JP2020027025A - Digital oscilloscope, and control method of the same - Google Patents
Digital oscilloscope, and control method of the same Download PDFInfo
- Publication number
- JP2020027025A JP2020027025A JP2018151850A JP2018151850A JP2020027025A JP 2020027025 A JP2020027025 A JP 2020027025A JP 2018151850 A JP2018151850 A JP 2018151850A JP 2018151850 A JP2018151850 A JP 2018151850A JP 2020027025 A JP2020027025 A JP 2020027025A
- Authority
- JP
- Japan
- Prior art keywords
- trigger
- threshold
- digital
- digital oscilloscope
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
Description
本開示は、デジタルオシロスコープ及びその制御方法に関する。 The present disclosure relates to a digital oscilloscope and a control method thereof.
従来、デジタルトリガ方式のデジタルオシロスコープが知られている。 Conventionally, a digital trigger type digital oscilloscope is known.
デジタルトリガ方式は、入力信号を所定のサンプリングクロックでA/D変換したデジタルデータを2値化し、2値化したデータの変化に基づいてトリガを発生させる。そのため、トリガ判定の時間分解能はサンプリングクロックの周期となる。 In the digital trigger method, digital data obtained by A / D conversion of an input signal with a predetermined sampling clock is binarized, and a trigger is generated based on a change in the binarized data. Therefore, the time resolution of the trigger determination is the cycle of the sampling clock.
しかしながら、入力信号はサンプリングクロックとは非同期であるため、真のトリガ点は、サンプル点の間の時間となり得る。ここで、「真のトリガ点」とは、入力信号がトリガ閾値を超える時間である。 However, since the input signal is asynchronous with the sampling clock, the true trigger point can be the time between sample points. Here, the “true trigger point” is a time when the input signal exceeds the trigger threshold.
入力信号の波形をデジタルオシロスコープの表示器に描画する際、トリガが発生した時間であるトリガ発生点と真のトリガ点との時間差を算出し、時間差の分だけずらして表示することにより、正確な位置に波形を描画することができる。 When drawing the waveform of the input signal on the display of the digital oscilloscope, the time difference between the trigger point, which is the time at which the trigger occurred, and the true trigger point is calculated, and displayed by shifting by the time difference. Waveforms can be drawn at positions.
例えば、特許文献1には、サンプル点の間に補間によってさらなるサンプル点を生成して、真のトリガ点を算出する方法が開示されている。
For example,
また、特許文献2には、トリガ発生点付近のデータを等式に当てはめ、その等式を解くことで真のトリガ点を算出する方法が開示されている。
特許文献1及び特許文献2に記載されている真のトリガ点を算出する方法は、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏るという課題があった。
The method of calculating a true trigger point described in
そこで、本開示は、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能なデジタルオシロスコープ及びその制御方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a digital oscilloscope capable of preventing a calculated true trigger point from being biased to a specific value when a slew rate of an input signal is slow, and to provide a control method thereof. I do.
幾つかの実施形態に係るデジタルオシロスコープは、アナログ入力信号をデジタルデータに変換するADコンバータと、ユーザに設定されたトリガ閾値を変動させて変動閾値を生成する閾値生成回路と、前記デジタルデータと前記変動閾値とを比較して2値信号を出力するデジタルコンパレータと、前記2値信号に基づいてトリガ信号を出力するトリガ出力回路と、前記トリガ信号が出力された前後のタイミングの前記デジタルデータと、前記変動閾値とに基づいて、真のトリガ点を算出する時間測定回路と、を備える。このようなデジタルオシロスコープによれば、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能である。より具体的には、閾値生成回路は、ユーザに設定されたトリガ閾値を変動させて変動閾値を生成し、時間測定回路は、トリガ信号が出力された前後のタイミングのデジタルデータと、変動閾値とに基づいて、真のトリガ点を算出する。従って、トリガ閾値付近において入力信号のスルーレートが遅く、トリガ信号が出力された前後のタイミングのデジタルデータが同じ値の場合であっても、算出された真のトリガ点が特定の値に偏ることがない。 A digital oscilloscope according to some embodiments includes an AD converter that converts an analog input signal into digital data, a threshold generation circuit that varies a trigger threshold set by a user to generate a variation threshold, the digital data and the digital data. A digital comparator that outputs a binary signal by comparing with a variation threshold, a trigger output circuit that outputs a trigger signal based on the binary signal, and the digital data before and after the trigger signal is output, A time measurement circuit for calculating a true trigger point based on the variation threshold. According to such a digital oscilloscope, it is possible to prevent the calculated true trigger point from being biased to a specific value when the slew rate of the input signal is low. More specifically, the threshold generation circuit generates a fluctuation threshold by changing a trigger threshold set by a user, and the time measurement circuit generates digital data at timings before and after the trigger signal is output, and a fluctuation threshold. , A true trigger point is calculated. Therefore, even if the slew rate of the input signal is slow near the trigger threshold and the digital data before and after the output of the trigger signal has the same value, the calculated true trigger point is biased to a specific value. There is no.
一実施形態に係るデジタルオシロスコープおいて、前記閾値生成回路は、乱数を生成する乱数生成回路を含み、前記乱数を用いて、前記トリガ閾値をランダムに変動させて前記変動閾値としてのランダム閾値を生成してもよい。このように、乱数を用いることにより、閾値生成回路は、トリガ閾値をランダムに変動させることができる。 In the digital oscilloscope according to one embodiment, the threshold generation circuit includes a random number generation circuit that generates a random number, and uses the random number to randomly vary the trigger threshold to generate a random threshold as the variation threshold. May be. As described above, by using the random numbers, the threshold value generation circuit can randomly change the trigger threshold value.
一実施形態に係るデジタルオシロスコープおいて、前記閾値生成回路は、第1加算器をさらに含み、前記第1加算器は、前記トリガ閾値に基づく値に前記乱数を加算して、前記トリガ閾値をランダムに変動させてもよい。このように、第1加算器がトリガ閾値に基づく値に乱数を加算することにより、閾値生成回路は、トリガ閾値を容易にランダムに変動させることができる。 In the digital oscilloscope according to one embodiment, the threshold generation circuit further includes a first adder, and the first adder adds the random number to a value based on the trigger threshold, and sets the trigger threshold at random. May be varied. As described above, the first adder adds the random number to the value based on the trigger threshold, so that the threshold generation circuit can easily change the trigger threshold at random.
一実施形態に係るデジタルオシロスコープおいて、前記第1加算器は、前記トリガ閾値に、前記デジタルデータのLSB(Least Significant Bit)よりも小さい前記乱数を加算して、前記トリガ閾値をランダムに変動させてもよい。このように、デジタルデータのLSBよりも小さい乱数を加算することにより、デジタルコンパレータが出力する2値信号が乱数の影響を受けないようにすることができる。 In the digital oscilloscope according to one embodiment, the first adder adds the random number smaller than an LSB (Least Significant Bit) of the digital data to the trigger threshold, and randomly varies the trigger threshold. You may. Thus, by adding a random number smaller than the LSB of the digital data, the binary signal output by the digital comparator can be prevented from being affected by the random number.
一実施形態に係るデジタルオシロスコープおいて、前記第1加算器は、前記トリガ閾値から前記デジタルデータのLSBよりも小さい値を切り捨てた値に、前記デジタルデータのLSBよりも小さい前記乱数を加算して、前記トリガ閾値をランダムに変動させてもよい。このように、デジタルデータのLSBよりも小さい値を切り捨てた値に、デジタルデータのLSBよりも小さい乱数を加算することにより、デジタルコンパレータが出力する2値信号が乱数の影響を受けないようにすることができる。 In the digital oscilloscope according to one embodiment, the first adder adds the random number smaller than the LSB of the digital data to a value obtained by truncating a value smaller than the LSB of the digital data from the trigger threshold. , The trigger threshold may be varied randomly. As described above, by adding a random number smaller than the LSB of the digital data to a value obtained by truncating the value smaller than the LSB of the digital data, the binary signal output by the digital comparator is not affected by the random number. be able to.
一実施形態に係るデジタルオシロスコープおいて、前記第1加算器は、前記トリガ閾値から下位数ビットを切り捨て、切り捨てた前記下位数ビットに対応する前記乱数を加算して、前記トリガ閾値をランダムに変動させてもよい。これにより、閾値生成回路は、トリガ閾値を容易にランダムに変動させることができる。 In the digital oscilloscope according to one embodiment, the first adder truncates lower-order bits from the trigger threshold, adds the random number corresponding to the truncated lower-order bits, and randomly varies the trigger threshold. May be. Thus, the threshold generation circuit can easily and randomly change the trigger threshold.
一実施形態に係るデジタルオシロスコープおいて、前記第1加算器は、前記トリガ閾値の下位数ビットに対応する前記乱数を加算して、前記トリガ閾値をランダムに変動させてもよい。これにより、閾値生成回路は、トリガ閾値を容易にランダムに変動させることができる。 In the digital oscilloscope according to one embodiment, the first adder may add the random number corresponding to lower-order bits of the trigger threshold and vary the trigger threshold randomly. Thus, the threshold generation circuit can easily and randomly change the trigger threshold.
