JP2020026556A - Method for manufacturing nickel powder - Google Patents

Method for manufacturing nickel powder Download PDF

Info

Publication number
JP2020026556A
JP2020026556A JP2018152118A JP2018152118A JP2020026556A JP 2020026556 A JP2020026556 A JP 2020026556A JP 2018152118 A JP2018152118 A JP 2018152118A JP 2018152118 A JP2018152118 A JP 2018152118A JP 2020026556 A JP2020026556 A JP 2020026556A
Authority
JP
Japan
Prior art keywords
nickel
ammine
complex
solution
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152118A
Other languages
Japanese (ja)
Other versions
JP7016484B2 (en
Inventor
高石 和幸
Kazuyuki Takaishi
和幸 高石
伸一 平郡
Shinichi Hiragori
伸一 平郡
龍馬 山隈
Ryoma Yamaguma
龍馬 山隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018152118A priority Critical patent/JP7016484B2/en
Publication of JP2020026556A publication Critical patent/JP2020026556A/en
Application granted granted Critical
Publication of JP7016484B2 publication Critical patent/JP7016484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a method for efficiently manufacturing nickel powder which directly a collects nickel ammine complex solution from a reduction filtrate remained after nickel powder has been obtained by subjecting the nickel ammine complex solution to reduction treatment with hydrogen gas without using hydrogen sulfide gas, and efficiently manufactures the nickel powder.SOLUTION: A method for manufacturing nickel powder includes: an ammine complex step of forming a nickel ammine sulfate complex solution; a reduction step of reducing the complex solution to obtain a reduction reaction slurry containing nickel powder; and a solid-liquid separation step of solid-liquid separating the slurry to obtain the nickel powder and the reduction filtrate, in which the reduction filtrate is a solution containing a nickel ammine sulfate complex, and includes: a nickel collection solvent extraction step of using the filtrate for solvent extraction, and extracting ammonium ions from a nickel ammine sulfate complex in the filtrate to form a slurry containing a nickel ammine sulfate complex precipitate; and a dissolution step of dissolving the complex precipitate contained in the slurry to form a nickel ammine sulfate complex solution.SELECTED DRAWING: Figure 1

Description

本発明は、高温高圧下の条件でニッケルアンミン錯体溶液と水素ガスによる金属ニッケル粉の製造方法に適用でき、ニッケル粉を回収した後の溶液に、残存して含まれるニッケル成分を、硫化水素を用いずに回収するニッケル粉の製造方法に関する。   The present invention can be applied to a method for producing metal nickel powder using a nickel ammine complex solution and hydrogen gas under conditions of high temperature and high pressure, and the nickel component remaining and contained in the solution after the nickel powder is recovered is hydrogen sulfide. The present invention relates to a method for producing nickel powder to be recovered without using.

硫酸ニッケルアンミン錯体溶液を水素還元して生成した硫酸アンモニウム水溶液に残存する硫酸ニッケルアンミン錯体溶液のニッケルを回収する方法として、反応式(1)に示すような硫化水素ガスによりニッケル硫化物として回収する方法が広く用いられている(例えば、特許文献1参照)。   As a method for recovering nickel of a nickel sulfate ammine complex solution remaining in an aqueous solution of ammonium sulfate formed by hydrogen reduction of a nickel sulfate ammine complex solution, a method of recovering nickel sulfide using a hydrogen sulfide gas as shown in a reaction formula (1) Is widely used (for example, see Patent Document 1).

Figure 2020026556
Figure 2020026556

しかし、この硫化水素ガスを用いてニッケルを回収する方法では、回収したニッケル硫化物(NiS)は、温度130〜180度、圧力1.5〜2.0MPaの高温高圧下条件で下記反応式(2)より硫酸ニッケル水溶液まで酸化浸出する工程(以下、加圧抽出工程)に繰返して処理することとなる。   However, in the method of recovering nickel using the hydrogen sulfide gas, the recovered nickel sulfide (NiS) is reacted at a temperature of 130 to 180 degrees and a pressure of 1.5 to 2.0 MPa under a high temperature and a high pressure under the following reaction formula ( From 2), the process is repeatedly performed to the step of oxidizing and leaching to an aqueous solution of nickel sulfate (hereinafter, the pressure extraction step).

