JP2020025934A - Regeneration method of adsorbent for exhaust gas treatment - Google Patents

Regeneration method of adsorbent for exhaust gas treatment Download PDF

Info

Publication number
JP2020025934A
JP2020025934A JP2018152857A JP2018152857A JP2020025934A JP 2020025934 A JP2020025934 A JP 2020025934A JP 2018152857 A JP2018152857 A JP 2018152857A JP 2018152857 A JP2018152857 A JP 2018152857A JP 2020025934 A JP2020025934 A JP 2020025934A
Authority
JP
Japan
Prior art keywords
adsorbent
temperature
regeneration
cooling
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152857A
Other languages
Japanese (ja)
Other versions
JP6888591B2 (en
Inventor
巨都 吉開
Naoto Yoshigai
巨都 吉開
健太 牛久保
Kenta Ushikubo
健太 牛久保
植木 貴之
Takayuki Ueki
貴之 植木
一正 貝原
Kazumasa Kaihara
一正 貝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018152857A priority Critical patent/JP6888591B2/en
Publication of JP2020025934A publication Critical patent/JP2020025934A/en
Application granted granted Critical
Publication of JP6888591B2 publication Critical patent/JP6888591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a regeneration method of adsorbent for exhaust gas treatment which is efficient for effectively preventing corrosion deterioration of a heat transfer pipe existing on a heating part and a cooling part of a regenerating column.SOLUTION: In such a regeneration method of adsorbent that the adsorbent discharged from an adsorption column is conveyed to a regeneration column composed of a multi-tube heat exchanger structure and is heated, thereby, a substance regulated by a law such as Clean Air Act is decomposed and removed, at the same time, is cooled and is regenerated and, thereafter, the adsorbent after regeneration is flowed back to the adsorption column and is used again, upon cooling after heating regeneration of the adsorbent on the regeneration column, temperature of the regeneration adsorbent on an outlet part of the regeneration column cooling part is regulated into a temperature range capable of avoiding a sulfuric acid dew point corrosion region by regulating a cooling air quantity.SELECTED DRAWING: Figure 1

Description

本発明は、排ガス中の硫黄酸化物(SOx)等の大気汚染防止法などの法令で規制される物質を吸着した吸着材を加熱再生させて再使用するのに有効な再生方法に関する。   The present invention relates to a regeneration method that is effective for heating and regenerating an adsorbent that has adsorbed a substance regulated by laws such as the Air Pollution Control Law such as sulfur oxides (SOx) in exhaust gas and reusing it.

例えば、焼結鉱の製造(焼成)過程で発生する焼結排ガス中には、硫黄酸化物(SOx)等の大気汚染防止法などの法令で規制される多くの物質が含まれていることが知られている。このような排ガスの処理方法として、従来、粒状の吸着材を充填してなる吸着塔内に排ガスを導入し、その排ガスと吸着材とを接触させることにより大気汚染防止法などの法令で規制される物質を吸着除去する一方、使用に供したその吸着材を再生塔に導き加熱して再生させ、次いで再生させた冷却後の吸着材を再び吸着塔に循環させて再び使用するという、排ガスの処理技術が知られている。(特許文献1参照)   For example, sintering exhaust gas generated during the production (sintering) of sinter ore may contain many substances regulated by laws such as the Air Pollution Control Law such as sulfur oxides (SOx). Are known. Conventionally, as a method of treating such exhaust gas, the exhaust gas is introduced into an adsorption tower filled with a granular adsorbent, and the exhaust gas is brought into contact with the adsorbent to be regulated by laws such as the Air Pollution Control Law. While adsorbing and removing the substances to be used, the used adsorbent is led to a regeneration tower to be heated and regenerated, and then the regenerated and cooled adsorbent is circulated again to the adsorption tower and reused. Processing techniques are known. (See Patent Document 1)

前述の大気汚染防止法などの法令で規制される物質吸着除去の技術は、移動層式反応器等に充填された活性炭や活性コークス等の吸着材が、反応器(吸着塔)内で充填層を形成しつつ上方から下方へ移動する間に、これと向流で流れる排ガスが吸着材の充填層と接触する際に、その吸着材に大気汚染防止法などの法令で規制される物質を吸着させて除去する方法である。   The technology of adsorbing and removing substances regulated by laws such as the Air Pollution Control Law mentioned above is based on the fact that adsorbents such as activated carbon and activated coke filled in a moving bed reactor are packed in a reactor (adsorption tower). When the exhaust gas flowing counter-currently contacts the packed bed of adsorbent while moving downward from above while forming a substance, the adsorbent adsorbs substances regulated by laws and regulations such as the Air Pollution Control Law. It is a method of removing by removing.

この技術では、吸着材には排ガスとの接触によって硫酸等が次第に蓄積され、やがて吸着材としての除去(脱硫)能力が時間と共に低下するため、その吸着材を再生させる必要がある。即ち、脱硫能力が一時的に低下した吸着材は、例えば多管式熱交換器構造を有する主に加熱部と冷却部とからなる再生塔に搬送し、上方から下方(加熱部から冷却部)に移動する過程で加熱再生され冷却されて吸着塔に戻される。   In this technique, sulfuric acid and the like are gradually accumulated in the adsorbent due to contact with exhaust gas, and the ability to remove (desulfurize) the adsorbent gradually decreases with time. Therefore, it is necessary to regenerate the adsorbent. That is, the adsorbent, whose desulfurization capacity has temporarily decreased, is conveyed to a regeneration tower mainly comprising a heating section and a cooling section having, for example, a multi-tubular heat exchanger structure, and from above to below (from the heating section to the cooling section). The heat is regenerated and cooled in the process of moving to the adsorption tower.

このような再生のための加熱処理を経た吸着材(活性コークス)は、一般にはその後50℃程度の温度にまで冷却されてから、再生塔の底部(冷却部下端)より排出され、再び前記移動層式反応器等からなる吸着塔の頂部へ戻され、循環再利用に供される。なお、前述したように、排ガス処理用吸着材の循環再利用を行う際、吸着材の一部は再生処理を行うときに粉化するものがあるが、これらは充填層での再利用が困難となるため、篩い分け等の処理によってダストとともに分離除去される。   The adsorbent (activated coke) that has undergone such a heat treatment for regeneration is generally cooled to a temperature of about 50 ° C., and then discharged from the bottom of the regeneration tower (lower end of the cooling unit), and then re-moved. It is returned to the top of the adsorption tower composed of a bed reactor or the like and is provided for recycling. As described above, when circulating and recycling the adsorbent for exhaust gas treatment, some of the adsorbent may be powdered when performing the regeneration treatment, but these are difficult to reuse in the packed bed. Therefore, it is separated and removed together with dust by a process such as sieving.

前述した従来技術は、吸着塔での大気汚染防止法などの法令で規制される物質の吸着除去のための排ガス処理において、かかる大気汚染防止法などの法令で規制される物質除去後の吸着材を再生塔にて再生して循環再利用するので、排ガス処理を効率的に行うことができる。   The prior art described above is an exhaust gas treatment for adsorbing and removing substances regulated by laws and regulations such as the Air Pollution Control Law in an adsorption tower. Is recycled in the regeneration tower and recycled for recycling, so that the exhaust gas treatment can be performed efficiently.

特開2007−83222号公報(第2−7項、第1図)JP 2007-83222A (Section 2-7, FIG. 1)

前述の従来技術において、吸着材に吸着されていた硫酸等の大気汚染防止法などの法令で規制される物質は、再生塔に導入されると加熱部において分解除去される。その一方で、吸着材は、加熱によって再生された後、冷却部において冷却されて前記吸着塔に気送される際に、循環再利用のために50℃程度の温度になるように管理されている。しかしながら、このような温度管理は、例えばSOxガスが早期に硫酸に変わって、とくに冷却部や加熱部にある多管式熱交換器の伝熱管自体の腐食劣化を招きやすく、やがては破穴し、ひいては吸着材の化学的消耗による吸着能力の低下を招くという問題があった。   In the above-described conventional technology, substances regulated by laws and regulations such as the Air Pollution Control Law, such as sulfuric acid, adsorbed on the adsorbent are decomposed and removed in the heating section when introduced into the regeneration tower. On the other hand, after the adsorbent is regenerated by heating, when cooled in the cooling section and sent to the adsorption tower, the adsorbent is controlled to have a temperature of about 50 ° C. for circulation reuse. I have. However, such temperature control causes, for example, the SOx gas to be quickly changed to sulfuric acid, and particularly to the corrosion and deterioration of the heat transfer tube itself of the multi-tube heat exchanger in the cooling section and the heating section, and eventually the hole is broken. In addition, there is a problem that the adsorbent is chemically consumed and the adsorption capacity is reduced.

そこで、本発明の目的は、従来技術が抱えている上述した課題を解決することのできる大気汚染防止法などの法令で規制される物質除去用吸着材の再生方法の新しい技術を提案することにある。   Therefore, an object of the present invention is to propose a new technique of a method for regenerating an adsorbent for removing substances regulated by laws and regulations such as the Air Pollution Control Act, which can solve the above-mentioned problems of the prior art. is there.

本発明に関連する前記従来技術(文献1)が抱えている前記課題を解決し、前記目的の実現に向けた研究の中で、発明者は下記要旨構成に係る本発明に想到した。即ち、本発明は、大気汚染防止法などの法令で規制される物質を含む製鉄所排ガスを、まず、内部に大気汚染防止法などの法令で規制される物質除去用吸着材が充填されている吸着塔内に導入して、該排ガス中の大気汚染防止法などの法令で規制される物質を吸着させ、次いで、該吸着塔から排出される前記吸着材を、多管式熱交換器構造からなる再生塔に搬送して加熱することにより該大気汚染防止法などの法令で規制される物質を分解除去すると同時に冷却して再生させ、その後、再生後の該吸着材を、前記吸着塔に環流させて再び使用に供するという吸着材の再生方法において、前記再生塔での吸着材の加熱再生後の冷却に当たり、冷却風量を調整することによって該再生塔冷却部の出口部における前記再生吸着材の温度を硫酸露点腐食領域を回避できる温度範囲に調整することを特徴とする排ガス処理用吸着材の再生方法である。   In order to solve the problems of the related art (Reference 1) related to the present invention and to achieve the object, the inventor has arrived at the present invention according to the following gist configuration. That is, in the present invention, an exhaust gas from a steel mill containing a substance regulated by laws and regulations such as the Air Pollution Control Act is first filled with an adsorbent for removing substances regulated by laws and regulations such as the Air Pollution Control Act. Introduced into the adsorption tower to adsorb substances regulated by laws and regulations such as the Air Pollution Control Law in the exhaust gas, and then discharge the adsorbent discharged from the adsorption tower from the multi-tube heat exchanger structure By transporting the adsorbent to a regeneration tower and heating it to decompose and remove the substances regulated by laws and regulations such as the Air Pollution Control Law, simultaneously cool and regenerate the adsorbent, and then recirculate the adsorbent after regeneration to the adsorption tower. In the method for regenerating the adsorbent, the regenerated adsorbent at the outlet of the regenerating tower cooling unit is adjusted by adjusting the amount of cooling air in cooling after heating and regenerating the adsorbent in the regenerating tower. Sulfuric acid dew point temperature A method for regenerating an exhaust gas treatment for adsorbing material and adjusting the temperature can be avoided region.

なお、発明者の研究においては、前記再生吸着材の温度を硫酸露点腐食領域を回避できる温度範囲は、84℃以上120℃以下の温度であることが望ましいことが明らかになっている。   In addition, research by the inventor has revealed that it is desirable that the temperature range of the regenerated adsorbent to avoid the sulfuric acid dew point corrosion region is a temperature of 84 ° C. or more and 120 ° C. or less.

本発明によれば、吸着材が充填されている吸着塔内に排ガスを通過させることによって、排ガス中の硫黄酸化物(SOx)等の大気汚染防止法などの法令で規制される物質を吸着除去した吸着材を加熱および冷却して再生させる際に、多管式熱交換器構造を有する再生塔の冷却部における吸着材の温度を冷却風量の調整によって硫酸露点腐食領域を回避できる温度、例えば84℃≦再生器出口の吸着材温度≦120℃の温度範囲に調整するようにしたので、少なくとも再生塔の多管式熱交換器を構成している伝熱管の長寿命化を達成することができるようになる。   According to the present invention, by passing exhaust gas through an adsorption tower filled with an adsorbent, substances regulated by laws and regulations such as the Air Pollution Control Law such as sulfur oxides (SOx) in exhaust gas are adsorbed and removed. When the adsorbent thus obtained is heated and cooled for regeneration, the temperature of the adsorbent in the cooling section of the regeneration tower having the multi-tube heat exchanger structure is adjusted to a temperature at which the sulfuric acid dew point corrosion area can be avoided by adjusting the cooling air flow, for example, 84 Since the temperature is adjusted to be in the range of ≦ ° C. ≦ adsorbent temperature at the outlet of the regenerator ≦ 120 ° C., it is possible to at least prolong the service life of the heat transfer tubes constituting the multi-tube heat exchanger of the regenerator. Become like

排ガス処理設備の一例を示す略線図である。It is an approximate line figure showing an example of an exhaust gas processing equipment. 再生塔冷却部出・入口での吸着材および冷却空気の温度から推定した、一般的な再生塔冷却部内の温度推移を示す図である。It is a figure which shows the temperature transition in the general regeneration tower cooling part estimated from the temperature of the adsorbent and cooling air at the entrance / exit of the regeneration tower cooling part. 再生塔冷却部における温度実測位置を示す略線図である。FIG. 4 is a schematic diagram illustrating a temperature measurement position in a regeneration tower cooling unit. 硫酸露点腐食領域を発生する時の再生塔冷却部内の温度推移解析図である。It is a temperature transition analysis diagram in a regeneration tower cooling part when a sulfuric acid dew point corrosion area is generated. 冷却風量を25%減少させた時の再生塔冷却部内の温度推移解析図である。It is a temperature transition analysis diagram in a regeneration tower cooling part when cooling air volume is reduced by 25%. 冷却風量を50%減少させた時の再生塔冷却部内の温度推移解析図である。It is a temperature transition analysis diagram in the regeneration tower cooling part when the cooling air volume is reduced by 50%. 冷却空気風量と再生塔出口での吸着材温度との関係を示す図である。It is a figure which shows the relationship between the amount of cooling air, and the adsorbent temperature at the outlet of a regeneration tower.

本発明は、循環させて繰返し使用する活性コークス(以下、「AC」とも略記する)のような吸着材に、製鉄所排ガス中の硫黄酸化物(SOx)等の大気汚染防止法などの法令(環境法)で規制の対象となっている各種の物質を吸着させ、これを多管式熱交換器構造からなる再生塔に搬送して加熱することにより硫黄酸化物由来の硫酸等を分解しガス化除去した後、その吸着材を冷却して再生させる際に、再生塔内冷却部に供給する冷却風量を制御することにより、冷却する吸着材の温度管理を適正に行うこと、即ち、該再生塔出側における再生後吸着材の温度を、硫酸露点腐食領域を回避できる温度範囲に維持する方法である。その硫酸露点腐食領域である温度の範囲として、本発明では、上限値(120℃)の他、下限値(84℃)を設定して管理するようにしたので、冷却部における伝熱配管の硫酸露点腐食による損傷を回避することができ、該冷却部配管(伝熱管)の長寿命化を実現することができるようになる。   The present invention relates to an adsorbent such as activated coke (hereinafter abbreviated as "AC") which is repeatedly circulated and used, and is provided with laws and regulations (such as the Air Pollution Control Act such as sulfur oxides (SOx) in exhaust gas from steelworks). Adsorbs various substances regulated by the Environmental Law), transports them to a regeneration tower having a multi-tube heat exchanger structure, and heats them to decompose sulfuric acid derived from sulfur oxides and remove gas. After cooling and regenerating the adsorbent after the removal, the temperature of the adsorbent to be cooled is properly controlled by controlling the amount of cooling air supplied to the cooling unit in the regeneration tower. This is a method for maintaining the temperature of the adsorbent after regeneration on the outlet side in a temperature range that can avoid the sulfuric acid dew point corrosion region. In the present invention, as the temperature range that is the sulfuric acid dew point corrosion area, in addition to the upper limit (120 ° C.), the lower limit (84 ° C.) is set and managed. Damage due to dew point corrosion can be avoided, and a longer life of the cooling unit piping (heat transfer tube) can be realized.

図1は、吸着材として活性コークスを用いる焼結排ガス処理設備の要部を示す略線図である。図示の1は、複数基を並列して利用する活性コークス(AC)のような吸着材を充填してなる吸着塔1(上部1a、下部1b)であり、2は、該吸着材を加熱して吸着材に付着した硫黄酸化物等の大気汚染防止法などの法令で規制される物質をガス化して分解除去するための加熱部2aと、再利用するための吸着材の冷却部2bとからなる再生塔である。   FIG. 1 is a schematic diagram showing a main part of a sintering exhaust gas treatment facility using activated coke as an adsorbent. 1 is an adsorption tower 1 (upper part 1a, lower part 1b) filled with an adsorbent such as activated coke (AC) using a plurality of units in parallel, and 2 is used to heat the adsorbent. A heating unit 2a for gasifying and decomposing and removing substances regulated by laws such as the Air Pollution Control Law such as sulfur oxides adhering to the adsorbent, and a cooling unit 2b for adsorbent for reuse It is a regeneration tower.

また、図示の3は、前記吸着材を前記吸着塔1から再生塔2へ気送する搬送管路で、4は加熱−冷却によって再生された吸着材を再生塔2から吸着塔1へ循環させて再び使用に供するようにするための環流管路である。   In addition, reference numeral 3 denotes a conveyance pipe for pneumatically feeding the adsorbent from the adsorption tower 1 to the regeneration tower 2, and reference numeral 4 circulates the adsorbent regenerated by heating and cooling from the regeneration tower 2 to the adsorption tower 1. This is a recirculation pipe for re-use.

そして、図示の5は、吸着材ホッパ、6は該吸着材の貯蔵ビン、7はブースタ、8は煙突、9は振動篩、10は粉化吸着材用ホッパであり、Aは排ガスである。   5 is an adsorbent hopper, 6 is a storage bin for the adsorbent, 7 is a booster, 8 is a chimney, 9 is a vibrating sieve, 10 is a powdered adsorbent hopper, and A is exhaust gas.

ここで、再生塔2の加熱部2aおよび冷却部2bを構成している多管式熱交換器構造の伝熱管の劣化は、加熱部2aの場合、主として鋭敏化による粒界割れに起因する管内面の劣化であり、一方、冷却部の場合は温度が低いため鋭敏化はないが硫酸露点腐食による損傷(破穴)である。   Here, in the case of the heating unit 2a, deterioration of the heat transfer tube of the multi-tube heat exchanger structure constituting the heating unit 2a and the cooling unit 2b of the regeneration tower 2 is mainly caused by grain boundary cracking due to sensitization. On the other hand, in the case of the cooling part, there is no sensitization due to the low temperature, but damage (holes) due to sulfuric acid dew point corrosion.

前記再生塔2における加熱再生時に340℃程度以上の温度に加熱された吸着材は、冷却部2bの伝熱管中を降下する際に冷風に接して次第に冷却され、最終的には該冷却部2bの伝熱管下端の出口では一般的には50℃程度になると考えられる。   The adsorbent heated to a temperature of about 340 ° C. or higher during the heat regeneration in the regeneration tower 2 is gradually cooled by coming into contact with the cool air when descending in the heat transfer tube of the cooling unit 2 b, and finally is cooled. It is generally considered that the temperature at the outlet at the lower end of the heat transfer tube becomes about 50 ° C.

なお、この冷却部2bにおいて、吸着材(AC)は、上から1.1〜1.4mの時点で230℃程度に冷却されるまで、該吸着材(AC)からはSOガスを発生しており凝結するようなことはない。しかし、その温度が145℃の酸露点温度(硫酸露点腐食が始まる温度)にまで冷却される間は、前記伝熱管の表面に硫酸が結露して硫酸露点腐食が進行する。 In the cooling unit 2b, the adsorbent (AC) generates SO 2 gas until the adsorbent (AC) is cooled to about 230 ° C. at a point of 1.1 to 1.4 m from the top. It does not condense. However, while the temperature is cooled to an acid dew point temperature of 145 ° C. (a temperature at which sulfuric acid dew point corrosion starts), sulfuric acid is condensed on the surface of the heat transfer tube, and sulfuric acid dew point corrosion proceeds.

そこで、本発明では、冷却部2b伝熱管に供給する冷却空気の風量を調整することで、該伝熱管の温度を145℃の酸露点温度を下らないようにして、吸着材が硫酸露点腐食領域に達しないように管理することにした。このような管理を行うことによって、吸着材の該冷却部2b出口(排出時)での温度は再生循環に適した120℃以下にできる。このように、吸着材の該冷却部2b出口(排出時)での温度が高くなるほど、吸着塔1の入り口での温度が高くなり吸着塔での吸着能率が低下することと、循環のための還流経路4を構成する部材の材質の耐熱性能への要求が高まることから、吸着材の該冷却部2b出口(排出時)での温度は120℃以下であることが望ましい。   Therefore, in the present invention, by adjusting the flow rate of the cooling air supplied to the cooling unit 2b heat transfer tube, the temperature of the heat transfer tube is kept from falling below the acid dew point temperature of 145 ° C, and the adsorbent is moved to the sulfuric acid dew point corrosion area. We decided not to reach. By performing such management, the temperature of the adsorbent at the outlet (at the time of discharge) of the cooling unit 2b can be set to 120 ° C. or less, which is suitable for regeneration circulation. As described above, as the temperature of the adsorbent at the outlet (at the time of discharge) of the cooling unit 2b increases, the temperature at the entrance of the adsorption tower 1 increases, and the adsorption efficiency in the adsorption tower decreases. The temperature of the adsorbent at the outlet of the cooling unit 2b (during discharge) is desirably 120 ° C. or lower because the demand for heat resistance of the material of the members constituting the reflux path 4 increases.

発明者の知見によると、前記吸着材の該冷却部2b出口での温度を全く調整することなく所期した定格風量をそのまま流して冷却すると、硫酸露点腐食領域を確実に回避することができなくなることがわかった。その理由は、定格風量での冷却空気の供給は、前記吸着材の冷却部2b出口での吸着材の温度が、前記硫酸露点腐食領域を十分に回避できる温度域に収まらないからである。そこで、本発明では、最終的にはその温度を従来の一般的な温度(50℃程度)よりも高い温度(発明者らの知見では84℃程度)となるように調整することで、前記伝熱管の温度が下がりすぎるようなことがなくなり、ひいては前記硫酸露点腐食領域を回避することができるようになる。以下、さらに詳しく説明する。   According to the knowledge of the inventor, if the intended rated air volume is allowed to flow as it is without adjusting the temperature of the adsorbent at the outlet of the cooling section 2b, the sulfuric acid dew-point corrosion region cannot be reliably avoided. I understand. The reason is that the supply of the cooling air at the rated air volume does not allow the temperature of the adsorbent at the outlet of the cooling section 2b of the adsorbent to fall within a temperature range that can sufficiently avoid the sulfuric acid dew point corrosion area. Therefore, in the present invention, the temperature is finally adjusted to be higher than the conventional general temperature (about 50 ° C.) (about 84 ° C. according to the knowledge of the present inventors), whereby the transfer is performed. The temperature of the heat tube does not become too low, and the sulfuric acid dew point corrosion region can be avoided. The details will be described below.

図2は、多管式熱交換器構造を有する再生塔2の冷却部2b上端(入口)での吸着材(AC)の実温度11、および冷却空気の実温度12に関する入口側から出口側に向う吸着材の温度推移13と熱交換器の伝熱管の温度推移14を推定したグラフである。なお、この図において、再生塔2内の環境から、吸着材から硫黄酸化物(SOx)等が揮散する温度15と硫酸露点温度16を算出して表示した。この図に示すように、吸着材から硫黄酸化物等が揮散する範囲17かつ硫酸露点範囲18とからなる領域を硫酸露点腐食領域19として定義するとき、発明者らの研究によると、冷却部2b上端(入口)からの距離と実機の腐食損傷部分とが一致することがわかった。   FIG. 2 shows the actual temperature 11 of the adsorbent (AC) at the upper end (inlet) of the cooling unit 2b and the actual temperature 12 of the cooling air from the inlet side to the outlet side with respect to the cooling section 2b of the regeneration tower 2 having the multi-tube heat exchanger structure. It is the graph which estimated temperature transition 13 of the adsorbent and temperature transition 14 of the heat exchanger tube of a heat exchanger. In this figure, the temperature 15 at which sulfur oxides (SOx) and the like volatilize from the adsorbent and the sulfuric acid dew point 16 are calculated and displayed from the environment inside the regeneration tower 2. As shown in this figure, when a region including a range 17 in which sulfur oxides and the like volatilize from the adsorbent is volatilized and a sulfuric acid dew point range 18 is defined as a sulfuric acid dew point corrosion region 19, according to studies by the inventors, the cooling unit 2b It was found that the distance from the upper end (inlet) coincided with the corrosion damage part of the actual machine.

そこで、発明者らは、上述した硫酸露点腐食領域19を回避する冷却方法について検討した。この検討において、実機との整合性を図るために、図3に示す熱交換器の伝熱管温度、冷却空気温度を実測して解析値と一致するように物性値を決定した。この図3において、図示の符号20は整流板、21は冷却空気の流れであり、22は冷却空気温度の実測個所、そして23は吸着材温度の実測個所である。   Then, the inventors studied a cooling method for avoiding the sulfuric acid dew point corrosion region 19 described above. In this study, in order to ensure consistency with the actual machine, the heat transfer tube temperature and the cooling air temperature of the heat exchanger shown in FIG. 3 were actually measured, and the physical property values were determined so as to match the analysis values. In FIG. 3, reference numeral 20 indicates a flow straightening plate, reference numeral 21 indicates a flow of cooling air, reference numeral 22 indicates an actual measurement location of the cooling air temperature, and reference numeral 23 indicates an actual measurement location of the adsorbent temperature.

そして、図4は、再生塔2の冷却部2b出・入口での吸着材の実温度、冷却空気の実温度、および定格時の冷却空気風量から算出した該再生塔2内における吸着材の温度推移13、伝熱管の温度推移14を示した図である。この場合においてもやはり、前述した硫酸露点腐食領域19が発生することが確認できた。   FIG. 4 shows the actual temperature of the adsorbent at the inlet / outlet of the cooling section 2b of the regeneration tower 2, the actual temperature of the cooling air, and the temperature of the adsorbent in the regeneration tower 2 calculated from the rated air flow rate at the rated time. It is the figure which showed transition 13 and temperature transition 14 of a heat exchanger tube. Also in this case, it was confirmed that the sulfuric acid dew point corrosion area 19 described above was generated.

そこで、本発明法に従う冷却風量の制御により、再生塔2内の冷却部2bでのそれぞれの温度推移13、14を図5に示すように制御した。即ち、冷却風量を定格の風量から25%減少させると、前記伝熱管の温度推移14は前述した硫酸露点腐食領域19(上端からの距離にして1.2m〜1.7m付近)を回避した温度降下を示すという良好な結果が得られた。一方、その冷却風量を図6に示すように、定格から50%減少させると、再生塔冷却部2bの出口における該吸着材の温度は、前記の1.2m〜1.7m付近でも吸着材から硫黄酸化物が揮散する温度(230℃)も超えて硫酸露点温度以上になることがわかった。   Therefore, by controlling the amount of cooling air in accordance with the method of the present invention, the respective temperature transitions 13 and 14 in the cooling section 2b in the regeneration tower 2 were controlled as shown in FIG. That is, when the cooling air flow is reduced by 25% from the rated air flow, the temperature transition 14 of the heat transfer tube is a temperature that avoids the aforementioned sulfuric acid dew point corrosion area 19 (about 1.2 m to 1.7 m as a distance from the upper end). Good results were obtained, indicating a drop. On the other hand, if the cooling air volume is reduced by 50% from the rating as shown in FIG. 6, the temperature of the adsorbent at the outlet of the regenerator cooling section 2b can be reduced from the adsorbent even in the vicinity of 1.2 m to 1.7 m. It was found that the temperature exceeded the temperature at which the sulfur oxides volatilized (230 ° C.) and became equal to or higher than the sulfuric acid dew point.

図7は、上記解析結果に基づき、冷却空気の風量(インプット)と再生塔冷却部2bの出口での吸着材温度(アウトプット)との望ましい関係をまとめたものである。即ち、この図は、再生塔冷却部2b出口での吸着材の温度上限値(120℃)を24とし、硫酸露点腐食領域を回避できる冷却風量の上限値を25とするときの、本発明に従う解析により算出した吸着材の冷却部2b出口での温度と冷却風量の関係を示したものであり、27は再生塔冷却部2b出口部での吸着材の好ましい温度であり、28は上記の関係を維持するための好ましい冷却風量の範囲を示したものである。   FIG. 7 summarizes the desirable relationship between the flow rate of cooling air (input) and the temperature of the adsorbent (output) at the outlet of the regeneration tower cooling unit 2b based on the above analysis results. That is, this figure is according to the present invention when the upper limit of the temperature of the adsorbent at the outlet of the regeneration tower cooling unit 2b (120 ° C.) is 24 and the upper limit of the cooling air flow that can avoid the sulfuric acid dew point corrosion area is 25. It shows the relationship between the temperature of the adsorbent at the outlet of the cooling unit 2b and the amount of cooling air calculated by the analysis, 27 is a preferable temperature of the adsorbent at the outlet of the regenerator cooling unit 2b, and 28 is the above relationship. Is a range of a preferable cooling air flow for maintaining the cooling air flow.

本発明は正に、この図7に示すような関係において、冷却風量を制御し、冷却部2b出口での冷却再生した吸着材の温度を管理すること、特に上限のみならず下限の温度をも管理することが有効であることがわかる。即ち、硫酸露点腐食領域の管理上限温度:120℃以下の他に、その下限の温度(84℃)についても管理するようにしたことで、図4に示す硫酸露点腐食領域19を回避した加熱再生−冷却を行なうことができ、その結果、熱交換器の腐食劣化を防ぐことができ、伝熱管の長寿命化を実現することができるようになる。   According to the present invention, in the relationship shown in FIG. 7, the amount of cooling air is controlled to control the temperature of the adsorbent that has been cooled and regenerated at the outlet of the cooling unit 2b. It turns out that managing is effective. That is, in addition to the control upper limit temperature of the sulfuric acid dew point corrosion area: 120 ° C. or less, the lower limit temperature (84 ° C.) is also controlled, so that the heat regeneration that avoids the sulfuric acid dew point corrosion area 19 shown in FIG. -Cooling can be performed, and as a result, corrosion deterioration of the heat exchanger can be prevented, and a longer life of the heat transfer tube can be realized.

なお、前述した説明では冷却後の吸着材温度の管理値を上限値:120℃、下限値:84℃に設定したが、吸着材2の冷却部2b出口での温度管理値は、吸着材から硫黄酸化物が揮散する範囲17かつ硫酸露点腐食領域の範囲18から定義した硫酸露点腐食領域19により異なるので、あくまでも再生吸着材の温度が硫酸露点腐食領域を回避する範囲内の温度となるようにすることが必要である。   In the above description, the control value of the temperature of the adsorbent after cooling is set to the upper limit: 120 ° C. and the lower limit: 84 ° C. However, the temperature control value of the adsorbent 2 at the outlet of the cooling unit 2 b is determined from the adsorbent. Since it differs depending on the sulfuric acid dew point corrosion area 19 defined from the sulfur oxide volatilizing area 17 and the sulfuric acid dew point corrosion area 18, the temperature of the regenerated adsorbent is set to a temperature within the range avoiding the sulfuric acid dew point corrosion area. It is necessary to.

(比較例1)
従来の技術では、再生塔冷却部2b出口での吸着材の温度が50℃程度としていた。再生塔冷却部内での伝熱管と吸着剤の温度推移は図4に示される。前記温度推移からは図4の19で示される位置で揮散した硫酸が伝熱管表面で結露し腐蝕が発生することが予測され、伝熱管を部分的に採取し断面を調査したところ、吸着剤と接する伝熱管内面が全面的に腐蝕して減肉しており、耐用年数は10年未満と見積もられた。
(Comparative Example 1)
In the prior art, the temperature of the adsorbent at the outlet of the regeneration tower cooling unit 2b was set to about 50 ° C. FIG. 4 shows the temperature transition of the heat transfer tube and the adsorbent in the regeneration tower cooling section. From the temperature change, it is predicted that the sulfuric acid volatilized at the position indicated by 19 in FIG. 4 will condense on the surface of the heat transfer tube and cause corrosion. When the heat transfer tube was partially sampled and its cross section was investigated, the adsorbent and The inner surface of the heat transfer tube in contact was completely corroded and reduced in thickness, and the service life was estimated to be less than 10 years.

(実施例1)
本発明に適合する実施例として、まず再生塔冷却部(2b)に供給する冷却空気の風量を、定格風量での運転となる比較例1から25%減少させることによって、吸着材の出口部での温度を84℃に上昇させた。なお、再生塔冷却部内での伝熱管と吸着剤の温度推移は図5に示すとおりである。この場合において、硫酸の揮散は図5の温度推移の線17で示す範囲で発生するが、その範囲での伝熱管の温度は露点よりも高いために結露による腐食が抑止されることが予測された。そこで、伝熱管を部分的に採取し断面を調査したところ、比較例1で観察された伝熱管内面の腐蝕は全く観察されず、耐用年数は20年以上となることがわかった。
(Example 1)
As an embodiment conforming to the present invention, first, the air volume of the cooling air supplied to the regeneration tower cooling unit (2b) is reduced by 25% from Comparative Example 1 in which the operation is performed at the rated air volume, so that the air volume at the outlet of the adsorbent is reduced. Was raised to 84 ° C. The temperature transition of the heat transfer tube and the adsorbent in the regeneration tower cooling section is as shown in FIG. In this case, the volatilization of sulfuric acid occurs in the range indicated by the line 17 of the temperature transition in FIG. 5, but since the temperature of the heat transfer tube is higher than the dew point in that range, it is predicted that corrosion due to dew condensation is suppressed. Was. Then, when the heat transfer tube was partially sampled and the cross section was examined, no corrosion of the inner surface of the heat transfer tube observed in Comparative Example 1 was observed at all, and it was found that the service life was 20 years or more.

(実施例2)
本発明に適合する他の実施例として、再生塔冷却部(2b)に供給する冷却空気の風量を、定格風量での運転となる比較例1から50%減少させることによって、吸着材の出口部での温度を115℃に上昇させた。なお、再生塔冷却部内での伝熱管と吸着剤の温度推移は図6に示すとおりである。この場合において、硫酸の揮散は、図6の温度推移の線17で示す範囲で発生するが、その範囲での伝熱管の温度は露点よりも高いために結露による腐食が抑止されることが予測された。そこで、伝熱管を部分的に採取し断面を調査したところ、比較例1で観察された伝熱管内面の腐蝕は全く観察されず、耐用年数は20年以上となることがわかった。
(Example 2)
As another embodiment conforming to the present invention, the flow rate of the cooling air supplied to the regeneration tower cooling section (2b) is reduced by 50% from Comparative Example 1, which is operated at the rated flow rate, so that the outlet portion of the adsorbent is reduced. Temperature was increased to 115 ° C. The temperature transition of the heat transfer tube and the adsorbent in the regeneration tower cooling section is as shown in FIG. In this case, the volatilization of sulfuric acid occurs in the range indicated by the line 17 of the temperature transition in FIG. 6, but since the temperature of the heat transfer tube in this range is higher than the dew point, it is predicted that corrosion due to dew condensation is suppressed. Was done. Then, when the heat transfer tube was partially sampled and its cross section was examined, no corrosion of the heat transfer tube inner surface observed in Comparative Example 1 was observed at all, and it was found that the service life was 20 years or more.

本発明は、前述した例示では焼結機発生排ガスからの大気汚染防止法などの法令で規制される物質除去の例で説明したが、他の製鉄所内発生排ガスの他、硫黄酸化物等を含む他の同様の排ガスの処理に対しても有効である。   Although the present invention has been described with reference to the example of removing substances regulated by laws and regulations such as the Air Pollution Control Act from sintering machine generated exhaust gas in the above-described example, it includes sulfur oxides and the like, in addition to other exhaust gas generated in steel works. It is also effective for the treatment of other similar exhaust gas.

1 吸着塔
1a 吸着塔上部
1b 吸着塔下部
2 再生塔
3 吸着塔から再生塔への搬送管路
4 再生塔から吸着塔への環流管路
5 吸着材ホッパ
6 吸着材の貯蔵ビン
7 ブースタ
8 煙突
9 振動篩
10 粉化吸着材用ホッパ
11 吸着材の実温度
12 冷却空気の実温度
13 吸着材の温度推移
14 伝熱管の温度推移
15 吸着材から硫黄酸化物が揮散する温度
16 硫酸露点温度
17 吸着材から硫黄酸化物が揮散する範囲
18 伝熱管の硫酸露点範囲
19 硫酸露点腐食領域
20 整流板
21 冷却空気流れ
22 冷却空気温度実測箇所
23 吸着材温度実測箇所
24 再生器出口吸着材の温度上限値
25 硫酸露点腐食領域を回避できる風量の上限値
26 解析により算出した関係
27 再生塔冷却部出口での吸着材温度範囲
28 吸着材温度範囲を守るための冷却風量範囲
A 排ガス
DESCRIPTION OF SYMBOLS 1 Adsorption tower 1a Adsorption tower upper part 1b Adsorption tower lower part 2 Regeneration tower 3 Conveyance pipeline from adsorption tower to regeneration tower 4 Recirculation pipeline from regeneration tower to adsorption tower 5 Adsorbent hopper 6 Adsorbent storage bin 7 Booster 8 Chimney 9 Vibrating sieve 10 Powder adsorbent hopper 11 Actual temperature of adsorbent 12 Actual temperature of cooling air 13 Temperature transition of adsorbent 14 Temperature transition of heat transfer tube 15 Temperature at which sulfur oxides volatilize from adsorbent 16 Sulfuric acid dew point temperature 17 Range where sulfur oxides evaporate from the adsorbent 18 Sulfuric acid dew point range of heat transfer tube 19 Sulfuric acid dew point corrosion area 20 Rectifier plate 21 Cooling air flow 22 Cooling air temperature actual measurement point 23 Adsorbent temperature actual measurement point 24 Upper limit of regenerator outlet adsorbent temperature Value 25 Upper limit of air volume that can avoid sulfuric acid dew point corrosion area 26 Relationship calculated by analysis 27 Adsorbent temperature range at cooling tower outlet of regeneration tower 28 Adsorbent temperature range Cooling air volume range A flue gas to protect

Claims (2)

大気汚染防止法などの法令で規制される物質を含む製鉄所排ガスを、
まず、内部に大気汚染防止法などの法令で規制される物質除去用吸着材が充填されている吸着塔内に導入して、該排ガス中の大気汚染防止法などの法令で規制される物質を吸着させ、
次いで、該吸着塔から排出される前記吸着材を、多管式熱交換器構造からなる再生塔に搬送して加熱することにより該大気汚染防止法などの法令で規制される物質を分解除去すると同時に冷却して再生させ、
その後、再生後の該吸着材を、前記吸着塔に環流させて再び使用に供するという吸着材の再生方法において、
前記再生塔での吸着材の加熱再生後の冷却に当たり、冷却風量を調整することによって該再生塔冷却部の出口部における前記再生吸着材の温度を硫酸露点腐食領域を回避できる温度範囲に調整することを特徴とする排ガス処理用吸着材の再生方法。
Emissions from steelworks containing substances regulated by laws such as the Air Pollution Control Act,
First, the substance is introduced into an adsorption tower that is filled with an adsorbent for removing substances regulated by laws such as the Air Pollution Control Law, and the substances regulated by laws such as the Air Pollution Control Law in the exhaust gas are introduced. Adsorb,
Next, the adsorbent discharged from the adsorption tower is conveyed to a regeneration tower having a multitubular heat exchanger structure and heated to decompose and remove substances regulated by laws and regulations such as the Air Pollution Control Act. Simultaneously cool and regenerate,
Thereafter, in the method for regenerating an adsorbent, the regenerated adsorbent is recirculated to the adsorption tower and used again.
In cooling after heating and regeneration of the adsorbent in the regeneration tower, the temperature of the regeneration adsorbent at the outlet of the regeneration tower cooling unit is adjusted to a temperature range that can avoid the sulfuric acid dew point corrosion region by adjusting the amount of cooling air. A method for regenerating an adsorbent for exhaust gas treatment, characterized by comprising:
前記再生吸着材の温度が、硫酸露点腐食領域を回避できる温度範囲である、84℃以上120℃以下の温度であることを特徴とする請求項1に記載の排ガス処理用吸着材の再生方法。   2. The method for regenerating an adsorbent for exhaust gas treatment according to claim 1, wherein the temperature of the regenerated adsorbent is 84 ° C. or more and 120 ° C. or less, which is a temperature range in which a sulfuric acid dew point corrosion region can be avoided.
JP2018152857A 2018-08-15 2018-08-15 Recycling method of adsorbent for exhaust gas treatment Active JP6888591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152857A JP6888591B2 (en) 2018-08-15 2018-08-15 Recycling method of adsorbent for exhaust gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152857A JP6888591B2 (en) 2018-08-15 2018-08-15 Recycling method of adsorbent for exhaust gas treatment

Publications (2)

Publication Number Publication Date
JP2020025934A true JP2020025934A (en) 2020-02-20
JP6888591B2 JP6888591B2 (en) 2021-06-16

Family

ID=69620860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152857A Active JP6888591B2 (en) 2018-08-15 2018-08-15 Recycling method of adsorbent for exhaust gas treatment

Country Status (1)

Country Link
JP (1) JP6888591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877357A (en) * 2021-10-27 2022-01-04 中冶南方工程技术有限公司 Blast furnace gas adsorption desulfurization regeneration system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877357A (en) * 2021-10-27 2022-01-04 中冶南方工程技术有限公司 Blast furnace gas adsorption desulfurization regeneration system and method
CN113877357B (en) * 2021-10-27 2023-10-27 中冶南方工程技术有限公司 Blast furnace gas adsorption desulfurization regeneration system and method

Also Published As

Publication number Publication date
JP6888591B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5873615B2 (en) Activated carbon activation regeneration furnace, and gas purification method and apparatus using the same
JP6194840B2 (en) Exhaust gas treatment apparatus and method
CN105080332A (en) Resource utilization system for pellet sintering waste gas and method
CN112843988B (en) High-efficiency VOCs (volatile organic compounds) treatment system and method based on coupling of fluidized bed adsorption and fluidized bed desorption
CN105289204A (en) System and method using powdery active cock for processing low concentration sulfur dioxide flue gas
JP2015221441A (en) Activation regeneration furnace for active charcoal, and method and apparatus for gas purification utilizing the same
WO2010061920A1 (en) Regeneration tower for apparatus for dry discharge-gas treatment
JP2020025934A (en) Regeneration method of adsorbent for exhaust gas treatment
CN106823725A (en) A kind of method of new Type Coke Oven flue gas desulfurization and denitrification
JP2011105985A (en) Method for treating exhaust gas in sintering machine
RU2762836C1 (en) Multi-process exhaust gas purification system and control method
JP2007083221A (en) Exhaust gas treatment method
JP5955622B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method using the same
CN204952658U (en) Sintering pelletizing flue gas resource system
JP4735353B2 (en) Exhaust gas treatment method
CN101749951A (en) Treatment method for segmentation of metallurgy sintering smoke
CN109499556B (en) Anti-scaling activated carbon desorption tower and desorption method thereof
JP4742926B2 (en) Exhaust gas treatment equipment
KR101237084B1 (en) Treating apparatus for waste gas in sintering machine and treating method thereof
JP2006272187A (en) Exhaust-gas treatment apparatus
EP0922484A1 (en) Method for treating incineration flue gas
CN109432948B (en) Multi-process flue gas purification system and control method and device thereof
CN107854924B (en) Activated coke dry method flue gas treatment method and system
JP2010075847A (en) Conveyor system for dry-type device for treating exhaust gas
JP2009291765A (en) Apparatus and method for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6888591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150