一実施形態に係るデジタルオシロスコープおいて、第2加算器をさらに備え、前記第2加算器は、前記時間測定回路が算出した前記真のトリガ点をランダムに変動させてもよい。このように、真のトリガ点をランダムに変動させることにより、細かい時間分解能でトリガ点を変動させることができる。 The digital oscilloscope according to one embodiment may further include a second adder, and the second adder may randomly change the true trigger point calculated by the time measurement circuit. As described above, by randomly varying the true trigger point, the trigger point can be varied with fine time resolution.
一実施形態に係るデジタルオシロスコープおいて、前記第2加算器は、乱数を用いて前記真のトリガ点をランダムに変動させてもよい。これにより、真のトリガ点を容易にランダムに変動させることができる。 In the digital oscilloscope according to one embodiment, the second adder may randomly vary the true trigger point using a random number. This makes it possible to easily change the true trigger point randomly.
一実施形態に係るデジタルオシロスコープおいて、前記トリガ出力回路から前記トリガ信号を受け取ると、その時点の前記変動閾値をラッチして保持するラッチ回路を更に備えてもよい。これにより、トリガ発生直後に、次のデータ取り込みの際の変動閾値を生成するための準備をすることができる。 The digital oscilloscope according to one embodiment may further include a latch circuit that, upon receiving the trigger signal from the trigger output circuit, latches and holds the fluctuation threshold at that time. Thus, immediately after the trigger is generated, it is possible to prepare for generating a fluctuation threshold value at the time of the next data capture.
一実施形態に係るデジタルオシロスコープおいて、前記デジタルデータに基づく波形を表示する表示器をさらに備えてもよい。これにより、ユーザが見やすい表示波形を表示器に表示することができる。 The digital oscilloscope according to an embodiment may further include a display for displaying a waveform based on the digital data. Thus, a display waveform that is easy for the user to see can be displayed on the display.
一実施形態に係るデジタルオシロスコープおいて、前記デジタルオシロスコープは、ランダムサンプリング方式で等価サンプルを行うデジタルオシロスコープであってよい。 In the digital oscilloscope according to one embodiment, the digital oscilloscope may be a digital oscilloscope that performs equivalent sampling by a random sampling method.
一実施形態に係るデジタルオシロスコープおいて、前記デジタルオシロスコープは、時間軸の表示分解能がサンプリング分解能よりも細かくなるように拡大表示するデジタルオシロスコープであってよい。 In the digital oscilloscope according to one embodiment, the digital oscilloscope may be a digital oscilloscope that enlarges and displays the display so that the display resolution on the time axis is smaller than the sampling resolution.
幾つかの実施形態に係るデジタルオシロスコープの制御方法は、アナログ入力信号をデジタルデータに変換するステップと、ユーザに設定されたトリガ閾値を変動させて変動閾値を生成するステップと、前記デジタルデータと前記変動閾値とを比較して2値信号を出力するステップと、前記2値信号に基づいてトリガ信号を出力するステップと、前記トリガ信号が出力された前後のタイミングの前記デジタルデータと、前記変動閾値とに基づいて、真のトリガ点を算出するステップと、を含む。このようなデジタルオシロスコープの制御方法によれば、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能である。より具体的には、ユーザに設定されたトリガ閾値をランダムに変動させてランダム閾値を生成するステップと、トリガ信号が出力された前後のタイミングのデジタルデータと、ランダム閾値とに基づいて、真のトリガ点を算出するステップとを含むことにより、トリガ閾値付近において入力信号のスルーレートが遅く、トリガ信号が出力された前後のタイミングのデジタルデータが同じ値の場合であっても、算出された真のトリガ点が特定の値に偏ることがないようにすることができる。 A method for controlling a digital oscilloscope according to some embodiments includes: converting an analog input signal into digital data; generating a variation threshold by varying a trigger threshold set by a user; Outputting a binary signal by comparing with a variation threshold; outputting a trigger signal based on the binary signal; the digital data before and after the output of the trigger signal; Calculating a true trigger point based on According to such a control method of the digital oscilloscope, it is possible to prevent the calculated true trigger point from being biased to a specific value when the slew rate of the input signal is low. More specifically, a step of generating a random threshold by randomly varying a trigger threshold set by the user, digital data before and after the trigger signal is output, and a true threshold based on the random threshold Calculating the trigger point, the slew rate of the input signal is low near the trigger threshold, and even if the digital data before and after the output of the trigger signal has the same value, the calculated true value is obtained. Can be prevented from being biased to a specific value.
本開示によれば、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能なデジタルオシロスコープ及びその制御方法を提供することができる。 According to the present disclosure, it is possible to provide a digital oscilloscope capable of preventing a calculated true trigger point from being biased to a specific value when a slew rate of an input signal is slow, and a control method thereof.
(比較例)
最初に、比較例に係るデジタルトリガ回路について説明し、その問題点について述べる。
(Comparative example)
First, a digital trigger circuit according to a comparative example will be described, and its problems will be described.
図1は、比較例に係るデジタルトリガ回路600の概略構成を示す図である。デジタルトリガ回路600は、デジタルコンパレータ610と、トリガ出力回路620と、トリガメモリ630と、時間測定回路640とを備える。
FIG. 1 is a diagram illustrating a schematic configuration of a
デジタルトリガ回路600は、ADコンバータ(ADC)20から、サンプルデータを取得する。ここで、サンプルデータとは、ADコンバータ20が、アナログ入力信号を所定のサンプリングクロックでデジタルデータに変換したものを意味する。
The
ADコンバータ20は、サンプルデータをデータ取込処理回路にも出力している。データ取込処理回路は、サンプルデータをメモリに取り込む回路である。データ取込処理回路の後段の回路は、メモリに取り込まれたデータを元に、描画などの二次処理を行う。
The
デジタルトリガ回路600は、トリガ発生点をデータ取込処理回路などへ出力する。データ取込処理回路は、トリガ発生点に基づいて、所定の時間範囲のサンプルデータがメモリに格納されるように取り込む。また、データ取込処理回路は、トリガ発生点に基づいて、メモリに格納したサンプルデータの制御を行う。
The
デジタルトリガ回路600は、真のトリガ点を算出すると、データ処理回路に真のトリガ点を出力する。データ処理回路は、トリガ発生点と真のトリガ点との時間差の分だけ表示用データをずらす。
After calculating the true trigger point, the
デジタルコンパレータ610は、ADコンバータ20から受け取るサンプルデータと、トリガ閾値とを比較し、比較結果に応じて2値化して2値信号を出力する。トリガ閾値はユーザの操作によって設定される値である。
The
デジタルコンパレータ610は、例えば、サンプルデータがトリガ閾値より大きい場合に「1」を出力し、サンプルデータがトリガ閾値以下である場合に「0」を出力する。
For example, the
トリガ出力回路620は、デジタルコンパレータ610から受け取る2値信号に基づいて、トリガ信号を出力する。トリガ出力回路620は、例えば、デジタルコンパレータ610から受け取る信号が「0」から「1」に変わる立ち上がりエッジで、トリガ信号を出力する。トリガ出力回路620は、トリガメモリ630と、時間測定回路640と、データ取込処理回路などとに、トリガ信号を出力する。トリガ信号が出力される時間が、トリガ発生点に対応する。
The
トリガメモリ630は、ADコンバータ20から受け取るサンプルデータを、所定のデータ数だけ記憶している。トリガメモリ630は、例えば、リングバッファ状のメモリである。トリガメモリ630は、トリガ出力回路620からトリガ信号を受信すると、トリガ発生点の前後数点のサンプルデータを時間測定回路640に出力する。
The
時間測定回路640は、トリガメモリ630から受けとったトリガ発生点の前後数点のサンプルデータと、トリガ閾値とに基づいて、真のトリガ点を算出する。時間測定回路640は、算出した真のトリガ点を、データ処理回路へ出力する。
The
図2を参照して、時間測定回路640が真のトリガ点を算出する様子の一例を説明する。図2に示す例においては、トリガメモリ630は、トリガ発生点前後の4つのサンプルデータを時間測定回路640に出力している。図2に示す例においては、4つのサンプルデータは、サンプルN−2、サンプルN−1、サンプルN及びサンプルN+1である。サンプルNは、トリガ発生点におけるサンプルデータである。サンプルN−2及びサンプルN−1は、トリガ発生点の前におけるサンプルデータである。サンプルN+1は、トリガ発生点の後におけるサンプルデータである。
An example of how the
図2に示す例においては、時間測定回路640は、4つのサンプルデータを通る3次式Fと、トリガ閾値との交点を算出することにより、真のトリガ点を算出している。図2において、Tsはサンプリングクロックの間隔を示し、Ttはトリガ発生点から真のトリガ点までの時間を示す。
In the example shown in FIG. 2, the
真のトリガ点は、サンプルN−1とサンプルNとの間にあるため、Ttは、0<TtTsの範囲の値となる。サンプリングクロックと入力信号とが非同期の場合、Ttは、0<TtTsの範囲で、任意の値をとる。 Since the true trigger point is between sample N-1 and sample N, Tt takes a value in the range of 0 <TtTs. When the sampling clock and the input signal are asynchronous, Tt takes an arbitrary value in the range of 0 <TtTs.
