signals Sva, Sva, The Svb S / N ratio (and the S / N ratio of the detection signal data Da and Db subsequently generated by the A / D converter 5) can be set to the same level. Therefore, since a highly accurate wavelength and radiation amount of the measured light L can be calculated (measured) based on the detection signal data Da and Db, the components (photoelectrics) that can be employed without lowering the measurement accuracy. Since the degrees of freedom of the conversion units 23a and 23b and the I / V conversion unit 4) can be sufficiently increased, any part can be selected and manufactured according to the required optical characteristics and part cost.

また、この光測定装置1では、受光センサ20a,20bに対する被測定光Lの入射方向および被測定光Lの入射量を均一化するための拡散光学系2において受光センサ20aへの被測定光Lを出射する「第1の出射部(出射部13)」に「第1の入射量制限部」が設けられて出射孔14aが形成されると共に、拡散光学系2において受光センサ20bへの被測定光Lを出射する「第2の出射部(出射部13)」に「第2の入射量制限部」が設けられて出射孔14bが形成されている。   Further, in the light measuring device 1, the light L to be measured to the light receiving sensor 20a in the diffusion optical system 2 for making the incident direction of the light to be measured L incident on the light receiving sensors 20a and 20b and the incident amount of the light to be measured L uniform. A "first incident amount limiting portion" is provided in a "first emitting portion (emitting portion 13)" that emits light, an emission hole 14a is formed, and the light to be measured by the light receiving sensor 20b in the diffusion optical system 2 is measured. A “second incident amount limiting section” is provided in a “second emitting section (emitting section 13)” that emits the light L, and an emitting hole 14b is formed.

したがって、この光測定装置1によれば、「拡散光学系」を備えた「光測定装置」において必須の「出射部」(本例では、拡散光学系2の各出射部13)において、その「出射孔(本例では、出射孔14a,14b)」を「第1の光通過孔」および「第2の光通過孔」として開口面積(「第1の開口面積」および「第2の開口面積」)を異ならせることで「出射部」を「第1の入射量制限部」および「第2の入射量制限部」として機能させることができるため、「拡散光学系」の「出射部」とは別個に「第1の入射量制限部」および「第2の入射量制限部」を設けた構成と比較して、光電変換部23a,23bに対する被測定光Lの入射量を調整するための光学部品の数を少数化することができる結果、製造コストの低減を図ることができると共に、光測定装置1を十分に小形化することができる。   Therefore, according to the light measuring device 1, in the “emission unit” (in the present example, each emission unit 13 of the diffusion optical system 2) that is essential in the “light measurement device” including the “diffusion optical system”, The exit holes (in this example, the exit holes 14a and 14b) are defined as “first light passage holes” and “second light passage holes” and have opening areas (“first opening areas” and “second opening areas”). )), The “emission unit” can function as the “first incident amount limiting unit” and the “second incident amount limiting unit”. Is used to adjust the incident amount of the measured light L to the photoelectric conversion units 23a and 23b, as compared with the configuration in which the “first incident amount limiting unit” and the “second incident amount limiting unit” are separately provided. As a result of reducing the number of optical components, manufacturing costs can be reduced. Both can be sufficiently miniaturized optical measuring apparatus 1.

さらに、この光測定装置1では、処理部8が、被測定光Lについての「予め規定された光学的パラメータ」として、検出信号データDaに基づいて特定した検出信号Siaの信号レベルおよび検出信号データDbに基づいて特定した検出信号Sibの信号レベルのいずれか一方に対する他方の比に基づいて被測定光Lの波長を演算すると共に、演算した波長と、いずれか一方とに基づいて被測定光Lの放射量を演算する。したがって、この光測定装置1によれば、両受光センサ20a,20b(両光電変換部23a,23b)から出力される検出信号Sia,SibのSN比が大きく相違する場合に高精度な測定結果を得るのが困難な波長および放射量について、十分に高精度な測定結果を演算(測定)することができる。   Further, in the light measuring device 1, the processing unit 8 sets the signal level and the detection signal data of the detection signal Sia specified based on the detection signal data Da as “predetermined optical parameters” for the measured light L. The wavelength of the measured light L is calculated based on the ratio of one of the signal levels of the detection signal Sib to the other determined based on Db, and the measured light L is calculated based on the calculated wavelength and one of the calculated wavelengths. Calculate the radiation amount of Therefore, according to the optical measurement device 1, when the SN ratios of the detection signals Sia and Sib output from the light receiving sensors 20a and 20b (both photoelectric conversion units 23a and 23b) are significantly different, a highly accurate measurement result can be obtained. Sufficiently accurate measurement results can be calculated (measured) for wavelengths and radiation doses that are difficult to obtain.