Figure 2020026556
Figure 2020026556

よって、加圧抽出工程の負荷が高くなるため、加圧抽出工程の反応槽(オートクレーブ)の容量を大きくする必要がある。また、硫化水素ガスは水溶液への溶解度が高く、硫酸アンモニウム溶液を爆気除去し、除去した硫化水素ガスを苛性ソーダ水溶液で中和処理する必要があった。   Therefore, the load of the pressure extraction step increases, and it is necessary to increase the capacity of the reaction tank (autoclave) in the pressure extraction step. In addition, the hydrogen sulfide gas has a high solubility in an aqueous solution, and it is necessary to remove the ammonium sulfate solution by explosion and neutralize the removed hydrogen sulfide gas with an aqueous solution of caustic soda.

特開2009−173983号公報JP 2009-173983 A

このような状況の中で、本発明は硫化水素ガスを使用せず、ニッケルアンミン錯体溶液を水素ガスによる還元処理によりニッケル粉を得た後に残された還元反応濾液から、直接ニッケルアンミン錯体溶液を回収し、効率よくニッケル粉を製造する方法を提供するものである。   Under such circumstances, the present invention does not use hydrogen sulfide gas, and directly converts the nickel ammine complex solution from the reduction reaction filtrate remaining after obtaining the nickel powder by reducing the nickel ammine complex solution with hydrogen gas. It is intended to provide a method of recovering and efficiently producing nickel powder.

上記の課題を解決するための本発明の第1の発明は、硫酸ニッケル溶液にアンモニアを混合後、含まれる硫酸アンモニウムの濃度を100〜500g/Lの範囲に調節した硫酸ニッケルアンミン錯体溶液を形成するアンミン錯体化工程と、その硫酸ニッケルアンミン錯体溶液を、高温高圧下で水素ガスと接触させて硫酸ニッケルアンミン錯体溶液中のニッケル錯体イオンを還元処理して生成したニッケル粉を含む還元反応スラリーを得る還元工程と、次いで、前記還元反応スラリーを固液分離処理して固体成分のニッケル粉と、還元濾液に分離してニッケル粉を得る固液分離工程を含み、還元濾液が、還元工程で還元処理されなかった硫酸ニッケルアンミン錯体を含む溶液で、その還元濾液を抽出始液に用いて溶媒抽出処理に付し、還元濾液中の硫酸ニッケルアンミン錯体からアンモニウムイオンを抽出してニッケルアンミン錯体澱物を含むスラリー(水相)を形成するニッケル回収溶媒抽出工程と、そのスラリー(水相)をアンモニア水と混合し、スラリーに含まれる硫酸ニッケルアンミン錯体澱物を溶解して硫酸ニッケルアンミン錯体溶液を形成する溶解工程を含むことを特徴とするニッケル粉の製造方法である。   A first invention of the present invention for solving the above problems is to form a nickel sulfate ammine complex solution in which, after mixing ammonia with a nickel sulfate solution, the concentration of the contained ammonium sulfate is adjusted to a range of 100 to 500 g / L. An ammine complexation step and contacting the nickel sulfate ammine complex solution with hydrogen gas at high temperature and pressure to reduce the nickel complex ions in the nickel sulfate ammine complex solution to obtain a reduction reaction slurry containing nickel powder produced A reduction step, and then a solid-liquid separation step of subjecting the reduction reaction slurry to a solid-liquid separation treatment to obtain nickel powder as a solid component and a reduction filtrate to obtain a nickel powder, wherein the reduction filtrate is subjected to a reduction treatment in the reduction step. A solution containing a nickel ammine sulfate complex that has not been subjected to solvent extraction using the reduced filtrate as the starting solution for extraction, A step of extracting ammonium ions from a nickel ammine sulfate complex to form a slurry (aqueous phase) containing a nickel ammine complex deposit, and mixing the slurry (aqueous phase) with aqueous ammonia to be included in the slurry A nickel ammine sulfate complex deposit to form a nickel sulfate ammine complex solution.

本発明の第2の発明は、第1の発明におけるニッケル回収溶媒抽出工程が、抽出後有機相に還元濾液中のニッケルアンミン錯体からアンモニウムイオンを抽出し、水相の抽残液に、硫酸ニッケルアンミン錯体沈殿物を得ることを特徴とするニッケル粉の製造方法である。   According to a second aspect of the present invention, in the nickel recovery solvent extraction step in the first aspect, ammonium ions are extracted from the nickel ammine complex in the reduced filtrate into the organic phase after the extraction, and nickel sulfate is added to the raffinate in the aqueous phase. A method for producing nickel powder, comprising obtaining an ammine complex precipitate.