図3に、ADコンバータ20からデータ取込処理回路に出力されたサンプルデータが、データ取り込み用のメモリに格納されている様子の一例を示す。図3は、M回目〜M+3回目のデータ取り込み時に格納されたサンプルデータの様子を示す。
FIG. 3 shows an example in which the sample data output from the
図3に示す例において、トリガ発生直後のサンプルデータをサンプルNとする。また、M回目〜M+3回目のTtを、それぞれ、Ts、0.5×Ts、0.75×Ts、0.25×Tsとする。 In the example shown in FIG. 3, the sample data immediately after the occurrence of the trigger is defined as sample N. Further, Tt of the M-th to M + 3 times is set to Ts, 0.5 × Ts, 0.75 × Ts, and 0.25 × Ts, respectively.
図4に、図3のデータを真のトリガ点を基準として、表示器に表示させた例を示す。すなわち、図4に示す例では、図3のデータを、トリガ発生点から真のトリガ点までの時間を示すTtに基づいてずらしている。図4において、丸、四角、三角及び星の記号は、それぞれ、図3に示すM回目、M+1回目、M+2回目及びM+3回目の取り込みデータに対応する。 FIG. 4 shows an example in which the data of FIG. 3 is displayed on a display with reference to a true trigger point. That is, in the example shown in FIG. 4, the data of FIG. 3 is shifted based on Tt indicating the time from the trigger generation point to the true trigger point. In FIG. 4, symbols of circle, square, triangle, and star correspond to the M-th, M + 1-th, M + 2-th, and M + 3-th acquisition data shown in FIG. 3, respectively.
表示器が、一波形ずつ表示するモードの場合は、それぞれの回の取り込みデータのみが表示される。すなわち、丸、四角、三角及び星のいずれか一つのデータのみが表示される。表示器が、重ね書きモードの場合は、全ての取り込みデータが表示される。図4は、重ね書きモードで表示されている例を示したものである。 When the display is in the mode of displaying one waveform at a time, only the captured data of each time is displayed. That is, only data of any one of a circle, a square, a triangle, and a star is displayed. When the display is in the overwriting mode, all the captured data is displayed. FIG. 4 shows an example of the display in the overwriting mode.
ランダムサンプリング方式で等価サンプルした場合は、図5に示すように、取り込まれたサンプルデータは、等価サンプル用のメモリのTtの時間に対応したスロットに格納される。 When equivalent sampling is performed by the random sampling method, as shown in FIG. 5, the taken sample data is stored in a slot corresponding to the time Tt in the memory for equivalent sampling.
ここで、ランダムサンプリング方式とは、サンプリングクロックと入力信号が非同期であるため、トリガ発生点から真のトリガ点までの時間が変動し、サンプルデータが波形ごとに異なるスロットに格納される方式である。等価サンプルとは、サンプリング周期よりも短い周期で設けられたスロットにサンプルデータが格納されることにより、等価的に高いサンプリング周波数でデータを取得しているように見せることを意味する。例えば、サンプルデータを格納するスロットの時間間隔をサンプリング周期の4分の1とすると、等価的にサンプリング周波数が4倍になったように見える。 Here, the random sampling method is a method in which the time from the trigger generation point to the true trigger point fluctuates because the sampling clock and the input signal are asynchronous, and the sample data is stored in different slots for each waveform. . The equivalent sample means that the sample data is stored in a slot provided at a cycle shorter than the sampling cycle, so that it looks as if data is acquired at an equivalently higher sampling frequency. For example, if the time interval of the slot storing the sample data is set to 4 of the sampling period, it appears that the sampling frequency is equivalently quadrupled.
図5は、スロットの時間間隔がサンプリング周期の4分の1の場合を示したものである。図5において、丸、四角、三角及び星の記号は、それぞれ、図3に示すM回目、M+1回目、M+2回目及びM+3回目の取り込みデータに対応する。 FIG. 5 shows a case where the time interval between the slots is one quarter of the sampling period. In FIG. 5, symbols of a circle, a square, a triangle, and a star respectively correspond to the M-th, M + 1-th, M + 2-th, and M + 3-th acquisition data shown in FIG.
図5に示すメモリに格納されている値を表示器に表示させると、図4に示すように表示される。 When the value stored in the memory shown in FIG. 5 is displayed on the display, it is displayed as shown in FIG.
続いて、図6〜図10を参照して、比較例に係るデジタルトリガ回路600の問題点について説明する。
Subsequently, a problem of the
図6に、トリガ閾値付近において、入力信号のスルーレートが極めて遅い場合の波形の一例を示す。図6に示す例では、トリガ閾値付近において、入力信号は、1サンプル毎に1LSB(Least Significant Bit)ずつしか変化していない。この場合、トリガ発生点付近のサンプルデータ、すなわち、サンプルN−2〜サンプルN+1の値は、トリガがかかる度に同じデータとなる。その結果、Ttも毎回Tt=Tsとなり、Ttが固定値となってしまう。 FIG. 6 shows an example of a waveform when the slew rate of the input signal is extremely low near the trigger threshold. In the example shown in FIG. 6, near the trigger threshold, the input signal changes only by 1 LSB (Least Significant Bit) per sample. In this case, the sample data near the trigger generation point, that is, the values of sample N−2 to sample N + 1 become the same data every time the trigger is applied. As a result, Tt also becomes Tt = Ts every time, and Tt becomes a fixed value.
この場合、データ取り込み用のメモリに格納されているデータは、図7に示すようになる。すなわち、M回目〜M+3回目のデータ取り込み時のTtが、全てTsとなる。 In this case, the data stored in the data capturing memory is as shown in FIG. That is, Tt at the time of the M-th to (M + 3) -th data fetches is all Ts.
図8に、図7のデータを真のトリガ点を基準として、表示器に表示させた例を示す。図8は、M回目〜M+3回目のデータを重ね書きモードで表示したものであるが、どの回の取り込みデータもTt=Tsであるため、全ての回のデータが同じ点に重なって表示されている。 FIG. 8 shows an example in which the data of FIG. 7 is displayed on a display with reference to a true trigger point. FIG. 8 shows the data of the Mth to M + 3 times in the overwriting mode. However, since the captured data of all the times is Tt = Ts, the data of all the times are displayed overlapping on the same point. I have.
図9に、図7に示したようなデータを等価サンプルして、サンプリング周期の4分の1の周期で格納した場合の様子を示す。この場合、Tt=Tsのスロットにのみ順次上書きされていくため、最後の取り込みデータのみが残ることになる。具体的には、図9に示す例では、M+3回目の取り込みデータのみが、Tt=Tsのスロットに残る。 FIG. 9 shows a state in which the data as shown in FIG. 7 is equivalently sampled and stored at a quarter of the sampling period. In this case, since only the slots of Tt = Ts are sequentially overwritten, only the last captured data remains. Specifically, in the example shown in FIG. 9, only the M + 3th captured data remains in the slot of Tt = Ts.
図10に、図9のデータを真のトリガ点を基準として、表示器に表示させた例を示す。この場合、最後の取り込みデータのみが表示される。図9に示す例においては、M+3回目の取り込みデータが最後の取り込みデータであるため、図10には、星の記号で示すデータのみが表示されている。 FIG. 10 shows an example in which the data of FIG. 9 is displayed on a display with reference to a true trigger point. In this case, only the last captured data is displayed. In the example shown in FIG. 9, since the M + 3 times captured data is the last captured data, only the data indicated by the star symbol is displayed in FIG.
図6〜図10を参照して説明した例は極端な例であるが、トリガ閾値付近において入力信号のスルーレートが遅い場合、トリガ発生点付近の4つのサンプルデータの組み合わせが数種類しかないようになることは起こり得る。この場合、Ttの値は数種類に限られてしまう。これは、4つのサンプルデータを通る3次式を用いる方法ではなく、サンプル間を補間して真のトリガ点を算出する方法を採用しても同様である。 The example described with reference to FIGS. 6 to 10 is an extreme example. However, when the slew rate of the input signal is low near the trigger threshold, there are only a few combinations of the four sample data near the trigger generation point. It can happen. In this case, the value of Tt is limited to several types. This is the same even if a method of calculating a true trigger point by interpolating between samples is used instead of a method using a cubic equation passing through four sample data.