なお、「光測定装置」の構成は、上記の光測定装置1の構成の例に限定されない。例えば、「拡散光学系」の一例である拡散光学系2の各出射部13(「第1の入射量制限部」および「第2の入射量制限部」)に設けた出射孔14a,14bを「第1の光通過孔」および「第2の光通過孔」として、その開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成の光測定装置1を例に挙げて説明したが、このような構成に代えて(または、このような構成に加えて)、図3の左図に示す光測定装置1Aのように、「拡散光学系」の各「出射部」(図示せず)とは別個に「拡散光学系」と受光部3a(「受光部」の他の一例)との間に入射量制限部30(「第1の入射量制限部」および「第2の入射量制限部」の他の一例)を配設し、この入射量制限部30に設けた光通過孔31a,31b(「第1の光通過孔」および「第2の光通過孔」の他の一例)の開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。なお、この光測定装置1A、および後に説明する光測定装置1B,1Cにおいて光測定装置1の各構成要素と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。   Note that the configuration of the “light measuring device” is not limited to the example of the configuration of the light measuring device 1 described above. For example, the emission holes 14a and 14b provided in the emission portions 13 (the "first incident amount limiting portion" and the "second incident amount limiting portion") of the diffusion optical system 2 which is an example of the "diffusion optical system" are provided. The “first light passage hole” and the “second light passage hole” are configured such that the opening areas (opening diameters) thereof are different from each other to adjust the incident amount of the measured light L to the photoelectric conversion units 23a and 23b. Although the optical measurement device 1 has been described as an example, instead of such a configuration (or in addition to such a configuration), as in the optical measurement device 1A shown in the left diagram of FIG. Separately from each “emission unit” (not shown) of the “system”, between the “diffusion optical system” and the light receiving unit 3 a (another example of the “light receiving unit”), the incident amount limiting unit 30 (“first unit”). Another example of the “incident amount limiting unit” and the “second incident amount limiting unit” is provided, and light passing through the incident amount limiting unit 30 is provided. By changing the opening areas (opening diameters) of 31a and 31b (another example of the “first light passage hole” and the “second light passage hole”), the light L to be measured with respect to the photoelectric conversion units 23a and 23b is changed. A configuration for adjusting the amount of incident light may be employed. In the light measuring device 1A and the light measuring devices 1B and 1C to be described later, components having the same functions as those of the light measuring device 1 are denoted by the same reference numerals, and redundant description is omitted. I do.

また、「拡散光学系」の「出射部」、および/または「拡散光学系」と受光部3との間に「第1の入射量制限部」や「第2の入射量制限部」を配設する構成に代えて(または、そのような構成に加えて)、「第1の受光センサ」および「第2の受光センサ」内に「第1の入射量制限部」や「第2の入射量制限部」を配設する構成を採用することもできる(図示せず)。   In addition, an “emission unit” of the “diffusion optical system” and / or a “first incident amount restriction unit” or a “second incident amount restriction unit” are arranged between the “diffusion optical system” and the light receiving unit 3. Instead of (or in addition to) such a configuration, the “first incident-amount limiting unit” or the “second incident” is included in the “first light-receiving sensor” and the “second light-receiving sensor”. It is also possible to adopt a configuration in which a “quantity limiter” is provided (not shown).

具体的には、例えば、図3中央図に示す光測定装置1Bの受光部3b(「受光部」のさらに他の一例)における受光センサ20a,20bのように、測定対象波長範囲を制限するための光学フィルタ21、および測定対象波長範囲内の各波長の被測定光について第1の光電変換部の検出信号の信号レベル、および第2の光電変換部の検出信号の信号レベルのいずれか一方に対する他方の比を生じさせるための光学フィルタ22a,22bの双方を備えている場合には、この光学フィルタ21と光学フィルタ22a,22bとの間に入射量制限部30を配設し、この入射量制限部30に設けた光通過孔31a,31bの開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。   Specifically, for example, to limit the wavelength range to be measured, like the light receiving sensors 20a and 20b in the light receiving unit 3b (still another example of the “light receiving unit”) of the light measuring device 1B shown in the center view of FIG. Of the optical filter 21 and the signal level of the detection signal of the first photoelectric conversion unit and the signal level of the detection signal of the second photoelectric conversion unit for the measured light of each wavelength within the wavelength range to be measured. In the case where both optical filters 22a and 22b for generating the other ratio are provided, an incident amount limiting unit 30 is provided between the optical filter 21 and the optical filters 22a and 22b. A configuration is adopted in which the amount of light to be measured L incident on the photoelectric conversion units 23a and 23b is adjusted by making the opening areas (opening diameters) of the light passing holes 31a and 31b provided in the limiting unit 30 different. It can also be.

