JP2020030032A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2020030032A
JP2020030032A JP2018157831A JP2018157831A JP2020030032A JP 2020030032 A JP2020030032 A JP 2020030032A JP 2018157831 A JP2018157831 A JP 2018157831A JP 2018157831 A JP2018157831 A JP 2018157831A JP 2020030032 A JP2020030032 A JP 2020030032A
Authority
JP
Japan
Prior art keywords
flow path
steam
heat exchange
shell
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157831A
Other languages
Japanese (ja)
Other versions
JP7212919B2 (en
Inventor
敬之 渡辺
Noriyuki Watanabe
敬之 渡辺
定幸 實原
Sadayuki Jitsuhara
定幸 實原
俊滋 桜澤
Toshishige Sakurazawa
俊滋 桜澤
太郎 渡邉
Taro Watanabe
太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenesys Inc
Original Assignee
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenesys Inc filed Critical Xenesys Inc
Priority to JP2018157831A priority Critical patent/JP7212919B2/en
Publication of JP2020030032A publication Critical patent/JP2020030032A/en
Application granted granted Critical
Publication of JP7212919B2 publication Critical patent/JP7212919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a condenser for making steam properly flow in and advance to a flow passage between heat exchange plates which form a condensation part, promoting contact of the steam with each part of the heat exchange plates facing the flow passage, and capable of efficiently condensing the steam at the condensation part.SOLUTION: Since opening portions of a first flow passage in which steam in a condensation part 11 circulates are positioned at an upper part and a lower part, the steam flows into the first flow passage from the upper part and the lower part in an internal space of a shell 12, and the steam condenses at surfaces of heat exchange plates facing the first flow passage, and consequently, the steam comes into contact with each part of the surfaces of the heat exchange plates, a stroke of the advancement of the steam is relatively shortened compared with the case that the steam progresses to the first flow passage from only above, resistance related to the advancement of the steam in the first flow passage becomes small by the amount of the shortening, the contact of the steam with each part of the surfaces of the heat exchange plates facing the first flow passage is promoted, heat exchange accompanied by the contact of the steam with the surfaces of the heat exchange plates is smoothly performed without trouble, and condensation can be efficiently progressed.SELECTED DRAWING: Figure 3

Description

本発明は、蒸気動力サイクルや海水淡水化等に用いられる、プレート式熱交換器である凝縮器に関する。   The present invention relates to a condenser that is a plate-type heat exchanger used for a steam power cycle, seawater desalination, and the like.

温度差発電や蒸気動力、化学、食品工業等のプラント、並びに冷凍機及びヒートポンプで用いられている凝縮器は、高温流体と低温流体との間で熱の授受を行わせ、高温流体を気相から液相へ相変化させることを目的とするものであり、多管式、プレート式、スパイラル式等の種類がある。また、海水等から真水を作る造水装置(淡水化装置)にも、こうした凝縮器が用いられており、海水等を蒸発させた蒸気を凝縮器で凝縮して真水を得る仕組みとなっている。   Condensers used in plants such as temperature difference power generation, steam power, chemical and food industries, as well as refrigerators and heat pumps, transfer heat between high-temperature fluid and low-temperature fluid and convert the high-temperature fluid into gas phase. The purpose is to change the phase from a liquid phase to a liquid phase, and there are types such as a multi-tube type, a plate type, and a spiral type. Such a condenser is also used in a fresh water generator (desalination apparatus) for producing fresh water from seawater or the like, and has a structure in which steam obtained by evaporating seawater or the like is condensed by the condenser to obtain fresh water. .

凝縮器では、伝熱部を介した高温流体と低温流体との熱交換により、低温流体の温度を上昇させられる一方、別の流路を流れる高温流体が凝縮されて凝縮液となる。この高温流体の凝縮で生じた凝縮液は、通常、そのまま凝縮器内を流下し、流路の下部に設けられる高温流体出口から排出される。このため、凝縮器下部ほど凝縮液量が多くなり、流下した凝縮液が伝熱部表面を膜状に覆う状態になりやすい。こうした状態では、気相の高温流体と伝熱部との熱伝達がスムーズに行えなくなり、凝縮性能が悪化するという問題がある。   In the condenser, the temperature of the low-temperature fluid is raised by heat exchange between the high-temperature fluid and the low-temperature fluid via the heat transfer unit, while the high-temperature fluid flowing through another flow path is condensed into condensate. The condensed liquid generated by the condensation of the high-temperature fluid usually flows down in the condenser as it is, and is discharged from a high-temperature fluid outlet provided at a lower portion of the flow path. For this reason, the amount of condensed liquid increases toward the lower part of the condenser, and the condensed liquid that flows down tends to cover the surface of the heat transfer section in a film-like manner. In such a state, there is a problem that heat transfer between the high-temperature fluid in the gas phase and the heat transfer unit cannot be performed smoothly, and condensing performance deteriorates.

特にプレート式熱交換器を凝縮器として用いる場合、複数の略板状のプレートを平行に所定間隔で重ね合せ、各プレート間をそれぞれ流路として、高温流体と低温流体の各流路を交互に配置し、各プレートを介して流体間で熱交換させる構造であり、流路となるプレート間の隙間が狭くなる。このため、凝縮液の排出がスムーズに行えない場合が生じやすく、仮に凝縮液が滞留すると、気相の高温流体とプレートとの熱伝達性能に及す悪影響も大きかった。   In particular, when a plate heat exchanger is used as a condenser, a plurality of substantially plate-shaped plates are overlapped in parallel at a predetermined interval, and each plate is used as a flow path, and each flow path of a high-temperature fluid and a low-temperature fluid is alternately formed. In this structure, heat is exchanged between the fluids via the respective plates, and the gap between the plates serving as flow paths is reduced. For this reason, the case where discharge of the condensed liquid cannot be performed smoothly is likely to occur, and if the condensed liquid stays, the adverse effect on the heat transfer performance between the high-temperature gaseous fluid in the gas phase and the plate is large.

近年、プレート式熱交換器のように狭間隔で配置した略板状の伝熱部を利用しつつ、凝縮液をスムーズに排出するために伝熱部形状を工夫した凝縮器が提案されている。このうち、伝熱部表面に複数の溝を配置して凝縮液排出性を高めた凝縮器の一例として、特開2000−346583号公報に開示されるものがある。   In recent years, condensers have been proposed in which the shape of the heat transfer section is devised in order to smoothly discharge condensed liquid while using substantially plate-shaped heat transfer sections arranged at a narrow interval like a plate heat exchanger. . Of these, as an example of a condenser in which a plurality of grooves are arranged on the surface of the heat transfer section to improve the condensate discharge property, there is one disclosed in Japanese Patent Application Laid-Open No. 2000-346583.

特開2000−346583号公報JP-A-2000-346583

従来の凝縮器は前記特許文献に示される構成となっており、各溝状部分を用いて伝熱部表面から凝縮液を速やかに排除しようとするものであったが、従来のプレート式熱交換と同様、伝熱部間の隙間は極めて狭く、この隙間を蒸気や凝縮液が上から下に進む伝熱部配置構造の場合、仮に溝状部分により伝熱部表面から凝縮液が排除できたとしても、凝縮対象の蒸気が狭い流路を下方に進む際の通過抵抗が大きいことで、蒸気を伝熱面下部までスムーズに進めて到達させることは難しく、蒸気を伝熱面の下部に接触させて凝縮を進行させる効率の改善はあまり進まないという課題を有していた。   The conventional condenser has the configuration shown in the above-mentioned patent document, and is intended to quickly remove the condensed liquid from the surface of the heat transfer section by using each groove portion. As in the case of, the gap between the heat transfer sections is extremely narrow, and in the case of the heat transfer section arrangement structure in which steam and condensate proceed from top to bottom in this gap, the condensate could be removed from the surface of the heat transfer section by the groove-shaped portion. Even so, it is difficult for the vapor to be condensed to travel smoothly to the lower part of the heat transfer surface due to the large passage resistance when the vapor to be condensed travels down the narrow flow path. There is a problem that the improvement of the efficiency of the progress of the condensation does not progress very much.