トリガ閾値付近において入力信号のスルーレートが遅い状況においては、サンプル点のみをドットで表示させる方法で表示させると、重ね書きモード(残光モード)を使用しても、限られた位置でしかサンプル点が表示されない。また、ランダムサンプリング方式で等価サンプルした場合、限られたスロットにしかデータを格納できないため、スロットが埋まらなくなってしまう。 In the situation where the slew rate of the input signal is slow near the trigger threshold, if only the sample points are displayed in a dot-displayed manner, even if the overwriting mode (afterglow mode) is used, the No points are displayed. In addition, when equivalent sampling is performed by the random sampling method, data can be stored only in a limited number of slots, so that slots cannot be filled.
従って、トリガ閾値付近において入力信号のスルーレートが遅い状況になると、真のトリガ点が特定の値に偏るため、デジタルオシロスコープに表示される波形は見づらくなる。また、真のトリガ点が特定の値に偏り、等価サンプルにおいてスロットが埋まらない場合、時間軸系の自動測定(例えば、周波数又は周期の自動測定など)ができなくなる場合がある。時間軸系の自動測定の計算は、取り込んだデータを読み出してCPUが行う。時間軸系の自動測定の計算は、図示しない二次データ処理回路が行ってもよい。 Therefore, when the slew rate of the input signal is low near the trigger threshold, the waveform displayed on the digital oscilloscope becomes difficult to see because the true trigger point is biased to a specific value. In addition, when the true trigger point is biased to a specific value and the slot is not filled in the equivalent sample, automatic measurement of the time axis system (for example, automatic measurement of frequency or cycle) may not be performed. The calculation of the automatic measurement of the time axis system is performed by the CPU by reading the acquired data. The calculation of the automatic measurement of the time axis system may be performed by a secondary data processing circuit (not shown).
基本的には、サンプリングクロックと非同期の入力信号でトリガを発生させる場合、上述したTtの値は、0〜Tsの間の任意の値を取るべきである。しかしながら、比較例に示したような構成では、トリガ閾値付近において入力信号のスルーレートが遅い場合、Ttは、0〜Tsの間で数種類の決まった値しか取ることができなくなるという問題があった。 Basically, when a trigger is generated by an input signal that is asynchronous with the sampling clock, the value of Tt described above should take an arbitrary value between 0 and Ts. However, in the configuration shown in the comparative example, when the slew rate of the input signal is low near the trigger threshold, there is a problem that Tt can take only several fixed values between 0 and Ts. .
(本開示のデジタルオシロスコープ)
本開示は、上述の問題に鑑み、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能なデジタルオシロスコープ及びその制御方法を提供することを目的とする。以下では、添付図面を参照しながら本開示の一実施形態について主に説明する。
(Digital oscilloscope of the present disclosure)
The present disclosure has been made in view of the above-described problem, and provides a digital oscilloscope capable of preventing a calculated true trigger point from being biased to a specific value when a slew rate of an input signal is slow, and a control method thereof. The purpose is to: Hereinafter, an embodiment of the present disclosure will be mainly described with reference to the accompanying drawings.
図11は、一実施形態に係るデジタルオシロスコープ1の概略構成を示す図である。デジタルオシロスコープ1は、入力回路10と、ADコンバータ(ADC)20と、データ取込処理回路30と、1次メモリ40と、2次データ処理回路50と、2次メモリ60と、表示用データ処理回路70と、表示用メモリ80と、表示器90と、デジタルトリガ回路100とを備える。
FIG. 11 is a diagram illustrating a schematic configuration of the
デジタルオシロスコープ1は、少なくとも、ランダムサンプリング方式で等価サンプルを行うか、又は、時間軸の表示分解能がサンプリング分解能よりも細かくなるように拡大表示するデジタルオシロスコープである。
The
入力回路10は、減衰回路及びプリアンプなどを含む。入力回路10は、アナログ入力信号の振幅がADコンバータ20の入力仕様に対し適切な範囲になるように調整して、振幅調整後のアナログ入力信号をADコンバータ20に出力する。
The
ADコンバータ20は、入力回路10から受け取ったアナログ入力信号をデジタルデータに変換して、データ取込処理回路30及びデジタルトリガ回路100に出力する。以後、ADコンバータ20によって変換されたデジタルデータを、適宜「サンプルデータ」とも称する。
The
データ取込処理回路30は、ADコンバータ20から受け取ったサンプルデータを、所定のサンプルレートで1次メモリ40に書き込む。所定のサンプルレートは、ユーザが設定した時間軸設定に適合するサンプルレートである。
The data
データ取込処理回路30は、サンプルデータの取り込みを開始した後、プリトリガ分のサンプルデータの1次メモリ40への書き込みを終了すると、デジタルトリガ回路100のトリガ出力回路130にトリガイネーブル信号を出力する。トリガイネーブル信号を受け取ると、トリガ出力回路130は、トリガ信号を出力することができるようになる。
The data
データ取込処理回路30は、デジタルトリガ回路100からトリガ信号を受け取ると、ポストトリガ分のサンプルデータを1次メモリ40に書き込み、その回のデータ取り込み処理を終了する。
When receiving the trigger signal from the
1次メモリ40は、バッファメモリとして機能するメモリである。
The
2次データ処理回路50は、データ取込処理回路30を介して、1次メモリ40に書き込まれたサンプルデータを読み出す。2次データ処理回路50は、1次メモリ40から読み出したサンプルデータを2次メモリ60に書き込む。また、2次データ処理回路50は、2次メモリ60から読み出したサンプルデータに対して、平均処理、及び複数波形間での加算・減算・乗算などの演算処理を行う。
The secondary
2次データ処理回路50は、時間測定回路150から受け取った真のトリガ点に基づいて、サンプルデータを、例えば等価サンプルとして格納するように並べ替える。
The secondary
2次メモリ60は、バッファメモリとして機能するメモリである。2次メモリ60は、等価サンプルでサンプルデータを格納してよい。
The
なお、デジタルオシロスコープ1は、2次データ処理回路50及び2次メモリ60を備えていなくてもよい。その場合、データ取込処理回路30又は表示用データ処理回路70が、2次データ処理回路50の機能を有してよい。また、1次メモリ40又は表示用メモリ80が2次メモリ60の機能を有してよい。また、2次データ処理回路50が行う処理は、CPUで行ってもよい。
Note that the
表示用データ処理回路70は、2次データ処理回路50を介して、2次メモリ60に書き込まれたサンプルデータを読み出す。表示用データ処理回路70は、表示補間などの処理を行って表示データを作成し、表示用メモリ80に書き込む。表示用データ処理回路70は、表示用メモリ80に書き込まれている表示データを表示器90に出力する。
The display
表示用メモリ80は、バッファメモリとして機能するメモリである。
The
表示器90は、表示用データ処理回路70から受け取った表示データに基づいて、波形を表示する。表示器90は、例えば、液晶ディスプレイ又は有機ELディスプレイなどの表示デバイスを含んでよい。
The
デジタルトリガ回路100は、閾値生成回路110と、デジタルコンパレータ120と、トリガ出力回路130と、トリガメモリ140と、時間測定回路150とを備える。デジタルトリガ回路100については、デジタルトリガ回路100を主に示した図12も参照して説明する。
The
閾値生成回路110は、トリガ閾値をランダムに変動させて、ランダム閾値を生成する。ここで、トリガ閾値は、ユーザの操作によって設定される値である。トリガ閾値は、例えば、図示していないファームウェアを介して、ユーザに設定されてよい。閾値生成回路110は、生成したランダム閾値を、デジタルコンパレータ120及び時間測定回路150に出力する。なお、本実施形態においては、閾値生成回路110が、トリガ閾値をランダムに変動させて、ランダム閾値を生成するものとして説明するが、これに限定されない。閾値生成回路110は、トリガ閾値を変動させて、変動閾値を生成すればよい。ここで、変動閾値とは、トリガ閾値を変動させて生成した閾値を意味する。例えば、閾値生成回路110は、トリガ閾値に固定値を順に加算して変動閾値を生成してもよい。
The
閾値生成回路110は、図12に示すように、加算器(特許請求の範囲における第1加算器)111と、乱数生成回路112とを含む。
As shown in FIG. 12, the threshold
加算器111は、トリガ閾値に基づく値に、乱数生成回路112によって生成された乱数を加算して、トリガ閾値をランダムに変動させ、ランダム閾値を生成する。
The
乱数生成回路112は、乱数を生成する。乱数生成回路112は、波形の取り込み開始又は取り込み終了ごとに乱数を更新する。すなわち、1回の波形の取り込み中は、乱数生成回路112が生成する乱数の値は変わらない。 The random number generation circuit 112 generates a random number. The random number generation circuit 112 updates the random number each time the waveform capture is started or completed. That is, the value of the random number generated by the random number generation circuit 112 does not change during one waveform capture.