本発明の第3の発明は、第1又は第2の発明におけるニッケル回収溶媒抽出工程で用いる有機溶媒が、抽出剤に、「2−エチルヘキシルホスホン酸モノ−2エチルヘキシル」、「ジ−2エチルヘキシルホスホン酸」、「ビス2、4,4トリメチルペンチルホスフィン酸」から選ばれる1種を用い、その抽出剤に「ナフテン系合成炭化水素」を混合して希釈した有機溶媒であることを特徴とするニッケル粉の製造方法である。   In a third aspect of the present invention, the organic solvent used in the nickel recovery solvent extraction step in the first or second aspect is such that “mono-2-ethylhexyl 2-ethylhexylphosphonate” or “di-2ethylhexylphosphonate” is used as an extractant. Acid which is an organic solvent obtained by mixing and diluting an extractant with a "naphthenic synthetic hydrocarbon" using one selected from "acids" and "bis 2,4,4 trimethylpentylphosphinic acid" This is a method for producing powder.

本発明によれば、ハンドリング性が難しく、有毒な硫化水素ガスを使用せずに、ニッケル粉を製造する方法は、還元濾液中の残存しているニッケル成分を高い効率で回収可能で、工業上顕著な効果を奏するものであり、自然環境管理や作業環境管理にも優れている。   According to the present invention, the method for producing nickel powder without using toxic hydrogen sulfide gas, which is difficult to handle, can recover the nickel component remaining in the reduced filtrate with high efficiency, and can be used industrially. It has a remarkable effect and is excellent in natural environment management and work environment management.

本実施の形態に係る硫酸ニッケルアンミン錯体溶液の生成工程であるアンミン錯体化工程から溶媒抽出工程および硫酸ニッケルアンミン錯体沈殿物溶解工程の一連の硫酸ニッケルアンミン錯体溶液の回収フローである。It is a recovery flow of a nickel sulfate ammine complex solution from a step of forming a nickel sulfate ammine complex solution to a solvent extraction step and a step of dissolving a nickel sulfate ammine complex precipitate according to the present embodiment.

以下、本実施の形態に係るニッケル粉の製造方法を、図1に示す硫酸ニッケルアンミン錯体溶液の回収フロー図を参照して説明する。   Hereinafter, the method for producing nickel powder according to the present embodiment will be described with reference to the flow chart for recovering the nickel ammine complex solution shown in FIG.

[硫酸ニッケル水溶液]
本実施の形態に用いる硫酸ニッケル水溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、ニッケルマットなどから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、硫酸により溶解して得られるニッケル浸出液を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる硫酸ニッケル水溶液である。
[Nickel sulfate aqueous solution]
Nickel sulfate aqueous solution used in the present embodiment is not particularly limited, nickel and cobalt mixed sulfide, crude nickel sulfate, nickel-containing materials such as industrial intermediates consisting of one or more mixtures selected from nickel matte and the like Is dissolved in sulfuric acid to obtain a nickel leaching solution obtained by subjecting a nickel leaching solution to a purification process such as solvent extraction, ion exchange, or neutralization to remove impurity elements in the solution.

[アンミン錯体化工程]
アンミン錯体化工程では、硫酸ニッケル水溶液のニッケルとアンモニア回収工程から繰返した(回収)アンモニアのmol比を1.9〜2.0(Ni/NH)になるよう調整し、硫酸ニッケルアンミン錯体溶液を生成させる。
さらに、溶解工程で回収した硫酸ニッケルアンミン錯体溶液を混合後、この混合した溶液に硫酸アンモニウム濃度が、100〜500g/L、望ましくは200g/Lになるように、還元工程、固液分離工程を経て得られた還元濾液を繰り返して、還元工程に供給する硫酸ニッケルアンミン錯体溶液を調整する。なお、このときの硫酸アンモニウム濃度は100〜500g/Lが好ましく、500g/L以上では溶解度を超えてしまい、結晶が析出してしまい、プロセスのメタルバランス上、100g/L未満を達成するのは困難である。
[Ammine complexation step]
The ammine complex step, adjusted to be repeated from nickel and ammonia recovery step of the nickel sulfate aqueous solution (recovered) mol ratio of ammonia to 1.9~2.0 (Ni / NH 3), nickel sulfate ammine complex solution Is generated.
Furthermore, after mixing the nickel ammine complex solution recovered in the dissolving step, the mixture is subjected to a reducing step and a solid-liquid separation step so that the concentration of ammonium sulfate becomes 100 to 500 g / L, preferably 200 g / L. The obtained reduced filtrate is repeated to prepare a nickel sulfate ammine complex solution to be supplied to the reduction step. At this time, the concentration of ammonium sulfate is preferably 100 to 500 g / L. If the concentration is 500 g / L or more, the solubility will be exceeded, and crystals will be precipitated. It is.

[還元工程]
この還元工程では高温高圧反応槽に、アンミン錯体化工程から供給される硫酸ニッケルアンミン錯体溶液と種晶としてニッケル粉を30〜200g/Lのスラリー濃度となるように添加し、反応温度を140〜200℃、圧力が2.0〜3.5MPaの雰囲気とし、ここに水素ガスを吹込み、下記反応式(3)により、硫酸ニッケルアンミン錯体溶液中のニッケル錯イオンを還元して金属ニッケル粉を生成し、副生成物として得られた硫酸アンモニウムを含む還元濾液を得る。
[Reduction step]
In this reduction step, a nickel sulfate ammine complex solution supplied from the ammine complexation step and nickel powder as seed crystals are added to the high-temperature high-pressure reaction tank so as to have a slurry concentration of 30 to 200 g / L, and the reaction temperature is increased to 140 to 200 g / L. Atmosphere of 200 ° C. and pressure of 2.0 to 3.5 MPa, hydrogen gas was blown into the atmosphere, and the nickel complex ion in the nickel sulfate ammine complex solution was reduced by the following reaction formula (3) to produce metallic nickel powder. A reduced filtrate containing the ammonium sulfate produced and obtained as a by-product is obtained.

Figure 2020026556
Figure 2020026556

[固液分離工程]
固液分離工程は、前工程の還元工程で得られた金属ニッケル粉と還元濾液の硫酸アンモニウム水溶液(一部未反応の硫酸ニッケルアンミン錯体溶液を含む)を濾過機で分離し、固相成分の金属ニッケル粉は、水洗を行って製品とする。
一方硫酸アンモニウム水溶液は、未反応の硫酸ニッケルアンミン錯体が残るため、本実施の形態の特徴である、この未反応の硫酸ニッケルアンミン錯体を回収する「Ni回収溶媒抽出工程」へ送る。
[Solid-liquid separation process]
In the solid-liquid separation step, the metal nickel powder obtained in the previous reduction step and the aqueous ammonium sulfate solution (including a partially unreacted nickel sulfate ammine complex solution) of the reduced filtrate are separated by a filter, and the solid component metal Nickel powder is washed with water to produce a product.
On the other hand, since the unreacted nickel ammine sulfate complex remains in the aqueous ammonium sulfate solution, it is sent to the “Ni recovery solvent extraction step” for collecting the unreacted nickel ammine sulfate complex, which is a feature of the present embodiment.

[Ni回収溶媒抽出工程]
このNi回収溶媒抽出工程では、上記還元濾液と有機溶媒をミキサーで混合し、セトラーで水相と有機相に分離する。
ここで、還元後に残留するニッケル成分を、溶媒抽出を用いて回収する場合、ニッケル成分を抽出して分離する方法もあるが、本実施の形態ではアンモニア成分を先に抽出し、その結果硫酸ニッケルアンミン錯体の沈殿を生成させて錯体として直接回収する方法を用いた。
[Ni recovery solvent extraction step]
In the Ni recovery solvent extraction step, the reduced filtrate and the organic solvent are mixed by a mixer and separated into an aqueous phase and an organic phase by a settler.
Here, when the nickel component remaining after the reduction is recovered using solvent extraction, there is a method of extracting and separating the nickel component. In the present embodiment, the ammonia component is extracted first, and as a result, nickel sulfate is extracted. A method was used in which a precipitate of an ammine complex was formed and directly recovered as a complex.

つまり、本実施の形態の溶媒抽出では、下記反応式(4)により有機相にはNH が抽出される。一方水相には硫酸ニッケルアンミン錯体沈殿物が生成する。 That is, in the solvent extraction of the present embodiment, NH 4 + is extracted into the organic phase by the following reaction formula (4). On the other hand, a nickel ammine complex precipitate is formed in the aqueous phase.

Figure 2020026556
Figure 2020026556

また、上記で得た有機相(RNHorg.)は次工程のアンモニア回収工程で、下記反応式(5)により希釈した硫酸の水相と混合して有機相のNH を硫酸アンモニウムとして回収し、アンモニア回収工程に送る。 The organic phase (RNH 4 org.) Obtained above is mixed with an aqueous phase of sulfuric acid diluted by the following reaction formula (5) in the ammonia recovery step of the next step to recover NH 4 + of the organic phase as ammonium sulfate. And send it to the ammonia recovery process.

Figure 2020026556
Figure 2020026556

一方、水相で沈殿した硫酸ニッケルアンミン錯体沈殿物は、セトラーの底部から断続的にスラリー状で抜出、溶解工程に送る。   On the other hand, the nickel sulfate ammine complex precipitate precipitated in the aqueous phase is intermittently extracted as a slurry from the bottom of the settler and sent to the dissolving step.

このように、本実施の形態ではニッケルを硫酸ニッケルアンミン錯体の形態のまま固体として回収するので、再度錯体化する必要がなく、再利用のための手間やコストを削減でき、設備がコンパクトで済むなどの利点がある。   As described above, in this embodiment, nickel is recovered as a solid in the form of a nickel sulfate ammonium complex, so that there is no need to complex again, so that labor and cost for reuse can be reduced, and the equipment can be compact. There are advantages such as.

なお、上記のNi回収溶媒抽出工程で用いる抽出剤は、実用上は希釈剤を用いて希釈して使用することができる。
具体的な抽出剤濃度は、対象物のニッケル濃度などにより異なるが、例えば20%(すなわち抽出剤20容量%に対して希釈剤が80容量%)の前後(10〜40%程度)の範囲で希釈することが好ましい。
In addition, the extractant used in the above-mentioned Ni recovery solvent extraction step can be practically diluted with a diluent before use.
The specific concentration of the extractant varies depending on the nickel concentration of the target object and the like. It is preferred to dilute.

また、上記の希釈した抽出剤(すなわち有機溶媒;有機相)、は還元濾液(水相)と同体積、すなわち有機相O/水相Aの比率が1.0程度に混合して溶媒抽出に付すのが使いやすい。
O/A比が例えば0.5以下などと、小さすぎると還元濾液の量が多すぎて十分にアンモニアを抽出できず、その結果硫酸ニッケルアンミン錯体沈殿物の生成が不十分となる。一方、O/A比が例えば2を超えるなど有機相が多すぎると、硫酸ニッケルアンミン錯体沈殿物が有機相に巻き込まれるなど操業は困難になる恐れがあり好ましくない。
The diluted extractant (ie, organic solvent; organic phase) is mixed with the same volume as the reduced filtrate (aqueous phase), that is, the ratio of organic phase O / aqueous phase A is mixed to about 1.0 to extract the solvent. Easy to attach.
When the O / A ratio is too small, for example, 0.5 or less, the amount of the reduced filtrate is too large to sufficiently extract ammonia, and as a result, the formation of a nickel sulfate ammine complex precipitate is insufficient. On the other hand, when the organic phase is too large, for example, when the O / A ratio exceeds 2, for example, the nickel sulfate ammine complex precipitate may be involved in the organic phase, and the operation may be difficult.

本実施の形態のNi回収溶媒抽出工程で得た硫酸ニッケルアンミン錯体沈殿物は、再利用しやすいように、次の溶解工程に送り、アンモニアを添加して再度溶解する。   The nickel sulfate ammine complex precipitate obtained in the Ni recovery solvent extraction step of the present embodiment is sent to the next dissolution step so as to be easily reused, and is again dissolved by adding ammonia.

[溶解工程]
溶解工程では、下記反応式(6)により硫酸ニッケルアンミン錯体沈殿物スラリーに、アンモニア回収工程で得られたアンモニア水を添加して硫酸ニッケルアンミン錯体溶液として回収する。
この回収した硫酸ニッケルアンミン錯体溶液は、アンミン錯体化工程へ繰り返すことで、高温高圧下の条件で水素ガスを用いて還元処理する還元工程を経ることによって、繰り返して再度ニッケル錯イオンをニッケル粉として回収する処理に再利用することができる。
[Dissolution step]
In the dissolving step, the ammonia water obtained in the ammonia recovering step is added to the nickel ammine sulfate complex precipitate slurry according to the following reaction formula (6) to recover as a nickel sulfate ammine complex solution.
The recovered nickel sulfate ammine complex solution is subjected to a reduction process using hydrogen gas under high temperature and high pressure conditions by repeating the ammine complexation process, thereby repeatedly converting nickel complex ions into nickel powder again. It can be reused for the recovery process.

Figure 2020026556
Figure 2020026556

さらに、溶解時に添加するアンモニアは、回収した硫酸ニッケルアンミン錯体沈殿物に含まれるニッケル当量となる量のアンモニア水を添加する。   Further, as the ammonia to be added at the time of dissolution, ammonia water is added in an amount equivalent to the nickel equivalent contained in the recovered nickel sulfate ammine complex precipitate.

以上のように、本実施の形態に係る製造方法では、ハンドリング性が難しく、有毒な硫化水素ガスを使用しないので自然環境管理や作業環境管理に優れている。   As described above, the manufacturing method according to the present embodiment is difficult to handle and does not use toxic hydrogen sulfide gas, and thus is excellent in natural environment management and work environment management.

以下、実施例を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

Ni回収溶媒抽出工程において、溶媒抽出で用いる有機溶媒は、抽出剤に2-エチルヘキシルホスホン酸モノ−2エチルヘキシル(例えば、大八化学工業株式会社製:商品名「PC−88A」)、ジ-2エチルヘキシルホスホン酸(D2EHPA)、ビス2、4,4トリメチルペンチルホスフィン酸(Cyanex272)を用い、いずれもナフテン系合成炭化水素(例えば、新日本石油株式会社製:商品名「テクリーンN20」)を希釈剤に用いて、有機溶媒中の抽出剤濃度が20容量%になるように希釈したものを用いた。   In the Ni recovery solvent extraction step, the organic solvent used in the solvent extraction includes, as an extractant, mono-2-ethylhexyl 2-ethylhexylphosphonate (for example, trade name "PC-88A" manufactured by Daihachi Chemical Industry Co., Ltd.), di-2 Ethylhexylphosphonic acid (D2EHPA) and bis 2,4,4 trimethylpentylphosphinic acid (Cyanex 272) were used, each of which used a naphthenic synthetic hydrocarbon (for example, Nippon Oil Co., Ltd .: trade name “Teclean N20”) as a diluent The extract was diluted so that the concentration of the extractant in the organic solvent was 20% by volume.

上記有機溶媒を、ニッケル濃度が5g/Lである還元工程で得られた還元濾液と、それぞれ体積比で50:50となるように混合し、溶媒抽出に付した。
なお、上記の還元濾液は、硫酸ニッケルアンミン錯体溶液を公知の方法により、高温高圧下で水素ガスと接触させてニッケル錯イオンを還元して得たニッケル粉を含むスラリーを、固液分離した後の濾液を用いた。
また、上記溶媒抽出に付す前の反応濾液の硫酸アンモニウム濃度は400g/Lだった。
The organic solvent was mixed with the reduced filtrate obtained in the reduction step having a nickel concentration of 5 g / L so that the volume ratio of each of the reduced filtrates was 50:50, and the mixture was subjected to solvent extraction.
The reduced filtrate is obtained by solid-liquid separation of a slurry containing nickel powder obtained by contacting a nickel ammine complex solution with hydrogen gas under high temperature and high pressure to reduce nickel complex ions by a known method. Was used.
Further, the concentration of ammonium sulfate in the reaction filtrate before subjecting to the solvent extraction was 400 g / L.

本実施例の「Ni回収溶媒抽出工程」に付して水相に回収した硫酸ニッケルアンミン錯体沈殿物に含まれるニッケル量を、溶媒抽出に付す前の反応濾液に含まれたニッケル物量で除して回収率を求めると、下記表1のように、いずれの抽出剤の場合でも、80%を超える高い回収率となり、ニッケル成分を有効に回収し、ニッケル粉を得ることができることが分かった。   The amount of nickel contained in the nickel sulfate ammine complex precipitate recovered in the aqueous phase by the “Ni recovery solvent extraction step” of this example was divided by the amount of nickel contained in the reaction filtrate before the solvent extraction. As shown in Table 1 below, the recovery rate was as high as over 80% for any of the extractants, indicating that the nickel component could be effectively recovered and nickel powder could be obtained.

なお、表のPC−88Aを用いて回収した硫酸ニッケルアンミン錯体沈殿物19.3g−wetを分取し、これに還元反応濾液で250g−wet/Lとなる濃度でレパルプし、次に濃度25%アンモニア水5.5mLを添加すると、硫酸ニッケルアンミン錯体沈殿物が全量溶解した溶解液が得られた。
この溶解液のニッケル濃度は20.2g/Lだった。また溶解したニッケルと添加した25%アンモニア水の添加量の比は、2.2(Nimol/NHmol)だった。
In addition, 19.3 g-wet of the nickel sulfate ammine complex precipitate collected by using PC-88A shown in the table was collected, re-pulpted at a concentration of 250 g-wet / L with the filtrate for reduction reaction, and then concentrated to 25 g-wet / L. When 5.5 mL of aqueous ammonia was added, a solution in which the nickel ammine complex precipitate was completely dissolved was obtained.
The nickel concentration of this solution was 20.2 g / L. The amount ratio of 25% ammonia water was added and dissolved nickel was 2.2 (Nimol / NH 3 mol) .

Figure 2020026556
Figure 2020026556

Claims (3)

硫酸ニッケル溶液にアンモニアを混合後、含まれる硫酸アンモニウムの濃度を100〜500g/Lの範囲に調節した硫酸ニッケルアンミン錯体溶液を形成するアンミン錯体化工程と、
前記硫酸ニッケルアンミン錯体溶液を、高温高圧下で水素ガスと接触させて前記硫酸ニッケルアンミン錯体溶液中のニッケル錯体イオンを還元処理して生成したニッケル粉を含む還元反応スラリーを得る還元工程と、
次いで、前記還元反応スラリーを固液分離処理して固体成分のニッケル粉と、還元濾液に分離して前記ニッケル粉を得る固液分離工程を含み、
前記還元濾液が、前記還元工程で還元処理されなかった硫酸ニッケルアンミン錯体を含む溶液で、
前記還元濾液を、抽出始液に用いて溶媒抽出処理に付し、前記還元濾液中の硫酸ニッケルアンミン錯体からアンモニウムイオンを抽出してニッケルアンミン錯体澱物を含むスラリー(水相)を形成するニッケル回収溶媒抽出工程と、
前記スラリー(水相)をアンモニア水と混合し、前記スラリーに含まれる硫酸ニッケルアンミン錯体澱物を溶解して硫酸ニッケルアンミン錯体溶液を形成する溶解工程を含むことを特徴とするニッケル粉の製造方法。
After mixing ammonia with the nickel sulfate solution, an ammine complexing step of forming a nickel sulfate ammine complex solution in which the concentration of ammonium sulfate contained is adjusted to a range of 100 to 500 g / L;
A reduction step of contacting the nickel ammine complex solution with hydrogen gas at a high temperature and a high pressure to obtain a reduction reaction slurry containing nickel powder produced by reducing nickel complex ions in the nickel sulfate ammine complex solution,
Next, a solid-liquid separation step of subjecting the reduction reaction slurry to a solid-liquid separation treatment to obtain a nickel powder of a solid component and a reduced filtrate to obtain the nickel powder,
The reduction filtrate is a solution containing a nickel sulfate ammine complex that has not been subjected to the reduction treatment in the reduction step,
The reduced filtrate is used as an extraction starting solution and subjected to a solvent extraction treatment to extract ammonium ions from the nickel ammine sulfate complex in the reduced filtrate to form a slurry (aqueous phase) containing a nickel ammine complex precipitate. A recovery solvent extraction step,
A method for producing nickel powder, comprising a dissolving step of mixing the slurry (aqueous phase) with aqueous ammonia and dissolving a nickel ammine sulfate complex precipitate contained in the slurry to form a nickel ammine sulfate complex solution. .
前記ニッケル回収溶媒抽出工程が、抽出後有機相に、前記還元濾液中のニッケルアンミン錯体からアンモニウムイオンを抽出し、
水相の抽残液に、硫酸ニッケルアンミン錯体沈殿物を得ることを特徴とする請求項1に記載のニッケル粉の製造方法。
The nickel recovery solvent extraction step, in the organic phase after extraction, to extract ammonium ions from the nickel ammine complex in the reduced filtrate,
The method for producing nickel powder according to claim 1, wherein a nickel sulfate ammine complex precipitate is obtained in the raffinate of the aqueous phase.
前記ニッケル回収溶媒抽出工程で用いる有機溶媒が、
抽出剤に、「2−エチルヘキシルホスホン酸モノ−2エチルヘキシル」、「ジ−2エチルヘキシルホスホン酸」、「ビス2、4,4トリメチルペンチルホスフィン酸」から選ばれる1種を用い、
前記抽出剤に「ナフテン系合成炭化水素」を混合して希釈した有機溶媒であることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。
Organic solvent used in the nickel recovery solvent extraction step,
As the extractant, using one selected from “mono-2-ethylhexyl 2-ethylhexylphosphonate”, “di-2ethylhexylphosphonic acid”, and “bis 2,4,4 trimethylpentylphosphinic acid”
The method for producing nickel powder according to claim 1 or 2, wherein the extractant is an organic solvent obtained by mixing and diluting "naphthene-based synthetic hydrocarbon" with the extractant.
JP2018152118A 2018-08-10 2018-08-10 Nickel powder manufacturing method Active JP7016484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152118A JP7016484B2 (en) 2018-08-10 2018-08-10 Nickel powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152118A JP7016484B2 (en) 2018-08-10 2018-08-10 Nickel powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2020026556A true JP2020026556A (en) 2020-02-20
JP7016484B2 JP7016484B2 (en) 2022-02-07

Family

ID=69619696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152118A Active JP7016484B2 (en) 2018-08-10 2018-08-10 Nickel powder manufacturing method

Country Status (1)

Country Link
JP (1) JP7016484B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100204A (en) * 2011-11-09 2013-05-23 Sumitomo Metal Mining Co Ltd Solvent extraction method for obtaining high purity nickel sulfate
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
JP2017150002A (en) * 2016-02-22 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
WO2018061634A1 (en) * 2016-09-27 2018-04-05 住友金属鉱山株式会社 Nickel powder manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100204A (en) * 2011-11-09 2013-05-23 Sumitomo Metal Mining Co Ltd Solvent extraction method for obtaining high purity nickel sulfate
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
JP2017150002A (en) * 2016-02-22 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
WO2018061634A1 (en) * 2016-09-27 2018-04-05 住友金属鉱山株式会社 Nickel powder manufacturing method

Also Published As

Publication number Publication date
JP7016484B2 (en) 2022-02-07

Similar Documents

Publication Publication Date Title
JP5014394B2 (en) Method for separating and recovering nickel and lithium
CN105899691B (en) Scandium recovery method
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
WO2014148431A1 (en) Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium
JP5686258B2 (en) Solvent extraction method for obtaining high purity nickel sulfate
JP6759882B2 (en) Method for producing a solution containing nickel and cobalt
CN113666437B (en) Method for preparing nickel sulfate from nickel-iron-copper alloy
KR101021180B1 (en) Method for producing high purity cobalt surfate
US10697043B2 (en) Scandium purification method
WO2017146034A1 (en) Method for recovering scandium
JP6172100B2 (en) Scandium recovery method
JP2017149609A (en) Method for producing aqueous nickel solution
JP7099592B1 (en) Manufacturing method of cobalt sulfate
WO2017104629A1 (en) Method for recovering scandium
JP5867727B2 (en) Separation method of rare earth elements
JP2013221178A (en) Method for separating valuable metal
WO2018038058A1 (en) Method for purifying scandium and scandium extractant
TWI835612B (en) Method for producing aqueous solution containing nickel or cobalt
JP7016484B2 (en) Nickel powder manufacturing method
JP2022104563A (en) Production method of cobalt sulfate
JP7528581B2 (en) How to recover scandium
JP2022191115A (en) Method for producing cobalt sulfate
CA3211609C (en) Method for producing aqueous solution containing nickel or cobalt
US20090085005A1 (en) Method for scrubbing amine-type extractant
JP7327276B2 (en) Scandium recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220109