また、蒸気に含まれる凝縮しない気相成分が、他成分の凝縮に伴い分離して不凝縮ガスとなった場合、この不凝縮ガスが伝熱部間の狭い隙間に滞留して動かない状態となりやすく、凝縮対象の蒸気と伝熱部との接触を妨げて凝縮性能の低下を招くという課題を有していた。   In addition, when the non-condensable gas phase components contained in the steam separate and become non-condensable gas due to the condensation of other components, the non-condensable gas stays in the narrow gap between the heat transfer parts and becomes immobile. Therefore, there is a problem that the contact between the steam to be condensed and the heat transfer section is hindered to cause a reduction in the condensation performance.

本発明は前記課題を解消するためになされたもので、凝縮部をなす熱交換用プレート間の流路へ蒸気を適切に流入、進行させて、流路に面する熱交換用プレート各部と蒸気との接触を促し、凝縮部での蒸気の凝縮を効率よく実行できる凝縮器を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problem, and appropriately flows and advances steam into a flow path between heat exchange plates forming a condensing section, and the steam exchanges with each part of the heat exchange plate facing the flow path. It is an object of the present invention to provide a condenser that promotes contact with the condenser and efficiently condenses the vapor in the condenser.

本発明に係る凝縮器は、外部から流入する蒸気と冷却用流体とを伝熱性材料製の熱交換部を介して熱交換させ、蒸気を凝縮させて得られる凝縮液を外部に取出し可能とする凝縮器において、隔壁で外部から隔離された内部空間を有し、当該内部空間に外部から蒸気を導入可能且つ内部空間から外部へ凝縮液を取出し可能とされると共に、隔壁を貫通する冷却用流体の流入出用流路を設けられる中空容器状のシェルと、当該シェルの内部空間に配設され、前記流路を通じて流入する冷却用流体とシェル内部空間から流入する蒸気とを熱交換させる前記熱交換部としての凝縮部とを備え、当該凝縮部が、複数並列状態とされた略矩形状金属薄板製の各熱交換用プレートを、所定の略平行をなす二端辺部位で隣合う一の熱交換用プレートと水密状態として溶接される一方、隣合う他の熱交換用プレートと前記二端辺と略直交する他の略平行な二端辺部位で水密状態として溶接されて全て一体化され、各熱交換用プレート間に前記蒸気及び当該蒸気の凝縮した凝縮液の通る第一流路と前記冷却用流体の通る第二流路とをそれぞれ一つおきに生じさせ、且つ蒸気及び凝縮液が流入出可能な前記第一流路の開口部分と、冷却用流体が流入出可能な前記第二流路の開口部分とが、直角をなす配置として形成され、前記凝縮部が、前記流入出用流路と前記第二流路の開口部分とを接続されると共に、当該第二流路の開口部分以外でシェル隔壁内面との間に所定の隙間を介在させ、且つ第一流路の開口部分を上下に向けて、前記シェルの内部空間に配置され、シェル内部空間で上下の第一流路開口部分から蒸気を流入させるものである。   The condenser according to the present invention makes it possible to exchange heat between the steam flowing from the outside and the cooling fluid through the heat exchange section made of a heat conductive material, and to take out the condensed liquid obtained by condensing the steam to the outside. The condenser has an internal space which is isolated from the outside by a partition, allows steam to be introduced into the internal space from the outside, and allows condensate to be taken out from the internal space to the outside, and a cooling fluid penetrating the partition. A hollow container-shaped shell provided with an inflow / outflow channel, and the heat disposed in the interior space of the shell and exchanging heat between a cooling fluid flowing through the flow channel and steam flowing from the shell interior space. A condenser section as an exchange section, wherein the condenser section is configured such that a plurality of heat exchange plates made of a substantially rectangular metal thin plate in a plurality of juxtaposed states are adjacent to each other at predetermined two substantially parallel two end sides. Heat exchange plate and watertight On the other hand, the other heat exchange plates adjacent to each other and the other substantially parallel two end sides substantially orthogonal to the two end sides are welded in a watertight state and all integrated, and each heat exchange plate A first flow path through which the vapor and a condensate condensed by the vapor pass, and a second flow path through which the cooling fluid passes are generated alternately, and the second flow path through which the vapor and the condensate can flow in and out An opening portion of one flow passage and an opening portion of the second flow passage through which the cooling fluid can flow in and out are formed so as to form a right angle. The shell is connected to the opening of the passage, a predetermined gap is interposed between the opening of the second flow passage and the inner surface of the shell partition wall, and the opening of the first flow passage is turned up and down. The upper and lower first flow path openings in the shell internal space It is intended for flowing Luo steam.

このように本発明によれば、凝縮部における第一流路の開口部分を上下に位置させ、シェル内部空間の蒸気が凝縮部の第一流路に上下から流入して、第一流路に面する熱交換用プレート表面での熱交換により蒸気が凝縮し、凝縮により生じた凝縮液が第一流路の下側の開口部分から流下することにより、熱交換用プレート表面各部に蒸気が接触可能となるために蒸気が進行する行程が、蒸気が第一流路に上からのみ進行する場合に比べて相対的に短くなり、その分、蒸気の流路での進行に係る抵抗も小さくなることから、蒸気の第一流路に面する熱交換用プレート表面各部との接触が促され、蒸気と熱交換用プレート表面との接触に伴う熱交換が滞りなくスムーズに生じて、効率良く凝縮を進行させられる。   As described above, according to the present invention, the opening of the first flow path in the condensing section is positioned up and down, and the steam in the shell internal space flows into the first flow path of the condensing section from above and below, and the heat facing the first flow path The steam is condensed by heat exchange on the exchange plate surface, and the condensate generated by the condensation flows down from the lower opening portion of the first flow path, so that the vapor can contact each part of the heat exchange plate surface. The process in which the steam travels is relatively shorter than the case where the steam travels only from above in the first flow path, and the resistance associated with the progress of the steam in the flow path decreases accordingly. The contact with each part of the heat exchange plate surface facing the first flow path is promoted, and the heat exchange accompanying the contact between the steam and the heat exchange plate surface occurs smoothly without interruption, so that the condensation can proceed efficiently.

また、本発明に係る凝縮器は必要に応じて、前記凝縮部における前記第一流路の上側又は下側の少なくとも一方の開口部分のうち、前記第二流路における冷却用流体流入側の開口部分に近い所定範囲部分を覆って配設される、略箱状の不凝縮ガス収集部と、当該不凝縮ガス収集部の内側領域に一方の開口端部を連通させると共に、前記シェルの外側に他方の開口端部を位置させて配設され、不凝縮ガス収集部に集まった不凝縮ガスをシェル外に排出可能とする略管状の不凝縮ガス排出部とを備えるものである。   In addition, the condenser according to the present invention, if necessary, of at least one of the upper and lower openings of the first flow path in the condensing section, the opening of the cooling fluid inflow side in the second flow path A substantially box-shaped non-condensable gas collecting portion, which is disposed so as to cover a predetermined range portion close to the non-condensable gas collecting portion, and has one open end communicating with an inner region of the non-condensing gas collecting portion and the other outside the shell. And a substantially tubular non-condensable gas discharge portion that is disposed with the opening end of the non-condensable gas collected at the non-condensable gas collection portion and that can discharge the non-condensable gas to the outside of the shell.

このように本発明によれば、第一流路における第二流路入口近くの低温で凝縮が進行しやすく、蒸気に含まれていた不凝縮ガスが滞留しやすい領域に沿って、不凝縮ガス収集部を設けて、不凝縮ガス排出部を接続し、これら不凝縮ガス収集部と不凝縮ガス排出部を通じて不凝縮ガスを流路の外に排出可能とすることで、滞留しようとする不凝縮ガスを不凝縮ガス収集部に引き寄せて第一流路から外部に排除でき、第一流路に溜まった不凝縮ガスが蒸気と熱交換用プレートとの接触を妨げることで蒸気の凝縮が進まない状態となるのを、防ぐことができ、効率よく凝縮を行わせることができる   As described above, according to the present invention, the condensation easily proceeds at a low temperature near the entrance of the second flow path in the first flow path, and the non-condensable gas is collected along the area where the non-condensable gas contained in the steam is likely to stay. A non-condensable gas discharge section is provided, and the non-condensable gas discharge section is connected to the non-condensable gas discharge section. Can be drawn out to the non-condensable gas collecting part and removed from the first flow path to the outside, and the non-condensable gas accumulated in the first flow path prevents contact between the vapor and the heat exchange plate, so that the vapor does not condense. Can be prevented and efficient condensation can be performed.

また、本発明に係る凝縮器は必要に応じて、前記不凝縮ガス収集部の一部が、前記第一流路に所定深さまで挿入されると共に、第一流路を挟む各熱交換用プレートに固定され、第一流路の開口部分寄り部位をシェルの内部空間に通じる部分と前記不凝縮ガス収集部に通じる部分とに分ける隔壁とされるものである。   In the condenser according to the present invention, if necessary, a part of the non-condensable gas collecting unit is inserted into the first flow path to a predetermined depth and fixed to each heat exchange plate sandwiching the first flow path. The first flow path is formed as a partition that divides a portion near the opening portion into a portion communicating with the internal space of the shell and a portion communicating with the non-condensable gas collecting unit.

このように本発明によれば、不凝縮ガス収集部の一部が隔壁となるようにして第一流路を区画し、仮に蒸気が第一流路開口部分における不凝縮ガス収集部に近い位置に流入しても、隔壁で不凝縮ガス収集部の方へ進むのを阻止されることにより、開口部分に流入した蒸気が不凝縮ガス収集部へ向かわずにそのまま第一流路を奥まで進む状態として、蒸気の開口部分に入った直後からの不凝縮ガス収集部への流入を抑制することで、不凝縮ガス収集部を通じて誤って蒸気が排出されるのを防いで、蒸気をもれなく確実に凝縮させることができる。   As described above, according to the present invention, the first flow path is partitioned such that a part of the non-condensable gas collection unit serves as a partition, and the vapor flows into a position near the non-condensable gas collection unit in the first flow path opening portion. Even so, by being prevented from proceeding toward the non-condensable gas collection unit by the partition wall, the steam that has flowed into the opening does not go to the non-condensable gas collection unit but directly proceeds to the first flow path to the back, By suppressing the inflow of steam into the non-condensable gas collection section immediately after entering the opening, the steam is prevented from being accidentally discharged through the non-condensable gas collection section, and the steam is surely condensed without leakage. Can be.

本発明の第1の実施形態に係る凝縮器の正面図である。It is a front view of the condenser concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る凝縮器における凝縮部の概略構成説明図である。It is a schematic structure explanatory view of the condensation part in the condenser concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る凝縮器の縦断面図である。It is a longitudinal section of a condenser concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る凝縮器の縦断面図である。It is a longitudinal section of a condenser concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る凝縮器の正面図である。It is a front view of the condenser concerning a 3rd embodiment of the present invention. 本発明の第3の実施形態に係る凝縮器における凝縮部及び不凝縮ガス収集部の概略斜視図である。It is a schematic perspective view of a condensation part and a non-condensable gas collection part in a condenser concerning a 3rd embodiment of the present invention. 本発明の第3の実施形態に係る凝縮器における他の凝縮部及び不凝縮ガス収集部の概略斜視図である。It is a schematic perspective view of another condensing part and the non-condensable gas collection part in the condenser concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係る凝縮器における凝縮部及び不凝縮ガス収集部の概略正面図である。It is a schematic front view of the condensation part and the non-condensable gas collection part in the condenser which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る凝縮器における不凝縮ガス収集部の一部切欠斜視図である。It is a partially cutaway perspective view of the non-condensable gas collection part in the condenser concerning a 4th embodiment of the present invention. 本発明の第4の実施形態に係る凝縮器における不凝縮ガス収集部の熱交換用プレートへの取付状態説明図である。It is an explanatory view of a mounting state to a heat exchange plate of a non-condensable gas collection part in a condenser concerning a 4th embodiment of the present invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態を図1ないし図3に基づいて説明する。本実施形態では、海水淡水化装置における海水由来蒸気の凝縮を行って真水を得る凝縮器への適用例について説明する。
(First embodiment of the present invention)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, an example of application to a condenser that obtains fresh water by condensing steam derived from seawater in a seawater desalination apparatus will be described.

前記各図において本実施形態に係る凝縮器10は、複数の略矩形状金属薄板製の各熱交換用プレート15を並列状態で一体化して形成され、外部から流入する蒸気と冷却用流体とを熱交換させる熱交換部としての凝縮部11と、隔壁で外部から隔離された内部空間を有し、この内部空間に凝縮部11を収める状態で配設される中空容器状のシェル12とを備える構成である。   In each of the drawings, the condenser 10 according to the present embodiment is formed by integrating a plurality of heat exchange plates 15 made of a plurality of substantially rectangular thin metal plates in a parallel state, and the steam and the cooling fluid flowing from the outside are formed. A condensing unit 11 as a heat exchanging unit for exchanging heat, and a hollow container-like shell 12 having an internal space separated from the outside by a partition wall and arranged to accommodate the condensing unit 11 in this internal space are provided. Configuration.

前記凝縮部11は、シェル12の内部空間に配設され、外部から流入する蒸気と冷却用流体とを熱交換させ、蒸気を凝縮させて凝縮液を得るものである。
この凝縮部11は、複数並列状態とされた略矩形状金属薄板製の各熱交換用プレート15を、所定の略平行をなす二端辺部位で隣合う一の熱交換用プレートと水密状態として溶接される一方、隣合う他の熱交換用プレートと前記二端辺と略直交する他の略平行な二端辺部位で水密状態として溶接されて、全て一体化されて形成される構成である(図2参照)。
The condensing section 11 is disposed in the internal space of the shell 12 and exchanges heat between the steam flowing from the outside and the cooling fluid to condense the steam to obtain a condensed liquid.
The condensing unit 11 converts each of the plurality of heat exchange plates 15 made of substantially rectangular metal sheets into a water-tight state with one adjacent heat exchange plate at two end portions that are substantially parallel to each other. While being welded, another adjacent heat exchange plate and another substantially parallel two end side portion substantially orthogonal to the two end sides are welded in a watertight state, and all are integrally formed. (See FIG. 2).

そして、凝縮部11は、各熱交換用プレート15間に、前記蒸気及びこの蒸気の凝縮した凝縮液の通る第一流路15bと、前記冷却用流体の通る第二流路15cとをそれぞれ一つおきに生じさせ、且つ蒸気及び凝縮液が流入出可能な前記第一流路15bの開口部分と、冷却用流体が流入出可能な前記第二流路15cの開口部分とが、直角をなす配置とされる構成である。すなわち、凝縮部11は、前記各第一流路15bを通る蒸気と前記各第二流路15cを通る冷却用流体とが直交流をなす、いわゆるクロスフロー型熱交換器の構造を採ることとなる。   The condensing unit 11 includes one first flow path 15b through which the steam and the condensate condensed by the vapor pass, and one second flow path 15c through which the cooling fluid passes between the heat exchange plates 15. The opening of the first flow path 15b through which the steam and the condensate can flow in and out, and the opening of the second flow path 15c through which the cooling fluid can flow in and out form a right angle. It is a configuration that is performed. That is, the condensing section 11 has a so-called cross-flow heat exchanger structure in which the steam flowing through each of the first flow paths 15b and the cooling fluid flowing through each of the second flow paths 15c form a cross flow. .

前記シェル12は、外部から隔離された内部空間を有する中空容器状に形成され、内部空間に外部から蒸気を導入可能且つ内部空間から外部へ凝縮液を取出し可能とされると共に、隔壁を貫通する冷却用流体の流入出用流路を設けられる構成である。   The shell 12 is formed in the shape of a hollow container having an internal space isolated from the outside, is capable of introducing steam from the outside to the internal space, and capable of taking out condensate from the internal space to the outside, and penetrates the partition. In this configuration, a cooling fluid inflow / outflow channel is provided.

このシェル12内に収められる凝縮部11が、冷却用流体の流入出用流路と第二流路15cの開口部分とを接続されると共に、この第二流路15cの開口部分以外でシェル隔壁内面との間に所定の隙間を介在させ、且つ第一流路15bの開口部分を上下に向けるように配置され、流入出用流路を通じて各第二流路15cに流入する冷却用流体と、シェル内部空間から各第一流路15bに流入する蒸気とを熱交換させることとなる。
また、シェル12の外側には、凝縮部11の各第二流路15cに前記流入出用流路を通じて冷却用流体を流入出させる管路13が接続される構成である。
A condensing section 11 accommodated in the shell 12 connects the inlet / outlet flow path of the cooling fluid and the opening of the second flow path 15c, and has a shell partition other than the opening of the second flow path 15c. A cooling fluid that is arranged with a predetermined gap interposed between the inner surface and the opening portion of the first flow path 15b facing up and down, flows into each second flow path 15c through the inflow / outflow flow path, and a shell. Heat is exchanged with the steam flowing from the internal space into each first flow path 15b.
Outside the shell 12, a pipe 13 is connected to each of the second flow paths 15c of the condensing section 11 to allow the cooling fluid to flow in and out through the flow path for inflow and outflow.

凝縮部11で用いる冷却用流体としては、例えば海洋深層から取水された冷海水が用いられる。こうした冷却用流体を管路13及びシェル12の流入出用流路により凝縮部11の各第二流路15cに流入出させる。   As the cooling fluid used in the condensing section 11, for example, cold seawater taken from the deep sea is used. Such a cooling fluid is caused to flow into and out of each of the second flow paths 15 c of the condensing section 11 through the flow path for inflow and outflow of the pipe 13 and the shell 12.

この他、凝縮部11で用いる冷却用流体を蒸気動力サイクルの液相作動流体として、凝縮部11での熱交換で作動流体を蒸発させる、すなわち、凝縮部11を作動流体については蒸発器として利用することもできる。   In addition, the cooling fluid used in the condenser 11 is used as a liquid-phase working fluid in a steam power cycle, and the working fluid is evaporated by heat exchange in the condenser 11, that is, the condenser 11 is used as an evaporator for the working fluid. You can also.

一方、凝縮部11での熱交換により凝縮した凝縮液(真水)は、凝縮部11から流下してシェル内部空間下部に達し、最終的にシェル12から排出されるが、この凝縮液を一時的に貯溜する貯溜部19がシェル12に接続されて配設される。   On the other hand, the condensed liquid (fresh water) condensed by the heat exchange in the condensing section 11 flows down from the condensing section 11 and reaches the lower part of the inner space of the shell, and is finally discharged from the shell 12. A storage unit 19 for storing the water is connected to the shell 12 and disposed.

本実施形態に係る凝縮器10は、海水淡水化装置1の一部をなすものとして、海水を減圧容器14a内でフラッシュ蒸発させて水蒸気を得るフラッシュ蒸発器14と組合せて用いられ、フラッシュ蒸発器14で得られた水蒸気を凝縮器10が凝縮して真水を得る仕組みとされる。   The condenser 10 according to the present embodiment is used as a part of the seawater desalination apparatus 1 and is used in combination with a flash evaporator 14 that obtains water vapor by flash-evaporating seawater in a reduced-pressure vessel 14a. The water vapor obtained at 14 is condensed by the condenser 10 to obtain fresh water.

凝縮器10と組み合わせて海水淡水化装置1をなすフラッシュ蒸発器14は、海水淡水化用として海水を減圧空間でフラッシュ蒸発させて水蒸気を得る公知の構成であり、詳細な説明を省略する。
このフラッシュ蒸発器14の減圧容器14aが、凝縮器10のシェル12と連通するように配設され、フラッシュ蒸発器14で生じた水蒸気をシェル12の内部空間に導入可能とされる。
The flash evaporator 14, which forms the seawater desalination apparatus 1 in combination with the condenser 10, has a known configuration in which seawater is flash-evaporated in a reduced-pressure space to obtain water vapor for seawater desalination, and a detailed description thereof will be omitted.
The decompression container 14 a of the flash evaporator 14 is provided so as to communicate with the shell 12 of the condenser 10, and the steam generated by the flash evaporator 14 can be introduced into the inner space of the shell 12.

また、凝縮器10のシェル12には、同じく海水淡水化装置1の一部をなす減圧排気装置(図示を省略)が管路等を通じて接続され、シェル12の内部空間及びこれに連通するフラッシュ蒸発器14の減圧容器14a内空間を、減圧容器14a内で蒸発させようとする海水と同温度における水の飽和蒸気圧以下の圧力に減圧し、減圧容器14a内で海水中の水分が液相から気相に変化する(蒸発する)温度、及び、シェル12内の凝縮部11で蒸気の気相から液相に変化する(凝縮する)温度をそれぞれ大気圧における各温度に比べて低くなるよう維持する仕組みとされる。   The shell 12 of the condenser 10 is also connected through a pipe or the like to a reduced-pressure exhaust device (not shown) which also forms a part of the seawater desalination apparatus 1, and an internal space of the shell 12 and a flash evaporator communicating therewith. The space in the decompression vessel 14a of the vessel 14 is decompressed to a pressure equal to or lower than the saturated vapor pressure of water at the same temperature as the seawater to be evaporated in the decompression vessel 14a. The temperature at which the gas phase changes (evaporates) and the temperature at which the vapor changes from the gas phase to the liquid phase (condenses) in the condenser section 11 in the shell 12 are maintained lower than the respective temperatures at atmospheric pressure. It is a mechanism to do.

これにより減圧容器14a内に導入された海水の一部が液相から気相に変化すると共に、液相で残った海水の温度が低下する仕組みである。
海水淡水化装置1のフラッシュ蒸発器14に導入して蒸発させる海水は、例えば海洋表層の温海水とされ、海から取水した海水をいったん脱気装置に導いて、海水中の空気を除去した後、フラッシュ蒸発器14に導くようにされる。この減圧容器14a内で蒸発しなかった分の海水は、減圧容器14aから排水されて海へ排出されることとなる。
As a result, a part of the seawater introduced into the decompression container 14a changes from a liquid phase to a gas phase, and the temperature of the seawater remaining in the liquid phase decreases.
The seawater introduced into the flash evaporator 14 of the seawater desalination apparatus 1 to be evaporated is, for example, warm seawater on the surface of the ocean, and the seawater taken from the sea is once guided to a deaerator to remove air in the seawater. , To the flash evaporator 14. The seawater not evaporated in the decompression container 14a is drained from the decompression container 14a and discharged to the sea.

次に、前記構成に基づく凝縮器の作動状態について説明する。前提として、凝縮器10を含む海水淡水化装置1において、海から取水された海水が、フラッシュ蒸発器14に導入され、まずその水分を蒸発させるものとする。
海水淡水化装置1では、まず、海から取水された海水が、いったん脱気装置(図示を省略)に導かれ、海水中の空気を除去された後、フラッシュ蒸発器14に導入される。
Next, an operation state of the condenser based on the above configuration will be described. As a premise, in the seawater desalination apparatus 1 including the condenser 10, seawater taken from the sea is introduced into the flash evaporator 14, and the water is first evaporated.
In the seawater desalination apparatus 1, first, seawater taken from the sea is once guided to a deaerator (not shown) to remove air in the seawater, and then introduced into the flash evaporator 14.

海水は、フラッシュ蒸発器14の減圧容器14a内で、ノズル14bから減圧容器14a内の空間に噴射される。約10〜60mmHg程度まで圧力を低くされた減圧容器14a内で、海水中の水分の一部がフラッシュ蒸発により不純物を含まない気相の水、すなわち蒸気に相変化し、同時に海水の温度は降下する。
水分の蒸発により得られた蒸気は、周囲のガスと共に減圧容器14a内を進み、液分(ミスト)と分離された状態で凝縮器10に到達する。
The seawater is injected from the nozzle 14b into the space inside the depressurized container 14a in the depressurized container 14a of the flash evaporator 14. In the depressurized vessel 14a whose pressure has been reduced to about 10 to 60 mmHg, part of the water in the seawater changes into gaseous water containing no impurities by flash evaporation, that is, steam, and at the same time, the temperature of the seawater drops. I do.
The vapor obtained by the evaporation of the water travels in the decompression container 14a together with the surrounding gas, and reaches the condenser 10 in a state separated from the liquid (mist).

凝縮器10では、蒸気がシェル12の上部の開口から内部空間に進入する。そして、蒸気は、シェル12の内部空間を進んで凝縮部11の第一流路15bにおける上下の開口部分から流入する。すなわち、蒸気は、シェル12の内部空間から凝縮部11における第一流路15bの上側の開口部分から第一流路15bに流入して、第一流路15bを下向きに進みながら、熱交換用プレート15を介して冷却用流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。また、蒸気は、シェル12の内部空間を下方に進んで凝縮部11の横を通り、凝縮部11の下に達した後、上向きに転じて凝縮部11における第一流路15bの下側の開口部分からも第一流路15bに流入し、第一流路15bを上向きに進みながら、熱交換用プレート15を介して冷却用流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。   In the condenser 10, the steam enters the internal space from the opening at the top of the shell 12. Then, the steam proceeds in the internal space of the shell 12 and flows in from the upper and lower openings in the first flow path 15b of the condenser 11. That is, the steam flows from the inner space of the shell 12 into the first flow path 15b from the upper opening of the first flow path 15b in the condensing section 11, and moves downward through the first flow path 15b while passing through the first flow path 15b. The heat exchanges with the cooling fluid through the heat exchange plate 15 and condenses on the surface of the heat exchange plate 15 facing the first flow path 15b to become liquid water. In addition, the steam proceeds downward in the internal space of the shell 12, passes by the condensing section 11, reaches below the condensing section 11, and then turns upward to open the lower opening of the first flow path 15 b in the condensing section 11. The heat also flows into the first flow path 15b from the portion and proceeds upward through the first flow path 15b, exchanges heat with the cooling fluid via the heat exchange plate 15, and causes the heat exchange plate 15 facing the first flow path 15b. Condenses on the surface and becomes liquid water.

こうして上下の開口部分から第一流路15bに流入した蒸気が、凝縮部11内部を進みながら、熱交換用プレート15を介して冷却用流体と熱交換して凝縮する中、特に下側の開口部分から流入した蒸気が速やかに熱交換用プレート15の下部に接触できることで、蒸気の熱交換用プレート15各部との接触に伴う熱交換がスムーズに進んで、凝縮器内部へ向って流れる未凝縮の蒸気を順次凝縮させられる。   In this way, while the steam that has flowed into the first flow path 15b from the upper and lower openings condenses while exchanging heat with the cooling fluid via the heat exchange plate 15 while traveling inside the condensing section 11, particularly the lower opening Can quickly come into contact with the lower part of the heat exchange plate 15, heat exchange accompanying the contact of the steam with each part of the heat exchange plate 15 proceeds smoothly, and the uncondensed steam flowing toward the inside of the condenser 15 The vapor can be condensed sequentially.

熱交換用プレート15表面で凝縮した水分は、流下して凝縮部11における第一流路15bの下側の開口部分から出て、いったんシェル12の下部に溜まった後、シェル12の外に出て貯溜部19内に集められ、まとまった量の水として外部に送出される。   The water condensed on the surface of the heat exchange plate 15 flows down, exits through the lower opening of the first flow path 15 b in the condenser section 11, temporarily accumulates in the lower portion of the shell 12, and then exits the shell 12. The water is collected in the storage unit 19 and is sent to the outside as a large amount of water.

このように、本実施形態に係る凝縮器においては、凝縮部11における第一流路15bの開口部分を上下に位置させ、シェル12の内部空間の蒸気が凝縮部11の第一流路15bに上下から流入して、第一流路15bに面する熱交換用プレート15表面での熱交換により蒸気が凝縮し、凝縮により生じた凝縮液が第一流路15bの下側の開口部分から流下することから、伝熱面各部に蒸気が接触可能となるために蒸気が進行する行程が、蒸気が第一流路15bに上からのみ進行する場合に比べて相対的に短くなり、その分、蒸気の流路での進行に係る抵抗も小さくなり、蒸気の第一流路15bに面する伝熱面各部との接触が促され、蒸気と伝熱面との接触に伴う熱交換が滞りなくスムーズに生じて、効率良く凝縮を進行させられる。   As described above, in the condenser according to the present embodiment, the opening portion of the first flow path 15b in the condensing section 11 is positioned up and down, and the vapor in the internal space of the shell 12 flows into the first flow path 15b of the condensing section 11 from above and below. Inflow, the steam is condensed by heat exchange on the surface of the heat exchange plate 15 facing the first flow path 15b, and the condensate generated by the condensation flows down from the lower opening portion of the first flow path 15b. Since the steam can come into contact with each part of the heat transfer surface, the stroke in which the steam travels is relatively shorter than in the case where the steam travels only from the top to the first flow path 15b. And the contact between the steam and the heat transfer surface facing the first flow path 15b is promoted, and the heat exchange accompanying the contact between the steam and the heat transfer surface occurs smoothly without interruption, and the efficiency is improved. Condensation can be advanced well.

(本発明の第2の実施形態)
前記第1の実施形態に係る凝縮器においては、フラッシュ蒸発器14と組み合わせて海水淡水化装置1をなし、シェル12の内部空間をフラッシュ蒸発器14の減圧容器14aと連通させる構成としているが、これに限らず、図4に示すように、凝縮器20のシェル22が所定の大きさとされて、シェル22がフラッシュ蒸発器の減圧容器を兼ねてフラッシュ蒸発器24のノズル24bや海水の導入流路等を凝縮部21と共に収容して、海水淡水化装置の蒸発部分と凝縮部分が共通のシェル内に一まとめに配設される構成とすることもできる。
(Second embodiment of the present invention)
In the condenser according to the first embodiment, the seawater desalination apparatus 1 is formed in combination with the flash evaporator 14, and the internal space of the shell 12 is configured to communicate with the pressure reducing container 14 a of the flash evaporator 14. However, as shown in FIG. 4, the shell 22 of the condenser 20 has a predetermined size, and the shell 22 also serves as a depressurizing vessel of the flash evaporator and serves as a nozzle 24b of the flash evaporator 24 and the inlet flow of seawater. The passage and the like may be housed together with the condensing section 21 so that the evaporating section and the condensing section of the seawater desalination apparatus are collectively disposed in a common shell.

この場合、フラッシュ蒸発器24は、内部空間を大気圧以下に減圧される減圧容器を兼ねる凝縮器20のシェル22と、このシェル22内に配設される海水噴射用のノズル24bと、シェル22内を凝縮部21へ向う蒸気流の中に混じった海水の微細水滴(ミスト)を捕捉して取除くミスト除去部24cとを備えるものとなる。このフラッシュ蒸発器24では、海水がノズル24bに導かれ、シェル22の内部空間へ上向きに噴射される。シェル22内は、前記実施形態同様、ノズル24bから噴射される海水と同温度における水の飽和蒸気圧以下の圧力に減圧排気装置(図示を省略)により減圧されている。   In this case, the flash evaporator 24 includes a shell 22 of the condenser 20 also serving as a decompression container for reducing the internal space to the atmospheric pressure or lower, a seawater injection nozzle 24 b provided in the shell 22, and a shell 22. A mist removing unit 24c that captures and removes fine water droplets (mist) of seawater mixed in the steam flow toward the condensing unit 21 is provided. In the flash evaporator 24, the seawater is guided to the nozzle 24 b and is injected upward into the inner space of the shell 22. As in the above-described embodiment, the inside of the shell 22 is depressurized to a pressure equal to or lower than the saturated vapor pressure of water at the same temperature as the seawater injected from the nozzle 24b by a decompression exhaust device (not shown).

海水は、シェル22内に配置されたノズル24bから上向きに噴射され、水分の一部はフラッシュ蒸発により蒸気に相変化し、同時に海水の温度は降下する。水分の蒸発により得られた蒸気はミスト除去部24cを通り、同じシェル22内の凝縮部21に流入する。シェル22内に蒸発部分と凝縮部分が一体に収容されていることで、蒸発側から凝縮側へ向う水蒸気の流れにおける圧力損失を小さくできる。   The seawater is jetted upward from a nozzle 24b disposed in the shell 22, and a part of the water changes its phase into steam by flash evaporation, and at the same time, the temperature of the seawater drops. The vapor obtained by evaporation of the water passes through the mist removing section 24c and flows into the condensing section 21 in the same shell 22. Since the evaporating portion and the condensing portion are integrally accommodated in the shell 22, the pressure loss in the flow of steam from the evaporating side to the condensing side can be reduced.

このように、本実施形態に係る凝縮器においては、凝縮器20のシェル22内にフラッシュ蒸発器14をなす各部と凝縮部21が収容されて蒸発器と凝縮器とが一体に配設され、フラッシュ蒸発器24で得られた水蒸気がそのまま凝縮器20に進入可能となることから、減圧した圧力を維持しやすく確実に蒸気を気相で凝縮器20に到達させて凝縮させられることとなり、シェル22内でスムーズに蒸発から凝縮までの一連の過程を進ませられ、凝縮に係る効率を高められると共に、シェル22内からの排気をそのまま減圧排気装置に導いて排出できるなど、装置全体をシンプル且つコンパクトな構造として低コスト化も図れる。   As described above, in the condenser according to the present embodiment, the components forming the flash evaporator 14 and the condenser 21 are accommodated in the shell 22 of the condenser 20, and the evaporator and the condenser are integrally disposed, Since the steam obtained by the flash evaporator 24 can enter the condenser 20 as it is, it is easy to maintain the reduced pressure, and the vapor is allowed to reach the condenser 20 in the gaseous phase and is condensed. A series of processes from evaporation to condensation can be smoothly performed in the inside 22, and the efficiency of the condensation can be improved. In addition, the exhaust from the inside of the shell 22 can be directly guided to the decompression exhaust device and discharged, so that the entire device is simple and simple. Cost reduction can be achieved with a compact structure.

(本発明の第3の実施形態)
本発明の第3の実施形態を図5及び図6に基づいて説明する。
前記各図において本実施形態に係る凝縮器は、前記第1の実施形態同様、凝縮部11と、シェル12とを備える一方、異なる点として、凝縮部11における第一流路15bの開口部分における所定範囲部分を覆って配設される略箱状の不凝縮ガス収集部17と、この不凝縮ガス収集部17の内側領域に連通して、不凝縮ガスをシェル12外に排出可能とする略管状の不凝縮ガス排出部18とをさらに備える構成を有するものである。
(Third embodiment of the present invention)
A third embodiment of the present invention will be described with reference to FIGS.
In each of the drawings, the condenser according to the present embodiment includes a condenser 11 and a shell 12 as in the first embodiment, but differs from the condenser in the opening of the first flow path 15b in the condenser 11 as in the first embodiment. A substantially box-shaped non-condensable gas collecting portion 17 disposed over the range portion, and a substantially tubular shape which communicates with an inner region of the non-condensable gas collecting portion 17 to allow the non-condensable gas to be discharged out of the shell 12 And a non-condensable gas discharge section 18 of the present invention.

前記不凝縮ガス収集部17は、一部開放状態とした略箱状体で形成され、凝縮部11における第一流路15bの上側の開口部分のうち、第二流路15cにおける冷却用流体流入側の開口部分に近い所定範囲部分を覆って配設される構成である。   The non-condensable gas collecting part 17 is formed in a substantially box-like body that is partially open, and among the openings above the first flow path 15b in the condensing part 11, the cooling fluid inflow side in the second flow path 15c. Is provided so as to cover a predetermined range portion close to the opening portion.

前記不凝縮ガス排出部18は、略管状に形成され、前記不凝縮ガス収集部17の内側領域に一方の開口端部を連通させると共に、前記シェル12の外側に他方の開口端部を位置させて配設される構成であり、この他方の開口端部に減圧装置(図示を省略)を接続されて、不凝縮ガス収集部17に集まった不凝縮ガスをシェル12外に排出可能とするものである。   The non-condensable gas discharge unit 18 is formed in a substantially tubular shape, and has one open end communicating with the inside region of the non-condensable gas collection unit 17 and the other open end located outside the shell 12. A decompression device (not shown) is connected to the other open end so that the non-condensable gas collected in the non-condensable gas collection unit 17 can be discharged to the outside of the shell 12. It is.

次に、前記構成に基づく凝縮器における不凝縮ガスの除去について説明する。前提として、前記第1の実施形態同様、海から取水された海水が、フラッシュ蒸発器14に導入され、減圧されたフラッシュ蒸発器14の減圧容器14a内の空間に噴射された海水中の水分の一部がフラッシュ蒸発により蒸気となって、この蒸気が凝縮器10に流入するものとする。   Next, the removal of the non-condensable gas in the condenser based on the above configuration will be described. As a premise, as in the first embodiment, seawater taken from the sea is introduced into the flash evaporator 14, and the water content of the seawater injected into the space inside the decompression vessel 14a of the flash evaporator 14 is reduced. It is assumed that part of the vapor is formed by flash evaporation, and the vapor flows into the condenser 10.

凝縮器10では、前記第1の実施形態同様、蒸気がシェル12の上部の開口から内部空間に進入する。そして、蒸気は、シェル12の内部空間を進んで凝縮部11の第一流路15bにおける上下の開口部分からそれぞれ流入する。   In the condenser 10, as in the first embodiment, the steam enters the internal space from the opening at the top of the shell 12. Then, the steam travels through the internal space of the shell 12 and flows in from the upper and lower openings in the first flow path 15b of the condenser 11 respectively.

蒸気のうち、上側の開口部分から第一流路15bに流入した蒸気は、第一流路15bを下向きに進みながら、熱交換用プレート15を介して冷却用流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。また、下側の開口部分から第一流路15bに流入した蒸気は、第一流路15bを上向きに進みながら、熱交換用プレート15を介して冷却用流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。   Of the steam, the steam that has flowed into the first flow path 15b from the upper opening portion exchanges heat with the cooling fluid via the heat exchange plate 15 while traveling downward through the first flow path 15b. Is condensed on the surface of the heat exchange plate 15 facing the surface, and becomes water in a liquid phase. In addition, the steam flowing into the first flow path 15b from the lower opening portion exchanges heat with the cooling fluid via the heat exchange plate 15 while traveling upward through the first flow path 15b, and enters the first flow path 15b. It condenses on the surface of the heat exchange plate 15 facing it, and becomes water in the liquid phase.

蒸気が凝縮すると、蒸気と共に第一流路15bに流入していた不凝縮ガスが、凝縮し液相となった水と分離する。この凝縮部11の第一流路15bのうち、熱交換用プレート15を隔てた第二流路15cにおける冷却用流体流入側の開口部分に近い部分では、第二流路15c側の冷却用流体の温度が他部より低いことで、蒸気の凝縮が進みやすく、分離する不凝縮ガスの量も多くなる。こうして不凝縮ガスが多くなることで、この部分では不凝縮ガスの排出が滞って滞留状態になりやすく、そのままでは、溜まった不凝縮ガスが蒸気と熱交換用プレート15との接触を妨げて蒸気の凝縮が進まない状態となりかねない。   When the vapor condenses, the non-condensable gas that has flowed into the first flow path 15b together with the vapor is separated from the water that has condensed into a liquid phase. In a portion of the first flow path 15b of the condensing section 11 near the opening on the cooling fluid inflow side in the second flow path 15c separating the heat exchange plate 15, the cooling fluid of the second flow path 15c is When the temperature is lower than that of the other parts, the condensation of the vapor proceeds easily, and the amount of the non-condensable gas to be separated increases. Since the amount of the non-condensable gas increases in this way, the discharge of the non-condensable gas tends to stagnate in this part, and the accumulated non-condensable gas hinders the contact between the steam and the heat exchange plate 15 and the steam does not flow. May not be able to condense.

これに対し、凝縮部11における第一流路15bの上側の開口部分のうち、第二流路15cにおける冷却用流体流入側の開口部分に近い所定範囲部分を覆うように不凝縮ガス収集部17を配設して、この不凝縮ガス収集部17と不凝縮ガス排出部18を通じて不凝縮ガスを第一流路15bから吸引して、発生した不凝縮ガスを除去でき、第一流路15bにおける蒸気と熱交換用プレート表面との接触、熱交換による蒸気の凝縮を、不凝縮ガスに妨げられることなく継続させられる。   On the other hand, the non-condensable gas collecting unit 17 is arranged so as to cover a predetermined range near the opening on the cooling fluid inflow side in the second flow path 15c, of the upper opening of the first flow path 15b in the condensing unit 11. The non-condensable gas is suctioned from the first flow path 15b through the non-condensable gas collection unit 17 and the non-condensable gas discharge unit 18, and the generated non-condensable gas can be removed. Contact with the surface of the exchange plate and condensation of the vapor by heat exchange can be continued without being hindered by the non-condensable gas.

このように、本実施形態に係る凝縮器においては、第一流路15bにおける第二流路入口近くの低温で凝縮が進行しやすく、蒸気に含まれていた不凝縮ガスが滞留しやすい領域に沿って、不凝縮ガス収集部17を設けると共に、この不凝縮ガス収集部17に不凝縮ガス排出部18を接続し、これら不凝縮ガス収集部17と不凝縮ガス排出部18を通じて不凝縮ガスを第一流路15bからシェル外部に排出可能とすることから、第一流路15bの一部に滞留しようとする不凝縮ガスを不凝縮ガス収集部17に引き寄せて除去でき、第一流路15bに溜まった不凝縮ガスが蒸気と熱交換用プレート15との接触を妨げて蒸気の凝縮が進まない状態となるのを適切に防いで、効率よく凝縮を行わせることができる。   As described above, in the condenser according to the present embodiment, the condensation easily proceeds at a low temperature near the second flow path inlet in the first flow path 15b, and along the region where the non-condensable gas contained in the steam is likely to stay. In addition to providing the non-condensable gas collecting unit 17 and connecting the non-condensable gas discharging unit 18 to the non-condensing gas collecting unit 17, the non-condensing gas is discharged through the non-condensing gas collecting unit 17 and the non-condensing gas discharging unit 18. Since it is possible to discharge the non-condensable gas remaining in a part of the first flow path 15b to the non-condensable gas collection unit 17 because the one flow path 15b can be discharged to the outside of the shell, the non-condensable gas collected in the first flow path 15b can be removed. The condensed gas can be prevented from coming into contact with the steam and the heat exchange plate 15 to prevent the steam from condensing, so that the condensation can be performed efficiently.

なお、前記実施形態に係る凝縮器においては、不凝縮ガス収集部17を第一流路15bの上側の開口部分に設けるようにしているが、第一流路15bのうち、第二流路15cにおける冷却用流体流入側の開口部分に近い所定範囲部分に対応する開口部分であれば、図7に示すように、不凝縮ガス収集部17を下側に設けるようにしてもかまわない。   In the condenser according to the embodiment, the non-condensable gas collecting unit 17 is provided at the upper opening of the first flow path 15b, but the cooling in the second flow path 15c of the first flow path 15b is performed. As long as it is an opening corresponding to a predetermined range near the opening on the side of the use fluid, the non-condensable gas collecting unit 17 may be provided on the lower side as shown in FIG.

(本発明の第4の実施形態)
前記第3の実施形態に係る凝縮器においては、不凝縮ガス収集部17を箱状に形成して開口部分の一部を覆うように配設する構成としているが、この他、図8ないし図10に示すように、不凝縮ガス収集部17の端部を、突出する凸部17bが歯型状に複数並ぶ形状とし、この端部の凸部17bを第一流路15bに所定深さまで挿入すると共に、第一流路15bを挟む各熱交換用プレート15に固定して、第一流路15bの開口部分寄り部位をシェル12の内部空間に通じる部分と前記不凝縮ガス収集部17内に通じる部分とに分ける隔壁として機能させる構成とすることもできる。
(Fourth embodiment of the present invention)
In the condenser according to the third embodiment, the non-condensable gas collecting unit 17 is formed in a box shape and is disposed so as to cover a part of the opening. As shown in FIG. 10, the end of the non-condensable gas collecting unit 17 has a shape in which a plurality of projecting protrusions 17b are arranged in a tooth shape, and the protrusion 17b at this end is inserted into the first flow path 15b to a predetermined depth. At the same time, the first flow path 15b is fixed to each heat exchange plate 15 sandwiching the first flow path 15b, a portion near the opening of the first flow path 15b communicates with the internal space of the shell 12, and a part that communicates with the non-condensable gas collection unit 17 It is also possible to adopt a configuration in which the partition functions as a partition.

この場合、不凝縮ガス収集部17の端部が隔壁として第一流路15bを区画し、仮に蒸気が第一流路開口部分における不凝縮ガス収集部17に近い位置に流入しても、隔壁部分で不凝縮ガス収集部17の方へ進むのを阻止されることから、開口部分に流入した蒸気が不凝縮ガス収集部17へ向かわずにそのまま第一流路15bを奥まで進む状態として、蒸気の不凝縮ガス収集部17への流入を抑制できることとなり、不凝縮ガス収集部17を通じて誤って蒸気が排出されるのを防いで、蒸気をもれなく確実に凝縮させることができる。   In this case, the end portion of the non-condensable gas collecting section 17 partitions the first flow path 15b as a partition, and even if steam flows into a position near the non-condensable gas collecting section 17 in the first flow path opening, the partition section does not. Since it is prevented from proceeding toward the non-condensable gas collection unit 17, the steam that has flowed into the opening portion does not go to the non-condensable gas collection unit 17 but proceeds to the first flow path 15 b as far as possible, and The flow into the condensed gas collecting unit 17 can be suppressed, and the vapor can be prevented from being erroneously discharged through the non-condensable gas collecting unit 17, so that the vapor can be surely condensed without any leakage.

1 海水淡水化装置
10 凝縮器
11 凝縮部
12 シェル
13 管路
14 フラッシュ蒸発器
14a 減圧容器
14b ノズル
15 熱交換用プレート
15b 第一流路
15c 第二流路
17 不凝縮ガス収集部
17b 凸部
18 不凝縮ガス排出部
19 貯溜部
20 凝縮器
21 凝縮部
22 シェル
24 フラッシュ蒸発器
24b ノズル
24c ミスト除去部
DESCRIPTION OF SYMBOLS 1 Seawater desalination apparatus 10 Condenser 11 Condensing part 12 Shell 13 Pipeline 14 Flash evaporator 14a Decompression container 14b Nozzle 15 Heat exchange plate 15b First flow path 15c Second flow path 17 Non-condensable gas collection part 17b Convex part 18 Non Condensed gas discharge unit 19 Storage unit 20 Condenser 21 Condensing unit 22 Shell 24 Flash evaporator 24b Nozzle 24c Mist removing unit

Claims (3)

外部から流入する蒸気と冷却用流体とを伝熱性材料製の熱交換部を介して熱交換させ、蒸気を凝縮させて得られる凝縮液を外部に取出し可能とする凝縮器において、
隔壁で外部から隔離された内部空間を有し、当該内部空間に外部から蒸気を導入可能且つ内部空間から外部へ凝縮液を取出し可能とされると共に、隔壁を貫通する冷却用流体の流入出用流路を設けられる中空容器状のシェルと、
当該シェルの内部空間に配設され、前記流路を通じて流入する冷却用流体とシェル内部空間から流入する蒸気とを熱交換させる前記熱交換部としての凝縮部とを備え、
当該凝縮部が、複数並列状態とされた略矩形状金属薄板製の各熱交換用プレートを、所定の略平行をなす二端辺部位で隣合う一の熱交換用プレートと水密状態として溶接される一方、隣合う他の熱交換用プレートと前記二端辺と略直交する他の略平行な二端辺部位で水密状態として溶接されて全て一体化され、各熱交換用プレート間に前記蒸気及び当該蒸気の凝縮した凝縮液の通る第一流路と前記冷却用流体の通る第二流路とをそれぞれ一つおきに生じさせ、且つ蒸気及び凝縮液が流入出可能な前記第一流路の開口部分と、冷却用流体が流入出可能な前記第二流路の開口部分とが、直角をなす配置として形成され、
前記凝縮部が、前記流入出用流路と前記第二流路の開口部分とを接続されると共に、当該第二流路の開口部分以外でシェル隔壁内面との間に所定の隙間を介在させ、且つ第一流路の開口部分を上下に向けて、前記シェルの内部空間に配置され、シェル内部空間で上下の第一流路開口部分から蒸気を流入させることを
特徴とする凝縮器。
In a condenser that allows heat exchange between steam flowing from the outside and a cooling fluid through a heat exchange section made of a heat conductive material, and enables a condensed liquid obtained by condensing the steam to be taken out,
It has an internal space which is isolated from the outside by a partition, allows steam to be introduced into the internal space from the outside, and allows condensate to be taken out from the internal space to the outside, and for inflow and outflow of a cooling fluid passing through the partition. A hollow container-like shell provided with a flow path,
A condensing unit is provided in the internal space of the shell, and the heat exchange unit exchanges heat between the cooling fluid flowing through the flow path and the steam flowing from the shell internal space,
The condensing part is welded to each heat exchange plate made of a plurality of substantially rectangular metal thin plates in a plurality of parallel states in a watertight state with one adjacent heat exchange plate at two predetermined end portions that are substantially parallel to each other. On the other hand, the other adjacent heat exchange plate and the other substantially parallel two end portions substantially orthogonal to the two end sides are welded in a watertight state and are all integrated, and the steam is interposed between the heat exchange plates. And an opening of the first flow path through which the first flow path through which the condensate condensed with the vapor passes and the second flow path through which the cooling fluid passes are generated alternately, and the vapor and the condensate can flow in and out. The portion and the opening portion of the second flow passage through which the cooling fluid can flow in and out are formed as a right-angled arrangement,
The condensing portion is connected to the inflow / outflow channel and the opening of the second flow channel, and interposes a predetermined gap between the opening portion of the second flow channel and the inner surface of the shell partition wall. The condenser is disposed in the interior space of the shell with the opening of the first flow path facing up and down, and allows steam to flow from the upper and lower first flow path openings in the shell internal space.
前記請求項1に記載の凝縮器において、
前記凝縮部における前記第一流路の上側又は下側の少なくとも一方の開口部分のうち、前記第二流路における冷却用流体流入側の開口部分に近い所定範囲部分を覆って配設される、略箱状の不凝縮ガス収集部と、
当該不凝縮ガス収集部の内側領域に一方の開口端部を連通させると共に、前記シェルの外側に他方の開口端部を位置させて配設され、不凝縮ガス収集部に集まった不凝縮ガスをシェル外に排出可能とする略管状の不凝縮ガス排出部とを備えることを
特徴とする凝縮器。
The condenser according to claim 1, wherein
At least one of the upper and lower openings of the first flow path in the condensing section is disposed so as to cover a predetermined range near the opening on the cooling fluid inflow side in the second flow path. A box-shaped non-condensable gas collecting section;
One open end is communicated with the inner region of the non-condensable gas collection unit, and the other open end is located outside the shell, and the non-condensable gas collected in the non-condensable gas collection unit is disposed. A condenser comprising a substantially tubular non-condensable gas discharge portion capable of being discharged outside the shell.
前記請求項2に記載の凝縮器において、
前記不凝縮ガス収集部の一部が、前記第一流路に所定深さまで挿入されると共に、第一流路を挟む各熱交換用プレートに固定され、第一流路の開口部分寄り部位をシェルの内部空間に通じる部分と前記不凝縮ガス収集部に通じる部分とに分ける隔壁とされることを
特徴とする凝縮器。
The condenser according to claim 2,
A part of the non-condensable gas collection unit is inserted into the first flow path to a predetermined depth, and is fixed to each heat exchange plate sandwiching the first flow path, and a portion near the opening of the first flow path is formed inside the shell. A condenser comprising a partition that divides into a part that communicates with a space and a part that communicates with the non-condensable gas collection part.
JP2018157831A 2018-08-24 2018-08-24 Condenser Active JP7212919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018157831A JP7212919B2 (en) 2018-08-24 2018-08-24 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157831A JP7212919B2 (en) 2018-08-24 2018-08-24 Condenser

Publications (2)

Publication Number Publication Date
JP2020030032A true JP2020030032A (en) 2020-02-27
JP7212919B2 JP7212919B2 (en) 2023-01-26

Family

ID=69624201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157831A Active JP7212919B2 (en) 2018-08-24 2018-08-24 Condenser

Country Status (1)

Country Link
JP (1) JP7212919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018076A (en) * 2021-10-25 2022-02-08 奇鋐科技股份有限公司 Condensation structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123375A (en) * 1977-04-04 1978-10-27 Hisaka Works Ltd Plate type water producer
JPH01244280A (en) * 1988-03-24 1989-09-28 Hisaka Works Ltd Plate-type condenser incorporating after-cooler
JPH04138553U (en) * 1991-06-24 1992-12-25 三菱重工業株式会社 plate condenser
US5507356A (en) * 1993-01-06 1996-04-16 Hoechst Aktiengesellschaft Column having integrated heat exchanger
JP2013057305A (en) * 2011-09-09 2013-03-28 Saga Univ Steam power cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123375A (en) * 1977-04-04 1978-10-27 Hisaka Works Ltd Plate type water producer
JPH01244280A (en) * 1988-03-24 1989-09-28 Hisaka Works Ltd Plate-type condenser incorporating after-cooler
JPH04138553U (en) * 1991-06-24 1992-12-25 三菱重工業株式会社 plate condenser
US5507356A (en) * 1993-01-06 1996-04-16 Hoechst Aktiengesellschaft Column having integrated heat exchanger
JP2013057305A (en) * 2011-09-09 2013-03-28 Saga Univ Steam power cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018076A (en) * 2021-10-25 2022-02-08 奇鋐科技股份有限公司 Condensation structure

Also Published As

Publication number Publication date
JP7212919B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2020045659A1 (en) Desalination and temperature difference power generation system
JP4331689B2 (en) Combined air-cooled condenser
JP2015100724A5 (en)
KR102478955B1 (en) plate heat exchangers, heat exchanger plates and methods of treating feeds such as seawater
JP4185451B2 (en) Seawater desalination equipment
WO2006054408A1 (en) Distillation apparatus for dry cleaner
JP2009292318A (en) Heat exchanger
US9188393B2 (en) Multistage pressure condenser and steam turbine plant equipped with the same
TWI392842B (en) Reflux condenser
JP3091860B1 (en) Absorber
JP7212919B2 (en) Condenser
WO2020045662A1 (en) Heat exchanger
JP6043644B2 (en) Vacuum cooling device
JPH09108653A (en) Seawater desalination device
JP5197602B2 (en) Condenser
US9677791B2 (en) Absorption refrigeration machine
RU2303475C1 (en) Multi-stage evaporator
US20160236138A1 (en) Gas capture plant
RU2303163C1 (en) Freezing-out trap
CN111023633A (en) Four-tube-pass efficient ammonia condenser
JP2006200851A (en) Absorption type refrigerator
KR102619254B1 (en) Fresh water generation device
RU53282U1 (en) MULTISTAGE EVAPORATOR OF INSTANT INSTANTATION
RU2241512C1 (en) Multi-stage evaporator of instant ebullition
JP2019025471A (en) Multiple-effect fresh water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230106

R150 Certificate of patent or registration of utility model

Ref document number: 7212919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150