デジタルコンパレータ120は、ADコンバータ20から受け取るサンプルデータと、閾値生成回路110によって生成されたランダム閾値とを比較し、比較結果に応じた2値信号をトリガ出力回路130に出力する。
The
なお、デジタルコンパレータ120は、図11に示す例では、ADコンバータ20がデータ取込処理回路30に出力するサンプルデータそのものをADコンバータ20から受け取っているがこれに限定されない。例えば、デジタルコンパレータ120は、ADコンバータ20が出力するサンプルデータをデジタルフィルタによって処理した後に受け取ってもよい。
In the example shown in FIG. 11, the
トリガ出力回路130は、デジタルコンパレータ120から受け取る2値信号に基づいて、トリガ信号を出力する。トリガ出力回路130は、例えば、デジタルコンパレータ120から受け取る信号が「0」から「1」に変わる立ち上がりエッジで、トリガ信号を出力する。トリガ出力回路130は、トリガメモリ140と、時間測定回路150と、データ取込処理回路30とに、トリガ信号を出力する。トリガ信号が出力される時間が、トリガ発生点に対応する。
The
トリガメモリ140は、ADコンバータ20から受け取るサンプルデータを格納する。トリガメモリ140は、例えば、リングバッファ状のメモリであってよい。トリガメモリ140は、少なくともトリガ出力回路130がトリガ信号を出力するまでのレイテンシに相当する分だけは、サンプルデータを保持する。
The
トリガメモリ140へのサンプルデータの格納は、トリガ出力回路130からトリガ信号を受け取った後、真のトリガ点の算出に必要な分のサンプルデータが格納されると停止される。トリガメモリ140は、サンプルデータの格納を停止する際に、真のトリガ点の算出に必要なデータとして以前に取り込んだサンプルデータを上書きする必要がない程度の容量を有する。
The storage of the sample data in the
トリガメモリ140は、トリガ出力回路130からトリガ信号を受け取ると、トリガ発生点の前後のサンプルデータを、時間測定回路150に出力する。
Upon receiving the trigger signal from the
トリガメモリ140は、例えば、時間測定回路150が、トリガ発生点の前後2点ずつの合計4点のサンプルデータを通る3次式を使って真のトリガ点を算出する場合、この4点のサンプルデータを時間測定回路150に出力する。
For example, when the
時間測定回路150は、トリガメモリ140から受け取ったトリガ発生点の前後のサンプルデータと、閾値生成回路110から受け取ったランダム閾値とに基づいて、真のトリガ点を算出する。時間測定回路150は、真のトリガ点の情報を2次データ処理回路50に出力する。
The
時間測定回路150は、トリガ出力回路130からトリガ信号を受け取ると、トリガメモリ140からトリガ発生点の前後のサンプルデータが出力されるのを待つ。以下、時間測定回路150は、トリガメモリ140からトリガ発生点の前後の4点のサンプルデータを受け取るものとして説明する。
Upon receiving the trigger signal from the
時間測定回路150は、トリガメモリ140からトリガ発生点の前後の4点のサンプルデータを受け取ると、4つのサンプルデータを通る3次式と、閾値生成回路110から受け取ったランダム閾値との交点の時間を算出する。この交点の時間が、時間測定回路150が算出する真のトリガ点に相当する。これにより、時間測定回路150は、サンプリング周期より細かい時間精度で、真のトリガ点の時間を算出することができる。
When the
あるいは、時間測定回路150は、補間によってサンプルデータの間にさらなるサンプル点を生成し、ランダム閾値と比較することで、真のトリガ点を算出してもよい。
Alternatively, the
図13に、閾値生成回路110がトリガ閾値に乱数を加算して、ランダム閾値を生成する様子の一例を示す。図13に示す例では、サンプルデータは8ビットであり、トリガ閾値もサンプルデータと同じ重みを持つ8ビットである。
FIG. 13 shows an example of how the
図13に示す例では、乱数生成回路112は2ビットの乱数を生成する。加算器111は、トリガ閾値の小数部分に乱数生成回路112が生成した2ビットの乱数を加算して、ランダム閾値を生成する。図13に示す例では、乱数を2ビットとして説明したが、乱数のビット数はこれに限定されない。乱数は、任意のビット数であってよい。
In the example shown in FIG. 13, the random number generation circuit 112 generates a 2-bit random number. The
デジタルコンパレータ120が、サンプルデータ>ランダム閾値で1を出力し、サンプルデータランダム閾値で0を出力するという動作をする場合、ランダム閾値の小数部分は、デジタルコンパレータ120の比較結果には影響を与えない。ランダム閾値の小数部分は、時間測定回路150による真のトリガ点の算出にのみ影響を与える。
When the
図14に、ランダム閾値付近において、入力信号のスルーレートが極めて遅い場合の波形の一例を示す。図14に示す例では、ランダム閾値付近において、入力信号は、1サンプル毎に1LSBずつしか変化しない。 FIG. 14 shows an example of a waveform when the slew rate of the input signal is extremely low near the random threshold. In the example shown in FIG. 14, near the random threshold, the input signal changes by only 1 LSB for each sample.
図14に示すように、ランダム閾値は、1LSBの間に4レベル存在する可能性がある。従って、トリガ発生点の前後の4つのサンプルデータが全く同じデータの組み合わせであっても、Ttの計算値は、Ts、0.75×Ts、0.5×Ts、0.25×Tsの値を取り得る。すなわち、時間測定回路150は、真のトリガ点として、4つの異なる値を算出し得る。
As shown in FIG. 14, four levels of random threshold values may exist during one LSB. Therefore, even if the four sample data before and after the trigger point are exactly the same data combination, the calculated value of Tt is the value of Ts, 0.75 × Ts, 0.5 × Ts, and 0.25 × Ts. Can be taken. That is, the
図15に、ADコンバータ20からデータ取込処理回路30に出力されたサンプルデータが、1次メモリ40に格納されている様子の一例を示す。図15は、M回目〜M+3回目のデータ取り込み時に、格納されたサンプルデータの様子を示す。
FIG. 15 shows an example in which sample data output from the
図15に示す例においては、時間測定回路150がランダム閾値を用いて真のトリガ点を算出した結果、M回目〜M+3回目のTtが、それぞれ、Ts、0.5×Ts、0.75×Ts、0.25×Tsとなった様子を示している。
In the example illustrated in FIG. 15, as a result of the
図16に、図15のデータを真のトリガ点を基準として、表示器90に表示させた例を示す。すなわち、図16に示す例では、図15のデータを、トリガ発生点から真のトリガ点までの時間を示すTtに基づいてずらしている。図16において、丸、四角、三角及び星の記号は、それぞれ、図15に示すM回目、M+1回目、M+2回目及びM+3回目の取り込みデータに対応する。
FIG. 16 shows an example in which the data in FIG. 15 is displayed on the
表示器90が、一波形ずつ表示するモードの場合は、それぞれの回の取り込みデータのみが表示される。すなわち、丸、四角、三角及び星のいずれか一つのデータのみが表示される。表示器90が、重ね書きモードの場合は、全ての取り込みデータが表示される。図16は、重ね書きモードで表示された例を示したものである。
When the
このように、時間測定回路150がランダム閾値を用いて、真のトリガ点を算出することにより、最大でTs分のジッタは観測されるが、Ttが、0〜Tsの間で決まった値しか取らなくなることはない。
As described above, when the
図17に、図15のように取り込んだデータを、等価サンプル用のメモリのTtの時間に対応したスロットに格納した様子を示す。ここで、等価サンプル用のメモリは、例えば、2次メモリ60であってよい。図17は、スロットの時間間隔がサンプリング周期の4分の1の場合を示したものである。図17において、丸、四角、三角及び星の記号は、それぞれ、図15に示すM回目、M+1回目、M+2回目及びM+3回目の取り込みデータに対応する。
FIG. 17 shows a state in which the fetched data as shown in FIG. 15 is stored in the slot corresponding to the time Tt in the memory for the equivalent sample. Here, the memory for the equivalent sample may be, for example, the
図17に示すように格納されている値を表示器90に表示させると、図18に示すように表示される。図18において、波形は若干滑らかに見えない状態となるが、特定のスロットのデータしか表示されないようなことにはならない。
When the stored values are displayed on the
実際には、入力信号のスルーレートが極めて遅い場合であっても、ノイズなどの要因により、トリガ発生点付近の4つのサンプルデータの組み合わせのデータが、全く同じ組み合わせとなることは少ない。従って、入力信号のスルーレートが極めて遅い場合であっても、トリガ発生点付近の4つのサンプルデータの組み合わせは、たいてい数種類は存在する。従って、その数種類のサンプルデータの組み合わせに対し、ランダム閾値が4種類の値をとることで、Ttの取り得る値も増え、Ttは、0〜Tsの間の広い範囲の値を取り得る。 Actually, even when the slew rate of the input signal is extremely low, the combination of the four sample data near the trigger generation point rarely becomes exactly the same due to factors such as noise. Therefore, even when the slew rate of the input signal is extremely low, there are usually several types of combinations of four sample data near the trigger generation point. Therefore, by taking four types of random threshold values for combinations of the several types of sample data, the possible values of Tt also increase, and Tt can take a wide range of values between 0 and Ts.
