JP2020027732A - Heating coil for heating for high frequency induction heating - Google Patents

Heating coil for heating for high frequency induction heating Download PDF

Info

Publication number
JP2020027732A
JP2020027732A JP2018151669A JP2018151669A JP2020027732A JP 2020027732 A JP2020027732 A JP 2020027732A JP 2018151669 A JP2018151669 A JP 2018151669A JP 2018151669 A JP2018151669 A JP 2018151669A JP 2020027732 A JP2020027732 A JP 2020027732A
Authority
JP
Japan
Prior art keywords
opposing
small
proximity
pin
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018151669A
Other languages
Japanese (ja)
Other versions
JP7287636B2 (en
Inventor
弘子 渡邊
Hiroko Watanabe
弘子 渡邊
裕也 齋藤
Yuya Saito
裕也 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electronics Industry Co Ltd filed Critical Fuji Electronics Industry Co Ltd
Priority to JP2018151669A priority Critical patent/JP7287636B2/en
Publication of JP2020027732A publication Critical patent/JP2020027732A/en
Application granted granted Critical
Publication of JP7287636B2 publication Critical patent/JP7287636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a heating coil for a high frequency induction heating, having a large diameter part and a small diameter part, and capable of forming a hardened layer which continues to a step part and the small diameter and has an equivalent depth similar in a heating processing object having the step part between the large diameter part and the small diameter part.SOLUTION: Adjacency opposite parts 2a and 2b proximity facing to thrust reception part 93 of a crank shaft W and a pin part 90 are provided. The adjacency opposite parts 2a and 2b include a step side opposite part 9 which is opposite to the thrust reception part 93; and a small diameter side opposite part 10 which is opposite to the pin part 90. The step side opposite part 9 and the small diameter side opposite part 10 become sequence. The adjacency opposite parts 2a and 2b provide cores 8a and 8b. The step part side opposite part 9 is not coated with the core 8a and 8b. A portion on the side continued with the step part side opposite part 9 in the small diameter side opposite part 10 structures a projection part 11 projected to the side where the pin part 90 of the crank shaft W from the cores 8a and 8b is arranged.SELECTED DRAWING: Figure 3

Description

本発明は、高周波焼入時等に使用される高周波誘導加熱用の加熱コイルに関するものである。   The present invention relates to a heating coil for high-frequency induction heating used at the time of induction hardening or the like.

周知のように、鉄鋼材料からなるワーク(熱処理対象物)は、高周波焼入することによって、耐摩耗性等の耐久性を向上させることができる。
ここで、ワークを高周波誘導加熱するためには、高周波電流が通電された加熱コイルをワークの表面に近接させなければならない。そのため、加熱コイルはワークの表面に沿う形状を呈している必要がある。
As is well known, a workpiece (a heat treatment target) made of a steel material can be improved in durability such as abrasion resistance by induction hardening.
Here, in order to perform high-frequency induction heating of a work, a heating coil to which a high-frequency current has been applied must be brought close to the surface of the work. Therefore, the heating coil needs to have a shape along the surface of the work.

例えば、ワークとしてクランクシャフトを高周波焼入する場合、クランクシャフトは構造が複雑であるため、従来は、クランクシャフトの各部の形状に対応した個々に異なる形状の複数の加熱コイルを、順にクランクシャフトの各部に近接させ、クランクシャフトの各部を順に高周波誘導加熱し、さらに、急冷して高周波焼入を実施していた。すなわち、クランクシャフト全体を同時に高周波焼入せず、例えば、ピン部と、当該ピン部と連続したスラスト受け部を別々に高周波焼入していた。   For example, when a crankshaft is induction hardened as a workpiece, the structure of the crankshaft is complicated.Therefore, conventionally, a plurality of heating coils having individually different shapes corresponding to the shape of each part of the crankshaft are sequentially formed on the crankshaft. Each part of the crankshaft was sequentially heated by high frequency induction heating, and then rapidly cooled to perform induction hardening. That is, the whole crankshaft is not induction hardened at the same time, but, for example, the pin portion and the thrust receiving portion continuous with the pin portion are separately induction hardened.

ところが、ピン部とスラスト受け部を別々に高周波焼入すると、ピン部の焼入硬化層とスラスト受け部の焼入硬化層が不連続になる。焼入硬化層が不連続であると強度的に不利である。そこで、焼入硬化層を連続させるために、ピン部とスラスト受け部を同時に高周波焼入するための高周波誘導加熱コイルが発明され、このような高周波誘導加熱コイルが例えば特許文献1に開示されている。   However, when the pin portion and the thrust receiving portion are separately induction hardened, the quenched hardened layer of the pin portion and the quenched hardened layer of the thrust receiving portion become discontinuous. If the quench hardened layer is discontinuous, it is disadvantageous in strength. Then, in order to make the quench hardened layer continuous, a high frequency induction heating coil for simultaneously induction hardening the pin portion and the thrust receiving portion has been invented. Such a high frequency induction heating coil is disclosed in, for example, Patent Document 1. I have.

特許文献1に開示されている高周波誘導加熱コイルは、ピン部に対向する部位と、スラスト受け部に対向する部位とを有する。当該高周波誘導加熱コイルに高周波電流を通電すると、ピン部とスラスト受け部に同時に高周波誘導電流が励起され、ピン部とスラスト受け部は同時に高周波誘導加熱され、さらに急冷することによって同時に高周波焼入される。   The high-frequency induction heating coil disclosed in Patent Literature 1 has a portion facing the pin portion and a portion facing the thrust receiving portion. When a high-frequency current is applied to the high-frequency induction heating coil, a high-frequency induction current is simultaneously excited in the pin portion and the thrust receiving portion, and the pin portion and the thrust receiving portion are simultaneously subjected to high-frequency induction heating, and further rapidly cooled to be induction-hardened at the same time. You.

特許第5907332号公報Japanese Patent No. 5907332

ところで、特許文献1に開示されている高周波誘導加熱コイルでは、ピン部とスラスト受け部を同時に高周波誘導加熱することができるものの、ピン部とスラスト受け部に生じる焼入硬化層の深さが不均一なものとなる。   Incidentally, in the high-frequency induction heating coil disclosed in Patent Document 1, although the pin portion and the thrust receiving portion can be simultaneously subjected to high-frequency induction heating, the depth of the quenched hardened layer generated in the pin portion and the thrust receiving portion is not sufficient. It will be uniform.

特許文献1には、高周波誘導加熱コイルの全体構造が開示されていないため、本発明者が作成した図8、図9を参照しながら高周波誘導加熱コイルの全体構造を説明する。図8は、特許文献1の図1から推測して作成した高周波誘導加熱コイルのモデル図である。また、図9は、図8のC−C断面図である。   Patent Document 1 does not disclose the entire structure of the high-frequency induction heating coil. Therefore, the entire structure of the high-frequency induction heating coil will be described with reference to FIGS. 8 and 9 created by the present inventors. FIG. 8 is a model diagram of a high-frequency induction heating coil created by inferring FIG. 1 of Patent Document 1. FIG. 9 is a sectional view taken along the line CC of FIG.

図8、図9に示すように、高周波誘導加熱コイル71は、クランクシャフト80のスラスト受け部81と軸部82(ピン部)に近接対向する近接対向部72を有している。また、高周波誘導加熱コイル71は、図示しない高周波電源側と接続されるリード部73、74を有している。高周波誘導加熱コイル71は一連の導体で構成されており、リード部73、74の間に近接対向部72が設けられている。すなわち、近接対向部72には、リード部73、74を介して高周波電流を通電することができる。   As shown in FIGS. 8 and 9, the high-frequency induction heating coil 71 includes a thrust receiving portion 81 of a crankshaft 80 and a proximity opposing portion 72 that proximately opposes a shaft portion 82 (pin portion). The high-frequency induction heating coil 71 has lead portions 73 and 74 connected to a high-frequency power supply (not shown). The high-frequency induction heating coil 71 is composed of a series of conductors, and a proximity opposing portion 72 is provided between the lead portions 73 and 74. That is, a high-frequency current can be applied to the proximity opposing portion 72 via the leads 73 and 74.

近接対向部72は、断面が四角形を呈しており、スラスト受け部81と対向する第1加熱面75と、軸部82(ピン部)と対向する第2加熱面76と、コア77(磁性体)で覆われたその他の2面を有している。   The proximity opposing portion 72 has a rectangular cross section, and has a first heating surface 75 facing the thrust receiving portion 81, a second heating surface 76 facing the shaft portion 82 (pin portion), and a core 77 (magnetic material). ) Has two other surfaces.

図9に示すように、クランクシャフト80は、回転軸線83と中心が一致したジャーナル部84、85を有し、図示しない回転駆動装置によってクランクシャフト80は、回転駆動される。そして、高周波誘導加熱コイル71(図8)は、回転軸線83周りに公転移動する軸部82に追従し、軸部82の全周面に対して順に近接対向し、軸部82の全周面とスラスト受け部81が同時に高周波誘導加熱される。そして、軸部82とスラスト受け部81が同時に高周波焼入される。   As shown in FIG. 9, the crankshaft 80 has journal portions 84 and 85 whose centers coincide with the rotation axis 83, and the crankshaft 80 is rotationally driven by a rotation driving device (not shown). Then, the high-frequency induction heating coil 71 (FIG. 8) follows the shaft portion 82 that revolves around the rotation axis 83, and comes in close proximity to the entire peripheral surface of the shaft portion 82 in order. And the thrust receiving portion 81 are simultaneously subjected to high-frequency induction heating. Then, the shaft portion 82 and the thrust receiving portion 81 are simultaneously induction hardened.

図9に示すように、近接対向部72がスラスト受け部81、軸部82に近接対向することにより、スラスト受け部81と軸部82は同時に高周波誘導加熱され、スラスト受け部81と軸部82には連続した焼入硬化層86(左上から右下に傾斜したハッチングを施した領域)が形成される。   As shown in FIG. 9, the thrust receiving portion 81 and the shaft portion 82 are simultaneously subjected to high-frequency induction heating by the proximity opposing portion 72 approaching the thrust receiving portion 81 and the shaft portion 82, and the thrust receiving portion 81 and the shaft portion 82 are simultaneously heated. , A continuous quench hardened layer 86 (a hatched region inclined from upper left to lower right) is formed.

図9に示すように、焼入硬化層86は、スラスト受け部81の領域部分では略均一であるが、軸部82の領域部分では不均一になっている。すなわち、焼入硬化層86は、第2加熱面76が対向した部位で部分的に深くなっている。
そのため、クランクシャフト80の強度は、不均一である。
As shown in FIG. 9, the quench hardened layer 86 is substantially uniform in the region of the thrust receiving portion 81, but is not uniform in the region of the shaft portion 82. That is, the quench hardened layer 86 is partially deepened at the portion where the second heating surface 76 faces.
Therefore, the strength of the crankshaft 80 is not uniform.

そこで、本件出願人は、軸部82の誘導加熱量を減じることにより、軸部82の焼入硬化層86を、スラスト受け部81の焼入硬化層86と同等になるように改善を試みた。すなわち、第2加熱面76の一部を遮蔽することにより、軸部82の誘導加熱量を減じてみた。   Therefore, the present applicant has tried to improve the quench hardened layer 86 of the shaft portion 82 by reducing the amount of induction heating of the shaft portion 82 so as to be equivalent to the quenched hardened layer 86 of the thrust receiving portion 81. . That is, the amount of induction heating of the shaft portion 82 was reduced by shielding a part of the second heating surface 76.

図10は、図8と同じ高周波誘導加熱コイル71の斜視図であり、図11は、図10のD−D断面図である。図10、図11に示す高周波誘導加熱コイル71の近接対向部72には、図8、図9のコア77の代わりにコア78が取り付けられている。図11に示すように、コア78は、第2加熱面76の一部を覆う延長部78aを有する。   FIG. 10 is a perspective view of the same high-frequency induction heating coil 71 as in FIG. 8, and FIG. 11 is a cross-sectional view taken along line DD of FIG. A core 78 is attached to the proximity opposing portion 72 of the high-frequency induction heating coil 71 shown in FIGS. 10 and 11 instead of the core 77 shown in FIGS. As shown in FIG. 11, the core 78 has an extension 78a that covers a part of the second heating surface 76.

図11に示すように、コア78の延長部78aによって、軸部82の焼入硬化層87は浅くなったが、今度は、軸部82の軸線方向(図11で見て左右方向)の中央部分に焼入硬化層87がほとんど形成されなくなった。さらに、スラスト受け部81の焼入硬化層87が、図9に示すスラスト受け部81の焼入硬化層86よりも深く形成されてしまい、コア78に延長部78aを設けることによって、逆に焼入硬化層87は改悪されてしまった。   As shown in FIG. 11, the quenching hardened layer 87 of the shaft portion 82 becomes shallow due to the extension 78 a of the core 78, but this time, the center of the shaft portion 82 in the axial direction (the left-right direction in FIG. 11) is obtained. The quenching hardened layer 87 was hardly formed in the portion. Further, the quench hardened layer 87 of the thrust receiving portion 81 is formed deeper than the quenched hardened layer 86 of the thrust receiving portion 81 shown in FIG. 9. The hardened layer 87 has been deteriorated.

すなわち、単に、第2加熱面76の一部を延長部78aで覆っただけでは、焼入硬化層を改善することはできず、スラスト受け部81から軸部82にかけて、同等の深さの略一様な連続した焼入硬化層を形成するのは困難である。   That is, simply covering a part of the second heating surface 76 with the extension portion 78a cannot improve the quenched hardened layer, and the depth from the thrust receiving portion 81 to the shaft portion 82 is substantially the same. It is difficult to form a uniform continuous quench hardened layer.

そこで、本発明は、大径部と小径部を有し、大径部と小径部の間に段部を有する熱処理対象物における、段部と小径部に同等の深さの略一様な連続した焼入硬化層を形成することができる高周波誘導加熱用の加熱コイルを提供することを課題としている。   Accordingly, the present invention provides a heat treatment object having a large-diameter portion and a small-diameter portion, and a step portion between the large-diameter portion and the small-diameter portion, and a substantially uniform continuous shape having a depth equivalent to the step portion and the small-diameter portion. It is an object of the present invention to provide a heating coil for high-frequency induction heating capable of forming a quenched and hardened layer.

上記課題を解決するための請求項1に記載の発明は、大径部と小径部を有し、当該大径部と小径部の間に段部を有する熱処理対象物における、前記段部と小径部に高周波誘導電流を励起させる高周波誘導加熱用の加熱コイルであって、前記段部と小径部に近接対向する近接対向部を有し、前記近接対向部は、段部に対向する段部側対向部と、小径部に対向する小径部側対向部を有し、前記段部側対向部と小径部側対向部は連続しており、前記近接対向部には磁性体が設けられており、前記段部側対向部は、磁性体で覆われておらず、前記小径部側対向部における段部側対向部と連続する側の部位が、磁性体よりも熱処理対象物の小径部が配置される側に突出した突出部を構成していることを特徴とする高周波誘導加熱用の加熱コイルである。   The invention according to claim 1 for solving the above-mentioned problem has a large-diameter portion and a small-diameter portion, and the stepped portion and the small-diameter portion in a heat treatment target having a step portion between the large-diameter portion and the small-diameter portion. A heating coil for high-frequency induction heating that excites a high-frequency induction current in the portion, the heating coil having a near-facing portion that closely faces the step portion and the small-diameter portion, and the near-facing portion is a step side facing the step portion. The facing portion has a small-diameter portion facing portion facing the small-diameter portion, the step-side facing portion and the small-diameter portion facing portion are continuous, and a magnetic body is provided in the proximity facing portion, The step-side opposing portion is not covered with a magnetic material, and a portion of the small-diameter portion-side opposing portion that is continuous with the step-side opposing portion is provided with a small-diameter portion of the object to be heat-treated rather than a magnetic material. A heating coil for high-frequency induction heating, characterized in that the heating coil has a protruding portion that protrudes to the right side.

請求項1に記載の発明では、加熱コイルは、熱処理対象物の段部と小径部に近接対向する近接対向部を有し、近接対向部は、段部に対向する段部側対向部と、小径部に対向する小径部側対向部を有し、段部側対向部と小径部側対向部は連続している。そのため、熱処理対象物の段部から小径部にかけて誘導加熱が可能である。すなわち、段部から小径部に至るまで、同時に高周波誘導加熱することができる。そして、高周波誘導加熱後、加熱部位を急冷すると、段部から小径部にかけて連続した焼入硬化層を得ることができる。
ここで、小径部における段部に近い部位の熱容量は比較的大きく、小径部における段部から離れた部分の熱容量は比較的小さい。
本発明の加熱コイルを使用すると、この熱容量が相違する段部と小径部に略一様な同等深さの連続した焼入硬化層を形成することができる。
近接対向部には磁性体が設けられており、段部側対向部は、磁性体で覆われておらず、小径部側対向部における段部側対向部と連続する側の部位が、磁性体よりも熱処理対象物の小径部が配置される側に突出した突出部を構成している。これにより、近接対向部に高周波電流が通電された際に生じる磁気(磁力線)が、小径部側に適度に拡がる。
具体的には、小径部側対向部における磁性体で覆われた部位からは磁気が放出されないため、対向する小径部に磁気が最短距離で直接届かない。
また、突出部から放出された磁気は、磁性体に遮蔽されることなく小径部における段部から離れた熱容量が小さい領域に拡がる。すなわち、小径部における熱容量が比較的小さい領域に届く磁気は、比較的弱い。
そのため、小径部における熱容量の比較的小さい領域には、比較的小さい高周波誘導電流が励起され、当該領域は誘導加熱される。よって、小径部における熱容量の小さい領域に励起される高周波誘導電流は抑制され、当該熱容量の小さい領域が過熱状態になることはない。
これにより、高周波焼入時に、小径部には略一様な同等深さの焼入硬化層が形成される。
また、小径部側対向部の突出部は、熱処理対象物の小径部における段部に近い部位に近接している。そのため、小径部における熱容量が比較的大きい部位に対して、突出部から放出された磁気はほとんど拡散することなく到達する。その結果、小径部における熱容量が比較的大きい段部付近の部位が良好に高周波誘導加熱されて昇温する。
そして、本発明によると、熱処理対象物を、段部から小径部にかけて、略一様に高周波誘導加熱し、その結果、高周波焼入によって段部から小径部にかけて、略均一な深さの焼入硬化層を形成することが可能である。
According to the first aspect of the invention, the heating coil has a proximity opposing portion that opposes the step portion and the small-diameter portion of the heat treatment target, and the proximity opposition portion has a step-side opposing portion that opposes the step portion; The small diameter portion has a small diameter portion facing portion facing the small diameter portion, and the step portion side facing portion and the small diameter portion side facing portion are continuous. Therefore, induction heating is possible from the step portion to the small diameter portion of the object to be heat-treated. That is, high-frequency induction heating can be performed simultaneously from the step portion to the small diameter portion. Then, after the high-frequency induction heating, when the heated portion is rapidly cooled, a continuous hardened hardened layer can be obtained from the step portion to the small diameter portion.
Here, the heat capacity of the small-diameter portion near the step is relatively large, and the heat capacity of the small-diameter portion remote from the step is relatively small.
When the heating coil of the present invention is used, it is possible to form a continuous quench hardened layer having substantially the same depth at the step portion and the small diameter portion having different heat capacities.
A magnetic body is provided in the proximity opposing portion, and the step side opposing portion is not covered with the magnetic material, and a portion of the small diameter portion side opposing portion that is continuous with the step side opposing portion is a magnetic material. It forms a protruding portion that protrudes to the side where the small diameter portion of the heat treatment target is arranged. Thereby, the magnetism (lines of magnetic force) generated when the high-frequency current is applied to the close opposing portion spreads appropriately to the small diameter portion side.
Specifically, since magnetism is not emitted from the portion covered with the magnetic material in the small-diameter portion-side facing portion, the magnetism does not directly reach the opposed small-diameter portion at the shortest distance.
Further, the magnetism emitted from the protruding portion spreads to a region having a small heat capacity away from the step portion in the small diameter portion without being shielded by the magnetic body. That is, the magnetism that reaches the region where the heat capacity in the small diameter portion is relatively small is relatively weak.
Therefore, a relatively small high-frequency induction current is excited in a region having a relatively small heat capacity in the small-diameter portion, and the region is induction-heated. Therefore, the high-frequency induced current excited in the small-diameter portion in the small heat capacity region is suppressed, and the small heat capacity region is not overheated.
Thereby, at the time of induction hardening, a quench hardened layer having a substantially uniform and equal depth is formed in the small diameter portion.
Further, the protruding portion of the small-diameter portion-side facing portion is close to a portion near the step in the small-diameter portion of the heat treatment target. Therefore, the magnetism emitted from the protruding portion reaches the portion having a relatively large heat capacity in the small-diameter portion without diffusing. As a result, the portion near the step portion having a relatively large heat capacity in the small-diameter portion is satisfactorily subjected to the high-frequency induction heating to increase the temperature.
According to the present invention, the object to be heat treated is subjected to high-frequency induction heating substantially uniformly from the step portion to the small-diameter portion. It is possible to form a hardened layer.

請求項2に記載の発明は、磁性体は、複数又は多数の薄板片が積層して構成されたものであることを特徴とする請求項1に記載の高周波誘導加熱用の加熱コイルである。   The invention according to claim 2 is the heating coil for high-frequency induction heating according to claim 1, wherein the magnetic body is formed by laminating a plurality or a plurality of thin plate pieces.

請求項2に記載の発明では、磁性体は、複数又は多数の薄板片が積層して構成されたものであるので、熱処理対象物の大きさや熱容量の大きさに応じて薄板片の数を変更し、磁性体の積層長さを調整することができる。すなわち、段部と小径部に励起される高周波誘導電流を増減調整することができる。   According to the second aspect of the present invention, since the magnetic body is formed by laminating a plurality of or a large number of thin plate pieces, the number of the thin plate pieces is changed according to the size of the heat treatment target or the size of the heat capacity. In addition, it is possible to adjust the lamination length of the magnetic body. That is, it is possible to increase or decrease the high-frequency induced current excited in the step portion and the small diameter portion.

前記熱処理対象物はクランクシャフトであり、前記段部はスラスト受け部であり、前記小径部はピン部又はジャーナル部であってもよい(請求項3)。   The object to be heat-treated may be a crankshaft, the step portion may be a thrust receiving portion, and the small diameter portion may be a pin portion or a journal portion.

本発明の高周波誘導加熱用の加熱コイルは、クランクシャフトの軸部(ピン部又はジャーナル部)とスラスト受け部のような、段部と小径部とが連続した熱処理対象物の当該段部と小径部を、略一様で同等深さの連続した焼入硬化層が形成されるように高周波誘導加熱することができる。   The heating coil for high-frequency induction heating according to the present invention includes a step portion and a small diameter portion of a heat treatment object in which a step portion and a small diameter portion such as a shaft portion (a pin portion or a journal portion) of a crankshaft and a thrust receiving portion are continuous. The portion can be high frequency induction heated so that a continuous hardened layer of substantially uniform and equal depth is formed.

本実施形態に係る加熱コイルの斜視図である。It is a perspective view of a heating coil concerning this embodiment. (a)は、熱処理対象物であるクランクシャフトの正面図であり、図1の加熱コイルの近接対向部が、ピン部に近接対向している状態を示し、(b)は、(a)のB部の拡大図である。(A) is a front view of a crankshaft which is an object to be heat-treated, and shows a state in which a near-opposing portion of a heating coil in FIG. 1 is close to a pin portion, and (b) is a diagram of (a). It is an enlarged view of the B section. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1の加熱コイルの近接対向部の一部を示す斜視図であり、コアを構成する薄板片を近接対向部に取り付ける様子を示している。FIG. 2 is a perspective view showing a part of a proximity opposing portion of the heating coil of FIG. 1, and shows a state in which a thin plate piece constituting a core is attached to the proximity opposing portion. 近接対向部の横断面図であり、(a)は、コアを構成する薄板片を近接対向部に取り付ける直前の状態を示し、(b)は、薄板片を近接対向部に取り付けた状態を示す。It is a cross-sectional view of a near opposing part, (a) shows a state immediately before attaching a thin plate piece constituting a core to the near opposing part, and (b) shows a state where the thin plate piece is attached to the close opposing part. . (a)〜(c)は、近接対向部にコアの薄板片が装着された状態を示す断面図である。(A)-(c) is sectional drawing which shows the state in which the thin plate piece of the core was attached to the proximity | contact part. 図3とは別の横断面を有する加熱コイルの近接対向部の横断面図である。FIG. 4 is a cross-sectional view of a proximity opposing portion of a heating coil having a cross section different from that of FIG. 3. コアを備えた従来の加熱コイルの斜視図である。It is a perspective view of the conventional heating coil provided with the core. 図8のC−C断面図である。FIG. 9 is a sectional view taken along line CC of FIG. 8. 図8とは別のコアを備えた従来の加熱コイルの斜視図である。FIG. 9 is a perspective view of a conventional heating coil having a core different from that of FIG. 8. 図10のD−D断面図である。It is DD sectional drawing of FIG.

以下、図面を参照しながら説明する。
熱処理対象物であるクランクシャフトWは、図2に示すようにピン部90(小径部)、ジャーナル部94、大径部91a、91bを有する。また、クランクシャフトWは中心線95を有する。ジャーナル部94の中心は、中心線95と一致しており、ピン部90の中心は中心線95から離間している。ジャーナル部94とピン部90は、大径部91(91b)を介して接続されている。大径部91は、アーム部やカウンタウェイト部とも称し、スラスト受け部93(段部)を有する。ピン部90又はジャーナル部94と、スラスト受け部93は、境界部92(フィレット)を介して連続している。クランクシャフトWは、中心線95を中心に回転駆動される。
This will be described below with reference to the drawings.
The crankshaft W to be heat-treated has a pin portion 90 (small diameter portion), a journal portion 94, and large diameter portions 91a and 91b as shown in FIG. The crankshaft W has a center line 95. The center of the journal portion 94 coincides with the center line 95, and the center of the pin portion 90 is separated from the center line 95. The journal part 94 and the pin part 90 are connected via a large diameter part 91 (91b). The large diameter portion 91 is also called an arm portion or a counterweight portion, and has a thrust receiving portion 93 (step portion). The pin part 90 or the journal part 94 and the thrust receiving part 93 are continuous via a boundary part 92 (fillet). The crankshaft W is driven to rotate about a center line 95.

図1に示す本実施形態に係る高周波誘導加熱用の加熱コイル1は、いわゆる半開放型の加熱コイルであり、銅又は銅合金等の電気導通性に優れた素材からなる一続きの良導体で構成されている。半開放型とは、中心角が180度以下の湾曲した部位を有し、加熱コイルが、熱処理対象物に対して熱処理対象物の熱処理時の回転軸と直交する方向から接近して近接対向することができると共に、熱処理対象物から回転軸と直交する方向に離間することができる形状を意味している。また、加熱コイル1を構成する一続きの良導体は中空であり、内部には冷却液を循環供給することができる。   The heating coil 1 for high-frequency induction heating according to the present embodiment shown in FIG. 1 is a so-called semi-open type heating coil, and is formed of a continuous good conductor made of a material having excellent electrical conductivity such as copper or a copper alloy. Have been. The semi-open type has a curved portion having a central angle of 180 degrees or less, and the heating coil approaches and closely opposes the heat treatment target from a direction orthogonal to a rotation axis at the time of heat treatment of the heat treatment target. And a shape that can be separated from the heat treatment target in a direction orthogonal to the rotation axis. A series of good conductors constituting the heating coil 1 is hollow, and the coolant can be circulated and supplied inside.

図1に示すように加熱コイル1は、近接対向部2a、2b、3a、3b、接続部4a、4b、迂回部5、リード部6、7を有する。加熱コイル1は、リード部6、近接対向部2b、接続部4a、近接対向部2a、迂回部5、近接対向部3a、接続部4b、近接対向部3b、リード部7が、この順で直列に接続されて、半開放型の構造を呈している。また、加熱コイル1の両端部分を構成するリード部6、7の自由端側(図1で見て上端側)には、図示しない高周波電源が接続されている。   As shown in FIG. 1, the heating coil 1 includes proximity opposing portions 2 a, 2 b, 3 a, 3 b, connecting portions 4 a, 4 b, a detour portion 5, and lead portions 6, 7. The heating coil 1 includes a lead portion 6, a proximity facing portion 2b, a connection portion 4a, a proximity facing portion 2a, a detour portion 5, a proximity facing portion 3a, a connecting portion 4b, a proximity facing portion 3b, and a lead portion 7 in series in this order. To form a semi-open type structure. Further, a high-frequency power source (not shown) is connected to the free ends (upper ends in FIG. 1) of the leads 6 and 7 constituting both ends of the heating coil 1.

近接対向部2a、3bは同じ構造であり、近接対向部2b、3aも同じ構造である。また、近接対向部2a、3bと、近接対向部2b、3aは、左右対称形の構造である。そのため、ここでは近接対向部2aを代表的に説明し、近接対向部2b、3a、3bの重複する説明は省略する。   The proximity opposing portions 2a, 3b have the same structure, and the proximity opposing portions 2b, 3a also have the same structure. Further, the proximity opposing portions 2a, 3b and the proximity opposing portions 2b, 3a have a left-right symmetric structure. Therefore, here, the proximity opposing portion 2a will be representatively described, and the overlapping description of the proximity opposing portions 2b, 3a, 3b will be omitted.

近接対向部2aは、中心角が略90度程度に湾曲した構造を呈している。近接対向部2aの一端は、直線状の接続部4aの一端に接続されており、他端は迂回部5の一端に接続されている。   The proximity opposing portion 2a has a structure in which the central angle is curved to approximately 90 degrees. One end of the proximity opposing portion 2a is connected to one end of the linear connection portion 4a, and the other end is connected to one end of the bypass portion 5.

図2(b)、図3に示すように、近接対向部2aの横断面は四つの辺を有する菱形である。四つの辺のうちの一辺は、段部側対向部9を構成しており、別の一辺は、小径部側対向部10を構成している。段部側対向部9と小径部側対向部10は鋭角を成して連続しており、この両対向部9、10が連続した鋭角を構成する部位は、詳しくは後述する突出部11を構成している。   As shown in FIGS. 2B and 3, the cross section of the proximity opposing portion 2a is a rhombus having four sides. One of the four sides constitutes the step-side facing portion 9, and the other side constitutes the small-diameter portion-facing portion 10. The step-side opposing portion 9 and the small-diameter-portion-side opposing portion 10 are continuous at an acute angle, and a portion where the two opposing portions 9 and 10 form a continuous acute angle constitutes a projecting portion 11 described later in detail. are doing.

また、近接対向部2aには、ケイ素鋼等の磁性体素材で構成されたコア8aが装着されている。コア8aは、近接対向部2aにおける段部側対向部9と小径部側対向部10の突出部11を除く部位を覆っている。すなわち、近接対向部2aの横断面の周囲の全領域がコア8aで覆われているのではなく、近接対向部2aの菱形を形成する四辺のうちの段部側対向部9と小径部側対向部10以外の二辺と、小径部側対向部10の一部がコア8aで覆われている。そして、小径部側対向部10におけるコア8aで覆われていない部位は突出部11を構成している。   A core 8a made of a magnetic material such as silicon steel is mounted on the proximity opposing portion 2a. The core 8a covers portions of the proximity opposing portion 2a other than the step portion opposing portion 9 and the projecting portion 11 of the small diameter portion opposing portion. That is, the entire area around the cross section of the proximity opposing portion 2a is not covered with the core 8a, but the step-side opposing portion 9 of the four sides forming the rhombus of the proximity opposing portion 2a is opposed to the small-diameter portion side. Two sides other than the portion 10 and a part of the small diameter portion side facing portion 10 are covered with the core 8a. The portion of the small-diameter portion-side facing portion 10 that is not covered with the core 8a constitutes a protruding portion 11.

コア8aは、湾曲した近接対向部2aに沿って取り付けられている。すなわち、コア8aは、湾曲している。ここで、コア8aは、一体物として構成(一体成形)してもよいが、図4に示すように、複数又は多数の薄板片15を積層させて構成するのが好ましい。   The core 8a is attached along the curved proximity opposing portion 2a. That is, the core 8a is curved. Here, the core 8a may be configured as an integral body (integral molding), but is preferably configured by laminating a plurality or a large number of thin plate pieces 15 as shown in FIG.

薄板片15を積層させてコア8aを構成すると、図4に示すコア8aの全長Fを任意に設定することが可能になる。すなわち、クランクシャフトWのスラスト受け部93とピン部90の加熱状態(後述の焼入硬化層)が最適な状態となるように、磁性体であるコア8aの大きさを容易に変更することができる。   When the core 8a is configured by laminating the thin plate pieces 15, it is possible to arbitrarily set the overall length F of the core 8a shown in FIG. That is, it is possible to easily change the size of the magnetic core 8a so that the thrust receiving portion 93 and the pin portion 90 of the crankshaft W are optimally heated (a quenched and hardened layer described later). it can.

図5(a)に示すように、近接対向部2aは菱形の横断面を有している。また、薄板片15は、長方形の外形を有している。薄板片15は、近接対向部2aを収容する切欠部15aを備えている。切欠部15aは略コの字形を呈している。切欠部15aを近接対向部2aの外面に係合させることによって、近接対向部2aに薄板片15を取り付けることができる。薄板片15は薄いため、近接対向部2aに装着し易い。よって、個々の薄板片15を近接対向部2aに順に装着することにより、近接対向部2aにコア8aを取り付けることができる。   As shown in FIG. 5A, the proximity opposing portion 2a has a rhombic cross section. Further, the thin plate piece 15 has a rectangular outer shape. The thin plate 15 has a notch 15a for accommodating the proximity opposing portion 2a. The notch 15a has a substantially U shape. By engaging the notch 15a with the outer surface of the proximity opposing portion 2a, the thin plate 15 can be attached to the proximity opposing portion 2a. Since the thin plate 15 is thin, it can be easily mounted on the proximity opposing portion 2a. Therefore, the core 8a can be attached to the proximity opposing portion 2a by sequentially attaching the individual thin plate pieces 15 to the proximity opposing portion 2a.

図5(b)に示すように、薄板片15の切欠部15aに近接対向部2aを嵌め込むと、菱形断面の近接対向部2aの四辺のうちの二辺の大半が切欠部15aに収容され、薄板片15(コア8a)に覆われる。また、小径部側対向部10の大部分が薄板片15(コア8a)によって覆われている。切欠部15a内には、近接対向部2aの外面がちょうど嵌まり込んでいる。すなわち、切欠部15aと近接対向部2aの間には、ほとんど隙間がない。また、近接対向部2aの段部側対向部9と、小径部側対向部10の一部が薄板片15から露出している。すなわち、段部側対向部9と小径部側対向部10の一部が薄板片15によって覆われていない。   As shown in FIG. 5B, when the proximity opposing portion 2a is fitted into the notch portion 15a of the thin plate piece 15, most of two sides of the four sides of the proximity opposing portion 2a having a rhombic cross section are accommodated in the notch portion 15a. , Is covered with the thin plate 15 (core 8a). Most of the small-diameter portion-side facing portion 10 is covered by the thin plate piece 15 (core 8a). The outer surface of the proximity opposing portion 2a is just fitted into the notch 15a. That is, there is almost no gap between the notch 15a and the proximity opposing portion 2a. Further, the step-side opposing portion 9 of the proximity opposing portion 2 a and a part of the small-diameter portion-side opposing portion 10 are exposed from the thin plate piece 15. That is, a part of the step-side opposing portion 9 and a part of the small-diameter portion-side opposing portion 10 are not covered with the thin plate piece 15.

小径部側対向部10の一部とは、小径部側対向部10における段部側対向部9と連続した側の部位であり、この部位は突出部11を構成している。図5(b)に示すように、突出部11は、薄板片15(コア8a)よりもクランクシャフトWのピン部90側(小径部側)へ突出している。   A part of the small-diameter portion facing portion 10 is a portion of the small-diameter portion facing portion 10 that is continuous with the step-side facing portion 9, and this portion constitutes the protruding portion 11. As shown in FIG. 5B, the protruding portion 11 protrudes more toward the pin portion 90 side (small diameter portion side) of the crankshaft W than the thin plate piece 15 (core 8a).

近接対向部2b、3a、3b(図1)も近接対向部2aと同様の構造を有しており、それぞれ薄板片15からなるコア8b、18a、18b(コア18bは図示せず)が取り付けられている。   The proximity opposing portions 2b, 3a, and 3b (FIG. 1) also have the same structure as the proximity opposing portion 2a, and have cores 8b, 18a, and 18b (each of which has a core 18b not shown) formed of a thin plate piece 15 attached thereto. ing.

図1に示すように、近接対向部2aと近接対向部3aは、同一の仮想平面内に配置されている。また、近接対向部2aと近接対向部3aは、同一の仮想円周上に配置されており、それぞれ中心角が90度程度の円弧形状を呈している。すなわち、近接対向部2aと近接対向部3aは、同一円周上の略180度の範囲を占めている。   As shown in FIG. 1, the proximity opposing portion 2a and the proximity opposing portion 3a are arranged in the same virtual plane. The proximity opposing portion 2a and the proximity opposing portion 3a are arranged on the same imaginary circle, and each have an arc shape with a central angle of about 90 degrees. That is, the proximity opposing portion 2a and the proximity opposing portion 3a occupy a range of approximately 180 degrees on the same circumference.

さらに、近接対向部2a、3aは迂回部5で接続されており、迂回部5によって近接対向部2aと近接対向部3aの間の導通が確保されている。また、迂回部5は、近接対向部2aと近接対向部3aが配置された仮想円よりも外周側へ退避しており、近接対向部2aと近接対向部3aが配置された円周上における、近接対向部2aと近接対向部3aの間には空間が形成されている。この空間には、中央スペーサ12a(図1)が配置されている。同様に、近接対向部2bと近接対向部3bの間に形成された空間には中央スペーサ12b(図示せず)が配置されている。   Further, the proximity opposing portions 2a, 3a are connected by a detour portion 5, and the detour portion 5 ensures conduction between the proximity opposing portion 2a and the proximity opposing portion 3a. In addition, the detour portion 5 is retracted to the outer peripheral side from the virtual circle in which the proximity opposing portion 2a and the proximity opposing portion 3a are arranged, and on the circumference where the proximity opposing portion 2a and the proximity opposing portion 3a are arranged, A space is formed between the proximity facing portion 2a and the proximity facing portion 3a. In this space, a central spacer 12a (FIG. 1) is arranged. Similarly, a central spacer 12b (not shown) is disposed in a space formed between the close opposing portion 2b and the close opposing portion 3b.

近接対向部2bと近接対向部3bも、近接対向部2a及び近接対向部3aとは異なる同一の仮想平面内に配置されている。そして、近接対向部2a、2bが接続部4aで接続されており、近接対向部3a、3bが接続部4bで接続されている。   The proximity opposing portion 2b and the proximity opposing portion 3b are also arranged in the same virtual plane different from the proximity opposing portion 2a and the proximity opposing portion 3a. The proximity opposing portions 2a and 2b are connected by a connection portion 4a, and the proximity opposing portions 3a and 3b are connected by a connection portion 4b.

接続部4a、4bの一端は、同一の仮想円周上の近接対向部2a、3aの互いに最も離れた180度の位置に配置されている。また、接続部4a、4bの他端は、同一の別の仮想円周上の近接対向部2b、3bの互いに最も離れた180度の位置に配置されている。二つの仮想円同士は平行に対向する位置関係にある。   One ends of the connection portions 4a and 4b are arranged at 180 ° positions farthest from each other in the proximity opposing portions 2a and 3a on the same virtual circumference. The other ends of the connecting portions 4a and 4b are arranged at positions 180 degrees farthest from each other in the proximity opposing portions 2b and 3b on the same other virtual circumference. The two virtual circles have a positional relationship of facing in parallel.

近接対向部2aと接続部4aが交差する部位付近には、右側スペーサ14aが配置されている。また、近接対向部2bと接続部4aが交差する部位付近には、右側スペーサ14bが配置されている。   A right spacer 14a is arranged near a portion where the proximity opposing portion 2a and the connecting portion 4a intersect. Further, a right spacer 14b is disposed near a portion where the proximity opposing portion 2b and the connecting portion 4a intersect.

同様に、近接対向部3aと接続部4bが交差する部位付近には、左側スペーサ13aが配置されている。また、近接対向部3b(図示せず)と接続部4bが交差する部位付近には、左側スペーサ13bが配置されている。   Similarly, a left spacer 13a is disposed near a portion where the proximity opposing portion 3a and the connecting portion 4b intersect. Further, a left spacer 13b is disposed near a portion where the proximity opposing portion 3b (not shown) and the connecting portion 4b intersect.

加熱コイル1と、中央スペーサ12a、12b、左側スペーサ13a、13b、右側スペーサ14a、14bは、絶縁体である板部材で構成された側板(図示せず)に固定されている。中央スペーサ12a、左側スペーサ13a、右側スペーサ14aは、近接対向部2a、3aよりも内側(クランクシャフトWのピン部90が配置される側)に突出している。すなわち、各スペーサ12a、13a、14aの先端は、近接対向部2a、3aが配置された円周よりも内周側に突出している。   The heating coil 1, the central spacers 12a and 12b, the left spacers 13a and 13b, and the right spacers 14a and 14b are fixed to a side plate (not shown) made of a plate member that is an insulator. The center spacer 12a, the left spacer 13a, and the right spacer 14a protrude inward (on the side where the pin portion 90 of the crankshaft W is disposed) from the proximity opposing portions 2a, 3a. That is, the tip of each of the spacers 12a, 13a, and 14a protrudes inward from the circumference on which the proximity opposing portions 2a and 3a are arranged.

同様に、中央スペーサ12b、左側スペーサ13b、右側スペーサ14bは、近接対向部2b、3bよりも内側に突出している。すなわち、各スペーサ12b、13b、14bの先端部は、近接対向部2b、3bが配置された円周よりも内周側に突出している。   Similarly, the center spacer 12b, the left spacer 13b, and the right spacer 14b protrude inward from the proximity opposing portions 2b, 3b. That is, the tip of each of the spacers 12b, 13b, and 14b protrudes inward from the circumference on which the proximity opposing portions 2b and 3b are arranged.

また、中央スペーサ12a、左側スペーサ13a、右側スペーサ14aの先端部は、近接対向部2a、3aが配置された仮想平面よりも、接続部4a、4bがのびる方向(近接対向部2a、2bの配置方向)にも突出している。   Further, the distal ends of the center spacer 12a, the left spacer 13a, and the right spacer 14a are arranged in a direction in which the connecting portions 4a, 4b extend (the arrangement of the proximity opposing portions 2a, 2b) with respect to a virtual plane on which the adjacent opposing portions 2a, 3a are arranged. Direction).

次に、加熱コイル1によって、熱処理対象物であるクランクシャフトWのピン部90(小径部)と、スラスト受け部93(段部)を熱処理する場合について説明する。   Next, a case where the heating coil 1 heat-treats the pin portion 90 (small-diameter portion) of the crankshaft W and the thrust receiving portion 93 (step), which is the object of heat treatment, will be described.

図2(a)に示すクランクシャフトWの大径部91a、91bの間のピン部90(小径部)に加熱コイル1を配置する。加熱コイル1は半開放型であるため、加熱コイル1(近接対向部2a、2b、3a、3b)は、ピン部90に対してピン部90の半径方向から接近することができる。   The heating coil 1 is arranged on the pin portion 90 (small diameter portion) between the large diameter portions 91a and 91b of the crankshaft W shown in FIG. Since the heating coil 1 is a semi-open type, the heating coil 1 (proximity facing portions 2a, 2b, 3a, 3b) can approach the pin portion 90 from the radial direction of the pin portion 90.

中央スペーサ12a、12b(中央スペーサ12aのみ図1に示す)がピン部90に当接することにより、近接対向部2a、2b、3a、3bからピン部90までの距離が、ピン部90を誘導加熱するのに適した距離に設定される。また、ピン部90の直径(外径)は、左側スペーサ13a(13b)と右側スペーサ14a(14b)の先端部同士の距離よりも若干小さい。そのため、ピン部90は、左側スペーサ13a(13b)と右側スペーサ14a(14b)の間で若干揺動することができ、ピン部90は左右いずれか一方のスペーサに当接している。この若干の揺動は、ピン部90の誘導加熱にはほとんど影響しない。   When the center spacers 12a and 12b (only the center spacer 12a is shown in FIG. 1) abut the pin portion 90, the distance from the proximity opposing portions 2a, 2b, 3a and 3b to the pin portion 90 increases the pin portion 90 by induction heating. It is set to a distance suitable for The diameter (outer diameter) of the pin portion 90 is slightly smaller than the distance between the tip portions of the left spacer 13a (13b) and the right spacer 14a (14b). Therefore, the pin portion 90 can slightly swing between the left spacer 13a (13b) and the right spacer 14a (14b), and the pin portion 90 contacts one of the right and left spacers. This slight swing hardly affects the induction heating of the pin portion 90.

図2(b)、図3に示すように、ピン部90には、加熱コイル1の近接対向部2a、2b(3a、3b)の小径部側対向部10が近接対向している。近接対向部2a、3a(2b、3b)は、ピン部90の略180度(略半周)の範囲に近接対向している。   As shown in FIGS. 2B and 3, the small-diameter portion-side facing portions 10 of the proximity facing portions 2 a and 2 b (3 a and 3 b) of the heating coil 1 are closely facing the pin portion 90. The proximity opposing portions 2a, 3a (2b, 3b) oppose each other within a range of approximately 180 degrees (substantially half the circumference) of the pin portion 90.

近接対向部2aのうち、突出部11以外の部位はコア8a、8bによって覆われている。また、近接対向部2aの突出部11は、コア8a、8bよりもピン部90側へ突出している。そのため、突出部11とピン部90の間には、コア8a、8bは存在しない。また、突出部11は、近接対向部2aの菱形の横断面を構成する辺のうちの、段部側対向部9側に設けられており、境界部92(フィレット)に近接している。さらに、段部側対向部9は、スラスト受け部93に近接対向している。   In the proximity opposing portion 2a, portions other than the protruding portion 11 are covered with the cores 8a and 8b. Further, the protruding portion 11 of the proximity opposing portion 2a protrudes more toward the pin portion 90 than the cores 8a and 8b. Therefore, the cores 8a and 8b do not exist between the protrusion 11 and the pin 90. Further, the protruding portion 11 is provided on the step-side opposing portion 9 side of the sides forming the rhombic cross section of the proximity opposing portion 2a, and is close to the boundary portion 92 (fillet). Further, the step-side opposing portion 9 is in close proximity to the thrust receiving portion 93.

このように、近接対向部2a、3a(2b、3b)が、クランクシャフトWのピン部90とスラスト受け部93に近接対向した状態で、中心線95(図1)を中心にクランクシャフトWを回転駆動する。その際、加熱コイル1は、図示しない追従機構によって、ピン部90の中心線95を中心とした回転移動(公転)に追従移動する。これにより、近接対向部2a、3a(2b、3b)は、ピン部90及びスラスト受け部93の全周囲に渡って順に近接対向する。   As described above, the crankshaft W is centered on the center line 95 (FIG. 1) in a state where the proximity opposing portions 2a, 3a (2b, 3b) are in close proximity to the pin portion 90 and the thrust receiving portion 93 of the crankshaft W. Drive rotationally. At this time, the heating coil 1 follows a rotational movement (revolution) around the center line 95 of the pin portion 90 by a follower mechanism (not shown). Thereby, the proximity opposing portions 2a, 3a (2b, 3b) sequentially oppose each other over the entire periphery of the pin portion 90 and the thrust receiving portion 93.

そして、図示しない高周波電源を稼働させ、加熱コイル1(近接対向部2a、2b、3a、3b)に高周波電流を通電すると、ピン部90及びスラスト受け部93の全周囲に渡って高周波誘導電流が励起され、高周波誘導加熱される。焼入温度以上に加熱後、さらに図示しない冷却設備によって急冷することにより、ピン部90及びスラスト受け部93は高周波焼入される。   When a high-frequency power supply (not shown) is operated to supply a high-frequency current to the heating coil 1 (proximity facing portions 2a, 2b, 3a, 3b), a high-frequency induction current is generated over the entire periphery of the pin portion 90 and the thrust receiving portion 93. Excited and high frequency induction heated. After being heated to the quenching temperature or higher, the pin portion 90 and the thrust receiving portion 93 are induction hardened by rapid cooling by a cooling facility (not shown).

その結果、ピン部90及びスラスト受け部93には、図3に示すような焼入硬化層L1が形成される。すなわち、焼入硬化層L1は、スラスト受け部93から境界部92(フィレット)を介してピン部90に至るまで連続している。そして、対向する二つのスラスト受け部93とピン部90には、連続した焼入硬化層L1が形成されている。   As a result, a quench hardened layer L1 as shown in FIG. 3 is formed on the pin portion 90 and the thrust receiving portion 93. That is, the quench hardened layer L1 is continuous from the thrust receiving portion 93 to the pin portion 90 via the boundary portion 92 (fillet). A continuous quench hardened layer L1 is formed between the two opposed thrust receiving portions 93 and the pin portions 90.

換言すると、ピン部90、境界部92、及びスラスト受け部93には、表面から略一様の同程度の深さの連続した焼入硬化層L1が形成されている。焼入硬化層L1が略一様になる理由について、本発明者は以下のように考察した。   In other words, the pin portion 90, the boundary portion 92, and the thrust receiving portion 93 are formed with a continuous hardened hardened layer L1 having a substantially uniform depth from the surface. The present inventors have considered the reason why the quench hardened layer L1 is substantially uniform as follows.

断面が菱形の近接対向部2a(2b、3a、3b)は、ピン部90側の小径部側対向部10の大半の部位がコア8aによって覆われている。そのため、小径部側対向部10は、コア8aで覆われた大半の部位が磁気遮蔽されて、最短距離で近接対向するピン部90の表面に磁気(磁力線)が届かない。すなわち、ピン部90の軸方向の中央部分には、小径部側対向部10から最短距離で磁気が届かない。   In the proximity opposing portion 2a (2b, 3a, 3b) having a rhombic cross section, the core 8a covers most of the small-diameter portion-side opposing portion 10 on the pin portion 90 side. For this reason, most of the small-diameter portion-side facing portion 10 covered with the core 8a is magnetically shielded, so that magnetism (lines of magnetic force) does not reach the surface of the pin portion 90 that is close to and facing the shortest distance. That is, magnetism does not reach the central portion in the axial direction of the pin portion 90 from the small-diameter portion-side facing portion 10 at the shortest distance.

一方、小径部側対向部10の突出部11は、境界部92付近でピン部90(境界部92)と近接対向している。境界部92は、ピン部90よりも熱容量が大きいため、誘導加熱量が過大であっても昇温しにくい。   On the other hand, the protruding portion 11 of the small-diameter portion-side facing portion 10 is in close proximity to the pin portion 90 (boundary portion 92) near the boundary portion 92. Since the heat capacity of the boundary portion 92 is larger than that of the pin portion 90, the temperature does not easily rise even if the amount of induction heating is excessive.

また、突出部11とピン部90の間には、コア8aが存在しないため、突出部11から放出された磁気(磁力線)がピン部90の全領域に行き渡る。突出部11は、ピン部90の端部付近(境界部92側)に近接するように配置されており、ピン部90の中央部分からは相当に離間している。そのため、熱容量の比較的小さいピン部90の中央部分には、突出部11から放出されて拡がった磁気によって比較的少量の高周波誘導電流が励起される。さらに、過大に誘導加熱された境界部92側からピン部90の軸方向の中央側へ熱が伝達される。その結果、ピン部90の境界部92付近から中央側の部位に至るまで同程度に昇温する。すなわち、ピン部90の全領域が同様に昇温する。   Since the core 8 a does not exist between the protrusion 11 and the pin 90, the magnetism (lines of magnetic force) emitted from the protrusion 11 spreads over the entire area of the pin 90. The protruding portion 11 is arranged so as to be close to the vicinity of the end portion of the pin portion 90 (on the boundary portion 92 side), and is considerably apart from the center portion of the pin portion 90. Therefore, a relatively small amount of high-frequency induced current is excited in the central portion of the pin portion 90 having a relatively small heat capacity by the magnetism emitted and expanded from the protruding portion 11. Further, heat is transferred from the excessively inductively heated boundary portion 92 to the axial center of the pin portion 90. As a result, the temperature rises to the same extent from the vicinity of the boundary portion 92 of the pin portion 90 to the portion on the center side. That is, the temperature of the entire region of the pin portion 90 similarly rises.

また、スラスト受け部93には段部側対向部9が近接対向している。スラスト受け部93は、段部側対向部9に通電された高周波電流によって高周波誘導電流が励起され、焼入温度まで昇温する。   The step-side opposing portion 9 is in close proximity to the thrust receiving portion 93. In the thrust receiving portion 93, a high-frequency induction current is excited by a high-frequency current supplied to the step-side facing portion 9, and the thrust receiving portion 93 is heated to a quenching temperature.

コア8aによって、近接対向部2aから放出される磁気量を調整し、ピン部90、境界部92、及びスラスト受け部93に励起される高周波誘導電流を調整することも可能である。すなわち、薄板片15の積層数を調整することにより、コア8aの長さFを調整し、ピン部90、境界部92(フィレット)、及びスラスト受け部93が同程度に昇温するように高周波誘導加熱することができる。   The core 8a can adjust the amount of magnetism emitted from the proximity opposing portion 2a, and can adjust the high-frequency induction current excited in the pin portion 90, the boundary portion 92, and the thrust receiving portion 93. That is, the length F of the core 8a is adjusted by adjusting the number of laminations of the thin plate pieces 15, so that the pin portion 90, the boundary portion 92 (fillet), and the thrust receiving portion 93 are heated to the same degree. Induction heating can be used.

ここで、小径部側対向部10がコア8aで覆われていなければ、ピン部90は過熱状態になり、図9に示すように、ピン部90には不必要に深い焼入硬化層86が形成されてしまう。そこで、小径部側対向部10の一部を、図10に示すようなコア78の延長部78aで覆うと、ピン部90の軸方向の中央部分の加熱量が不足してしまい、図11に示すように、ピン部90の中央部分が浅くなった焼入硬化層87が形成されてしまう。   Here, if the small-diameter portion-side facing portion 10 is not covered with the core 8a, the pin portion 90 is in an overheated state, and as shown in FIG. Will be formed. Therefore, if a part of the small diameter portion side facing portion 10 is covered with the extension portion 78a of the core 78 as shown in FIG. 10, the amount of heating at the central portion in the axial direction of the pin portion 90 becomes insufficient. As shown in the figure, a hardened hardened layer 87 having a shallow central portion of the pin portion 90 is formed.

そこで、本発明者は、小径部側対向部10の大半の部位をコア8aで覆うと共に、小径部側対向部10の一部(突出部11)をピン部90が配置される側に突出させることに想到し、図3に示すようなピン部90からスラスト受け部93に至るまで略一様な深さの焼入硬化層L1を形成することができた。すなわち、突出部11から放出された磁気が、ピン部90の軸方向に拡散し、ピン部90の加熱不足が解消されたものと考えられる。   Thus, the present inventor covers most of the small-diameter portion-side facing portion 10 with the core 8a, and protrudes a part (projection 11) of the small-diameter portion facing portion 10 toward the side where the pin portion 90 is arranged. With this in mind, it was possible to form the quench hardened layer L1 having a substantially uniform depth from the pin portion 90 to the thrust receiving portion 93 as shown in FIG. That is, it is considered that the magnetism emitted from the protruding portion 11 diffuses in the axial direction of the pin portion 90, and the insufficient heating of the pin portion 90 is eliminated.

また、コア8aを多数の薄板片15で構成し、コア8aの長さF(大きさ)を変更することによって、ピン部90、スラスト受け部93等の加熱量を調整し、焼入硬化層L1の均一化を図ることもできる。   The core 8a is composed of a large number of thin pieces 15, and the length F (size) of the core 8a is changed to adjust the amount of heating of the pin portion 90, the thrust receiving portion 93, etc. L1 can be made uniform.

さらに、ピン部90(小径部)の加熱量の調整は、近接対向部2aの突出部11の突出量を変更することによって行うこともできる。すなわち、突出部11の突出量を加減することにより、図3に示すような略均一の深さの焼入硬化層L1を形成することができる。具体的には、以下のようである。   Further, the amount of heating of the pin portion 90 (small diameter portion) can be adjusted by changing the amount of protrusion of the protruding portion 11 of the proximity opposing portion 2a. That is, by adjusting the amount of protrusion of the protruding portion 11, it is possible to form the quench hardened layer L1 having a substantially uniform depth as shown in FIG. Specifically, it is as follows.

図6(a)に示すように、近接対向部2aの突出部11は、薄板片15(コア8a)よりもピン部90(小径部)が配置される側に突出量P1だけ突出している。この突出量P1の大きさは、任意に設定することができる。また、突出部11の対向幅R1の大きさも任意に設定することができる。対向幅R1は、突出部11のピン部90に対向する幅である。すなわち、突出量P1と対向幅R1の大きさを加減することによって、ピン部90を高周波焼入した際に、略一様な深さの焼入硬化層L1(図3)を形成することができる。   As shown in FIG. 6A, the protruding portion 11 of the proximity opposing portion 2a protrudes from the thin plate piece 15 (core 8a) by a protruding amount P1 on the side where the pin portion 90 (small diameter portion) is arranged. The magnitude of the protrusion amount P1 can be set arbitrarily. Further, the size of the opposing width R1 of the protruding portion 11 can also be set arbitrarily. The facing width R1 is the width of the protruding portion 11 facing the pin portion 90. That is, by adjusting the amount of the protrusion P1 and the size of the opposing width R1, it is possible to form the quench hardened layer L1 (FIG. 3) having a substantially uniform depth when the pin portion 90 is induction hardened. it can.

例えば、図6(b)に示すように、薄板片15の代わりに薄板片16でコア8aを構成することにより、突出部11よりも突出量が小さい(少ない)突出部11aを形成することができる。突出部11aの突出量P2及び対向幅R2は、図6(a)の突出量P1及び対向幅R1よりも小さい。そのため、薄板片16を使用すると、ピン部90(小径部)の加熱量は比較的少なくなる。   For example, as shown in FIG. 6B, by forming the core 8 a by the thin plate pieces 16 instead of the thin plate pieces 15, it is possible to form the protrusions 11 a having a smaller (smaller) protrusion amount than the protrusions 11. it can. The protruding amount P2 and the opposing width R2 of the protruding portion 11a are smaller than the protruding amount P1 and the opposing width R1 of FIG. Therefore, when the thin plate piece 16 is used, the heating amount of the pin portion 90 (small diameter portion) becomes relatively small.

逆に、図6(c)に示すように、薄板片17でコア8aを構成することにより、突出部11よりも突出量が大きい(多い)突出部11bを形成することもできる。突出部11bの突出量P3及び対向幅R3は、図6(a)の突出量P1及び対向幅R1よりも大きい。そのため、薄板片17を使用すると、ピン部90(小径部)の加熱量は比較的多くなる。   Conversely, as shown in FIG. 6C, by forming the core 8 a with the thin plate pieces 17, it is possible to form the protruding portion 11 b having a larger (more) protruding amount than the protruding portion 11. The protruding amount P3 and the opposing width R3 of the protruding portion 11b are larger than the protruding amount P1 and the opposing width R1 of FIG. Therefore, when the thin plate piece 17 is used, the heating amount of the pin portion 90 (small diameter portion) becomes relatively large.

本実施形態では、突出部11を、菱形の横断面の鋭角部分で構成した例を示したが、代わりに、図7に示すように、加熱コイル21の近接対向部20a、20bの横断面が正方形又は長方形で、小径部側対向部30における段部側対向部29との接続部分のみがピン部90側に突出していてもよい。すなわち、突出部31が、コア28a、28bよりもピン部90側に突出するように構成されていれば、近接対向部20a、20bの横断面の形状は任意に設定することができる。   In the present embodiment, an example is shown in which the protruding portion 11 is configured by an acute angle portion of a rhombic cross section, but instead, as shown in FIG. 7, the cross section of the proximity opposing portions 20a and 20b of the heating coil 21 is Only the connection portion of the small-diameter portion-side facing portion 30 with the step-side facing portion 29 may be square or rectangular, and may project toward the pin portion 90. That is, if the protruding portion 31 is configured to protrude more toward the pin portion 90 than the cores 28a and 28b, the cross-sectional shape of the proximity opposing portions 20a and 20b can be arbitrarily set.

1 加熱コイル
2a、2b 近接対向部
3a、3b 近接対向部
8a、8b コア(磁性体)
9 近接対向部の段部側対向部
10 近接対向部の小径部側対向部
11 近接対向部の突出部
90 ピン部(小径部)
91a、91b 大径部
93 スラスト受け部(段部)
W クランクシャフト(熱処理対象物)
1 Heating coil 2a, 2b Proximity facing portion 3a, 3b Proximity facing portion 8a, 8b Core (magnetic material)
9 Step-side opposing portion of proximity opposing portion 10 Small-diameter portion opposing portion 11 of proximity opposing portion Protruding portion 90 of proximity opposing portion Pin portion (small-diameter portion)
91a, 91b Large diameter part 93 Thrust receiving part (step part)
W Crankshaft (object for heat treatment)

Claims (3)

大径部と小径部を有し、当該大径部と小径部の間に段部を有する熱処理対象物における、前記段部と小径部に高周波誘導電流を励起させる高周波誘導加熱用の加熱コイルであって、
前記段部と小径部に近接対向する近接対向部を有し、
前記近接対向部は、段部に対向する段部側対向部と、小径部に対向する小径部側対向部を有し、前記段部側対向部と小径部側対向部は連続しており、
前記近接対向部には磁性体が設けられており、
前記段部側対向部は、磁性体で覆われておらず、
前記小径部側対向部における段部側対向部と連続する側の部位が、磁性体よりも熱処理対象物の小径部が配置される側に突出した突出部を構成していることを特徴とする高周波誘導加熱用の加熱コイル。
A heating coil for high-frequency induction heating that has a large-diameter portion and a small-diameter portion, and in a heat treatment target having a step between the large-diameter portion and the small-diameter portion, excites a high-frequency induction current in the step and the small-diameter portion. So,
Having a proximity opposing portion opposing the step portion and the small diameter portion,
The proximity opposing portion has a step-side opposing portion opposing the step portion and a small-diameter portion opposing portion opposing the small-diameter portion, and the step-side opposing portion and the small-diameter portion opposing portion are continuous,
A magnetic body is provided in the proximity opposing portion,
The step side facing portion is not covered with a magnetic material,
A portion of the small diameter portion facing portion which is continuous with the step portion facing portion constitutes a protruding portion projecting to a side where the small diameter portion of the object to be heat-treated is arranged than a magnetic material. Heating coil for high frequency induction heating.
磁性体は、複数又は多数の薄板片が積層して構成されたものであることを特徴とする請求項1に記載の高周波誘導加熱用の加熱コイル。   The heating coil for high-frequency induction heating according to claim 1, wherein the magnetic body is formed by laminating a plurality or a plurality of thin plate pieces. 前記熱処理対象物はクランクシャフトであり、前記段部はスラスト受け部であり、前記小径部はピン部又はジャーナル部であることを特徴とする請求項1又は2に記載の高周波誘導加熱用の加熱コイル。   The heating for high frequency induction heating according to claim 1 or 2, wherein the object to be heat-treated is a crankshaft, the step portion is a thrust receiving portion, and the small diameter portion is a pin portion or a journal portion. coil.
JP2018151669A 2018-08-10 2018-08-10 Heating coil for high frequency induction heating Active JP7287636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151669A JP7287636B2 (en) 2018-08-10 2018-08-10 Heating coil for high frequency induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151669A JP7287636B2 (en) 2018-08-10 2018-08-10 Heating coil for high frequency induction heating

Publications (2)

Publication Number Publication Date
JP2020027732A true JP2020027732A (en) 2020-02-20
JP7287636B2 JP7287636B2 (en) 2023-06-06

Family

ID=69620298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151669A Active JP7287636B2 (en) 2018-08-10 2018-08-10 Heating coil for high frequency induction heating

Country Status (1)

Country Link
JP (1) JP7287636B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351878A (en) * 2020-03-05 2021-09-07 丰田自动车株式会社 Method for manufacturing induction heating coil

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4742036Y1 (en) * 1968-01-16 1972-12-19
JPH04284390A (en) * 1991-03-12 1992-10-08 Fuji Denshi Kogyo Kk Induction hardening coil for crankshaft
JPH04124796U (en) * 1991-04-26 1992-11-13 富士電子工業株式会社 Semi-open saddle type high frequency heating coil for crankshaft R grilling
JPH05140634A (en) * 1991-11-19 1993-06-08 Fuji Denshi Kogyo Kk High-frequency quenching method
JPH07278673A (en) * 1994-04-04 1995-10-24 Fuji Denshi Kogyo Kk Quenching coil for crank shaft
JP2002226911A (en) * 2001-02-01 2002-08-14 Denki Kogyo Co Ltd Induction heating coil for hardening crank shaft
JP2006147152A (en) * 2004-11-16 2006-06-08 Denki Kogyo Co Ltd Semi-open saddle type high frequency induction heating coil
JP2007162104A (en) * 2005-12-16 2007-06-28 Denki Kogyo Co Ltd High-frequency induction-heating coil
US20090308501A1 (en) * 2008-06-13 2009-12-17 Ajax Tocco Magnethermic Corporation Improved undercut crankshaft hardening coil
CN102045908A (en) * 2009-10-20 2011-05-04 富士电子工业株式会社 High frequency heating coil and heating method for workpiece
JP2013023725A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp Induction hardening method of crankshaft and high-frequency induction heating coil
JP2016051670A (en) * 2014-09-02 2016-04-11 富士電子工業株式会社 Induction heating coil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4742036Y1 (en) * 1968-01-16 1972-12-19
JPH04284390A (en) * 1991-03-12 1992-10-08 Fuji Denshi Kogyo Kk Induction hardening coil for crankshaft
JPH04124796U (en) * 1991-04-26 1992-11-13 富士電子工業株式会社 Semi-open saddle type high frequency heating coil for crankshaft R grilling
JPH05140634A (en) * 1991-11-19 1993-06-08 Fuji Denshi Kogyo Kk High-frequency quenching method
JPH07278673A (en) * 1994-04-04 1995-10-24 Fuji Denshi Kogyo Kk Quenching coil for crank shaft
JP2002226911A (en) * 2001-02-01 2002-08-14 Denki Kogyo Co Ltd Induction heating coil for hardening crank shaft
JP2006147152A (en) * 2004-11-16 2006-06-08 Denki Kogyo Co Ltd Semi-open saddle type high frequency induction heating coil
JP2007162104A (en) * 2005-12-16 2007-06-28 Denki Kogyo Co Ltd High-frequency induction-heating coil
US20090308501A1 (en) * 2008-06-13 2009-12-17 Ajax Tocco Magnethermic Corporation Improved undercut crankshaft hardening coil
CN102045908A (en) * 2009-10-20 2011-05-04 富士电子工业株式会社 High frequency heating coil and heating method for workpiece
JP2013023725A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp Induction hardening method of crankshaft and high-frequency induction heating coil
JP2016051670A (en) * 2014-09-02 2016-04-11 富士電子工業株式会社 Induction heating coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351878A (en) * 2020-03-05 2021-09-07 丰田自动车株式会社 Method for manufacturing induction heating coil
CN113351878B (en) * 2020-03-05 2023-11-24 丰田自动车株式会社 Method for manufacturing induction heating coil

Also Published As

Publication number Publication date
JP7287636B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP2020027732A (en) Heating coil for heating for high frequency induction heating
JP6282294B2 (en) Inductors for single-shot induction heating of composite workpieces
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
JP6586924B2 (en) Induction hardening method of camshaft
JP2000068043A (en) Induction heating coil of tapered body
JP2008150661A (en) Heating coil for tempering
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
JP5570147B2 (en) Heating coil and induction heating device
JP5390868B2 (en) Induction heating coil
JP3548524B2 (en) High frequency induction heating coil
JPH04255690A (en) High frequency induction heating coil
JPH07249484A (en) Heating inductor with lead contact
JP5010434B2 (en) Induction hardening method and apparatus for crankshaft
JP4367770B2 (en) Induction heating method and induction heating coil
WO2019225596A1 (en) Heating coil, heating apparatus and manufacturing method of workpiece
JP6445282B2 (en) Induction heating coil
JP7082793B2 (en) Spacer for the heating coil of the high frequency induction heating device
JP3140986B2 (en) Induction hardening coil
JP6290714B2 (en) Camshaft induction heating apparatus and camshaft induction heating method
JP2004043919A (en) Induction heating tempering apparatus for cylindrical member and cylinder block having variation in thickness
JP3059165B1 (en) Heating coil for induction hardening of a cylindrical body having an opening on the outer peripheral surface and quenching and cooling method
JPH10324910A (en) Induction hardening coil
JP3548523B2 (en) High frequency induction heating coil
JP5886992B2 (en) Induction heating quenching apparatus and induction heating quenching method
JPH10302955A (en) Induction heating quenching device to form spot-patterned quenched layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7287636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150