また、例えば、図3右図に示す光測定装置1Cの受光部3c(「受光部」のさらに他の一例)における受光センサ20a,20bのように、光学フィルタ21、および光学フィルタ22a,22bの少なくとも一方(受光部3cでは、双方)を備えている場合には、これら光学フィルタ21,22a,22bよりも光電変換部23a,23bの側(光学フィルタの出射面側(光電変換部の側):光電変換部23a,23bにおける入射面側)に入射量制限部30を配設し、この入射量制限部30に設けた光通過孔31a,31bの開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。   Further, for example, like the light receiving sensors 20a and 20b in the light receiving unit 3c (still another example of the “light receiving unit”) of the optical measurement device 1C shown in the right diagram of FIG. 3, the optical filter 21 and the optical filters 22a and 22b In the case where at least one of them is provided (both in the light receiving unit 3c), the photoelectric conversion units 23a and 23b are closer to the photoelectric conversion units 23a and 23b than the optical filters 21, 22a and 22b (the exit side of the optical filters (the photoelectric conversion unit side)). : By providing an incident amount limiting portion 30 on the incident surface side of the photoelectric conversion portions 23a and 23b) and making the opening areas (opening diameters) of the light passing holes 31a and 31b provided in the incident amount limiting portion 30 different. A configuration for adjusting the amount of incident light L to be measured on the photoelectric conversion units 23a and 23b may be employed.

さらに、「拡散光学系」としての「積分球」で構成された拡散光学系2を備えた光測定装置1を例に挙げて説明したが、「拡散光学系」は「積分球」等の「反射型拡散光学系」に限定されず、例えば、拡散板(透過時に光を拡散させる光学部品)などの「透過型拡散光学系」を「拡散光学系」として備えて構成することもできる(図示せず)。   Furthermore, the light measuring device 1 including the diffusion optical system 2 configured by the “integrating sphere” as the “diffusion optical system” has been described as an example. The present invention is not limited to the “reflection type diffusion optical system”, and may be configured to include a “transmission type diffusion optical system” such as a diffusion plate (an optical component that diffuses light when transmitted) as the “diffusion optical system” (FIG. Not shown).

また、「拡散光学系」に代えて(または、拡散光学系に加えて)、光ファイバー、プリズムおよび回折格子などの「分散光学系」を備えて「第1の受光センサ」や「第2の受光センサ」への被測定光Lの入射方向および入射量を均一化する構成を採用することもできる(図示せず)。   Further, instead of (or in addition to) the diffusion optical system, a “dispersion optical system” such as an optical fiber, a prism, and a diffraction grating is provided to provide a “first light receiving sensor” and a “second light receiving sensor”. It is also possible to adopt a configuration for equalizing the incident direction and the incident amount of the measured light L to the sensor (not shown).

この場合、一例として、「分散光学系」としての「分岐型光ファイバー(例えば、2分岐光ファイバー)」を採用する場合には、「第1の受光センサ」に向けて光を導光するファイバーを「第1の光通過孔」として機能させ、「第2の受光センサ」に向けて光を導光するファイバーを「第2の光通過孔」として機能させて両ファイバーの口径を相違させることで「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量を調整する構成を採用することもできる(図示せず)。また、「第1の受光センサ」に向けて光を導光するファイバーの口径、および「第2の受光センサ」に向けて光を導光するファイバーの口径が等しい「分岐型光ファイバー」を採用し、両ファイバーと「第1の受光センサ」および「第2の受光センサ」との間に前述の入射量制限部30のような「第1の入射量制限部」および「第2の入射量制限部」を配設して「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量を調整する構成を採用することもできる(図示せず)。   In this case, as an example, when a “branch-type optical fiber (for example, a two-branch optical fiber)” is used as the “dispersion optical system”, a fiber that guides light toward the “first light receiving sensor” is changed to “ The fiber that guides the light toward the “second light receiving sensor” functions as the “second light passing hole” and the diameter of both fibers is made different by functioning as the “first light passing hole”. It is also possible to adopt a configuration for adjusting the incident amount of the “measured light” to the “first photoelectric conversion unit” and the “second photoelectric conversion unit” (not shown). In addition, a “branch-type optical fiber” having the same diameter of the fiber that guides light toward the “first light receiving sensor” and the diameter of the fiber that guides light toward the “second light receiving sensor” is adopted. Between the two fibers and the “first light receiving sensor” and the “second light receiving sensor”, the “first incident amount limiting unit” and the “second incident amount limiting unit” such as the aforementioned incident amount limiting unit 30. It is also possible to adopt a configuration in which the “unit” is arranged to adjust the amount of “measured light” incident on the “first photoelectric conversion unit” and the “second photoelectric conversion unit” (not shown).

さらに、「被測定光」の光源と「光測定装置」の測定光軸とを好適な測定が可能な状態に位置決めできる場合には、「拡散光学系」や「分散光学系」を備えずに「光測定装置」を構成することもできる。   Further, if the light source of the “measurement light” and the measurement optical axis of the “light measurement device” can be positioned in a state where suitable measurement is possible, the “diffusion optical system” or “dispersion optical system” is not provided. An “optical measurement device” can also be configured.

また、「第1の受光センサ」としての受光センサ20aの分光感度特性が長い波長の光ほど感度が高くなるように「第1の光電変換部」としての光電変換部23aに対する被測定光Lの入射量を制限する光学フィルタ22a、および「第2の受光センサ」としての受光センサ20bの分光感度特性が短い波長の光ほど感度が高くなるように「第2の光電変換部」としての光電変換部23bに対する被測定光Lの入射量を制限する光学フィルタ22bを備えた構成を例に挙げて説明したが、「第1の受光センサ」の分光感度特性が短い波長の光ほど感度が高くなるように「第1の光電変換部」に対する「被測定光」の入射量を制限する光学フィルタ、および「第2の受光センサ」の分光感度特性が長い波長の光ほど感度が高くなるように「第2の光電変換部」に対する「被測定光」の入射量を制限する光学フィルタを備えて構成することもできる(図示せず)。   Further, the light to be measured L with respect to the photoelectric conversion unit 23a as the “first photoelectric conversion unit” is set such that the light having a longer spectral sensitivity characteristic of the light receiving sensor 20a as the “first light receiving sensor” has higher sensitivity. The optical filter 22a for limiting the amount of incident light and the photoelectric conversion as the "second photoelectric conversion unit" such that the light having a shorter spectral sensitivity characteristic of the light receiving sensor 20b as the "second light receiving sensor" has higher sensitivity. Although the configuration including the optical filter 22b for limiting the incident amount of the light L to be measured to the portion 23b has been described as an example, the light having a shorter spectral sensitivity characteristic of the “first light receiving sensor” has higher sensitivity. As described above, the optical filter for limiting the incident amount of the “measured light” to the “first photoelectric conversion unit” and the light having a longer spectral sensitivity characteristic of the “second light receiving sensor” have higher sensitivity. Second It can be configured with an optical filter for limiting the amount of incident "measured light" for the photoelectric conversion unit "(not shown).

また、測定波長範囲内の感度の変化率が互いに異なることを条件として、「第1の受光センサ」の分光感度特性および「第2の受光センサ」の分光感度特性の双方が長い波長の光ほど感度が高くなるように「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量をそれぞれ制限する光学フィルタを備えて構成したり(図示せず)、「第1の受光センサ」の分光感度特性および「第2の受光センサ」の分光感度特性の双方が短い波長の光ほど感度が高くなるように「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量をそれぞれ制限する光学フィルタを備えて構成したり(図示せず)することもできる。   Further, under the condition that the rates of change in sensitivity within the measurement wavelength range are different from each other, light having a longer wavelength has both the spectral sensitivity characteristic of the “first light receiving sensor” and the spectral sensitivity characteristic of the “second light receiving sensor”. An optical filter for limiting the amount of the “measured light” incident on the “first photoelectric conversion unit” and the “second photoelectric conversion unit” so as to increase the sensitivity (not shown), or The “first photoelectric conversion unit” and the “second photoelectric conversion unit” are configured such that both the spectral sensitivity characteristics of the “first light receiving sensor” and the spectral sensitivity characteristics of the “second light receiving sensor” have higher sensitivity as the light has a shorter wavelength. It is also possible to provide an optical filter (not shown) for limiting the amount of the “light to be measured” incident on the “photoelectric conversion unit”.

さらに、「第1の受光センサ」および「第2の受光センサ」のいずれか一方に上記の光学フィルタ22a,22bのような光学フィルタ(測定対象波長範囲内の各波長毎に受光センサ(光電変換部)の感度を異ならせるための光学フィルタ)を設け、他方にそのような光学フィルタを設けない構成を採用することもできる。なお、両「受光センサ」の一方だけに上記のような光学フィルタを設けた場合においても、その一方の「受光センサ」に設けた光学フィルタの存在により、「被測定光」の「第1の光電変換部」に対する入射量、および「第2の光電変換部」に対する入射量が測定対象波長範囲内の各波長毎に相違する状態となるため、両「受光センサ」に上記のような光学フィルタを設けた構成と同様にして、「被測定光」の波長(重心波長)や放射量を好適に演算(測定)することができる。   Further, an optical filter such as the optical filters 22a and 22b described above (a light receiving sensor (photoelectric conversion for each wavelength within the wavelength range to be measured) is provided in one of the "first light receiving sensor" and the "second light receiving sensor". It is also possible to adopt a configuration in which an optical filter for changing the sensitivity of the unit is provided and the other is not provided with such an optical filter. Even when only one of the two “light receiving sensors” is provided with the optical filter as described above, the “first light” of the “light to be measured” is determined by the presence of the optical filter provided on one of the “light receiving sensors”. The amount of light incident on the “photoelectric conversion unit” and the amount of light incident on the “second photoelectric conversion unit” are different for each wavelength within the wavelength range to be measured. In the same manner as the configuration provided with, the wavelength (center-of-gravity wavelength) and the radiation amount of the “measured light” can be suitably calculated (measured).

この場合、両「受光センサ」の一方だけに上記のような光学フィルタを設けた構成において、「第1の入射量制限部」における「第1の光通過孔」の「第1の開口面積(丸孔の場合には開口径)」、および「第2の入射量制限部」における「第2の光通過孔」の「第2の開口面積(丸孔の場合には開口径)」を一致させたときには、光学フィルタの存在による「被測定光」の減衰が生じない分だけ、光学フィルタを設けない「受光センサ」の「光電変換部」に対する「被測定光」の入射量が、光学フィルタを設けた「受光センサ」の「光電変換部」に対する「被測定光」の入射量より多くなる。この結果、両「受光センサ(光電変換部)」のSN比が大きく相違する状態となる。   In this case, in the configuration in which the optical filter as described above is provided only in one of the two “light receiving sensors”, the “first opening area (first opening area)” of the “first light passage hole” in the “first incident amount limiting unit” is used. "A second opening area (an opening diameter in the case of a round hole)" of the "second light passage hole" in the "second incident light amount limiting portion". When the optical filter is not used, the amount of the “measured light” incident on the “photoelectric conversion unit” of the “light receiving sensor” without the optical filter is reduced by the amount that the “measured light” is not attenuated due to the presence of the optical filter. Is greater than the amount of “measured light” incident on the “photoelectric conversion unit” of the “light receiving sensor” provided with As a result, a state in which the SN ratios of the two “light receiving sensors (photoelectric conversion units)” are greatly different is obtained.

したがって、両「受光センサ」の一方だけに上記のような光学フィルタを設けた構成においては、光学フィルタを設けない「受光センサ」の「光電変換部」に対する「被測定光」の入射量を制限する「入射量制限部(第1の入射量制限部および第2の入射量制限部のいずれか一方)」における「光通過孔(第1の光通過孔および第2の光通過孔のいずれか一方)」の開口面積(丸孔の場合には開口径)が、光学フィルタを設けた「受光センサ」の「光電変換部」に対する「被測定光」の入射量を制限する「入射量制限部(第1の入射量制限部および第2の入射量制限部の他方)」における「光通過孔(第1の光通過孔および第2の光通過孔の他方)」の開口面積(丸孔の場合には開口径)よりも小さくなるように、両「入射量制限部」を構成するのが好ましい。   Therefore, in the configuration in which the optical filter is provided only on one of the two “light receiving sensors”, the amount of “measured light” incident on the “photoelectric conversion unit” of the “light receiving sensor” without the optical filter is limited. The “light passage hole (either the first light passage hole or the second light passage hole)” in the “incident amount limiting portion (one of the first incident amount limiting portion and the second incident amount limiting portion)” The opening area (opening diameter in the case of a round hole) of the “light-receiving sensor” provided with an optical filter limits the amount of incident “light to be measured” to the “photoelectric conversion unit”. (The other of the first incident amount restricting portion and the second incident amount restricting portion) "has the opening area of the" light passage hole (the other of the first light passage hole and the second light passage hole) "(of the round hole). In both cases, the “incident amount limiting part” is configured to be smaller than the aperture diameter. It is preferable to that.

また、両チャンネルについて共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されたI/V変換部4を備えた例について説明したが、両チャンネルについて別個の利得を設定した状態で動作させることができるものの、調整値を大きく異ならせることができない「2チャンネルI/V変換部(2チャンネルI/V変換素子)」、すなわち、「光電変換部」への「被測定光」の入射量の相違の影響をI/V変換処理時の利得の調整で軽減するのが困難な「2チャンネルI/V変換部(2チャンネルI/V変換素子)」を採用した構成においても、「第1の入射量制限部」における「第1の光通過孔」の「第1の開口面積(丸孔の場合には開口径)」、および「第2の入射量制限部」における「第2の光通過孔」の「第2の開口面積(丸孔の場合には開口径)」を一致させた場合には、前述したような課題が生じるため、そのような「2チャンネルI/V変換部(2チャンネルI/V変換素子)」を採用した構成においても、「第1の開口面積」および「第2の開口面積」を相違させて、「第1の光電変換部」への「被測定光」の入射量、および「第2の光電変換部」への「被測定光」の入射量を同程度にするのが好ましい。   Further, an example will be described in which an I / V conversion unit 4 including a “two-channel I / V conversion unit (two-channel I / V conversion element)” that operates with a common gain set for both channels is provided. However, although the two channels can be operated with different gains set, but the adjustment values cannot be made significantly different, a “two-channel I / V conversion unit (two-channel I / V conversion element)”, , It is difficult to reduce the influence of the difference in the amount of incident light of “measurement light” on the “photoelectric conversion unit” by adjusting the gain during the I / V conversion processing. / V conversion element), the “first opening area (the opening diameter in the case of a round hole)” of the “first light passage hole” in the “first incident amount limiting section”, And "Second incident amount limiting unit" In the case where the “second opening area (opening diameter in the case of a round hole)” of the “second light passage hole” is the same, the above-described problem occurs. Also in the configuration employing the “I / V conversion unit (two-channel I / V conversion element)”, the “first photoelectric conversion unit” is different from the “first opening area” and the “second opening area”. It is preferable that the incident amount of the “measured light” into the “second photoelectric conversion unit” and the incident amount of the “measured light” into the “second photoelectric conversion unit” be approximately equal.

さらに、「第1の受光センサ」および「第2の受光センサ」毎に別個の「I/V変換部」を設ける構成において、両「I/V変換部」についての利得の調整値を大きく異ならせることができないときには、前述したような課題が生じるため、「第1の開口面積」および「第2の開口面積」を相違させて、「第1の光電変換部」への「被測定光」の入射量、および「第2の光電変換部」への「被測定光」の入射量を同程度にするのが好ましい。   Further, in a configuration in which a separate “I / V conversion unit” is provided for each of the “first light receiving sensor” and the “second light receiving sensor”, if the gain adjustment values of the two “I / V conversion units” are greatly different from each other. If it is not possible, the above-described problem occurs, so that the “light to be measured” to the “first photoelectric conversion unit” is changed by changing the “first opening area” and the “second opening area”. It is preferable that the amount of incident light and the amount of incident light to be measured into the “second photoelectric conversion unit” be approximately the same.

また、「第1の入射量制限部」に設ける「第1の光通過孔」の開口面積、および「第2の入射量制限部」に設ける「第2の光通過孔」の開口面積を異ならせることで光電変換部23a,23bに対する被測定光Lの入射量を同程度とする構成を例に挙げて説明したが、このうな構成に代えて(または、このような構成に加えて)、「第1の受光センサ」および「第2の受光センサ」の少なくとも一方に「減光フィルタ」を付加することで、「第1の光電変換部」に対する「被測定光」の入射量と「第2の光電変換部」に対する「被測定光」の入射量を同程度とする構成を採用することもできる(図示せず)。   Also, if the opening area of the “first light passage hole” provided in the “first incident amount limiting portion” and the opening area of the “second light passage hole” provided in the “second incident amount limiting portion” are different. Although the configuration in which the amounts of light to be measured L incident on the photoelectric conversion units 23a and 23b are substantially the same has been described above as an example, instead of such a configuration (or in addition to such a configuration), By adding a “light reduction filter” to at least one of the “first light receiving sensor” and the “second light receiving sensor”, the incident amount of the “measured light” to the “first photoelectric conversion unit” and the “ It is also possible to adopt a configuration in which the incident amounts of the “measured light” to the “two photoelectric conversion units” are substantially the same (not shown).

加えて、赤色光、緑色光および青色光の3種類の被測定光Lを「被測定光」として波長や放射量などの「光学的パラメータ」を測定する構成を例に挙げて説明したが、1台の「光測定装置」によって並行して測定可能な「被測定光」の種類数(「測定対象波長範囲の数」)は「3」に限定されず、2種類の「被測定光」(2つの「測定対象波長範囲」)を並行して測定可能な構成や、4種類以上の「被測定光」(4つ以上の「測定対象波長範囲」)を並行して測定可能な構成を採用することもできる。また、1台の「光測定装置」によって並行して測定可能な1種類の「被測定光」(1つの「測定対象波長範囲」)を測定可能な構成を採用することもできる。さらに、「放射量」に代えて「測光量」を「光学的パラメータ」として測定可能に構成することもできる。   In addition, a configuration in which three types of measured light L of red light, green light, and blue light are used as “measured light” to measure “optical parameters” such as a wavelength and a radiation amount has been described as an example. The number of types of “lights to be measured” (“the number of wavelength ranges to be measured”) that can be measured in parallel by one “light measuring device” is not limited to “3” and two types of “lights to be measured” (Two “wavelength ranges to be measured”) can be measured in parallel, or four or more types of “light to be measured” (four or more “wavelength ranges to be measured”) can be measured in parallel. Can also be adopted. Further, a configuration in which one kind of “measurement light” (one “measurement target wavelength range”) that can be measured in parallel by one “light measurement device” can be adopted. Furthermore, it is also possible to configure so that “light measurement amount” can be measured as “optical parameter” instead of “radiation amount”.

1,1A〜1C 光測定装置
2 拡散光学系
3R,3G,3B,3a〜3c 受光部
4,4r,4g,4b I/V変換部
5,5r,5g,5b A/D変換部
8 処理部
9 記憶部
11 入射部
12 入射孔
13r,13g,13b 出射部
14ra,14rb,14ga,14gb,14ba,14bb 出射孔
20a,20b 受光センサ
21r,21g,21b,22a,22b 光学フィルタ
23a,23b 光電変換部
30 入射量制限部
31a,31b 光通過孔
Da,Db 検出信号データ
Hr,Hg,Hb 波長範囲
L 被測定光
Sia,Sib,Sva,Svb 検出信号
1, 1A to 1C Light measuring device 2 Diffusion optical system 3R, 3G, 3B, 3a to 3c Light receiving unit 4, 4r, 4g, 4b I / V conversion unit 5, 5r, 5g, 5b A / D conversion unit 8 Processing unit Reference Signs List 9 storage unit 11 entrance unit 12 entrance holes 13r, 13g, 13b exit units 14ra, 14rb, 14ga, 14gb, 14ba, 14bb exit holes 20a, 20b light receiving sensors 21r, 21g, 21b, 22a, 22b optical filters 23a, 23b photoelectric conversion Unit 30 Incident amount limiting unit 31a, 31b Light passage hole Da, Db Detection signal data Hr, Hg, Hb Wavelength range L Measurement light Sia, Sib, Sva, Svb Detection signal

Claims (3)

被測定光の入射量に応じた第1の検出信号を出力する第1の光電変換部を有する第1の受光センサ、および前記被測定光の入射量に応じた第2の検出信号を出力する第2の光電変換部を有する第2の受光センサを備えると共に、前記第1の受光センサの測定対象波長範囲内の分光感度と前記第2の受光センサの当該測定対象波長範囲内の分光感度との比が当該測定対象波長範囲内の各波長の前記被測定光毎に相違するように構成された受光部と、
前記被測定光の通過が可能な第1の光通過孔が形成されて前記第1の光電変換部に対する当該被測定光の入射量を制限する第1の入射量制限部、および前記被測定光の通過が可能な第2の光通過孔が形成されて前記第2の光電変換部に対する当該被測定光の入射量を制限する第2の入射量制限部と、
前記第1の検出信号に基づいて当該第1の検出信号の信号レベルを特定可能な第1のデータを生成すると共に、前記第2の検出信号に基づいて当該第2の検出信号の信号レベルを特定可能な第2のデータを生成するデータ生成部と、
前記第1のデータに基づいて特定した前記第1の検出信号の信号レベル、および前記第2のデータに基づいて特定した前記第2の検出信号の信号レベルに基づいて前記被測定光についての予め規定された光学的パラメータを演算する処理部とを備え、
前記第1の入射量制限部および前記第2の入射量制限部は、前記測定対象波長範囲内の各波長の前記被測定光の前記第1の光電変換部に対する入射量と前記第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように前記第1の光通過孔の第1の開口面積と前記第2の光通過孔の第2の開口面積とが相違させられている光測定装置。
A first light receiving sensor having a first photoelectric conversion unit for outputting a first detection signal according to an incident amount of the measured light, and a second detecting signal according to an incident amount of the measured light; A second light receiving sensor having a second photoelectric conversion unit is provided, and the spectral sensitivity of the first light receiving sensor in the wavelength range to be measured and the spectral sensitivity of the second light receiving sensor in the wavelength range to be measured are determined. A light receiving unit configured so that the ratio of the measured light of each wavelength within the wavelength range to be measured is different,
A first incident-amount limiting unit that has a first light-passing hole through which the measured light can pass and that limits an incident amount of the measured light to the first photoelectric conversion unit; and the measured light A second light-passing hole capable of passing through, a second incident-amount limiting unit that limits an incident amount of the measured light to the second photoelectric conversion unit;
Based on the first detection signal, first data capable of specifying the signal level of the first detection signal is generated, and the signal level of the second detection signal is determined based on the second detection signal. A data generation unit for generating identifiable second data;
Based on the signal level of the first detection signal specified based on the first data, and the signal level of the second detection signal specified based on the second data, the measurement of the light to be measured is performed in advance. A processing unit for calculating the specified optical parameter,
The first incident amount limiting unit and the second incident amount limiting unit are configured to determine an incident amount of the measured light of each wavelength within the wavelength range to be measured with respect to the first photoelectric conversion unit and the second photoelectric conversion unit. The first opening area of the first light passage hole and the second opening area of the second light passage hole are set such that the difference between the amount of light incident on the converter and the light amount falls within a predetermined light amount range. A light measuring device that is different.
前記第1の受光センサおよび前記第2の受光センサに対する前記被測定光の入射方向および当該被測定光の入射量を均一化するための拡散光学系を備え、
前記第1の入射量制限部は、前記拡散光学系において前記第1の受光センサへの前記被測定光を出射する第1の出射部に設けられ、
前記第2の入射量制限部は、前記拡散光学系において前記第2の受光センサへの前記被測定光を出射する第2の出射部に設けられている請求項1記載の光測定装置。
A diffusion optical system for equalizing the incident direction of the measured light and the incident amount of the measured light with respect to the first light receiving sensor and the second light receiving sensor;
The first incident amount limiting unit is provided in a first emission unit that emits the measured light to the first light receiving sensor in the diffusion optical system,
The optical measurement device according to claim 1, wherein the second incident amount limiting unit is provided in a second emission unit that emits the measured light to the second light receiving sensor in the diffusion optical system.
前記処理部は、前記被測定光についての前記予め規定された光学的パラメータとして、前記第1のデータに基づいて特定した前記第1の検出信号の信号レベルおよび前記第2のデータに基づいて特定した前記第2の検出信号の信号レベルのいずれか一方に対する他方の比に基づいて前記被測定光の波長を演算すると共に、演算した波長と、前記いずれか一方とに基づいて前記被測定光の放射量を演算する請求項1または2記載の光測定装置。   The processing unit specifies the predetermined optical parameter of the measured light based on the signal level of the first detection signal specified based on the first data and the second data. Calculating the wavelength of the measured light based on the ratio of one of the signal levels of the second detection signal to the other, and calculating the wavelength of the measured light based on the calculated wavelength and the one of the calculated wavelengths. The optical measurement device according to claim 1, wherein the radiation amount is calculated.
JP2018153866A 2018-08-20 2018-08-20 light measuring device Active JP7163102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018153866A JP7163102B2 (en) 2018-08-20 2018-08-20 light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153866A JP7163102B2 (en) 2018-08-20 2018-08-20 light measuring device

Publications (2)

Publication Number Publication Date
JP2020030050A true JP2020030050A (en) 2020-02-27
JP7163102B2 JP7163102B2 (en) 2022-10-31

Family

ID=69624241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153866A Active JP7163102B2 (en) 2018-08-20 2018-08-20 light measuring device

Country Status (1)

Country Link
JP (1) JP7163102B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132481A (en) * 1984-07-24 1986-02-15 Sharp Corp Amorphous semiconductor element
JPS6258119A (en) * 1985-09-06 1987-03-13 Minolta Camera Co Ltd Color sensor
JP2003214951A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd Spectrometric measuring device and method
JP2011232129A (en) * 2010-04-27 2011-11-17 Seiko Epson Corp Light measuring device
JP2016166797A (en) * 2015-03-10 2016-09-15 日置電機株式会社 Light-amount measurement device
JP2017005695A (en) * 2015-06-04 2017-01-05 日置電機株式会社 Information generation device for adjustment, adjustment work support device and adjustment device
JP2018004614A (en) * 2016-06-24 2018-01-11 日置電機株式会社 Light-amount measurement device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132481A (en) * 1984-07-24 1986-02-15 Sharp Corp Amorphous semiconductor element
JPS6258119A (en) * 1985-09-06 1987-03-13 Minolta Camera Co Ltd Color sensor
JP2003214951A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd Spectrometric measuring device and method
JP2011232129A (en) * 2010-04-27 2011-11-17 Seiko Epson Corp Light measuring device
JP2016166797A (en) * 2015-03-10 2016-09-15 日置電機株式会社 Light-amount measurement device
JP2017005695A (en) * 2015-06-04 2017-01-05 日置電機株式会社 Information generation device for adjustment, adjustment work support device and adjustment device
JP2018004614A (en) * 2016-06-24 2018-01-11 日置電機株式会社 Light-amount measurement device

Also Published As

Publication number Publication date
JP7163102B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
JP2011209299A (en) Color sensor with infrared ray correction
CN110864882B (en) Multispectral ultraviolet light sensitivity detection system and method
JP2010133833A (en) Photometric device
JP6080410B2 (en) Spectral colorimeter
JP7163102B2 (en) light measuring device
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
JP6498479B2 (en) Light intensity measuring device
JP2018018879A (en) Lighting laser device
KR101132784B1 (en) Optical signal charactoristics measuring device and method thereof
JP2013088263A (en) Spectroscopic instrument calibration method
JP2010112808A (en) Optical power meter
WO2018207400A1 (en) Mtf measurement device and mtf measurement method
CN110579342B (en) Glare measuring device and glare measuring method
JP6728016B2 (en) Light quantity measuring device
JP2014048296A (en) Multi-channel light amount sensing unit, apparatus for measuring light source energy of exposure device, and method for measuring light source energy by channel
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
JP2021196258A (en) Light measuring device
WO2016208462A1 (en) Measureing device and method of manufacturing measureing device
JP7286014B2 (en) High-sensitivity non-contact chromaticity measuring device
US20220283027A1 (en) Optoelectronic measuring device for measuring the intensity of electromagnetic radiation in a frequency-resolved manner
CN106197667A (en) A kind of miniature multi-channel spectrogrph and the Nonlinearity Correction Method of detector thereof
CN114414049A (en) Device, system, method and medium for improving accuracy of spectral imager
JPH04250340A (en) Spectrophotometer
CN116678499A (en) Colorimeter and spectroscopic measurement method
JP2013253807A (en) Spectroscopic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221019

R150 Certificate of patent or registration of utility model

Ref document number: 7163102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150