上述のように、時間測定回路150がランダム閾値を用いて真のトリガ点を算出すると、同じサンプルデータの組み合わせに対して、Ttが複数の値を取り得る。従って、表示器90において、真のトリガ点を基準に波形を描画すると、ずれた時間位置に波形が描画されるため、結果としてトリガジッタを発生し得る。しかしながら、入力信号のスルーレートが極めて遅い場合、トリガジッタはほとんど問題とならない。
As described above, when the
図19に、ランダム閾値付近において、入力信号のスルーレートが比較的高い場合の波形の一例を示す。図19に示す例においても、図14に示した例と同様に、ランダム閾値は4つの値をとっている。しかしながら、図19に示すような、入力信号のスルーレートが比較的高い場合は、ランダム閾値が4つの値をとっていても、Ttはほとんど変わらない。すなわち、時間測定回路150が算出する真のトリガ点の値は、ランダム閾値が異なる値をとってもほとんど影響を受けない。従って、図19に示すような、入力信号のスルーレートが比較的高い場合は、真のトリガ点基準で波形を描画したときに、トリガジッタとして現れる時間軸方向のずれは極めて小さい。
FIG. 19 shows an example of a waveform when the slew rate of the input signal is relatively high near the random threshold. In the example shown in FIG. 19, as in the example shown in FIG. 14, the random threshold has four values. However, when the slew rate of the input signal is relatively high as shown in FIG. 19, Tt hardly changes even if the random threshold value takes four values. That is, the value of the true trigger point calculated by the
図20のフローチャートを参照して、一実施形態に係るデジタルオシロスコープ1の動作の一例について説明する。
An example of the operation of the
デジタルオシロスコープ1が測定を開始すると、データ取込処理回路30は、最初のデータ取り込みを開始する(ステップS101)。この際、乱数生成回路112は、乱数を更新する。
When the
データ取込処理回路30は、プリトリガ分のデータの取り込みが完了しているか判定する(ステップS102)。
The data
プリトリガ分のデータの取り込みが完了していない場合(ステップS102のNo)、データ取込処理回路30は、ステップS102の処理を続ける。
When the data for the pretrigger has not been completely acquired (No in step S102), the data
プリトリガ分のデータの取り込みが完了している場合(ステップS102のYes)、データ取込処理回路30は、デジタルトリガ回路100にトリガイネーブル信号を出力する(ステップS103)。
When the data for the pre-trigger has been completely captured (Yes in step S102), the data
データ取込処理回路30は、トリガが発生しているか否か、すなわち、トリガ出力回路130からトリガ信号を受け取ったかを判定する(ステップS104)。
The data
トリガが発生していない場合(ステップS104のNo)、データ取込処理回路30は、ステップS104の処理を続ける。
If no trigger has occurred (No in step S104), the data
トリガが発生している場合(ステップS104のYes)、ポストトリガ分のデータの取り込みが完了しているか判定する(ステップS105)。 If a trigger has occurred (Yes in step S104), it is determined whether or not the capture of data for the post-trigger has been completed (step S105).
ポストトリガ分のデータの取り込みが完了していない場合(ステップS105のNo)、データ取込処理回路30は、ステップS105の処理を続ける。
If the post-trigger data has not been completely acquired (No in step S105), the data
一方、時間測定回路150は、ステップS105と並行して、真のトリガ点の算出処理を行っている(ステップS106)。
On the other hand, the
ポストトリガ分のデータの取り込みが完了し(ステップS105のYes)、かつ、真のトリガ点の算出処理(ステップS106)が完了すると、データ取込処理回路30は、データの取り込みを終了する(ステップS107)。
When the data capture for the post-trigger is completed (Yes in step S105) and the calculation processing of the true trigger point (step S106) is completed, the data
デジタルオシロスコープ1は、データの取り込み回数が満了したか判定する(ステップS108)。データの取り込み回数が満了していない場合(ステップS108のNo)、データ取込処理回路30は、ステップS101に戻り、次のデータ取り込みを開始する。データの取り込み回数が満了している場合(ステップS108のYes)、デジタルオシロスコープ1は、測定を終了する。
The
乱数生成回路112は、ステップS101のデータ取込開始の際に乱数を更新するとして説明したが、ステップS107のデータ取込終了の際に乱数を更新してもよい。このように、乱数生成回路112が、データ取り込み開始時、又はデータ取り込み終了時に乱数を更新することにより、データの取り込み中及び真のトリガの算出中には乱数は変わらない。すなわち、データの取り込み中及び真のトリガの算出中にはランダム閾値は変わらない。 Although the random number generation circuit 112 has been described as updating the random number at the start of the data acquisition in step S101, the random number may be updated at the end of the data acquisition in step S107. In this way, the random number generation circuit 112 updates the random number at the start of data capture or at the end of data capture, so that the random number does not change during data capture and during calculation of a true trigger. That is, the random threshold does not change during data acquisition and calculation of a true trigger.
ステップS106による真のトリガ点の算出処理は、ステップS105におけるポストトリガ分のデータの取り込みと並行して行われるとして説明したが、ステップS106の処理は、ステップS105の処理が終わってから実行してもよい。 Although the calculation of the true trigger point in step S106 has been described as being performed in parallel with the post-trigger data acquisition in step S105, the processing in step S106 is performed after the processing in step S105 is completed. Is also good.
以上のような一実施形態に係るデジタルオシロスコープ1によれば、入力信号のスルーレートが遅い場合に、算出された真のトリガ点が特定の値に偏らないようにすることが可能である。より具体的には、デジタルオシロスコープ1では、閾値生成回路110は、ユーザに設定されたトリガ閾値をランダムに変動させてランダム閾値を生成し、時間測定回路150は、トリガ信号が出力された前後のタイミングのサンプルデータと、ランダム閾値とに基づいて、真のトリガ点を算出する。従って、トリガ閾値付近において入力信号のスルーレートが遅く、トリガ信号が出力された前後のタイミングのサンプルデータが同じ値の場合であっても、算出された真のトリガ点が特定の値に偏ることがない。そのため、表示器90が、サンプル点のみドットで表示するような表示方法で、重ね書きモードで波形を表示したとしても、限られた位置にしかサンプル点が存在しなくなることがなくなる。その結果、一実施形態に係るデジタルオシロスコープ1によれば、波形がつながっているように見えるため、ユーザは表示波形を見やすくなる。また、一実施形態に係るデジタルオシロスコープ1によれば、時間軸系の自動測定(例えば、周波数又は周期の自動測定など)をすることができる。また、一実施形態に係るデジタルオシロスコープ1によれば、ランダムサンプリング方式の等価サンプルにおいて、限られたスロットにしかデータを格納できなくなり、スロットが埋まらなくなることを防ぐことができる。
According to the
(ランダム閾値の生成の他の例)
閾値生成回路110は、図13に示した方法とは異なる方法で、ランダム閾値を生成してもよい。図21〜図24を参照して、閾値生成回路110によるランダム閾値の他の生成方法について説明する。
(Another example of generating a random threshold)
The
図21に示す例では、サンプルデータは8ビットであり、トリガ閾値はサンプルデータよりも細かい分解能である10ビットである。加算器111は、サンプルデータの1LSBよりも下の桁、すなわちトリガ閾値の下位2ビットを切り捨てた上で、乱数生成回路112が生成した2ビットの乱数を加算して、ランダム閾値を生成する。
In the example shown in FIG. 21, the sample data is 8 bits, and the trigger threshold is 10 bits, which is a finer resolution than the sample data. The
図21に示す方法でランダム閾値を生成した場合、デジタルコンパレータ120が出力する2値信号は、乱数の影響を受けない。
When the random threshold is generated by the method shown in FIG. 21, the binary signal output from the
図22に示す例では、サンプルデータは8ビットであり、トリガ閾値はサンプルデータよりも細かい分解能である10ビットである。加算器111は、サンプルデータの1LSBよりも下の桁、すなわちトリガ閾値の下位2ビットに、乱数生成回路112が生成した2ビットの乱数を加算して、ランダム閾値を生成する。
In the example shown in FIG. 22, the sample data is 8 bits, and the trigger threshold is 10 bits, which is a finer resolution than the sample data. The
図22に示す方法でランダム閾値を生成した場合、デジタルコンパレータ120が出力する2値信号は、乱数の影響を受けて変動する。
When the random threshold is generated by the method shown in FIG. 22, the binary signal output from the
図23に示す例では、サンプルデータは10ビットであり、トリガ閾値はサンプルデータと同じ分解能である10ビットである。加算器111は、サンプルデータの下位2ビットを切り捨てた上で、乱数生成回路112が生成した2ビットの乱数を加算して、ランダム閾値を生成する。
In the example shown in FIG. 23, the sample data is 10 bits, and the trigger threshold is 10 bits having the same resolution as the sample data. The
図23に示す方法でランダム閾値を生成した場合、デジタルコンパレータ120が出力する2値信号は、乱数の影響を受けて変動する。
When the random threshold is generated by the method shown in FIG. 23, the binary signal output by the
図24に示す例では、サンプルデータは10ビットであり、トリガ閾値はサンプルデータと同じ分解能である10ビットである。加算器111は、サンプルデータの下位2ビットに、乱数生成回路112が生成した2ビットの乱数を加算して、ランダム閾値を生成する。
In the example shown in FIG. 24, the sample data is 10 bits, and the trigger threshold is 10 bits having the same resolution as the sample data. The
図24に示す方法でランダム閾値を生成した場合、デジタルコンパレータ120が出力する2値信号は、乱数の影響を受けて変動する。
When the random threshold value is generated by the method shown in FIG. 24, the binary signal output from the
図21〜図24に示す例では、乱数を2ビットとして説明したが、乱数のビット数はこれに限定されない。乱数は、任意のビット数であってよい。 In the examples shown in FIGS. 21 to 24, the random number is described as having two bits, but the number of bits of the random number is not limited to this. The random number may be any number of bits.
