JP2020028984A - Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same - Google Patents
Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same Download PDFInfo
- Publication number
- JP2020028984A JP2020028984A JP2018153974A JP2018153974A JP2020028984A JP 2020028984 A JP2020028984 A JP 2020028984A JP 2018153974 A JP2018153974 A JP 2018153974A JP 2018153974 A JP2018153974 A JP 2018153974A JP 2020028984 A JP2020028984 A JP 2020028984A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- closed
- fiber
- continuous
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Moulding By Coating Moulds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した(以下、「UDライクな」、「一方向性の」ともいう。)複数の連続長強化繊維を含む閉じた成形体に関する。より詳しくは、本発明は、フィラメントワインディング(FW)法によるUDライクな閉じた繊維強化複合成形体、及びその製造方法に関する。 The present invention includes a plurality of continuous long reinforcing fibers continuously and circumferentially oriented in one direction (hereinafter, also referred to as “UD-like” and “unidirectional”) in a solidified thermoplastic resin matrix. Related to closed moldings. More specifically, the present invention relates to a UD-like closed fiber-reinforced composite molded article by a filament winding (FW) method, and a method for producing the same.
金属代替材料として軽量化を目的に現在実用化されている樹脂系複合材料の成形方法としては、ベースマトリックスとして用いる樹脂が熱可塑性樹脂であるか又は熱硬化性樹脂であるか、補強材の体積含有率が50%を超えるか否か、補強材が、紡糸された連続長繊維であるか又はチョップドストランドであるか又は織物であるか、の点で概ね分類することができる。 As a method of molding a resin-based composite material that is currently in practical use for the purpose of weight reduction as a metal substitute material, whether the resin used as the base matrix is a thermoplastic resin or a thermosetting resin, the volume of the reinforcing material It can be roughly categorized as to whether the content exceeds 50% and whether the reinforcement is spun continuous filaments, chopped strands or woven fabrics.
補強材として連続長繊維を用いるものとしては、合糸したロービングを1〜数10本引き揃え、主にエポキシ、ポリエステル等の熱硬化性樹脂であるマトリックスを含浸させながら、マンドレル(金型)に所定の厚さまでテンションをかけて所定の角度で巻き付け、加熱オーブン等の中で加熱硬化後脱型するか又は樹脂、金属製中空ライナー/インナーと一体化する成形法であるフィラメントワインディング(FW、Filament Winding)法が知られている(FW法の概要については、図2を参照のこと。)。FW法は、補強材の体積含有率が高く、また強化繊維が円周方向に概ね配向しているため、FRPの成形法の中で強化繊維の強さを有効に利用しており、パイプ、圧力容器、釣り竿、ゴルフクラブシャフト等の製造に用いられているが、FW法で熱可塑性樹脂を用いた例はない。尚、FW法により、熱硬化性樹脂を含浸させたロービングを、金属板に所定の角度で巻き付けた後、加熱硬化させ、端部を切断し平板とすることは知られているが、熱可塑性樹脂を用いた閉じた繊維強化複合成形体の製造には用いられていない。 As a reinforcing material using continuous filaments, one to several tens of rovings that have been combined are aligned, and a mandrel (mold) is mainly impregnated with a matrix that is a thermosetting resin such as epoxy or polyester. Filament winding (FW, Filament) which is a molding method of applying a tension to a predetermined thickness, winding it at a predetermined angle, heating and curing in a heating oven or the like, and removing it from the mold or integrating with a resin or metal hollow liner / inner Winding) method is known (for the outline of the FW method, see FIG. 2). In the FW method, since the volume content of the reinforcing material is high and the reinforcing fibers are substantially oriented in the circumferential direction, the strength of the reinforcing fibers is effectively used in the FRP molding method, and the pipe, It is used for manufacturing pressure vessels, fishing rods, golf club shafts, etc., but there is no example of using a thermoplastic resin by the FW method. It is known that a roving impregnated with a thermosetting resin is wound around a metal plate by a FW method at a predetermined angle, then heated and cured, and the end is cut into a flat plate. It is not used for producing a closed fiber-reinforced composite molded article using a resin.
補強材としてチョップドストランドを用いるものとしては、補強材体積含有率が低く、マトリックスとして熱可塑性樹脂を用いる射出成形、スタンバブルシート成形が、熱硬化性樹脂を用いるSMC成形、BMC成形、スプレー成形が知られている。しかしながら、これらの成形法で製造したものは、補強材の体積含有率が低く、また、強化繊維であるチョップドストランドがランダムに配向しているため、強化繊維の強さを有効に発現できない。 Injection molding using a thermoplastic resin as a matrix, and stamping sheet molding, as well as SMC molding, BMC molding, and spray molding using a thermosetting resin, include those using a chopped strand as a reinforcing material. Are known. However, those manufactured by these molding methods cannot effectively express the strength of the reinforcing fibers because the volume content of the reinforcing material is low and the chopped strands as the reinforcing fibers are randomly oriented.
補強材として連続長強化繊維が経緯に配向した織物を用い、また、例えば、マトリックス樹脂として熱可塑性樹脂繊維又は熱可塑性樹脂製フィルムを用いるプレス成形、ハイブリッド(プレス+射出複合)成形により得た成形品(テキスタイルコンポジット)は、ランダムに配向した強化繊維の短繊維を用いて得た射出成形品に比較して、強化繊維の体積率が高く、引張強度、曲げ強度、曲げ弾性率、最大衝撃エネルギー(高速面衝撃)がいずれも高いため、高強度、高剛性の補強材として、例えば、航空機、鉄道車両、自動車等の骨格部材、シート部材、衝撃吸収部材等への応用が期待されている。 Molding obtained by press molding using, for example, a thermoplastic resin fiber or a thermoplastic resin film as a matrix resin, or hybrid (press + injection composite) molding, using a woven fabric in which continuous long reinforcing fibers are oriented in the process as a reinforcing material. The product (textile composite) has a higher volume fraction of the reinforcing fiber, tensile strength, flexural strength, flexural modulus, and maximum impact energy compared to the injection molded product obtained using short fibers of randomly oriented reinforcing fibers. Since (high-speed surface impact) is high, it is expected to be applied as a high-strength, high-rigidity reinforcing material to, for example, skeletal members, seat members, and shock absorbing members of aircraft, railway vehicles, automobiles, and the like.
かかる状況下、以下の特許文献1には、以下の事項が検討されている。
炭素繊維、ガラス繊維等の織物に熱可塑性樹脂を含浸したシート(プリプレグ)は室温では硬い板の状態なので複雑な形状をした成形型に沿って積層成形するのが難しく、また、熱硬化性樹脂を使ったプリプレグは柔らかで、しかも粘着性があるため成形は容易であるものの生産性に問題があること;
熱可塑性樹脂を繊維に加工して、炭素繊維、ガラス繊維等の強化繊維と一緒に織り上げた混織繊物であれば、織物であるので柔軟性に富み、複雑な形状にも加工でき、強化繊維と樹脂が両方とも繊維の状態でからみ合っているので、加熱溶融して複合材料を作ると、繊維と樹脂の混ざり具合も均一になる。しかしながら、混織繊物を成形する場合、素材が柔らかいために、ハンドリングが難しく、安定した高サイクル生産を行うには、やはり難点があること;
他方、金属成形の分野においては、長い歴史の中で種々の高サイクル成形技術が確立されてきており、その中で絞り加工を中心とした板金プレス成形(圧縮成形の一種)は最も一般的な高サイクル成形方法の一つである。樹脂系複合材料の分野でも一次素材として、炭素繊維、ガラス繊維等の織物に熱可塑性樹脂を含浸したシート(プリプレグ)を使用することができれば、金属成形と同様に、最も生産性の高い成形手法に成りえるため、成形に供する素材として、規則性を有する織物状配向の強化繊維を熱可塑性樹脂に含浸、凝固させたシートを用いればよいこと;
しかしながら、織物素材をシート成形、つまり、圧縮加工、絞り加工等の組み合わせ成形する場合、繊維自体の伸び、繊維形状の伸び、剪断すべり、格子効果による変形が生じること(これらの変形については、それぞれ、図1(a)〜(d)を参照のこと。);
繊維自体の伸びは、成形中に引張力が作用することによる繊維自体の伸び変形であり、最大ひずみとして約5%以下(例えば、ガラス繊維では5%程度、炭素繊維では、最大2%程度)であり、全体に占める影響は少なく、また、繊維形状の伸びは、繊維を織った際の、縦・横糸のゆるみが成形中に伸びることによる変形であり、シートの強度を高めるため、シート織の際、これらのゆるみは極力少なくなるように管理されており、全体の変形に占める影響は少なく、また、剪断すべりは、角部等急激な変形が生じる箇所で発生するが、格子効果による変形は、金属の剪断ひずみに類似したものであり、変形中、繊維は伸びずに配向方向を変化させるだけであり、比較的小さな力で大きな変形が得られ、織物素材のート成形においては、変形領域の大部分は、格子効果による変形に起因していること;
そこで、シート成形中に局部的なシート座屈がなく、良好な性状品を得るために、成形途中に織物の格子変形角度が一定角以上にならないよう、制御する必要があるため、それを解決するための技術的手段として、成形中にシートをクランプするフレーム部において、成形途中でシートの格子変形角度が一定角度以上にならないように、繊維拘束ピンの突出によりシートの必要箇所を拘束するとともに、成形終了時に成形品を取り出した際、繊維拘束ピンを自動的に元の位置に復帰させることにより、シートに皺がよることがなく、連続成形を行い得る熱可塑性樹脂高性能繊維強化複合材料シートの繊維流動制御方法及びその装置を提供すること。
Under such circumstances, Patent Literature 1 below considers the following matters.
Sheets (prepregs) impregnated with thermoplastic resin in woven fabrics such as carbon fiber and glass fiber are hard plates at room temperature, so it is difficult to laminate and mold them along a complex-shaped mold. A prepreg made of is soft and sticky, so molding is easy, but there is a problem in productivity;
If it is a mixed woven fabric made by processing thermoplastic resin into fibers and woven together with reinforcing fibers such as carbon fiber and glass fiber, it is a woven fabric, so it is rich in flexibility and can be processed into complex shapes and reinforced Since both the fiber and the resin are entangled in the state of the fiber, when the material is heated and melted to form a composite material, the mixing of the fiber and the resin becomes uniform. However, in the case of forming a mixed woven fabric, handling is difficult due to the softness of the material, and there are still difficulties in performing stable high cycle production;
On the other hand, in the field of metal forming, various high cycle forming techniques have been established over a long history, and among them, sheet metal press forming (a kind of compression forming) mainly based on drawing is the most common. This is one of the high cycle molding methods. In the field of resin-based composite materials, if a sheet (prepreg) impregnated with a thermoplastic resin in a woven fabric of carbon fiber, glass fiber, etc. can be used as the primary material, the most productive molding method, as with metal molding Therefore, a sheet obtained by impregnating a thermoplastic resin with a woven fiber having regularity and having coagulation and coagulation may be used as a material to be molded;
However, when a woven material is formed into a sheet, that is, when subjected to combination processing such as compression processing and drawing processing, deformation due to fiber elongation, fiber shape elongation, shear slip, and lattice effect occurs. , See FIGS. 1 (a)-(d));
The elongation of the fiber itself is the elongation deformation of the fiber itself due to the action of tensile force during molding. The maximum strain is about 5% or less (for example, about 5% for glass fiber and about 2% for carbon fiber). The effect of the fiber shape is small, and the elongation of the fiber shape is a deformation caused by the loosening of the warp and weft yarns during the weaving of the fiber during molding. At this time, these slacks are controlled to be as small as possible, and the influence on the overall deformation is small.In addition, the shear slip occurs at a point where sudden deformation occurs such as a corner, but the deformation due to the lattice effect Is similar to the shear strain of metal, during deformation, the fiber does not stretch but only changes the orientation direction, a relatively small force can obtain a large deformation, and in the molding of woven material, Deformation Most of the band is that it is caused by deformation due to the lattice effect;
Therefore, in order to obtain good properties without local buckling of the sheet during sheet forming, it is necessary to control so that the lattice deformation angle of the woven fabric does not exceed a certain angle during the forming, which is solved. As a technical means for doing so, in the frame part which clamps the sheet during molding, the necessary portion of the sheet is restrained by projecting fiber restraining pins so that the lattice deformation angle of the sheet does not become a certain angle or more during molding. When the molded product is taken out at the end of molding, the fiber restraining pin is automatically returned to the original position, so that the sheet is not wrinkled and the thermoplastic resin high-performance fiber reinforced composite material can be continuously molded. To provide a sheet fiber flow control method and apparatus.
他方、以下の特許文献2には、一方向(UD、Uni Direction)繊維が一方向性の様式で連続して且つ均一に配向されている荷重支持要素の、例えば、航空宇宙用の乗り物の一部である支持体への取り付け部分の表面を、樹脂マトリック中にランダムに配向され、切断された不連続繊維を含む接続要素で、オーバーモールドにより覆った複合材構造物が開示されている。かかる複合材構造物の接続要素は、位置方向繊維複合材である荷重持要素と異なり、機械加工による層間剥離による影響を受けにくく機械加工が容易であり、また、支持体への荷重支持要素との間の非常に強い接続が可能になるとされる。特許文献2には、荷重支持要素は、一方向繊維から作製され、一方向繊維は、プリプレグトウ又はテープの形態であってよく、荷重支持要素の形成中に樹脂で含浸されるドライなUD繊維であってもよいと記載されているが、強化繊維の一方向への配向は、炭素繊維の一方向プリプレグテープであるUDテープ(HexPly(登録商標))(炭素繊維/熱可塑性強化エポキシ)が例示されているに過ぎない。すなわち、特許文献2には、プレス成形に際して強化繊維を一方向に配向させるために、UD繊維が予め並列しているUDテープを用いている。しかしながら、幅数mm〜10mm程度のUDテープを用いて狭い幅の帯状成形体を得ようとする場合に、斜めに強化繊維を横断させて、幅方向に強化繊維で補強することができないとう問題がある。
On the other hand, U.S. Pat. No. 5,049,086 discloses a load bearing element in which unidirectional (UD, Uni Direction) fibers are continuously and uniformly oriented in a unidirectional manner, for example, in an aerospace vehicle. A composite structure is disclosed in which the surface of a portion to be attached to a support is over-molded with a connecting element including discontinuous fibers that are randomly oriented in a resin matrix and that have been cut. The connection elements of such a composite material structure are unlikely to be affected by delamination due to machining and are easy to machine, unlike the load-bearing elements that are position-oriented fiber composites. It is said that a very strong connection between the two is possible. In US Pat. No. 5,077,097, the load-bearing element is made from unidirectional fibers, which can be in the form of prepreg tows or tapes, and dry UD fibers that are impregnated with resin during formation of the load-bearing element. However, the orientation of the reinforcing fibers in one direction may be determined by a UD tape (HexPly (registered trademark)) (carbon fiber / thermoplastic reinforced epoxy) which is a unidirectional prepreg tape of carbon fibers. They are merely examples. That is,
前記した従来技術に鑑み、本発明が解決しようとする課題は、フィラメントワインディング(FW)法によるUDライクな閉じた繊維強化複合成形体、及びその製造方法を提供することである。 In view of the above prior art, the problem to be solved by the present invention is to provide a UD-like closed fiber-reinforced composite molded article by a filament winding (FW) method, and a method for producing the same.
前記した課題を解決すべく、本発明者らは鋭意検討し実験を重ねた結果、FW法により連続長強化繊維の巻き付け体を、周方向の巻き付け長さが得ようとする成形品中での長さに略等しくなるように、予め準備し、これをプレス成形することで、幅方向にも補強されたUDライクな閉じた繊維強化複合成形体を製造できることを見出し、本発明を完成するに至ったものである。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and repeated experiments, and as a result, obtained a wrapped body of continuous long reinforcing fibers by a FW method in a molded product in which a circumferentially wrapped length is to be obtained. It has been found that a UD-like closed fiber-reinforced composite molded body reinforced in the width direction can be manufactured by preparing in advance and press-molding it to be substantially equal to the length, to complete the present invention. It has been reached.
すなわち、本発明は以下のとおりのものである。
[1]固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体であって、P軸方向を中心とする環状成形体としたとき、P軸方向の幅(b)と換算直径(D)とが、b<Dの関係を満たし、かつ、該成形体は、周方向の展開長さ(L)=3.14Dに渡り、幅(b)方向に振れて該一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を含む、前記閉じた成形体。
[2]前記連続長強化繊維は、ガラス繊維、炭素繊維、及びアラミド繊維からなる群から選ばれる、前記[1]に記載の閉じた成形体。
[3]前記熱可塑性樹脂は、ポリアミド及びポリプロピレンからなる群から選ばれる、前記[1]又は[2]に記載の閉じた成形体。
[4]前記閉じた成形体は、前記P軸に直交する断面において、環、多角形、十字、星形、又は棒状の形態である、前記[1]〜[3]のいずれかに記載の閉じた成形体。
[5]配管系フランジの補強インサートである、前記[4]に記載の閉じた成形体。
[6]自動車ボディーのロノ字閉断面構造補強材である、前記[4]に記載の閉じた成形体。
[7]前記[1]〜[4]のいずれかに記載の閉じた成形体と射出成型体との複合構造を有する複合構造体。
[8]以下の工程:
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、及びマルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸からなる群から選ばれる連続強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その中心に回転軸を、該中心から半径方向に等距離離れて対称に配置された複数の糸かけ部を有する巻き取り部材に、又は回転軸に対して対称な凹部を有する金型に、該巻糸体からの強化繊維を、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、該回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取る巻き付け・配向工程;
該巻き取り部材に巻き付けた場合には、該巻き取り部材から、プレス成形用金型に、巻き取られた強化繊維を移し、又は該凹部を有する金型に巻き付けた場合には、該金型とともに、巻き取られた強化繊維を移送する、巻き取り体移送工程;
移送された巻き取り体を、所定の温度・圧力でプレス成形し、該熱可塑性樹脂を加熱溶融・冷却固化させることにより、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体を得るプレス成形工程;
必要により、得られた成形体に、加熱・軟化による曲げ加工をさらに施して所望の形状の閉じた成形体を得る形状化工程;
を含む、前記[1]〜[4]のいずれかに記載の閉じた成形体の製造方法。
[9]前記巻き取り部材の複数の糸かけ部が、3〜8角形状に配置されている、前記[8]に記載の方法。
[10]前記回転軸に対して対称な凹部を有する金型が、回転軸に直交する断面において、3〜8角形状の凹部を有する、前記[8]に記載の方法。
[11]前記マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸のコーティング熱可塑性樹脂は、2層で構成され、外側の熱可塑性樹脂の融点T1が、内側の熱可塑性樹脂の融点T2よりも10℃以上高く、かつ、T1+10℃以下の温度でプレス成形する、前記[8]〜[10]のいずれかに記載の方法。
[12]前記マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸のコーティング熱可塑性樹脂は、2層で構成され、外側の熱可塑性樹脂の融点T1が、内側の熱可塑性樹脂の融点T2よりも10℃以上高く、かつ、T2+5℃以上、T1−5℃以下の温度でプレス成形し、内側の熱可塑性樹脂を溶融させた後に、T2+10℃以上かつT1+10℃以下の温度でプレス成形する、前記[8]〜[11]のいずれかに記載の方法。
[13]前記マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸のコーティング熱可塑性樹脂は、2層で構成され、外側の熱可塑性樹脂の融点T1が、内側の熱可塑性樹脂の融点T2よりも10℃以上高く、かつ、T2+5℃以上、T1−5℃以下の温度でプレス成形し、内側の熱可塑性樹脂を溶融させた後に、T2+15℃以上の温度でプレス成形することで該内側の熱可塑性樹脂及び/又は該外側の熱可塑性樹脂を金型外に排出し、Vfを調整する工程を含む、前記[8]〜[12]のいずれかに記載の方法。
[14]前記[1]〜[4]のいずれかに記載の閉じた成形体を、射出成型金型内にインサートし、射出成型する工程を含む、前記[7]に記載の閉じた成形体と射出成型体との複合構造を有する複合構造体の製造方法。
That is, the present invention is as follows.
[1] A closed molded body containing a plurality of continuous long reinforcing fibers continuously and unidirectionally oriented in a circumferential direction in a solidified thermoplastic resin matrix, which is an annular molded body centered on a P-axis direction. At this time, the width (b) in the P-axis direction and the reduced diameter (D) satisfy the relationship of b <D, and the molded body extends over a circumferential development length (L) = 3.14D, The said closed molded object containing the continuous continuous reinforcing fiber which is inclined in the width (b) direction, and crosses the continuous continuous fiber oriented in the one direction.
[2] The closed molded article according to [1], wherein the continuous long reinforcing fiber is selected from the group consisting of glass fiber, carbon fiber, and aramid fiber.
[3] The closed molded article according to [1] or [2], wherein the thermoplastic resin is selected from the group consisting of polyamide and polypropylene.
[4] The closed molded body according to any one of [1] to [3], in a cross section orthogonal to the P axis, in a ring, polygon, cross, star, or rod shape. Closed compact.
[5] The closed molded article according to the above [4], which is a reinforcing insert for a piping system flange.
[6] The closed molded article according to the above [4], which is a structural reinforcing material for a Rono-shaped closed cross section of an automobile body.
[7] A composite structure having a composite structure of the closed molded article and the injection molded article according to any one of [1] to [4].
[8] The following steps:
Continuous reinforcement selected from the group consisting of thermoplastic resin coated yarns coated with thermoplastic resin around multifilament continuous length reinforcing fibers and mixed yarns of multifilament continuous length reinforcing fibers and multifilament yarns of the same thermoplastic resin A winding body preparing step of preparing one or more winding bodies of fibers;
The rotation axis at the center thereof, a winding member having a plurality of threading portions symmetrically arranged at an equal distance in the radial direction from the center, or a mold having a concave portion symmetric with respect to the rotation axis, The reinforcing fiber from the wound body is wound at 0 to 18 degrees with respect to the direction perpendicular to the rotation axis so that the winding length in the circumferential direction is substantially equal to the length in the molded product to be obtained. A winding / orienting step of winding in one direction by rotating the rotating shaft;
When wound around the winding member, the wound reinforcing fiber is transferred from the winding member to a press molding die, or when wound around a die having the concave portion, the die Transporting the wound reinforcing fiber together with the wound body;
The transferred wound body is press-molded at a predetermined temperature and pressure, and the thermoplastic resin is heated, melted, and cooled to be solidified, so that it is continuously oriented in one direction in the circumferential direction in the solidified thermoplastic resin matrix. Press forming step of obtaining a closed molded body containing a plurality of continuous continuous reinforcing fibers;
If necessary, the obtained molded body is further subjected to a bending process by heating and softening to form a closed molded body having a desired shape;
The method for producing a closed molded article according to any one of the above [1] to [4], comprising:
[9] The method according to [8], wherein the plurality of threading portions of the winding member are arranged in a triangular shape.
[10] The method according to [8], wherein the mold having a concave portion symmetrical with respect to the rotation axis has a triangular-octagonal concave portion in a cross section orthogonal to the rotation axis.
[11] The thermoplastic resin coating yarn in which the periphery of the multifilament continuous long reinforcing fiber is coated with a thermoplastic resin is composed of two layers, and the melting point T1 of the outer thermoplastic resin is higher than the inner heat. The method according to any one of [8] to [10], wherein press molding is performed at a temperature of at least 10 ° C. higher than the melting point T2 of the plastic resin and at most T1 + 10 ° C.
[12] The thermoplastic resin coated yarn in which the periphery of the multifilament continuous length reinforcing fiber is coated with the thermoplastic resin is composed of two layers, and the melting point T1 of the outer thermoplastic resin is higher than the inner heat. After press forming at a temperature of at least 10 ° C. higher than the melting point T2 of the thermoplastic resin and at a temperature of at least T2 + 5 ° C. and at most T1-5 ° C. to melt the thermoplastic resin inside, a temperature of at least T2 + 10 ° C. and at most T1 + 10 ° C. The method according to any one of [8] to [11], wherein the method is press-formed.
[13] The thermoplastic resin coating yarn in which the periphery of the multifilament continuous long reinforcing fiber is coated with the thermoplastic resin is composed of two layers, and the melting point T1 of the outer thermoplastic resin is higher than that of the inner heat. Press molding at a temperature of at least 10 ° C. higher than the melting point T2 of the thermoplastic resin and at a temperature of T2 + 5 ° C. or more and T1-5 ° C. or less, and after melting the inner thermoplastic resin, press molding at a temperature of T2 + 15 ° C. or more. The method according to any one of [8] to [12], further comprising the step of discharging the inner thermoplastic resin and / or the outer thermoplastic resin out of the mold to adjust Vf.
[14] The closed molded article according to the above [7], including a step of inserting the closed molded article according to any of the above [1] to [4] into an injection mold and performing injection molding. A method for producing a composite structure having a composite structure of a resin and an injection molded body.
本発明に係る固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体は、文字通り複数の連続長強化繊維が周方向に連続してUDライクに配向しているため、拡径方向及び周方向に強化されたものである。また、本発明に係る成形体は、図5に示すような幅が狭い環状成形体とした場合であっても、周方向の展開長さに渡り、幅方向に振れて該一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を含むため、幅方向にも強化されたものである。
また、本発明に係る成形体の製造方法では、FW法を採用することにより、織物ではなく、得ようとする成形品中での長さに略等しい長さの、均一に一方向に配向した強化繊維の巻き取り体を予め準備し、これを補強材として用いるため、製織に関わる設備コストを必要とせず、例えば、コーティング糸製造装置、FW装置、加熱成形プレス装置、必要により加熱・軟化による曲げ加工装置、トリミング装置等のみで、最終製品までの一連の製造工程が完成するため、多品種少量生産に対応しやすく、また、FW法を採用することにより、生産量増加に伴い、強化繊維の糸目付を高めたり、強化繊維として、比較的安価な撚りをかけていないロービング形態の糸を使用することができ、得ようとする閉じた繊維強化複合成形体の肉厚をかせぐために、FWの巻き数を増加させたり、FW法により巻き付け体を複数セット用いたりすることができる。加えて所定の形状を成形しようとする場合、織物素材の場合には所定形状に裁断する必要があり、端材が発生して歩留まりが悪いが、FW法を採用すれば歩留まりが良くなる。また、一般的にUDテープを使用した場合にはUDテープが薄いため、所定の厚みを形成する場合の積層工程に時間がかかる上にFW法のように閉じた形状を作るのが難しい。さらに、本発明に係る閉じた成形体は、P軸に直交する断面において、環、多角形、十字、星形、棒状等の様々な形態を呈することができ(図11、13、14参照)、また、各P軸が重ならないように互に接合されている構造体(図15参照)、射出成型体との複合構造を有する複合構造体(図12参照)とすることができるため、配管系フランジの補強インサート、自動車ボディーのロノ字閉断面構造補強材、例えば、図16に示すように、フード、フロントピラー、ルーフ、ドア、リアハッチドア、トランク、フフロアー、バッテリケース、センター、リア補強等の補強部材や、タイヤホイール、サスペンションアーム(図示せず)等の補強部材として好適に利用可能である。
In the solidified thermoplastic resin matrix according to the present invention, a closed molded body including a plurality of continuous length reinforcing fibers continuously and circumferentially oriented in one direction is a plurality of continuous length reinforcing fibers literally continuous in the circumferential direction. Since it is oriented in a UD-like manner, it is reinforced in the radial direction and in the circumferential direction. Further, even when the molded body according to the present invention is an annular molded body having a narrow width as shown in FIG. 5, the molded body is swung in the width direction over the developed length in the circumferential direction and is oriented in the one direction. Since it includes diagonally continuous continuous reinforcing fibers obliquely crossing the continuous reinforcing fibers, the reinforcing fibers are also reinforced in the width direction.
Further, in the method for producing a molded article according to the present invention, by adopting the FW method, not a woven fabric, but a length substantially equal to the length in the molded article to be obtained, and uniformly oriented in one direction. Since a wound body of the reinforcing fiber is prepared in advance and used as a reinforcing material, equipment costs relating to weaving are not required. For example, a coating yarn manufacturing apparatus, a FW apparatus, a thermoforming press apparatus, and heating and softening as necessary. A series of manufacturing processes up to the final product can be completed with only bending equipment and trimming equipment, etc., so it is easy to respond to high-mix low-volume production. And relatively inexpensive untwisted roving yarn can be used as the reinforcing fiber, and the thickness of the closed fiber-reinforced composite molded article to be obtained can be increased. In order, or increase the number of turns of FW, or can use multiple sets of winding member by FW method. In addition, when a predetermined shape is to be formed, it is necessary to cut the material into a predetermined shape in the case of a woven material, and the yield is poor due to the generation of scraps, but the use of the FW method improves the yield. In general, when a UD tape is used, since the UD tape is thin, it takes a long time for a laminating step to form a predetermined thickness, and it is difficult to form a closed shape as in the FW method. Further, the closed molded body according to the present invention can have various forms such as a ring, a polygon, a cross, a star, and a rod in a cross section orthogonal to the P axis (see FIGS. 11, 13, and 14). In addition, since a structure (see FIG. 15) in which the respective P-axes are joined to each other so as not to overlap with each other and a composite structure having a composite structure with an injection molded body (see FIG. 12) can be provided, piping System flange reinforcing inserts, Rono-shaped closed cross-section structural reinforcing material for automobile bodies, such as hood, front pillar, roof, door, rear hatch door, trunk, floor, battery case, center, rear reinforcement as shown in FIG. And a reinforcing member such as a tire wheel and a suspension arm (not shown).
以下、本発明の実施形態を詳細に説明する。
第一の実施形態は、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体であって、P軸方向を中心とする環状成形体としたとき、P軸方向の幅(b)と換算直径(D)とが、b<Dの関係を満たし、かつ、該成形体は、周方向の展開長さ(L)=3.14Dに渡り、幅(b)方向に振れて該一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を含む、前記閉じた成形体である。
第二の実施態様は、以下の工程:
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、及びマルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸からなる群から選ばれる連続強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その中心に回転軸を、該中心から半径方向に等距離離れて対称に配置された複数の糸かけ部を有する巻き取り部材に、又は回転軸に対して対称な凹部を有する金型に、該巻糸体からの強化繊維を、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、該回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取る巻き付け・配向工程;
該巻き取り部材に巻き付けた場合には、該巻き取り部材から、プレス成形用金型に、巻き取られた強化繊維を移し、又は該凹部を有する金型に巻き付けた場合には、該金型とともに、巻き取られた強化繊維を移送する、巻き取り体移送工程;
移送された巻き取り体を、所定の温度・圧力でプレス成形し、該熱可塑性樹脂を加熱溶融・冷却固化させることにより、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体を得るプレス成形工程;
必要により、得られた成形体に、加熱・軟化による曲げ加工をさらに施して所望の形状の閉じた成形体を得る形状化工程;
を含む、前記[1]〜[4]のいずれかに記載の閉じた成形体の製造方法である。
Hereinafter, embodiments of the present invention will be described in detail.
The first embodiment is a closed molded body including a plurality of continuous long reinforcing fibers continuously and circumferentially oriented in one direction in a solidified thermoplastic resin matrix, and has an annular shape centered on a P-axis direction. When a molded body is formed, the width (b) in the P-axis direction and the reduced diameter (D) satisfy the relationship of b <D, and the molded body has a developed length (L) in the circumferential direction = 3. The closed molded body comprising continuous continuous reinforcing fibers which are inclined in the width (b) direction and cross the continuous continuous fibers oriented in one direction over 14D.
A second embodiment comprises the following steps:
Continuous reinforcement selected from the group consisting of thermoplastic resin coated yarns coated with thermoplastic resin around multifilament continuous length reinforcing fibers and mixed yarns of multifilament continuous length reinforcing fibers and multifilament yarns of the same thermoplastic resin A winding body preparing step of preparing one or more winding bodies of fibers;
The rotation axis at the center thereof, a winding member having a plurality of threading portions symmetrically arranged at an equal distance in the radial direction from the center, or a mold having a concave portion symmetric with respect to the rotation axis, The reinforcing fiber from the wound body is wound at 0 to 18 degrees with respect to the direction perpendicular to the rotation axis so that the winding length in the circumferential direction is substantially equal to the length in the molded product to be obtained. A winding / orienting step of winding in one direction by rotating the rotating shaft;
When wound around the winding member, the wound reinforcing fiber is transferred from the winding member to a press molding die, or when wound around a die having the concave portion, the die Transporting the wound reinforcing fiber together with the wound body;
The transferred wound body is press-molded at a predetermined temperature and pressure, and the thermoplastic resin is heated, melted, and cooled to be solidified, so that it is continuously oriented in one direction in the circumferential direction in the solidified thermoplastic resin matrix. Press forming step of obtaining a closed molded body containing a plurality of continuous continuous reinforcing fibers;
If necessary, the obtained molded body is further subjected to a bending process by heating and softening to form a closed molded body having a desired shape;
The method for producing a closed molded article according to any one of the above [1] to [4], comprising:
図13は、本実施形態の閉じた成形体が環状である場合の斜視図及び断面図である。
前記したように、従来技術の幅数mm〜10mm程度のUDテープを用いて狭い幅の帯状成形体を得ようとする場合には、斜めに強化繊維を横断させて、幅方向に強化繊維で補強することができないとう問題があるところ、本実施形態の閉じた成形体では、図5に示すように、P軸方向の幅(b)と換算直径(D)とが、b<Dの関係を満たす幅が狭い環状成形体である場合に、周方向の展開長さに渡り、幅方向に振れて該一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を含むため、幅方向にも強化されたものとなる。
尚、本、明細書中、用語「環状成形体」とは、閉じた形態を呈する成形体であることを意味し、かかる形態は、円、楕円に限らず、4角形を含む任意の多角形を包含する。
また、用語「換算直径」とは、かかる多角形を円に変形(換算)した場合の直径であり、また、「周方向の展開長さ」とは、円に換算した場合の周長である。
FIG. 13 is a perspective view and a cross-sectional view when the closed molded body of the present embodiment is annular.
As described above, when trying to obtain a narrow band-shaped molded body using a UD tape having a width of several mm to about 10 mm according to the related art, the reinforcing fibers are traversed diagonally, and the reinforcing fibers extend in the width direction. Although there is a problem that it cannot be reinforced, in the closed molded body of the present embodiment, as shown in FIG. 5, the width (b) in the P-axis direction and the reduced diameter (D) have a relationship of b <D. In the case where the width of the annular molded body satisfying the formula (1) is narrow, it includes an oblique continuous continuous reinforcing fiber which is swayed in the width direction and traverses the continuous continuous reinforcing fiber oriented in the one direction over the extended length in the circumferential direction. Therefore, it is reinforced in the width direction.
In the present specification, the term "annular molded body" means a molded body having a closed form, and such a form is not limited to a circle and an ellipse, and may be any polygon including a quadrangle. Is included.
Further, the term "converted diameter" is a diameter when such a polygon is transformed (converted) into a circle, and the "development length in the circumferential direction" is a perimeter when converted into a circle. .
本願明細書中、「周方向に連続して一方向に配向した」とは、連続長強化繊維が周方向の展開長さを超えて連続していること、換言すれば、連続長強化繊維が1巻き以上で巻き取られていることを意味する。例えば、プレス成形において、巻き数が100の巻き取り体を補強材として用いる場合、巻き数が2の巻き取り体と巻き数が98の巻き取り体とに分けて用いてもよい。なぜなら、熱可塑性樹脂が固化した後の成形体では、連続長強化繊維が周方向の展開長さを超えて連続している限り、全ての長さで連続しているものとそうでないものとの間で強度に実質的な差異はないからである。 In the present specification, "continuously oriented in one direction in the circumferential direction" means that the continuous length reinforcing fibers are continuous beyond the development length in the circumferential direction, in other words, the continuous length reinforcing fibers are It means that it has been wound by one or more turns. For example, in press molding, when a wound body having 100 windings is used as a reinforcing material, a winding body having 2 windings and a winding body having 98 windings may be used separately. Because, in the molded body after the thermoplastic resin has been solidified, as long as the continuous reinforcing fibers continue beyond the circumferential development length, they may be continuous at all lengths or not. This is because there is no substantial difference between the strengths.
一般に、織物、チョップド長繊維ベースの熱硬化性、熱可塑性樹脂複合材は、経緯の強度、弾性率が平均化(等方性)するため、高い強度、弾性率は期待できない。他方、強化長繊維が一方向に配向したUDライクな熱硬化性、熱可塑性樹脂複合材は、異方性が高く、高弾性率、高強度が期待できる。しかしながら、高弾性率、高強度を期待して、強化長繊維が一方向に配向したUDライクな熱可塑性樹脂複合材を作製しようとすると、プレス成形、ハイブリッド(プレス+射出複合)成形時に熱可塑性樹脂の流動による繊維配向乱れが発生してしまう。そこで、本願発明者らは、プレス成形、ハイブリッド(プレス+射出複合)成形時の繊維配向乱れを回避するために、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取られた強化繊維を、予め準備し、これを金型に移送し、又は回転軸に対して対称な凹部を有する金型に、該巻糸体からの強化繊維を、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、該回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取る巻き付けた金型自体を移送し、移送された巻き取り体を、所定の温度・圧力でプレス成形し、熱可塑性樹脂を加熱溶融・冷却固化させることにより、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体を得ることにしたものである。本実施形態の閉じた成形体では、文字通り複数の連続長強化繊維が周方向に連続してUDライクに配向しているため、拡径方向及び周方向に強化されたものとなる。回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取る工程は、図4に示す巻き取り部材(4)を用いて、又は図7、8に示す回転軸に対して対称な凹部(14)を有する金型(13)を用いて、FW法により実施することができる。 In general, high strength and elastic modulus cannot be expected for woven fabrics and chopped long fiber-based thermosetting and thermoplastic resin composite materials because the strength and elastic modulus of the process are averaged (isotropic). On the other hand, a UD-like thermosetting, thermoplastic resin composite material in which reinforced long fibers are oriented in one direction has high anisotropy, and high elastic modulus and high strength can be expected. However, in order to produce a UD-like thermoplastic resin composite in which reinforced long fibers are oriented in one direction in order to expect a high modulus of elasticity and high strength, it is difficult to use a thermoplastic resin during press molding or hybrid (press + injection composite) molding. Fiber orientation disorder is caused by the flow of the resin. In order to avoid fiber orientation disturbances during press molding and hybrid (press + injection composite) molding, the inventors of the present application have proposed a method of obtaining a winding length in the circumferential direction in a molded product to be obtained. Reinforcing fibers wound in one direction are prepared in advance by rotating the rotation axis at 0 to 18 degrees with respect to a direction orthogonal to the rotation axis so as to be substantially equal to each other, and this is transferred to a mold. Or, in a mold having a concave portion symmetrical with respect to the rotation axis, the reinforcing fibers from the wound body are wound so that the winding length in the circumferential direction is substantially equal to the length in the molded product to be obtained. Then, by rotating the rotating shaft at 0 to 18 degrees with respect to a direction orthogonal to the rotating shaft, the wound mold itself wound in one direction is transferred, and the transferred winding body is heated to a predetermined temperature.・ Press molding under pressure to heat, melt and cool the thermoplastic resin By, in which it was possible to obtain a closed molded body continuously in a thermoplastic resin matrix which has solidified in the circumferential direction comprises a plurality of continuous long reinforcing fibers oriented in one direction. In the closed molded body of the present embodiment, the plurality of continuous long reinforcing fibers are literally continuously oriented in the UD-like direction in the circumferential direction, and thus are reinforced in the radially expanding direction and the circumferential direction. The step of winding in one direction by rotating the rotation axis at 0 to 18 degrees with respect to the direction perpendicular to the rotation axis is performed by using the winding member (4) shown in FIG. It can be carried out by the FW method using a mold (13) having a concave portion (14) symmetrical with respect to the rotation axis shown.
図4、図8に示すように、本実施形態の閉じた繊維強化複合成形体の製造方法の巻き付け・配向工程(FW)においては、強化繊維の織物を予め準備しておく必要はなく、マルチフィラメント連続長強化繊維(10)の周囲を熱可塑性樹脂(11、12)でコーティングした熱可塑性樹脂コーティング糸(図3(a)、図3(c)、以下、単に「コーティング糸」ともいう。)、及びマルチフィラメント連続長強化繊維(10)と同熱可塑性樹脂のマルチフィラメント糸(11)との混繊糸(図3(b)、以下、単に「混繊糸」ともいう。)からなる群から選ばれる強化繊維の巻糸体を、単数又は複数準備しておけばよいため、製織における、巻き返し、整経、糊付け、経通し、機掛け、管巻き、製織、さらには生機のトリミング等の複雑な工程が不要となるため設備投資が軽くなり、また、多品種少量生産への対応がしやすくなる。
また、強化繊維の織物を用いる場合、例えば、ガラス繊維の巻糸体と熱可塑性長繊維の巻糸体から、ガラス繊維と熱可塑性長繊維の混繊糸を作製し、これを経糸及び/又は緯に用いて織物を製織し、仕上げ加工し、さらに得られた生機をトリミングしなければならない。
勿論、FW法を採用すれば、コーティング糸又は混繊糸の準備は必要となるが、少なくとも、製織、仕上げ加工、トリミングが省ける点で、織物を用いる場合に比較して設備投資は格段に低くなる。
As shown in FIGS. 4 and 8, in the winding and orientation step (FW) of the method for producing a closed fiber-reinforced composite molded article of the present embodiment, it is not necessary to prepare a reinforcing fiber fabric in advance, and Thermoplastic resin coated yarn (FIGS. 3 (a) and 3 (c)) in which the periphery of the filament continuous reinforcing fiber (10) is coated with a thermoplastic resin (11, 12). ) And a multifilament yarn (FIG. 3B) of a multifilament continuous-length reinforcing fiber (10) and a multifilament yarn (11) of the same thermoplastic resin. Since it is sufficient to prepare one or more wound fiber bodies of the reinforcing fibers selected from the group, in weaving, unwinding, warping, gluing, warping, hanging, pipe winding, weaving, and trimming of greige etc. Complex Degree is lightly capital investment to become unnecessary, also, correspondence is likely to be to the high-mix low-volume production.
When a woven fabric of reinforcing fibers is used, for example, from a wound body of glass fiber and a wound body of thermoplastic long fiber, a mixed fiber of glass fiber and thermoplastic long fiber is produced, and this is warped and / or The woven fabric must be woven and finished using the weft and the resulting greige trimmed.
Of course, if the FW method is adopted, preparation of a coating yarn or a mixed fiber yarn is necessary, but at least in terms of weaving, finishing, and trimming, the capital investment is much lower than in the case of using a woven fabric. Become.
図3の(a)、(b)、(c)に、それぞれ、混繊糸、コーティング糸、2層コーティング糸の断面を示す。
図3(a)では、ガラス繊維の単糸(10)と熱可塑性長繊維の単糸(11)が混じった混繊糸が示されているが、マルチフィラメントガラス繊維の束とマルチフィラメント熱可塑性樹脂長繊維の束を単に束ねたものであってよい。
図3(b)に示すコーティング糸は、マルチフィラメントガラス繊維(10)の束の周囲、加熱溶融された熱可塑性繊維(11)を一定の厚みでコーティングしたものである。コーティング糸は、例えば、入口側孔Aと、孔Aよりも大きな出口側孔Bを備えたダイを用い、孔Aに強化繊維の束を通過させつつ、孔Bに溶融樹脂を供給して強化繊維の束を被覆した後、樹脂を冷却固化させることにより、製造することができる。コーティング糸は、樹脂コーティングにより内部のガラス繊維が保護され、以降の工程においてガラス繊維の損傷を防止することができる点で、混繊糸や含浸糸よりも好ましい。
図3(c)に示す2層コーティング糸は、融点の異なる熱可塑性樹脂を内側(11)と外側(12)の2層にコーティングしたものである。マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸のコーティング熱可塑性樹脂を2層で構成する場合、外側の熱可塑性樹脂の融点T1が、内側の熱可塑性樹脂の融点T2よりも10℃以上高く、かつ、T1+10℃以下の温度でプレス成形することが好ましい。そうすることで、プレス成形時の際、外側の樹脂の流動性を抑制しながら、内側の樹脂を高く流動化させて、マルチフィラメント連続長強化繊維の束内への樹脂含浸を促進することができる。また、マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸のコーティング熱可塑性樹脂を2層で構成する場合、外側の熱可塑性樹脂の融点T1が、内側の熱可塑性樹脂の融点T2よりも10℃以上高く、かつ、T2+5℃以上、T1−5℃以下の温度でプレス成形し、内側の熱可塑性樹脂を溶融させた後に、T2+15℃以上の温度でプレス成形することで該内側の熱可塑性樹脂及び/又は該外側の熱可塑性樹脂を金型外に排出し、Vfを調整することができる。連続長強化繊維でない場合、例えば、短繊維を用いる場合には、短繊維の切断端面から内側の樹脂が流れ出てしまいため、かかる促進効果は期待できない。例えば、内層(内側の)樹脂融点が210℃、外層(外側の)樹脂融点が260℃であるとき、金型温度260℃でプレス成形すれば、外層樹脂は、軟化変形はするが流動はしない。他方、内層樹脂は十分溶融流動化し、連続強化繊維の束の内部に含浸する。さらに280℃に加熱し、外層樹脂を流動化し、環状部材から薄肉リブ形成や製品外へ溶融樹脂を排出することにより、環状部材のVf体積含有率を上昇、強度、剛性を向上することができる。例えば、コーティング糸Vfが40%であるとき、成形体環状部のVfを50%とすることができ、この場合、成形体環状部のVf向上は、コーティング糸の2層構造には依存しない。
FIGS. 3A, 3B, and 3C show cross sections of the mixed fiber, the coating yarn, and the two-layer coating yarn, respectively.
FIG. 3A shows a mixed fiber in which a single fiber (10) of a glass fiber and a single fiber (11) of a thermoplastic long fiber are mixed, but a bundle of a multifilament glass fiber and a multifilament thermoplastic fiber are shown. It may be a simple bundle of resin long fibers.
The coating yarn shown in FIG. 3B is obtained by coating a thermoplastic fiber (11) that has been heated and melted around a bundle of multifilament glass fibers (10) with a constant thickness. The coating yarn is reinforced by, for example, using a die having an inlet side hole A and an outlet side hole B larger than the hole A, supplying a molten resin to the hole B while passing a bundle of reinforcing fibers through the hole A. After coating the fiber bundle, the resin can be cooled and solidified to produce the resin. The coating yarn is preferable to the mixed fiber or the impregnated yarn in that the glass fiber inside is protected by the resin coating and the glass fiber can be prevented from being damaged in the subsequent steps.
The two-layer coating yarn shown in FIG. 3C is obtained by coating thermoplastic resin having different melting points on the inner (11) and outer (12) layers. Coating of thermoplastic resin coated yarn in which the periphery of the multifilament continuous long reinforcing fiber is coated with a thermoplastic resin When the thermoplastic resin is composed of two layers, the melting point T1 of the outer thermoplastic resin is the melting point of the inner thermoplastic resin. It is preferable to press-mold at a temperature higher than T2 by 10 ° C. or more and T1 + 10 ° C. or less. By doing so, at the time of press molding, while suppressing the fluidity of the outer resin, the inner resin is highly fluidized, and the resin impregnation into the bundle of multifilament continuous length reinforcing fibers can be promoted. it can. Further, when the thermoplastic resin coating yarn in which the periphery of the multifilament continuous long reinforcing fiber is coated with the thermoplastic resin is composed of two layers, the melting point T1 of the outer thermoplastic resin is changed to the inner thermoplastic resin. Press molding at a temperature of 10 ° C. or higher and T2 + 5 ° C. or higher and T1-5 ° C. or lower, and melting the inner thermoplastic resin, followed by press molding at a temperature of T2 + 15 ° C. or higher. The inside thermoplastic resin and / or the outside thermoplastic resin can be discharged out of the mold to adjust Vf. When the fiber is not a continuous long reinforcing fiber, for example, when a short fiber is used, the resin inside flows out from the cut end face of the short fiber, and therefore, such a promoting effect cannot be expected. For example, when the inner layer (inside) resin melting point is 210 ° C. and the outer layer (outer) resin melting point is 260 ° C., if the press molding is performed at a mold temperature of 260 ° C., the outer layer resin undergoes softening deformation but does not flow. . On the other hand, the inner layer resin sufficiently melts and fluidizes and impregnates the inside of the bundle of continuous reinforcing fibers. Further, by heating the resin to 280 ° C. to fluidize the outer layer resin, forming a thin rib from the annular member and discharging the molten resin out of the product, the Vf volume content of the annular member can be increased, and the strength and rigidity can be improved. . For example, when the coating yarn Vf is 40%, the Vf of the molded body annular portion can be set to 50%. In this case, the Vf improvement of the molded body annular portion does not depend on the two-layer structure of the coating yarn.
コーティング糸、混繊糸に含まれる強化連続長繊維は、ガラス繊維に限定されず、炭素繊維、アルミナ繊維、アラミド繊維、バサルト繊維等の有機向きの強化繊維を広く包含する。これらの強化連続長繊維は、単独で使用しても、2種以上混ぜて使用してもよい。
また、本実施形態の繊維強化複合シート中の強化繊維の体積比を見込んで、コーティング糸、混繊糸、含浸糸中の、強化繊維に対する熱可塑性樹脂(繊維)又は熱硬化性樹脂の使用量を調整することが必要である。
使用する熱可塑性樹脂(繊維)又は熱硬化性樹脂も特に制限はないが、例えば、熱可塑性樹脂としてポリアミド(PA)66、PA6、ポリプロピレン(PP)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)を挙げることができ。
これらの樹脂には、製品要求特性に応じ適宜、染顔料、離型剤等の各種添加剤を添加してもよい。
The reinforced continuous long fibers contained in the coating yarn and the mixed yarn are not limited to glass fibers, but widely include organic-oriented reinforcing fibers such as carbon fibers, alumina fibers, aramid fibers, and basalt fibers. These reinforced continuous filaments may be used alone or as a mixture of two or more.
In addition, in view of the volume ratio of the reinforcing fibers in the fiber-reinforced composite sheet of the present embodiment, the amount of the thermoplastic resin (fiber) or the thermosetting resin to the reinforcing fibers in the coating yarn, the mixed yarn, and the impregnated yarn is used. It is necessary to adjust.
The thermoplastic resin (fiber) or the thermosetting resin to be used is not particularly limited. For example, as the thermoplastic resin, polyamide (PA) 66, PA6, polypropylene (PP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK).
Various additives such as dyes and pigments and release agents may be appropriately added to these resins according to the required characteristics of the product.
図4に、本実施形態の閉じた成形体の製造方法の巻き付け・配向工程に使用する巻き取り部材(4)の一例の側面図と正面図を示す。本実施形態の閉じた成形体の製造方法の巻き付け・配向工程は、その中心に回転軸(3)を、該中心から半径方向に等距離離れて対称に配置された複数の糸かけ部(1a、1b…)を有する巻き取り部材(4)に、該巻糸体(0)からの強化繊維を、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、該回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き取る工程である。図4は、糸かけ部(1a〜1d)が4本の場合を例示するが、かかる糸かけ部は、得ようとする成形体中での強化繊維の周方向長さに相当する長さの巻き取り体を調製するために、回転台座(2)上に回転中心から半径方向に等距離離れて対称に配置された複数本で存在し、かつ、巻き取り長さを可変できるよう径方向の距離を調整するための機構を備えたものであることができる。生産性、巻き取り速度高速化に伴う振動、周速変化の抑制の観点から、巻き取り形態は、略円乃至多角形、例えば、3角形、4角形、6角形、8角形等であることが好ましい。
また、綜絖(15)を幅方向に振り、一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を配することで、最終的に幅方向にも強化された成形品を得ることができる。
パラレル巻(0度)とヘリカル巻(最大18度)の層構成は、閉じた繊維強化複合成形体に要求される強度に依存して適宜設計することができるが、例えば、UD強度を更に高めたい場合にはパラレル巻の割合を高めればよい。尚、回転軸に直交する方向を回転させることで一方向に巻き取る工程では0〜18度がよく、好ましくは0〜10度である。
強化繊維の巻き付け時のテンションは適宜調整すればよいが、巻き付け時のテンションが高すぎると、強化繊維が破断するおそれがある。
FIG. 4 shows a side view and a front view of an example of the winding member (4) used in the winding / orienting step of the method for manufacturing a closed molded body according to the present embodiment. In the winding / orienting step of the method for manufacturing a closed molded body of the present embodiment, the rotation axis (3) is provided at the center thereof at a plurality of threaded portions (1a) symmetrically arranged at an equal distance in the radial direction from the center. , 1b...), The reinforcing fiber from the wound body (0) becomes substantially equal to the length in the molded product to be wound in the circumferential direction. As described above, this is a step of winding in one direction by rotating the rotation axis at 0 to 18 degrees with respect to a direction orthogonal to the rotation axis. FIG. 4 illustrates a case where the number of the threaded portions (1a to 1d) is four. The threaded portion has a length corresponding to the circumferential length of the reinforcing fibers in the molded article to be obtained. In order to prepare a wound body, there are a plurality of symmetrically disposed radially equidistant from the center of rotation on the rotary base (2), and a radial direction is provided so that the winding length can be changed. It may have a mechanism for adjusting the distance. From the viewpoints of productivity, suppression of vibration caused by the increase in winding speed, and suppression of change in peripheral speed, winding forms may be substantially circular or polygonal, for example, triangular, quadrangular, hexagonal, or octagonal. preferable.
Further, by shaking the heald (15) in the width direction and arranging the continuous continuous reinforcing fibers diagonally across the continuous long reinforcing fibers oriented in one direction, the molded product finally reinforced also in the width direction. Can be obtained.
The layer structure of the parallel winding (0 degrees) and the helical winding (maximum 18 degrees) can be appropriately designed depending on the strength required for the closed fiber-reinforced composite molded body. For example, the UD strength is further increased. If desired, the ratio of the parallel winding may be increased. In the step of winding in one direction by rotating a direction orthogonal to the rotation axis, the angle is preferably 0 to 18 degrees, and more preferably 0 to 10 degrees.
The tension at the time of winding the reinforcing fiber may be appropriately adjusted, but if the tension at the time of winding is too high, the reinforcing fiber may be broken.
図6は、本実施形態の閉じた成形体の製造方法のプレス成形工程を説明するための図面であり、幅方向と径方向に圧縮・加熱する場合を例示している。まず、上記のようにして調製した巻き取り体(6)を、巻き取り部材(4)から、プレス成形用金型(5a)に、移送する。かかる移送は、糸かけ部の巻き取り長さを可変できるよう径方向の距離を調整するための機構を用いて、巻き取り体の強化繊維のテンションを緩めることで可能となる。次いで、金型(5a)とこれに対向する金型(5b)、及び径方向金型(5c、5d)間の距離を縮め圧縮と同時に加熱するプレス成形を行うことで、熱可塑性樹脂を加熱溶融・冷却固化させることにより、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体を得ることができる。閉じた成形体が環状の場合には、図13に示すような物が得られる。 FIG. 6 is a drawing for explaining the press forming step of the method for manufacturing a closed molded body according to the present embodiment, and illustrates a case where compression and heating are performed in the width direction and the radial direction. First, the wound body (6) prepared as described above is transferred from the winding member (4) to the press molding die (5a). Such transfer can be achieved by loosening the tension of the reinforcing fibers of the wound body using a mechanism for adjusting the radial distance so that the winding length of the threading portion can be changed. Next, the thermoplastic resin is heated by performing press molding in which the distance between the mold (5a) and the mold (5b) facing the mold (5b) and the radial molds (5c, 5d) is reduced, and compression and heating are performed. By melting and cooling and solidifying, it is possible to obtain a closed molded body containing a plurality of continuous long reinforcing fibers continuously and unidirectionally oriented in the circumferential direction in the solidified thermoplastic resin matrix. When the closed molded body is annular, a product as shown in FIG. 13 is obtained.
巻き取り体(6)から、複雑な形状の成形体を一気に作製しようとすると、金型の構造上無理がでる場合があるため、必要により、得られた成形体に、加熱・軟化による曲げ加工をさらに施して所望の形状の閉じた成形体を得る形状化工程を施すことで、所望の複雑な形状の成形体を製造することができる。例えば、図14に示すように、まず、4角形の閉じた成形体を調製した後に、矢印に示す方向に曲げ加工を施せば、十字状の形態の閉じた成形体を製造することができる。かかる加熱・軟化による曲げ加工は、熱可塑性樹脂コーティング糸を用いることにより、可能となるものである。所望の複雑な形状は特に制限されないが、例えば、P軸に直交する断面において、環、多角形、十字、星形、又は棒状の形態であることができる。 If it is attempted to make a molded body of a complicated shape from the wound body (6) at a stretch, it may be impossible to achieve a structure due to the mold. If necessary, the obtained molded body may be bent by heating and softening. Is performed to obtain a closed molded body having a desired shape, whereby a molded body having a desired complicated shape can be manufactured. For example, as shown in FIG. 14, first, after preparing a closed rectangular shaped body, and performing bending in the direction shown by the arrow, a closed shaped body in a cross shape can be manufactured. Such bending by heating and softening becomes possible by using a thermoplastic resin coated yarn. The desired complex shape is not particularly limited, but may be, for example, a ring, a polygon, a cross, a star, or a bar in a cross section orthogonal to the P axis.
本実施形態の閉じた成形体の製造方法の巻き付け・配向工程に使用する巻き取り部材(4)に代えて、図7に示すような、回転軸に対して対称な凹部を有する金型(13)を用いることができる。尚、図7に示す金型(13)は、凹部(14)を上下に挟むブロックの嵌合を解放することにより、凹部に巻かれた巻き取り体又は部分成形体を、取り出し、これをさらなる成形工程や、曲げ加工工程に供することができる。
金型の凹部(14)には、例えば、図8に示すように、パラレル巻き(図8(a)、(c)参照)の層の間に、ヘリカル巻き(図8(b)、(d)参照)一本(一回)を挿入することができる。
凹部(14)の断面形状としては、前記した巻き取り部材(4)と同様に、略円乃至多角形、例えば、3角形、4角形、6角形、8角形等であることができる。
Instead of the winding member (4) used in the winding / orienting step of the manufacturing method of the closed molded body of the present embodiment, a mold (13) having a concave portion symmetrical with respect to the rotation axis as shown in FIG. ) Can be used. In addition, the mold (13) shown in FIG. 7 releases the winding body or the partially molded body wound around the concave portion by releasing the fitting of the block sandwiching the concave portion (14) up and down, and further removing this. It can be subjected to a forming step and a bending step.
In the concave portion (14) of the mold, for example, as shown in FIG. 8, helical windings (FIGS. 8B and 8D) are provided between layers of parallel windings (see FIGS. 8A and 8C). See)) One (one time) can be inserted.
The cross-sectional shape of the concave portion (14) can be substantially circular or polygonal, for example, triangular, quadrangular, hexagonal, octagonal, or the like, similarly to the above-described winding member (4).
回転軸に対して対称な凹部を有する金型(13)に連続強化繊維を巻き取った場合には、図9に示すように、金型(15a〜15d)を凹部(14)に対して所定の隙間をもって移動した後、加熱・圧縮することにより、プレス成形して、閉じたUD成形体を製造することができる。 When the continuous reinforcing fiber is wound around a mold (13) having a concave portion symmetrical with respect to the rotation axis, as shown in FIG. 9, the molds (15a to 15d) are fixed with respect to the concave portion (14). After being moved with a gap, press-molding is performed by heating and compression to produce a closed UD molded body.
また、図10に示すように、本実施形態の閉じた成形体の製造方法の巻き付け・配向工程に使用する巻き取り部材(4)を用いて、又は、回転軸に対して対称な凹部を有する金型(13)を用いて、略4角形状のコーティング糸(6)の巻き取り体(6)巻き取り体又はその部分成形体を予め準備し、その中央に略十字状の賦形用金型(金属)(16)を配置し(図10(a)参照)、四隅からスライドコア(17a〜17d)を中央に寄せるように移動させて、加熱圧縮することにより(図10(b)参照)、図11に示すような、中空の略十字状の閉じたUD成形体を製造することができる。 Further, as shown in FIG. 10, the winding member (4) used in the winding / orienting step of the manufacturing method of the closed molded body according to the present embodiment has a concave portion which is symmetric with respect to the rotation axis. Using a mold (13), a wound body (6) of a substantially quadrangular coating yarn (6) or a partially formed body thereof is prepared in advance, and a substantially cross-shaped shaping mold is provided at the center thereof. The mold (metal) (16) is arranged (see FIG. 10 (a)), and the slide cores (17a to 17d) are moved from the four corners toward the center, and are heated and compressed (see FIG. 10 (b)). 11), a hollow substantially cruciform closed UD molded body as shown in FIG. 11 can be manufactured.
プレス成形後には、所望の製品形状に合わせ、成形品の周縁をトリミングすることが好ましい。トリミング装置としては、例えば、レーザ、ウォータージェット(研磨剤、レーザ併用)等を用いることができる。 After press molding, it is preferable to trim the peripheral edge of the molded product according to the desired product shape. As the trimming device, for example, a laser, a water jet (a polishing agent and a laser) may be used.
図15に例示するように、上記のようにして作製した閉じた成形体を2つ用意し、これらを、それぞれのP軸が重ならないように互に接合することで構造体を製造することができる。元論、P軸が一致する二重環状の構造体を製造することもできる。この時の接合方法は特に制限されず、例えば、熱圧着、ボルト・ナット、嵌合等であることができる。図15に例示する構造体は、例えば、図16に例示する自動車ボディーのロノ字閉断面構造補強材、例えば、フード、フロントピラー、ルーフ、ドア、リアハッチドア、トランク、フフロアー、バッテリケース、センター、リア補強等の補強部材として、また、タイヤホイール、サスペンションアーム(図示せず)等の補強部材として用いることができる。 As illustrated in FIG. 15, it is possible to manufacture a structure by preparing two closed molded bodies produced as described above and joining them together so that their P-axes do not overlap. it can. In principle, it is also possible to manufacture a double-ringed structure in which the P-axis is coincident. The joining method at this time is not particularly limited, and may be, for example, thermocompression bonding, bolt / nut, fitting, or the like. The structural body illustrated in FIG. 15 is, for example, a Rono-shaped closed-section structural reinforcing material of the automobile body illustrated in FIG. 16, for example, a hood, a front pillar, a roof, a door, a rear hatch door, a trunk, a floor, a battery case, a center, It can be used as a reinforcing member such as a rear reinforcing member and a reinforcing member such as a tire wheel and a suspension arm (not shown).
上記のようにして作製した成形体を、射出成型金型内にインサートし、強化繊維のチョップドストランド等を含む熱可塑性樹脂をマトリックス樹脂として射出成形によりオーバーモールドすることで、上記閉じた成形体と射出成型体との複合構造を有する複合構造体を製造することができる。かかる複合構造体として配管系フランジの補強インサートを挙げることができる。また、例えば、図11に示すような中空の略十字状の閉じたUD成形体の内部(中空部)に短繊維強化繊維射出成形体を配した複合構造を形成すれば、図12に示すような複合成形体を製造することができる。射出成型体との複合構造とすることで、上記閉じた成形体に平面形状やリブ補強形状を追加したり、箱形状のプランジ等にインサート補強したり、剛性向上により反りを低減したり、耐摩耗性を向上させたり、オイル等のシール性を向上させたりすることができる。
オーバーモールドする樹脂は、上記閉じた繊維強化複合成形体のマトリックス樹脂と主成分が同質であるものが好ましく、例えば、PA66系ならPA66系、PP系ならPP系であることが好ましく、種々の共重合組成の樹脂であってもよい。
The molded body prepared as described above is inserted into an injection molding die, and overmolded by injection molding using a thermoplastic resin containing chopped strands of reinforcing fibers as a matrix resin, thereby forming the closed molded body. A composite structure having a composite structure with an injection molded body can be manufactured. As such a composite structure, a reinforcing insert for a piping system flange can be mentioned. Further, for example, if a composite structure in which a short fiber reinforced fiber injection molded body is arranged inside (hollow portion) of a hollow substantially cruciform closed UD molded body as shown in FIG. 11 is formed, as shown in FIG. It is possible to manufacture a complex molded article. By adopting a composite structure with an injection molded body, a flat shape or rib reinforcement shape is added to the closed molded body, insert reinforcement is applied to a box-shaped plunge, etc., warpage is reduced by improving rigidity, The wear property can be improved, and the sealing property of oil or the like can be improved.
The resin to be overmolded is preferably a resin whose main component is the same as that of the matrix resin of the closed fiber-reinforced composite molded article. For example, PA66-based PA66-based and PP-based PP-based PP-based resins are preferred. It may be a resin having a polymerization composition.
以下、本発明の実施例について具体的に説明する。
[実施例1]
[巻き付け工程]
ガラス強化繊維を芯材にPA612が被覆され、さらにその周囲にPA66が被覆された、外形φ約0.5mm、Vf=46%のコーティング糸を用意した。
用いたガラス強化繊維は、日本電気ガラス社製のガラスファイバー、繊度685dtex、単糸数400本であった。
FW装置として、旭化成エンジニアリング(株)製「1000P」を用いた。尚、「1000」は1000mm用、「P」は5軸制御を意味する。最大径φは400mmであった。
上記コーティング糸1本をクリール(張力制御繰り出し装置)に取り付け、図7に示す巻き付け冶具(回転軸に対して対称な凹部(14)を有する金型(13))に巻き付けた。
巻き付け条件は、テンションが50g/コーティング糸1本、回転数20rpm、図8に示すように回転軸に直交する方向に対してパラレル巻0.5mmピッチ30mm幅で1層巻き付けた後、18度のヘリカル巻き1回、続いてパラレル巻き0.5mmピッチ30mm幅で1層巻き付けた後、さらにヘリカル巻き1回と繰り返してパラレル巻き4層、ヘリカル巻き4回でコーティング糸を巻き付けた糸掛け金型(13)を準備した。尚、これら糸層の厚みは2.5mm、周長は400mmであった。
Hereinafter, examples of the present invention will be specifically described.
[Example 1]
[Winding process]
A coating yarn having an outer diameter of about 0.5 mm and Vf = 46%, in which glass reinforced fiber was covered with PA612 on a core material, and PA66 was further coated on the periphery thereof, was prepared.
The glass reinforcing fiber used was a glass fiber manufactured by NEC Corporation, a fineness of 685 dtex, and the number of single yarns was 400.
As a FW device, "1000P" manufactured by Asahi Kasei Engineering Corporation was used. Note that “1000” means for 1000 mm, and “P” means 5-axis control. The maximum diameter φ was 400 mm.
One of the coating yarns was attached to a creel (tension control feeding device) and wound around a winding jig (a mold (13) having a concave portion (14) symmetrical with respect to the rotation axis) shown in FIG.
The winding conditions were as follows: the tension was 50 g / one coating yarn, the number of rotations was 20 rpm, and as shown in FIG. A thread hooking die (13) in which the helical winding is performed once, then the parallel winding is wound in one layer at a pitch of 0.5 mm and the width is 30 mm, and then the helical winding is repeated once, and the coating yarn is wound in the parallel winding four layers and the helical winding four times ) Was prepared. In addition, the thickness of these thread layers was 2.5 mm, and the perimeter was 400 mm.
[内層含侵工程]
次いで、図9に示すように、コーティング糸を凹部(14)に巻き付けた金型(13)を、スライドコア(金型15a〜15d)4面で加圧・加熱することでコーティング糸に被覆している樹脂を溶融・含侵させた。
まず、スライドコアの温度を260℃(PA612の融点以上、PA66の融点以下)まで昇温し、1MPaの圧力を付与して、凹部(14)を押し付け、そのまま5分間保持することでPA66の外層によって内層のPA12が流出しないようにしつつ、コーティング糸の内層にPA12を含侵させた。
次いで、1MPaの圧力を保持したまま、スライドコア(金型15a〜15d)の温度を270℃まで昇温し、3分間保持することでコーティング糸の外層を溶融させた。
次いで、1MPaの圧力を保持したまま、スライドコア(金型15a〜15d)の温度を280℃まで昇温し、コーティング糸の外層を流動化することで金型外に意図的に樹脂を排出することで、Vfを向上させた。
その後、スライドコア(金型15a〜15d)を150℃まで冷却し、圧力を除荷することでガラス繊維に樹脂が含侵した閉じた部分成形体を作製した。
図9に示すように、加圧終了時の各スライドコア(金型15a〜15d)同士のクリアランスは0.5mmとなり、加熱終了後のスライドコア同士のクリアランスは0.1mmであった。金型クリアランスに薄い金属板を挟むことで樹脂の流出具合をコントロールすることができ、樹脂の流出具合をコントロールすることで、樹脂体積率や厚みをコントロールすることができる。
[Inner layer impregnation process]
Next, as shown in FIG. 9, a mold (13) in which the coating yarn is wound around the concave portion (14) is coated on the coating yarn by pressing and heating the slide core (dies 15a to 15d) 4 surfaces. Resin was melted and impregnated.
First, the temperature of the slide core is raised to 260 ° C. (not less than the melting point of PA612 and not more than the melting point of PA66), a pressure of 1 MPa is applied, the recess (14) is pressed, and the outer layer of the PA66 is held for 5 minutes. The inner layer of the coating yarn was impregnated with PA12 while preventing the inner layer of PA12 from flowing out.
Next, while maintaining the pressure of 1 MPa, the temperature of the slide core (the
Next, while maintaining the pressure of 1 MPa, the temperature of the slide core (the
Thereafter, the slide cores (dies 15a to 15d) were cooled to 150 ° C., and the pressure was removed, thereby producing a closed partial molded body in which the glass fiber was impregnated with the resin.
As shown in FIG. 9, the clearance between the slide cores (dies 15a to 15d) at the end of pressurization was 0.5 mm, and the clearance between the slide cores after heating was 0.1 mm. By sandwiching a thin metal plate between the mold clearances, it is possible to control the outflow condition of the resin, and by controlling the outflow condition of the resin, it is possible to control the resin volume ratio and the thickness.
[UD成形工程]
得られた部分成形体を、回転軸に対して対称な凹部(14)を有する金型(13)の凹部(14)から外し、IRヒーターで加熱し、表層が300℃になるまで加熱後直ちに、図10に示すような、略十字状の賦形用金型(金属)(16)を有した金型にセットし、スライドコア(17a〜17d)4面で、加圧・変形させることで、図11に示すような略十字状の中空の閉じたUD成形体を製造した。
このときの圧力は1MPaとし、また、スライドコア(17a〜17d)の温度は200℃であった。
[UD molding process]
The obtained partially formed body is removed from the concave portion (14) of the mold (13) having the concave portion (14) symmetrical with respect to the rotation axis, heated by an IR heater, and immediately after heating until the surface layer reaches 300 ° C. As shown in FIG. 10, the slide cores (17a to 17d) are set in a mold having a substantially cross-shaped shaping mold (metal) (16) and pressed and deformed on four surfaces of the slide cores (17a to 17d). Then, a substantially cruciform hollow closed UD molded body as shown in FIG. 11 was manufactured.
The pressure at this time was 1 MPa, and the temperature of the slide cores (17a to 17d) was 200 ° C.
[インサート射出工程]
得られた閉じたUD成形体の内部に短繊維GF50wt%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G50]の樹脂組成物を射出成形し、図12に示すような、その周囲は一方向連続繊維強化樹脂を有し、内部は射出熱可塑性樹脂で形成された複合構造体を製造した。
[Insert injection process]
A resin composition of polyamide 66 resin [trade name: Leona (registered trademark) 14G50] containing 50% by weight of short fiber GF was injection-molded inside the obtained closed UD molded body, and the periphery thereof was, as shown in FIG. A composite structure having a unidirectional continuous fiber reinforced resin and the inside formed of an injection thermoplastic resin was manufactured.
本発明に係る固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体は、文字通り複数の連続長強化繊維が周方向に連続してUDライクに配向しているため、拡径方向及び周方向に強化されたものである。また、本発明に係る成形体は、図5に示すような幅が狭い環状成形体とした場合であっても、周方向の展開長さに渡り、幅方向に振れて該一方向に配向した連続長強化繊維を横断する斜めの補強用連続長強化繊維を含むため、幅方向にも強化されたものである。
また、本発明に係る成形体の製造方法では、FW法を採用することにより、織物ではなく、得ようとする成形品中での長さに略等しい長さの、均一に一方向に配向した強化繊維の巻き付け体を予め準備し、これを補強材として用いるため、製織に関わる設備コストを必要とせず、例えば、コーティング糸製造装置、FW装置、加熱成形プレス装置、必要により加熱・軟化による曲げ加工装置、トリミング装置等のみで、最終製品までの一連の製造工程が完成するため、多品種少量生産に対応しやすく、また、FW法を採用することにより、生産量増加に伴い、強化繊維の糸目付を高めたり、強化繊維として、比較的安価な撚りをかけていないロービング形態の糸を使用することができ、得ようとする閉じた繊維強化複合成形体の肉厚をかせぐために、FWの巻き数を増加させたり、FW法により巻き付け体を複数セット用いたりすることができる。加えて所定の形状を成形しようとする場合、織物素材の場合には所定形状に裁断する必要があり、端材が発生して歩留まりが悪いが、FW法を採用すれば歩留まりが良くなる。また、一般的にUDテープを使用した場合にはUDテープが薄いため、所定の厚みを形成する場合の積層工程に時間がかかる上にFW法のように閉じた形状を作るのが難しい。さらに、本発明に係る閉じた成形体は、P軸に直交する断面において、環、多角形、十字、星形、棒状等の様々な形態を呈することができ(図11、13、14参照)、また、各P軸が重ならないように互に接合されている構造体(図15参照)、射出成型体との複合構造を有する複合構造体(図12参照)とすることができるため、配管系フランジの補強インサート、自動車ボディーのロノ字閉断面構造補強材、例えば、図16に示すように、フード、フロントピラー、ルーフ、ドア、リアハッチドア、トランク、フフロアー、バッテリケース、センター、リア補強等の補強部材や、タイヤホイール、サスペンションアーム(図示せず)等の補強部材として好適に利用可能である。
In the solidified thermoplastic resin matrix according to the present invention, a closed molded body including a plurality of continuous length reinforcing fibers continuously and circumferentially oriented in one direction is a plurality of continuous length reinforcing fibers literally continuous in the circumferential direction. Since it is oriented in a UD-like manner, it is reinforced in the radial direction and in the circumferential direction. Further, even when the molded body according to the present invention is an annular molded body having a narrow width as shown in FIG. 5, the molded body is swung in the width direction over the developed length in the circumferential direction and is oriented in the one direction. Since it includes diagonally continuous continuous reinforcing fibers obliquely crossing the continuous reinforcing fibers, the reinforcing fibers are also reinforced in the width direction.
Further, in the method for producing a molded article according to the present invention, by adopting the FW method, not a woven fabric, but a length substantially equal to the length in the molded article to be obtained, and uniformly oriented in one direction. Since a wound body of reinforcing fibers is prepared in advance and used as a reinforcing material, equipment costs relating to weaving are not required. For example, a coating yarn manufacturing apparatus, a FW apparatus, a thermoforming press apparatus, and bending by heating and softening as necessary. A series of manufacturing processes up to the final product can be completed with only processing equipment and trimming equipment, so it is easy to respond to high-mix, low-volume production. It is possible to use a relatively inexpensive untwisted roving-type yarn as the reinforcing fiber, and to increase the wall thickness of the closed fiber-reinforced composite molded product to be obtained. In order, or they increase the number of turns of FW, or can use multiple sets of winding member by FW method. In addition, when a predetermined shape is to be formed, it is necessary to cut the material into a predetermined shape in the case of a woven material, and the yield is poor due to the generation of scraps, but the use of the FW method improves the yield. In general, when a UD tape is used, since the UD tape is thin, it takes a long time for a laminating step to form a predetermined thickness, and it is difficult to form a closed shape as in the FW method. Further, the closed molded body according to the present invention can have various forms such as a ring, a polygon, a cross, a star, and a rod in a cross section orthogonal to the P axis (see FIGS. 11, 13, and 14). In addition, since a structure (see FIG. 15) in which the respective P-axes are joined to each other so as not to overlap with each other and a composite structure having a composite structure with an injection molded body (see FIG. 12) can be provided, piping System flange reinforcing inserts, Rono-shaped closed cross-section structural reinforcing material for automobile bodies, such as hood, front pillar, roof, door, rear hatch door, trunk, floor, battery case, center, rear reinforcement as shown in FIG. And a reinforcing member such as a tire wheel and a suspension arm (not shown).
0 巻糸体
15 綜絖
1a〜1d 糸かけ部(4本の場合)
2 回転台座
3 回転軸
4 巻き取り部材
5a〜5d プレス成形金型(幅方向及び径方向の場合)
6 巻き取り体(コーティング糸又は混繊糸の環状束)又は部分成形体
7 閉じた成形体
10 強化連続長繊維
11 熱可塑性樹脂又は連続長繊維
12 (外側の)熱可塑性樹脂
13 回転軸に対して対称な凹部を有する金型
14 凹部(巻き取り部)
15a〜15d 金型13と共に用いる金型(スライドコア)
16 十字状賦形用金型(金属)
17a〜17d スライドコア
18 十字状の閉じたUD成形体
19 強化短繊維射出成形体
100 クリール
101 樹脂槽
102 マンドレル
0 Winding
2 Rotating pedestal 3 Rotating shaft 4
15a to 15d Mold (slide core) used with
16 Die for cruciform shaping (metal)
17a to
Claims (14)
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、及びマルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸からなる群から選ばれる連続強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その中心に回転軸を、該中心から半径方向に等距離離れて対称に配置された複数の糸かけ部を有する巻き取り部材に、又は回転軸に対して対称な凹部を有する金型に、該巻糸体からの強化繊維を、周方向の巻き取り長さが得ようとする成形品中での長さに略等しくなるように、該回転軸に直交する方向に対して0〜18度で該回転軸を回転させることにより一方向に巻き付ける巻き付け・配向工程;
該巻き取り部材に巻き付けた場合には、該巻き取り部材から、プレス成形用金型に、巻き取られた強化繊維を移し、又は該凹部を有する金型に巻き付けた場合には、該金型とともに、巻き取られた強化繊維を移送する、巻き取り体移送工程;
移送された巻き取り体を、所定の温度・圧力でプレス成形し、該熱可塑性樹脂を加熱溶融・冷却固化させることにより、固化した熱可塑性樹脂マトリックス中に周方向に連続して一方向に配向した複数の連続長強化繊維を含む閉じた成形体を得るプレス成形工程;
必要により、得られた成形体に、加熱・軟化による曲げ加工をさらに施して所望の形状の閉じた成形体を得る形状化工程;
を含む、請求項1〜4のいずれか1項に記載の閉じた成形体の製造方法。 The following steps:
Continuous reinforcement selected from the group consisting of thermoplastic resin coated yarns coated with thermoplastic resin around multifilament continuous length reinforcing fibers and mixed yarns of multifilament continuous length reinforcing fibers and multifilament yarns of the same thermoplastic resin A winding body preparing step of preparing one or more winding bodies of fibers;
The rotation axis at the center thereof, a winding member having a plurality of threading portions symmetrically arranged at an equal distance in the radial direction from the center, or a mold having a concave portion symmetric with respect to the rotation axis, The reinforcing fiber from the wound body is wound at 0 to 18 degrees with respect to the direction perpendicular to the rotation axis so that the winding length in the circumferential direction is substantially equal to the length in the molded product to be obtained. A winding / orienting step of winding in one direction by rotating the rotating shaft;
When wound around the winding member, the wound reinforcing fiber is transferred from the winding member to a press molding die, or when wound around a die having the concave portion, the die Transporting the wound reinforcing fiber together with the wound body;
The transferred wound body is press-molded at a predetermined temperature and pressure, and the thermoplastic resin is heated, melted, and cooled to be solidified, so that it is continuously oriented in one direction in the circumferential direction in the solidified thermoplastic resin matrix. Press forming step of obtaining a closed molded body containing a plurality of continuous continuous reinforcing fibers;
If necessary, the obtained molded body is further subjected to a bending process by heating and softening to form a closed molded body having a desired shape;
The method for producing a closed molded article according to any one of claims 1 to 4, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153974A JP2020028984A (en) | 2018-08-20 | 2018-08-20 | Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153974A JP2020028984A (en) | 2018-08-20 | 2018-08-20 | Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020028984A true JP2020028984A (en) | 2020-02-27 |
Family
ID=69623516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018153974A Pending JP2020028984A (en) | 2018-08-20 | 2018-08-20 | Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020028984A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113681941A (en) * | 2021-08-20 | 2021-11-23 | 江西昌河航空工业有限公司 | Integrated winding forming tool and method for high-strength glass fiber girder with tension and torsion bars |
CN113956061A (en) * | 2021-11-12 | 2022-01-21 | 中国航空制造技术研究院 | Preparation method of continuous fiber reinforced ceramic matrix composite screw |
WO2022239869A1 (en) * | 2021-05-14 | 2022-11-17 | 日本精工株式会社 | Method for producing composite material molded article, method for producing retainer and rolling bearing, and method for producing gearbox constituent component |
CN117103728A (en) * | 2023-10-18 | 2023-11-24 | 泰州市锦峰新材料科技有限公司 | Carbon fiber rudder and forming equipment thereof |
CN117255737A (en) * | 2021-05-26 | 2023-12-19 | 特瑞堡密封系统德国有限公司 | Method for manufacturing high pressure composite pressure vessel and related products |
-
2018
- 2018-08-20 JP JP2018153974A patent/JP2020028984A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022239869A1 (en) * | 2021-05-14 | 2022-11-17 | 日本精工株式会社 | Method for producing composite material molded article, method for producing retainer and rolling bearing, and method for producing gearbox constituent component |
JPWO2022239869A1 (en) * | 2021-05-14 | 2022-11-17 | ||
JP7302753B2 (en) | 2021-05-14 | 2023-07-04 | 日本精工株式会社 | Cage manufacturing method and rolling bearing manufacturing method |
CN117255737A (en) * | 2021-05-26 | 2023-12-19 | 特瑞堡密封系统德国有限公司 | Method for manufacturing high pressure composite pressure vessel and related products |
CN113681941A (en) * | 2021-08-20 | 2021-11-23 | 江西昌河航空工业有限公司 | Integrated winding forming tool and method for high-strength glass fiber girder with tension and torsion bars |
CN113956061A (en) * | 2021-11-12 | 2022-01-21 | 中国航空制造技术研究院 | Preparation method of continuous fiber reinforced ceramic matrix composite screw |
CN113956061B (en) * | 2021-11-12 | 2023-08-22 | 中国航空制造技术研究院 | Preparation method of continuous fiber reinforced ceramic matrix composite screw |
CN117103728A (en) * | 2023-10-18 | 2023-11-24 | 泰州市锦峰新材料科技有限公司 | Carbon fiber rudder and forming equipment thereof |
CN117103728B (en) * | 2023-10-18 | 2023-12-22 | 泰州市锦峰新材料科技有限公司 | Forming equipment of carbon fiber rudder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020028984A (en) | Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same | |
JP5706402B2 (en) | Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure | |
TWI703030B (en) | Process for the continuous production of fibre-reinforced profiles comprising a foam core | |
US20100255235A1 (en) | Method for producing a fiber composite hollow body having a fiber orientation optimized for force flow and tension | |
US20050104441A1 (en) | Fiber reinforced composite wheels | |
US20080260954A1 (en) | Method of Binding Dry Reinforcement Fibres | |
US10688693B2 (en) | Reinforced thermoplastic products and methods of making the same | |
WO2006010592A1 (en) | Continuous pultrusion process for producing high performance structural profiles | |
WO2018129848A1 (en) | Method for molding hollow vehicle part, hollow vehicle part and automobile | |
CN108025512B (en) | Three-dimensional high-strength fiber composite material component and manufacturing method thereof | |
JP2019155730A (en) | Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method | |
WO2017120025A1 (en) | Fiber composites with reduced surface roughness and methods for making them | |
US20220040935A1 (en) | Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material | |
EP3585607B1 (en) | Fiber composite with reduced surface roughness and method for its manufacture | |
JP5624871B2 (en) | Method for producing flat fiber reinforced plastic wire sheet | |
EP3758922B1 (en) | Process for manufacturing composite fiber products | |
US20170246814A1 (en) | Thermoplastic fiber, hybrid yarn, fiber perform and method for producing fiber performs for fiber composite components, in particular high performance fiber composite component, using the same, fiber composite component and method for producing fiber composite components, in particular high performance fiber composite components | |
US7135226B1 (en) | Composite fabric product and method of manufacturing the same | |
Diestel et al. | Pre-impregnated textile semi-finished products (prepregs) | |
US20240133089A1 (en) | Braided Composite Products Comprising Thermoplastic Material | |
AU618573B2 (en) | Multi-directional, light-weight, high-strength interlaced material and method of making the material | |
Milwich | Pultrusion of braids 14 | |
Ewald | Processing continuous filament composite materials | |
JPH04261680A (en) | Club head for golf and manufacture of the same | |
JP2018165045A (en) | Reinforced fiber laminate sheet and method of producing resin molding |