(第1変形例)
図25に、第1変形例に係るデジタルトリガ回路200の概略構成を示す。第1変形例に係るデジタルトリガ回路200については、図11及び図12などを参照して説明したデジタルトリガ回路100との相違点について主に説明し、類似する内容については説明を省略する。
(First Modification)
FIG. 25 shows a schematic configuration of a
デジタルトリガ回路200は、閾値生成回路210と、デジタルコンパレータ220と、トリガ出力回路230と、トリガメモリ240と、時間測定回路250と、ラッチ回路260とを備える。閾値生成回路210は、加算器211と、乱数生成回路212とを含む。
The
乱数生成回路212は、トリガ出力回路230からトリガ信号を受け取ると、次のデータ取り込みが開始されるまでの任意のタイミングで乱数を更新する。
Upon receiving the trigger signal from the
ラッチ回路260は、トリガ出力回路230からトリガ信号を受け取ると、その時点で閾値生成回路210から入力されているランダム閾値をラッチして保持する。ラッチ回路260は、ラッチして保持しているランダム閾値を時間測定回路250に出力する。
Upon receiving the trigger signal from the
第1変形例に係るデジタルトリガ回路200においては、時間測定回路250は、トリガ出力回路230によってトリガ信号が出力された時点のランダム閾値を用いて、真のトリガ点を算出する。そのため、トリガ出力回路230によってトリガ信号が出力された後に乱数が更新されても、真のトリガ点の算出結果は影響を受けない。
In the
図26のフローチャートを参照して、第1変形例に係るデジタルトリガ回路200の動作の一例について説明する。図26のフローチャートの説明においては、図20のフローチャートと共通する部分については説明を省略し、相違点について主に説明する。
An example of the operation of the
トリガが発生している場合(ステップS204のYes)、ラッチ回路260は、その時点で閾値生成回路210から入力されているランダム閾値をラッチして保持する。また、乱数生成回路212は、トリガ出力回路230からトリガ信号を受け取ると、次のデータ取り込みが開始されるまでの任意のタイミングで乱数を更新する(ステップS205)。このように、第1変形例に係るデジタルトリガ回路200によれば、乱数生成回路212は、トリガ発生直後に、次のデータ取り込みの際に用いる乱数を生成してもよい。これにより、乱数生成回路212による乱数の生成に時間がかかる場合であっても、データの取り込みと取り込みとの間のデッドタイムを低減することができる。
If a trigger has occurred (Yes in step S204), the
時間測定回路250は、ステップS206と並行して、真のトリガ点の算出処理を行っている(ステップS207)。この際、時間測定回路250は、ステップS205においてラッチ回路260がラッチしたランダム閾値を用いて、真のトリガ点を算出する。
The
図26に示すフローチャートにおいては、ステップS201のデータ取込開始の際、及び、ステップS208のデータ取込終了の際には、乱数生成回路212は、乱数を更新しない。
In the flowchart shown in FIG. 26, the random
(第2変形例)
図27に、第2変形例に係るデジタルトリガ回路300の概略構成を示す。第2変形例に係るデジタルトリガ回路300については、図11及び図12などを参照して説明したデジタルトリガ回路100との相違点について主に説明し、類似する内容については説明を省略する。
(Second Modification)
FIG. 27 shows a schematic configuration of a
デジタルトリガ回路300は、閾値生成回路310と、デジタルコンパレータ320と、トリガ出力回路330と、トリガメモリ340と、時間測定回路350と、加算器(特許請求の範囲における第2加算器)361と、乱数生成回路362とを備える。閾値生成回路310は、加算器311と、乱数生成回路312とを含む。
The
第2変形例に係るデジタルトリガ回路300は、時間測定回路350が算出した真のトリガ点に対して乱数を加算する。
The
加算器361は、時間測定回路350から受け取った真のトリガ点の値に、乱数生成回路362によって生成された乱数を加算して、真のトリガ点の値をランダムに変動させる。
The
乱数生成回路362は、乱数を生成する。乱数生成回路362が生成する乱数は、微少な乱数であることが望ましい。乱数生成回路362が生成する乱数を微少な乱数とすることで、ジッタを低減することができる。
The random
例えば、表示器90で表示する波形の拡大率が高い場合、及び、等価サンプル時にスロット数が多い場合などには、Ttに求められる時間分解能が細かくなる。この場合、時間測定回路350が算出した真のトリガ点に対して乱数を加算することにより、真のトリガ点をさらにばらつかせることができる。その結果、拡大率が高い場合であっても、ユーザにとって表示波形が見やすくなる。
For example, when the enlargement ratio of the waveform displayed on the
(第3変形例)
図28に、第3変形例に係るデジタルトリガ回路400の概略構成を示す。第3変形例に係るデジタルトリガ回路400については、第2変形例に係るデジタルトリガ回路300との相違点について主に説明し、類似する内容については説明を省略する。
(Third Modification)
FIG. 28 shows a schematic configuration of a
デジタルトリガ回路400は、閾値生成回路410と、デジタルコンパレータ420と、トリガ出力回路430と、トリガメモリ440と、時間測定回路450と、加算器461とを備える。閾値生成回路410は、加算器411と、乱数生成回路412とを含む。
The
第3変形例に係るデジタルトリガ回路400は、時間測定回路450から受け取った真のトリガ点の値に、乱数を加算する加算器461が、閾値生成回路410が含む乱数生成回路412から乱数を受け取る点で、第2変形例に係るデジタルトリガ回路300と相違する。
In the
このように、乱数生成回路412を、加算器411及び加算器461で共用することによって、デジタルトリガ回路400の回路規模を低減することができる。
As described above, by sharing the random
本開示は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。従って、先の記述は例示的であり、これに限定されない。開示の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含される。 It will be apparent to one skilled in the art that the present disclosure may be embodied in other predetermined forms than those described above without departing from its spirit or essential characteristics. Accordingly, the foregoing description is by way of example and not limitation. The scope of the disclosure is defined by the appended claims, not by the foregoing description. Some of the changes that come within their equivalents are embraced therein.
例えば、上述した各構成部の配置及び個数等は、上記の説明及び図面における図示の内容に限定されない。各構成部の配置及び個数等は、その機能を実現できるのであれば、任意に構成されてもよい。 For example, the arrangement, the number, and the like of the respective components described above are not limited to the above description and the contents illustrated in the drawings. The arrangement and number of the components may be arbitrarily configured as long as the function can be realized.
1 デジタルオシロスコープ
10 入力回路
20 ADコンバータ(ADC)
30 データ取込処理回路
40 1次メモリ
50 2次データ処理回路
60 2次メモリ
70 表示用データ処理回路
80 表示用メモリ
90 表示器
100、200、300、400 デジタルトリガ回路
110、210、310、410 閾値生成回路
111、211、311、411 加算器(第1加算器)
112、212、312、412 乱数生成回路
120、220、320、420 デジタルコンパレータ
130、230、330、430 トリガ出力回路
140、240、340、440 トリガメモリ
150、250、350、450 時間測定回路
260 ラッチ回路
361、461 加算器(第2加算器)
362 乱数生成回路
600 デジタルトリガ回路
610 デジタルコンパレータ
620 トリガ出力回路
630 トリガメモリ
640 時間測定回路
1
112, 212, 312, 412 Random
362 Random
Claims (14)
ユーザに設定されたトリガ閾値を変動させて変動閾値を生成する閾値生成回路と、
前記デジタルデータと前記変動閾値とを比較して2値信号を出力するデジタルコンパレータと、
前記2値信号に基づいてトリガ信号を出力するトリガ出力回路と、
前記トリガ信号が出力された前後のタイミングの前記デジタルデータと、前記変動閾値とに基づいて、真のトリガ点を算出する時間測定回路と、を備えるデジタルオシロスコープ。 An AD converter that converts an analog input signal into digital data;
A threshold generation circuit that generates a variation threshold by varying a trigger threshold set by a user;
A digital comparator that compares the digital data with the variation threshold and outputs a binary signal;
A trigger output circuit that outputs a trigger signal based on the binary signal;
A digital oscilloscope comprising: a time measurement circuit that calculates a true trigger point based on the digital data before and after the output of the trigger signal and the variation threshold.
前記閾値生成回路は、
乱数を生成する乱数生成回路を含み、
前記乱数を用いて、前記トリガ閾値をランダムに変動させて前記変動閾値としてのランダム閾値を生成する、デジタルオシロスコープ。 The digital oscilloscope according to claim 1,
The threshold generation circuit,
Including a random number generation circuit for generating a random number,
A digital oscilloscope that generates a random threshold value as the variation threshold value by randomly varying the trigger threshold value using the random number.
前記閾値生成回路は、
第1加算器をさらに含み、
前記第1加算器は、前記トリガ閾値に基づく値に前記乱数を加算して、前記トリガ閾値をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 2,
The threshold generation circuit,
A first adder,
The digital oscilloscope, wherein the first adder adds the random number to a value based on the trigger threshold and changes the trigger threshold randomly.
前記第1加算器は、前記トリガ閾値に、前記デジタルデータのLSB(Least Significant Bit)よりも小さい前記乱数を加算して、前記トリガ閾値をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 3,
The digital oscilloscope, wherein the first adder adds the random number smaller than an LSB (Least Significant Bit) of the digital data to the trigger threshold, and varies the trigger threshold randomly.
前記第1加算器は、前記トリガ閾値から前記デジタルデータのLSBよりも小さい値を切り捨てた値に、前記デジタルデータのLSBよりも小さい前記乱数を加算して、前記トリガ閾値をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 3,
The first adder adds the random number smaller than the LSB of the digital data to a value obtained by cutting off a value smaller than the LSB of the digital data from the trigger threshold, and randomly changes the trigger threshold. Digital oscilloscope.
前記第1加算器は、前記トリガ閾値から下位数ビットを切り捨て、切り捨てた前記下位数ビットに対応する前記乱数を加算して、前記トリガ閾値をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 3,
The digital oscilloscope, wherein the first adder truncates lower-order bits from the trigger threshold, adds the random number corresponding to the truncated lower-order bits, and randomly varies the trigger threshold.
前記第1加算器は、前記トリガ閾値の下位数ビットに対応する前記乱数を加算して、前記トリガ閾値をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 3,
The digital oscilloscope, wherein the first adder adds the random number corresponding to lower several bits of the trigger threshold and changes the trigger threshold randomly.
第2加算器をさらに備え、
前記第2加算器は、前記時間測定回路が算出した前記真のトリガ点をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to any one of claims 3 to 7,
Further comprising a second adder,
The digital oscilloscope, wherein the second adder randomly varies the true trigger point calculated by the time measurement circuit.
前記第2加算器は、乱数を用いて前記真のトリガ点をランダムに変動させる、デジタルオシロスコープ。 The digital oscilloscope according to claim 8,
The digital oscilloscope, wherein the second adder randomly varies the true trigger point using a random number.
前記トリガ出力回路から前記トリガ信号を受け取ると、その時点の前記変動閾値をラッチして保持するラッチ回路を更に備える、デジタルオシロスコープ。 The digital oscilloscope according to any one of claims 1 to 9,
The digital oscilloscope further comprising: a latch circuit that, when receiving the trigger signal from the trigger output circuit, latches and holds the variation threshold at that time.
前記デジタルデータに基づく波形を表示する表示器をさらに備える、デジタルオシロスコープ。 The digital oscilloscope according to any one of claims 1 to 10,
A digital oscilloscope further comprising a display for displaying a waveform based on the digital data.
前記デジタルオシロスコープは、ランダムサンプリング方式で等価サンプルを行う、デジタルオシロスコープ。 The digital oscilloscope according to any one of claims 1 to 11,
The digital oscilloscope, wherein the digital oscilloscope performs equivalent sampling by a random sampling method.
前記デジタルオシロスコープは、時間軸の表示分解能がサンプリング分解能よりも細かくなるように拡大表示する、デジタルオシロスコープ。 The digital oscilloscope according to any one of claims 1 to 11,
The digital oscilloscope, wherein the digital oscilloscope enlarges the display so that the display resolution on the time axis is smaller than the sampling resolution.
ユーザに設定されたトリガ閾値を変動させて変動閾値を生成するステップと、
前記デジタルデータと前記変動閾値とを比較して2値信号を出力するステップと、
前記2値信号に基づいてトリガ信号を出力するステップと、
前記トリガ信号が出力された前後のタイミングの前記デジタルデータと、前記変動閾値とに基づいて、真のトリガ点を算出するステップと、を含むデジタルオシロスコープの制御方法。 Converting an analog input signal to digital data;
Fluctuating a trigger threshold set by the user to generate a fluctuation threshold,
Comparing the digital data with the variation threshold to output a binary signal;
Outputting a trigger signal based on the binary signal;
Calculating a true trigger point based on the digital data before and after the output of the trigger signal and the variation threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018151850A JP7154872B2 (en) | 2018-08-10 | 2018-08-10 | Digital oscilloscope and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018151850A JP7154872B2 (en) | 2018-08-10 | 2018-08-10 | Digital oscilloscope and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020027025A true JP2020027025A (en) | 2020-02-20 |
JP7154872B2 JP7154872B2 (en) | 2022-10-18 |
Family
ID=69622089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018151850A Active JP7154872B2 (en) | 2018-08-10 | 2018-08-10 | Digital oscilloscope and its control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7154872B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021158608A (en) * | 2020-03-27 | 2021-10-07 | 横河電機株式会社 | Measurement system and control method of the same |
WO2022264952A1 (en) * | 2021-06-18 | 2022-12-22 | 三菱電機株式会社 | Ad conversion device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0426372U (en) * | 1990-06-27 | 1992-03-02 | ||
JPH0682483A (en) * | 1992-01-31 | 1994-03-22 | Sony Tektronix Corp | Method for reducing trigger jitter |
JPH07181204A (en) * | 1993-10-12 | 1995-07-21 | Tektronix Inc | Logic-signal display method |
JP2001147242A (en) * | 1999-09-14 | 2001-05-29 | Tektronix Inc | Addition method for time stamp and minimization method for digitized artifact |
-
2018
- 2018-08-10 JP JP2018151850A patent/JP7154872B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0426372U (en) * | 1990-06-27 | 1992-03-02 | ||
JPH0682483A (en) * | 1992-01-31 | 1994-03-22 | Sony Tektronix Corp | Method for reducing trigger jitter |
JPH07181204A (en) * | 1993-10-12 | 1995-07-21 | Tektronix Inc | Logic-signal display method |
JP2001147242A (en) * | 1999-09-14 | 2001-05-29 | Tektronix Inc | Addition method for time stamp and minimization method for digitized artifact |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021158608A (en) * | 2020-03-27 | 2021-10-07 | 横河電機株式会社 | Measurement system and control method of the same |
JP7404133B2 (en) | 2020-03-27 | 2023-12-25 | 横河電機株式会社 | Measurement system and its control method |
WO2022264952A1 (en) * | 2021-06-18 | 2022-12-22 | 三菱電機株式会社 | Ad conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP7154872B2 (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8362932B2 (en) | Circuit with a time to digital converter and phase measuring method | |
KR100982103B1 (en) | Time-to-digital conversion with delay contribution determination of delay elements | |
US4283713A (en) | Waveform acquisition circuit | |
CN110573970A (en) | Wide-measuring-range high-sensitivity time-to-digital converter | |
US6271773B1 (en) | Coherent sampling method and apparatus | |
JP7154872B2 (en) | Digital oscilloscope and its control method | |
US12019406B2 (en) | Using time-to-digital converters to delay signals with high accuracy and large range | |
US20170060114A1 (en) | Finite state machine-based trigger event detection employing interpolation | |
US8410819B2 (en) | Programmable pulse width discriminator | |
CN107478883B (en) | A kind of method and apparatus for realizing any N times of equivalent sampling | |
JP2017511052A5 (en) | ||
CN103558434A (en) | Quick-positioning digital oscilloscope trigger point system | |
JPH08201436A (en) | Waveform observing device | |
US8575983B1 (en) | Waveform generation circuit for a waveform generator | |
JP2010236937A (en) | Jitter measuring apparatus | |
CN103631316B (en) | Multi-stage trigger system for outputting complex trigger signals | |
EP2784520A2 (en) | Apparatus and method for displaying waveforms | |
JP4290940B2 (en) | Measuring instrument | |
US20120169376A1 (en) | Deglitcher with programmable hysteresis | |
JP2009210522A (en) | Equivalent sampling device | |
CN108280437B (en) | Pulse signal processing method and device and user terminal | |
JP5440044B2 (en) | Waveform display device | |
JP2015075490A (en) | Method of incrementing stored value in waveform monitor, and stochastic incrementer | |
WO2010128541A1 (en) | Successive approximation a/d converter | |
HU198571B (en) | Measuring method and arrangement of systemtechnique for characterizing voltage-time functions by digital data and storing said functions, in particular in digitaloscilloscopes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7154872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |