JP2011105985A - Method for treating exhaust gas in sintering machine - Google Patents

Method for treating exhaust gas in sintering machine Download PDF

Info

Publication number
JP2011105985A
JP2011105985A JP2009261099A JP2009261099A JP2011105985A JP 2011105985 A JP2011105985 A JP 2011105985A JP 2009261099 A JP2009261099 A JP 2009261099A JP 2009261099 A JP2009261099 A JP 2009261099A JP 2011105985 A JP2011105985 A JP 2011105985A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
low
concentration
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009261099A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakamoto
充 坂本
Katsunari Tanaka
勝成 田中
Yuta Takiguchi
裕太 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009261099A priority Critical patent/JP2011105985A/en
Publication of JP2011105985A publication Critical patent/JP2011105985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating exhaust gas in a sintering machine of an exhaust gas circulation system, in which desulfurization and denitrification efficiency is further improved while securing a heat recovery rate while dealing with the increase of the content of moisture in exhaust gas generated from a sintering process accompanying the increase of the using amount of high crystallization water ore. <P>SOLUTION: When the space between the rear part of an ignition furnace 2 and an ore discharge part 3 in a sintering machine 1 is divided into two of a front region A and a rear region B, exhaust gas having a high temperature-high SO<SB>x</SB>concentration from the rear region B (hereinafter referred to as high temperature circulation gas) is circulated onto the pallet 4 of the front region A as it is, and further, exhaust gas 21 having a low temperature-high NOx concentration (hereinafter referred to as low temperature exhaust gas) from the front region A is simultaneously subjected to desulfurization and denitrification by a dry desulfurization-denitrification apparatus 14, and is thereafter exhausted, the divided position between the front region A and the rear region B is adjusted in such a manner that the temperature of the low temperature exhaust gas 21 reaches the acid dew point of the low temperature exhaust gas 21 or more, and also reaches the ignition temperature of the activated carbon in the dry type desulfurization-denitrification apparatus 14 or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排ガス循環方式焼結機からの排ガスを処理する方法に関し、詳しくは、排ガスからの脱硫・脱硝効率を改善する排ガス処理方法に関する。   The present invention relates to a method for treating exhaust gas from an exhaust gas circulation type sintering machine, and more particularly to an exhaust gas treatment method for improving the efficiency of desulfurization / denitration from exhaust gas.

焼結鉱の原料は、鉄源としての粉鉄鉱石や集塵ダスト、ミルスケールなどに、媒溶剤としての石灰石、ドロマイト、固体燃料としての粉コークス、無煙炭などである。これらを配合したものはドラムミキサで水やバインダとともに転動造粒され、所定の水分を含有する平均粒径3〜4mmの粒子よりなる焼結原料とされる。この焼結原料が焼結機に供給され、下方吸引式の焼結機(DL式焼結機)で連続焼結される。   The raw materials for the sintered ore are fine iron ore as an iron source, dust collection dust, mill scale, limestone as a solvent, dolomite, fine coke as solid fuel, anthracite, and the like. A mixture of these is tumbled and granulated together with water and a binder in a drum mixer, and is used as a sintering raw material composed of particles having an average particle diameter of 3 to 4 mm containing predetermined moisture. This sintering raw material is supplied to a sintering machine and is continuously sintered by a downward suction type sintering machine (DL type sintering machine).

近年、環境保全の点から焼結機の系外に排出する排ガス量やNOx総量の削減、さらに排ガスの熱回収、生産性の向上などを図る目的で、従来の大気吸引方式に代わって排ガス循環方式の操業方法が広く採用されている。ここで、排ガス循環方式による焼結操業方法は、DL式焼結機の風箱群を焼結機長手方向に適宜分割し、焼結で生じる排ガスの一部を焼結機のパレット上へ循環させて一部大気のかわりに吸引して操業を行うものである。   In recent years, in order to reduce the amount of exhaust gas and NOx total exhausted out of the sintering machine from the viewpoint of environmental conservation, and to improve the heat recovery and productivity of exhaust gas, exhaust gas circulation can be used instead of the conventional air suction method. The method of operation is widely adopted. Here, the sintering operation method by the exhaust gas circulation method is to divide the wind box group of the DL type sintering machine in the longitudinal direction of the sintering machine as appropriate, and circulate a part of the exhaust gas generated by the sintering onto the pallet of the sintering machine. Some of them are operated by sucking instead of the atmosphere.

ところが、焼結鉱の原料は水分を添加して造粒されているため、焼結過程より発生する排ガスは多量の水分を含む。このように多量の水分を含む排ガスを循環使用すると、排ガス中の水分濃度がさらに上昇して該排ガスの酸露点が上昇し装置腐食のおそれがより高まる問題があった。   However, since the raw material of sintered ore is granulated by adding moisture, the exhaust gas generated from the sintering process contains a large amount of moisture. When the exhaust gas containing a large amount of water is circulated and used in this way, there is a problem that the moisture concentration in the exhaust gas further increases, the acid dew point of the exhaust gas increases, and the risk of corrosion of the device further increases.

そこで、上記のような問題を解決すべく、従来から種々の対策が提案されている。   Therefore, various countermeasures have been proposed to solve the above problems.

例えば、特許文献1には、焼結過程後半部の高温かつ高SOx濃度の排ガスを冷却後脱硫処理してから焼結過程前半部へ導入し、この導入されたガスとともに該焼結過程前半部の低温かつ低SOx濃度の排ガスを脱硝処理する方法が開示されている。   For example, Patent Document 1 discloses that the exhaust gas having a high temperature and high SOx concentration in the latter half of the sintering process is cooled and desulfurized and then introduced into the first half of the sintering process, and together with the introduced gas, the first half of the sintering process. A method of denitrating exhaust gas having a low temperature and a low SOx concentration is disclosed.

この方法によれば、高SOx濃度の排ガスを循環前に脱硫することで、排ガス中のSOx濃度を低くでき、酸露点を低下させて装置腐食を防止することが可能となると考えられる。   According to this method, it is considered that by desulfurizing the exhaust gas having a high SOx concentration before circulation, the SOx concentration in the exhaust gas can be lowered, and the acid dew point can be lowered to prevent the apparatus corrosion.

しかしながら、この方法では、折角高温の排ガスを冷却してから焼結過程に戻すことから、排ガス顕熱を有効に回収することができないことに加え、脱硫と脱硝とをそれぞれ別の装置で行う必要があり、設備コストが上昇したり、制御が複雑になる等の問題がある。   However, in this method, since the exhaust gas having a high temperature is cooled and then returned to the sintering process, the sensible heat of the exhaust gas cannot be effectively recovered, and desulfurization and denitration must be performed separately. There are problems such as an increase in equipment cost and complicated control.

また、特許文献2には、焼結機の点火炉後から排鉱部までの間を前部域、中部域、後部域に3分割し、前部域からの排ガスは、除湿した後、その大部に酸素を富化して前部域のパレット上に循環するとともに、前記除湿後の排ガスの残部を脱硝して排気し、一方、後部域からの排ガスは、そのまま中部域および後部域のパレット上に循環し、中部域からの排ガスは、脱硝せずに排気する方法が開示されている。   Further, in Patent Document 2, the space from after the ignition furnace of the sintering machine to the discharge portion is divided into a front region, a middle region, and a rear region, and the exhaust gas from the front region is dehumidified, Most of the oxygen is enriched and circulated on the pallet in the front area, and the remaining exhaust gas after dehumidification is denitrated and exhausted, while the exhaust gas from the rear area remains as it is in the middle and rear pallets. A method is disclosed in which the exhaust gas circulated upward and exhausted from the middle region is exhausted without denitration.

この方法によれば、前部域の水分濃度の高い排ガスを除湿した後に、焼結過程に循環したり、脱硝して排気したりするので、排ガス中の水分濃度を低くでき、酸露点を低下させて装置腐食を防止することが可能になると考えられる。   According to this method, after dehumidifying the exhaust gas having a high moisture concentration in the front region, it is circulated in the sintering process or exhausted after denitration, so that the moisture concentration in the exhaust gas can be lowered and the acid dew point is lowered. It is considered that the corrosion of the apparatus can be prevented.

しかしながら、この方法では、除湿のための凝縮器を別途必要とするうえ、脱硫の必要がある場合は、中部域からの排ガスから脱硫をすることになり、上記特許文献1と同様、脱硫と脱硝とをそれぞれ別の装置で行う必要があり、設備コストが上昇したり、制御が複雑になる等の問題がある。   However, in this method, a condenser for dehumidification is separately required, and when desulfurization is necessary, desulfurization is performed from the exhaust gas from the middle region. As in Patent Document 1, desulfurization and denitration are performed. Are required to be performed by different devices, and there are problems such as an increase in equipment cost and complicated control.

特開昭58−170523号公報JP 58-170523 A 特開2007−270202号公報JP 2007-270202 A

そこで、本発明は、高結晶水鉱石の使用量の増加に伴う焼結過程から発生する排ガス中の水分量の増加に対応しつつ、熱回収効率を確保しながら脱硫・脱硝効率をさらに向上しうる排ガス循環方式焼結機の排ガス処理方法を提供することを目的とする。   Therefore, the present invention further improves the desulfurization / denitration efficiency while ensuring the heat recovery efficiency while responding to the increase in the amount of moisture in the exhaust gas generated from the sintering process accompanying the increase in the amount of high crystal water ore used. An object of the present invention is to provide an exhaust gas treatment method for an exhaust gas circulation type sintering machine.

請求項1に記載の発明は、下方吸引式の焼結機の点火炉後から排鉱部までの間を前部域と後部域に2分割し、後部域からの高温高SOx濃度の排ガス(以下、「高温循環ガス」という。)をそのまま前部域のパレット上に循環するとともに、該前部域からの低温高NOx濃度の排ガス(以下、「低温排ガス」という。)を乾式脱硫脱硝装置にて脱硫と脱硝を同時に行った後に排気するにあたり、前記低温排ガスの温度が、当該低温排ガスの酸露点以上で、かつ、前記乾式脱硫脱硝装置の活性炭の発火温度以下になるように、前部域と後部域の分割位置を調整することを特徴とする焼結機排ガスの処理方法である。   According to the first aspect of the present invention, the space from after the ignition furnace of the downward suction type sintering machine to the discharge portion is divided into a front region and a rear region, and exhaust gas having a high temperature and high SOx concentration from the rear region ( Hereinafter, the high-temperature circulating gas is circulated as it is on the pallet in the front area, and the low-temperature high NOx concentration exhaust gas (hereinafter referred to as “low-temperature exhaust gas”) from the front area is dry desulfurization denitration equipment. When the exhaust gas is exhausted after performing desulfurization and denitration at the same time, the temperature of the low temperature exhaust gas is not less than the acid dew point of the low temperature exhaust gas and not more than the ignition temperature of the activated carbon of the dry desulfurization denitration apparatus. It is the processing method of the exhaust gas of a sintering machine characterized by adjusting the division position of a zone and a rear zone.

請求項2に記載の発明は、前記乾式脱硫脱硝装置の活性炭の発火温度は130℃とし、前記低温排ガスの酸露点は当該低温排ガス中のSO濃度と水分濃度に応じて下記式1で算出された値とする請求項1に記載の焼結機排ガスの処理方法である。
式1 〔低温排ガスの酸露点(℃)〕=20×log〔低温排ガス中のSO濃度(容量%)〕+35.4×log〔低温排ガス中の水分濃度(容量%)〕+80
In the invention according to claim 2, the ignition temperature of the activated carbon of the dry desulfurization denitration apparatus is 130 ° C., and the acid dew point of the low temperature exhaust gas is calculated by the following formula 1 according to the SO 3 concentration and the water concentration in the low temperature exhaust gas. It is the processing method of the exhaust gas of a sintering machine of Claim 1 which is set as the value made into.
Formula 1 [acid dew point of low-temperature exhaust gas (° C.)] = 20 × log [SO 3 concentration in low-temperature exhaust gas (volume%)] + 35.4 × log [water concentration in low-temperature exhaust gas (volume%)] + 80

請求項3に記載の発明は、前記焼結機に供給する焼結原料中の結晶水含有量に応じて、下記式2を満足するように、前部域と後部域の分割位置を調整する請求項2に記載の焼結機排ガスの処理方法である。
式2 13%≦〔排ガス循環率(%)〕≦30−0.67×〔焼結原料中の結晶水含有量(質量%[乾量基準])〕
ここに、排ガス循環率(%)=〔後部域の長さ〕/〔前部域と後部域の合計長さ〕×100である。
The invention according to claim 3 adjusts the division positions of the front region and the rear region so as to satisfy the following formula 2 according to the content of crystallization water in the sintering raw material supplied to the sintering machine. It is a processing method of the sintering machine exhaust gas of Claim 2.
Formula 2 13% ≦ [exhaust gas circulation rate (%)] ≦ 30−0.67 × [content of crystal water in sintering raw material (mass% [dry basis])]
Here, exhaust gas circulation rate (%) = [length of rear region] / [total length of front region and rear region] × 100.

本発明によれば、後部域からの高温排ガスをそのまま(冷却することなく)前部域のパレット上に循環させているので、高温循環ガスの顕熱を有効に回収できるとともに、該前部域からの低温高NOx濃度の排ガスを乾式脱硫脱硝装置にて脱硫と脱硝を同時に行った後に排気するので、設備コストを削減でき、制御が簡略化できる。また、水分濃度の低い後部域からの排ガスのみを循環させて前部域からの排ガス中の水分濃度の上昇を抑制するとともに、該前部域からの低温排ガスの温度を酸露点以上で、かつ、前記乾式脱硫脱硝装置の活性炭の発火温度以下に保持するようにしているので、装置腐食の問題も活性炭燃焼による装置トラブルの問題も生じることがない。   According to the present invention, the high-temperature exhaust gas from the rear region is circulated as it is (without cooling) on the pallet in the front region, so that the sensible heat of the high-temperature circulation gas can be effectively recovered and the front region Since the exhaust gas having a low temperature and high NOx concentration is exhausted after performing desulfurization and denitration simultaneously in a dry desulfurization denitration apparatus, the equipment cost can be reduced and the control can be simplified. Further, only the exhaust gas from the rear region having a low moisture concentration is circulated to suppress an increase in the moisture concentration in the exhaust gas from the front region, and the temperature of the low temperature exhaust gas from the front region is at or above the acid dew point, and Since the dry desulfurization denitration apparatus is kept below the ignition temperature of activated carbon, neither the problem of apparatus corrosion nor the problem of apparatus trouble due to activated carbon combustion occurs.

実施形態に係る排ガス循環方式焼結設備の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the exhaust gas circulation system sintering equipment which concerns on embodiment. 排ガス循環率と、低温排ガスの温度および水分濃度との関係を示すグラフ図である。It is a graph which shows the relationship between an exhaust gas circulation rate, the temperature of a low-temperature exhaust gas, and a water concentration. 排ガス循環率と、低温排ガスの温度および酸露点との関係を示すグラフ図である。It is a graph which shows the relationship between a waste gas circulation rate, the temperature of a low temperature waste gas, and an acid dew point. 焼結原料中の結晶水含有量と排ガス循環率の好適範囲との関係を示すグラフ図である。It is a graph which shows the relationship between the crystallization water content in a sintering raw material, and the suitable range of exhaust gas circulation rate.

以下、図を参照しつつ、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

(実施形態)
図1に本発明の一実施形態に係る排ガス循環方式焼結設備の概略構成を示す。
(Embodiment)
FIG. 1 shows a schematic configuration of an exhaust gas circulation type sintering facility according to an embodiment of the present invention.

同図に示すように、下方吸引式の焼結機1の点火炉2後から排鉱部3までの間を前部域Aと後部域Bに2分割している。分割の位置は、後述する、前部域Aの風箱群で吸引される前部域排ガス21の温度が、当該前部域排ガス21の酸露点以上で、かつ、後述する乾式脱硫脱硝装置14で使用される活性炭の発火温度以下になるように、例えば、過去の操業における各風箱での測定で得られた焼結機長手方向の排ガス流量、水分濃度、酸素濃度等の各分布を用いて物質バランス計算により決定すればよい。   As shown in the figure, the space from after the ignition furnace 2 of the downward suction type sintering machine 1 to the discharge portion 3 is divided into a front region A and a rear region B. The position of the division is such that the temperature of the front area exhaust gas 21 sucked by the wind box group in the front area A, which will be described later, is equal to or higher than the acid dew point of the front area exhaust gas 21, and the dry desulfurization denitration apparatus 14 described later. For example, each distribution of exhaust gas flow rate, moisture concentration, oxygen concentration, etc. in the longitudinal direction of the sintering machine obtained by measurement in each wind box in the past operation is used so that it is below the ignition temperature of the activated carbon used in It may be determined by calculating the material balance.

そして、後部域Bの風箱群で吸引された高温の排ガス22は、昇圧ブロワ13で昇圧され、この昇圧後の排ガスである後部域循環ガス22’は、冷却されることなく、そのまま、前部域Aのパレット4上に設置された前部域循環ガスフード5に導入(循環)され、再度焼結ベッド内へ吸引される。   Then, the high-temperature exhaust gas 22 sucked by the wind box group in the rear region B is pressurized by the booster blower 13, and the rear region circulation gas 22 ′, which is the exhaust gas after the pressure increase, is not cooled and is directly cooled. It is introduced (circulated) into the front region circulation gas hood 5 installed on the pallet 4 in the region A, and is again sucked into the sintering bed.

また、前部域Aの風箱群で吸引された低温の前部域排ガス21は、集塵機11で徐塵し、主排風機12を介して乾式脱硫脱硝装置14でSOxとNOxを除去した後、大気に放出される。   Further, the low-temperature front area exhaust gas 21 sucked in the wind box group in the front area A is gradually dusted by the dust collector 11, and after the SOx and NOx are removed by the dry desulfurization denitration device 14 via the main exhaust fan 12. Released into the atmosphere.

ここで、乾式脱硫脱硝装置14としては、活性炭を触媒としてSOxとNOxを吸着ないし分解処理する公知の装置を用いることができる。   Here, as the dry desulfurization denitration apparatus 14, a known apparatus for adsorbing or decomposing SOx and NOx using activated carbon as a catalyst can be used.

このように、後部域Bからの高温の排ガス22を冷却することなく、そのまま前部域Aの焼結ベッドに導入(循環)しているので、高温循環ガスの顕熱を有効に回収できる。   In this way, since the high-temperature exhaust gas 22 from the rear region B is introduced (circulated) as it is into the sintering bed in the front region A without being cooled, the sensible heat of the high-temperature circulating gas can be effectively recovered.

なお、後部域Bからの排ガス22中には高濃度のSOxが含まれるが、脱硫することなく、そのまま前部域Aの焼結ベッドに導入(循環)しているので、前部域Aからの排ガス21中には、NOxが高濃度に含まれるだけでなく、SOxも高濃度に含まれる。このような前部域Aからの高SOx、高NOx濃度の排ガス21を乾式脱硫脱硝装置14にて脱硫と脱硝を同時に行った後に排気するので、設備コストを削減でき、制御が簡略化できる。   The exhaust gas 22 from the rear region B contains high concentration of SOx, but is introduced (circulated) as it is into the sintering bed of the front region A without being desulfurized. The exhaust gas 21 contains not only NOx at a high concentration but also SOx at a high concentration. The exhaust gas 21 having such a high SOx and high NOx concentration from the front area A is exhausted after being simultaneously desulfurized and denitrated by the dry desulfurization / denitrification apparatus 14, so that the equipment cost can be reduced and the control can be simplified.

また、水分濃度の低い後部域Bからの排ガス22のみを循環させて前部域Aからの排ガス21中の水分濃度の上昇を抑制するとともに、前部域Aと後部域Bの分割位置を調整することで、該前部域Aからの低温排ガス21の温度を酸露点以上で、かつ、乾式脱硫脱硝装置14の活性炭の発火温度以下に保持するようにしているので、装置腐食の問題も活性炭燃焼による装置トラブルの問題も生じることがない。   Further, only the exhaust gas 22 from the rear region B having a low moisture concentration is circulated to suppress an increase in the moisture concentration in the exhaust gas 21 from the front region A, and the division positions of the front region A and the rear region B are adjusted. By doing so, the temperature of the low temperature exhaust gas 21 from the front area A is kept above the acid dew point and below the ignition temperature of the activated carbon of the dry desulfurization denitration device 14, so that the problem of device corrosion is also activated carbon. There is no problem of equipment trouble due to combustion.

乾式脱硫脱硝装置14の活性炭の発火温度は、使用する活性炭の種類によって異なるが、安全をみて例えば130℃とするとよい。   The ignition temperature of the activated carbon of the dry desulfurization denitrification apparatus 14 varies depending on the type of activated carbon used, but is preferably set to 130 ° C. for safety.

また、低温排ガス21の酸露点は、当該低温排ガス21中のSO濃度と水分濃度に応じて変化するが、例えば一般に大塚の式と称される公知の計算式(特開2003−106796の[0007]、図4参照)を変形して得た下記式1で推算することができる。 The acid dew point of the low-temperature exhaust gas 21 varies depending on the SO 3 concentration and the water concentration in the low-temperature exhaust gas 21. For example, a well-known calculation formula generally referred to as an Otsuka equation (Japanese Patent Laid-Open No. 2003-106796 [ [0007] can be estimated by the following formula 1 obtained by modifying FIG.

式1 〔低温排ガスの酸露点(℃)〕=20×log〔低温排ガス中のSO濃度(容量%)〕+35.4×log〔低温排ガス中の水分濃度(容量%)〕+80 Formula 1 [acid dew point of low-temperature exhaust gas (° C.)] = 20 × log [SO 3 concentration in low-temperature exhaust gas (volume%)] + 35.4 × log [water concentration in low-temperature exhaust gas (volume%)] + 80

ここで、近年、良質鉄鉱石の枯渇に伴い、従来、焼結鉱の製造ではあまり使用されなかった高結晶水鉱石(ピソライト鉱石)の使用量が増加している。このような高結晶水鉱石の使用量の増加に伴い、結晶水分解により生じる水分の量が増加するため、焼結過程から発生する排ガスに含まれる水分量がより増加する傾向にある。   Here, in recent years, with the depletion of high-quality iron ore, the amount of high crystal water ore (pisolite ore) that has not been used so far in the production of sintered ore has increased. As the amount of high crystal water ore used increases, the amount of moisture generated by the crystal water decomposition increases, so the amount of moisture contained in the exhaust gas generated from the sintering process tends to increase.

したがって、焼結原料中の結晶水含有量に応じて、前部域Aと後部域Bの分割位置を調整することにより、低温排ガス21中の水分濃度を適正に保つことが望ましい。   Therefore, it is desirable to keep the moisture concentration in the low temperature exhaust gas 21 properly by adjusting the division position of the front region A and the rear region B according to the content of crystal water in the sintered raw material.

例えば焼結原料中の結晶水含有量が増加する場合には、前部域Aと後部域Bの分割位置を排鉱部3側に移動させて、より水分濃度の低い排ガスを循環させることで、低温排ガス21中の水分濃度の上昇を抑制すればよい。   For example, when the content of crystallization water in the sintering raw material increases, the division position of the front area A and the rear area B is moved to the side of the exhausting section 3 to circulate exhaust gas having a lower moisture concentration. What is necessary is just to suppress the raise of the moisture concentration in the low temperature exhaust gas 21.

ただし、前部域Aと後部域Bの分割位置を排鉱部3側に寄せ過ぎると、循環する高温排ガス22の温度が高くなるため低温排ガス21の温度も上昇し、乾式脱硫脱硝装置14の活性炭の発火温度を超えてしまうおそれが高まる。   However, if the division position of the front area A and the rear area B is brought too close to the exhausting section 3 side, the temperature of the circulating high temperature exhaust gas 22 becomes high, so the temperature of the low temperature exhaust gas 21 also rises, and the dry desulfurization denitration device 14 The risk of exceeding the ignition temperature of activated carbon increases.

そこで、焼結原料中の結晶水含有量に応じて前部域Aと後部域Bの分割位置をより精度良く決定すべく、以下のような解析を行った。   Then, the following analysis was performed in order to determine the division | segmentation position of the front part area A and the rear part area B more accurately according to the crystal water content in a sintering raw material.

すなわち、出願人の加古川製鉄所内に設置されている焼結機において、過去の操業で測定した、焼結機1長手方向における、排ガスの温度および水分濃度の分布データを基準として、焼結原料中の結晶水含有量(質量%[乾量基準])を順次変化させた場合における、排ガス水分濃度分布の変化をマスバランス計算(なお、焼結原料中の結晶水含有量が変化しても造粒水分量は変化しないと仮定した。)により予測し、この予測計算結果に基づいて、前部域Aと後部域Bの分割位置、すなわち、排ガス循環率と、低温排ガス21の温度および水分濃度との関係を推算した。なお、排ガス循環率(%)=〔後部域の長さ〕/〔前部域と後部域の合計長さ〕×100である。   That is, in the sintering machine installed in the applicant's Kakogawa Works, in the sintering raw material based on the distribution data of the exhaust gas temperature and moisture concentration in the longitudinal direction of the sintering machine 1 measured in the past operation. When the content of crystallization water (mass% [dry basis)] is sequentially changed, the change in exhaust gas moisture concentration distribution is calculated by mass balance calculation (even if the content of crystallization water in the sintering raw material changes). It is assumed that the amount of grain moisture does not change.) Based on the prediction calculation result, the division position of the front area A and the rear area B, that is, the exhaust gas circulation rate, the temperature and the moisture concentration of the low temperature exhaust gas 21 And estimated the relationship. In addition, exhaust gas circulation rate (%) = [length of rear region] / [total length of front region and rear region] × 100.

その結果を図2に示す。同図に示すように、排ガス循環率が上昇するに伴って、低温排ガス21の温度は低下する一方、低温排ガス21中の水分濃度は上昇する傾向にある。また、焼結原料中の結晶水含有量の増加に伴って、低温排ガス21中の水分濃度は上昇している。なお、焼結機1長手方向の排ガス温度分布は、焼結原料中の結晶水含有量が変化してもそれほど変化せず、したがって低温排ガス21の温度は排ガス循環率だけでほぼ決まるため、図中には一本の曲線だけで表示した。   The result is shown in FIG. As shown in the figure, as the exhaust gas circulation rate increases, the temperature of the low temperature exhaust gas 21 decreases, while the moisture concentration in the low temperature exhaust gas 21 tends to increase. Moreover, the water concentration in the low temperature exhaust gas 21 is increasing with the increase in the content of crystal water in the sintered raw material. The exhaust gas temperature distribution in the longitudinal direction of the sintering machine 1 does not change so much even if the content of crystallization water in the sintering raw material changes, and therefore the temperature of the low temperature exhaust gas 21 is almost determined only by the exhaust gas circulation rate. Only one curve is shown inside.

次に、低温排ガス21中のSO濃度は、過去の操業実績から0.1容量%(一定)として、上記式1に低温排ガス21中のSO濃度(=0.1容量%)と図2に示す水分濃度を代入することにより、水分濃度を酸露点に換算し、図3に、排ガス循環率と、低温排ガス21の温度および酸露点との関係としてプロットし直した。 Next, the SO 3 concentration in the low temperature exhaust gas 21 is 0.1 volume% (constant) based on the past operation results, and the SO 3 concentration (= 0.1 volume%) in the low temperature exhaust gas 21 is expressed in the above formula 1. By substituting the water concentration shown in FIG. 2, the water concentration was converted into an acid dew point, and the relationship between the exhaust gas circulation rate, the temperature of the low temperature exhaust gas 21 and the acid dew point was re-plotted in FIG.

同図において、低温排ガス21の温度を、乾式脱硫脱硝装置14の活性炭の発火温度130℃以下に維持するためには、焼結原料中の結晶水含有量によらず、排ガス循環率は13%以上とする必要があることがわかる。一方、低温排ガス21の温度を、酸露点以上の温度に維持するためには、焼結原料中の結晶水含有量の増加とともに、排ガス循環率の上限を低下させる必要があることがわかる。   In the same figure, in order to maintain the temperature of the low temperature exhaust gas 21 at 130 ° C. or less of the activated carbon of the dry desulfurization denitrification apparatus 14, the exhaust gas circulation rate is 13% regardless of the crystallization water content in the sintered raw material. It turns out that it is necessary to do it above. On the other hand, in order to maintain the temperature of the low temperature exhaust gas 21 at a temperature equal to or higher than the acid dew point, it is necessary to lower the upper limit of the exhaust gas circulation rate as the crystallization water content in the sintered raw material increases.

図3で得られた低温排ガス21の温度の上下限値を、焼結原料中の結晶水含有量との関係として図4にプロットした。同図に好適範囲として示した範囲内となるように、焼結原料中の結晶水含有量に応じて、下記式2を満足するように、排ガス循環率、すなわち、前部域Aと後部域Bの分割位置を調整するのが推奨される。   The upper and lower limits of the temperature of the low temperature exhaust gas 21 obtained in FIG. 3 are plotted in FIG. The exhaust gas circulation rate, that is, the front region A and the rear region is satisfied so as to satisfy the following formula 2 in accordance with the content of crystal water in the sintering raw material so as to be within the range shown as the preferred range in the figure. It is recommended to adjust the division position of B.

式2 13%≦〔排ガス循環率(%)〕≦30−0.67×〔焼結原料中の結晶水含有量(質量%[乾量基準])〕
ここに、排ガス循環率(%)=〔後部域の長さ〕/〔前部域と後部域の合計長さ〕×100である。
Formula 2 13% ≦ [exhaust gas circulation rate (%)] ≦ 30−0.67 × [content of crystal water in sintering raw material (mass% [dry basis])]
Here, exhaust gas circulation rate (%) = [length of rear region] / [total length of front region and rear region] × 100.

1:焼結機
2:点火炉
3:排鉱部
4:パレット
5:前部域循環ガスフード
11:集塵機
12:主排風機
13:昇圧ブロワ
14:乾式脱硫脱硝装置
21:前部域からの排ガス(低温排ガス)
22:後部域からの排ガス(高温排ガス、後部域循環ガス、高温循環ガス)
22’:昇圧後の後部域循環ガス
A:前部域
B:後部域
1: Sintering machine 2: Ignition furnace 3: Exhaust section 4: Pallet 5: Front zone circulating gas hood 11: Dust collector 12: Main exhaust fan 13: Booster blower 14: Dry desulfurization denitration device 21: From the front zone Exhaust gas (low temperature exhaust gas)
22: Exhaust gas from the rear region (high temperature exhaust gas, rear region circulation gas, high temperature circulation gas)
22 ': Rear region circulating gas after pressure increase A: Front region B: Rear region

Claims (3)

下方吸引式の焼結機の点火炉後から排鉱部までの間を前部域と後部域に2分割し、後部域からの高温高SOx濃度の排ガス(以下、「高温循環ガス」という。)をそのまま前部域のパレット上に循環するとともに、該前部域からの低温高NOx濃度の排ガス(以下、「低温排ガス」という。)を乾式脱硫脱硝装置にて脱硫と脱硝を同時に行った後に排気するにあたり、前記低温排ガスの温度が、当該低温排ガスの酸露点以上で、かつ、前記乾式脱硫脱硝装置の活性炭の発火温度以下になるように、前部域と後部域の分割位置を調整することを特徴とする焼結機排ガスの処理方法。   The space from after the igniting furnace of the downward suction type sintering machine to the discharge portion is divided into a front region and a rear region, and exhaust gas having a high temperature and high SOx concentration from the rear region (hereinafter referred to as “high temperature circulation gas”). ) Was circulated on the pallet in the front area as it was, and the low-temperature high NOx concentration exhaust gas (hereinafter referred to as “low-temperature exhaust gas”) from the front area was simultaneously desulfurized and denitrated with a dry desulfurization denitration device. When exhausting later, the division position of the front and rear regions is adjusted so that the temperature of the low-temperature exhaust gas is not less than the acid dew point of the low-temperature exhaust gas and not more than the ignition temperature of the activated carbon of the dry desulfurization denitration device. A method for treating exhaust gas from a sintering machine. 前記乾式脱硫脱硝装置の活性炭の発火温度は130℃とし、前記低温排ガスの酸露点は当該低温排ガス中のSO濃度と水分濃度に応じて下記式1で算出された値とする請求項1に記載の焼結機排ガスの処理方法。
式1 〔低温排ガスの酸露点(℃)〕=20×log〔低温排ガス中のSO濃度(容量%)〕+35.4×log〔低温排ガス中の水分濃度(容量%)〕+80
The ignition temperature of the activated carbon of the dry desulfurization denitrification apparatus is 130 ° C., and the acid dew point of the low temperature exhaust gas is a value calculated by the following formula 1 according to the SO 3 concentration and moisture concentration in the low temperature exhaust gas. The processing method of exhaust gas of a sintering machine as described.
Formula 1 [acid dew point of low-temperature exhaust gas (° C.)] = 20 × log [SO 3 concentration in low-temperature exhaust gas (volume%)] + 35.4 × log [water concentration in low-temperature exhaust gas (volume%)] + 80
前記焼結機に供給する焼結原料中の結晶水含有量に応じて、下記式2を満足するように、前部域と後部域の分割位置を調整する請求項2に記載の焼結機排ガスの処理方法。
式2 13%≦〔排ガス循環率(%)〕≦30−0.67×〔焼結原料中の結晶水含有量(質量%[乾量基準])〕
ここに、排ガス循環率(%)=〔後部域の長さ〕/〔前部域と後部域の合計長さ〕×100である。
3. The sintering machine according to claim 2, wherein the division positions of the front region and the rear region are adjusted so as to satisfy the following formula 2 according to the content of crystal water in the sintering raw material supplied to the sintering machine. Exhaust gas treatment method.
Formula 2 13% ≦ [exhaust gas circulation rate (%)] ≦ 30−0.67 × [content of crystal water in sintering raw material (mass% [dry basis])]
Here, exhaust gas circulation rate (%) = [length of rear region] / [total length of front region and rear region] × 100.
JP2009261099A 2009-11-16 2009-11-16 Method for treating exhaust gas in sintering machine Pending JP2011105985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261099A JP2011105985A (en) 2009-11-16 2009-11-16 Method for treating exhaust gas in sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261099A JP2011105985A (en) 2009-11-16 2009-11-16 Method for treating exhaust gas in sintering machine

Publications (1)

Publication Number Publication Date
JP2011105985A true JP2011105985A (en) 2011-06-02

Family

ID=44229793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261099A Pending JP2011105985A (en) 2009-11-16 2009-11-16 Method for treating exhaust gas in sintering machine

Country Status (1)

Country Link
JP (1) JP2011105985A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195326A (en) * 2014-08-19 2014-12-10 浙江大学 Sintering energy-saving technique and system capable of removing multiple pollutants
CN105509491A (en) * 2015-12-09 2016-04-20 郑琨 Environmental-protection and energy-conservation treatment technology of sintering flue gas
WO2018155368A1 (en) 2017-02-27 2018-08-30 スチールプランテック株式会社 Sintering machine for sintered ore
CN110448990A (en) * 2018-05-08 2019-11-15 中冶宝钢技术服务有限公司 Sulfur-rich flue gas purifying equipment
CN112569757A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Sintering flue gas online desulfurization process
CN113834340A (en) * 2021-09-28 2021-12-24 中国华能集团清洁能源技术研究院有限公司 Low-temperature desulfurization and denitrification method and system for flue gas of sintering machine of steel mill
CN114485196A (en) * 2022-03-28 2022-05-13 华北理工大学 Method for carrying out denitration in sintering process by using various flue gases
WO2022252156A1 (en) * 2021-06-02 2022-12-08 秦皇岛新特科技有限公司 Sintering apparatus and sintering process production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207824A (en) * 1990-01-05 1991-09-11 Sumitomo Metal Ind Ltd Operating method for sintering
JPH08291342A (en) * 1995-04-18 1996-11-05 Nippon Steel Corp Sintering system by circulating exhaust gas
JP2003106796A (en) * 2001-09-28 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method of heat exchanger
JP2003164726A (en) * 2001-12-03 2003-06-10 Nippon Steel Corp Exhaust gas treatment method for sintering machine
JP2005256052A (en) * 2004-03-10 2005-09-22 Nippon Steel Corp Method for treating sintering exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207824A (en) * 1990-01-05 1991-09-11 Sumitomo Metal Ind Ltd Operating method for sintering
JPH08291342A (en) * 1995-04-18 1996-11-05 Nippon Steel Corp Sintering system by circulating exhaust gas
JP2003106796A (en) * 2001-09-28 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method of heat exchanger
JP2003164726A (en) * 2001-12-03 2003-06-10 Nippon Steel Corp Exhaust gas treatment method for sintering machine
JP2005256052A (en) * 2004-03-10 2005-09-22 Nippon Steel Corp Method for treating sintering exhaust gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195326A (en) * 2014-08-19 2014-12-10 浙江大学 Sintering energy-saving technique and system capable of removing multiple pollutants
CN105509491A (en) * 2015-12-09 2016-04-20 郑琨 Environmental-protection and energy-conservation treatment technology of sintering flue gas
CN105509491B (en) * 2015-12-09 2017-10-10 郑琨 A kind of environmental protection and energy saving handling process for sintering flue gas
WO2018155368A1 (en) 2017-02-27 2018-08-30 スチールプランテック株式会社 Sintering machine for sintered ore
TWI661169B (en) * 2017-02-27 2019-06-01 日商製鐵設備技術股份有限公司 Sintering machine
CN110448990A (en) * 2018-05-08 2019-11-15 中冶宝钢技术服务有限公司 Sulfur-rich flue gas purifying equipment
CN112569757A (en) * 2019-09-27 2021-03-30 江苏集萃冶金技术研究院有限公司 Sintering flue gas online desulfurization process
CN112569757B (en) * 2019-09-27 2022-08-23 江苏集萃冶金技术研究院有限公司 Sintering flue gas online desulfurization process
WO2022252156A1 (en) * 2021-06-02 2022-12-08 秦皇岛新特科技有限公司 Sintering apparatus and sintering process production device
CN113834340A (en) * 2021-09-28 2021-12-24 中国华能集团清洁能源技术研究院有限公司 Low-temperature desulfurization and denitrification method and system for flue gas of sintering machine of steel mill
WO2023050602A1 (en) * 2021-09-28 2023-04-06 中国华能集团清洁能源技术研究院有限公司 Low temperature desulfurization and denitrification method and system for flue gas in steel plant sintering machine
CN114485196A (en) * 2022-03-28 2022-05-13 华北理工大学 Method for carrying out denitration in sintering process by using various flue gases
CN114485196B (en) * 2022-03-28 2022-07-01 华北理工大学 Method for denitration in sintering process by using various flue gases

Similar Documents

Publication Publication Date Title
JP2011105985A (en) Method for treating exhaust gas in sintering machine
JP4823596B2 (en) Method and apparatus for treating exhaust gas in cement firing facility
JP6994579B2 (en) Microwave sintering method for iron ore
KR20160105476A (en) Method for operating blast furnace
JP4856661B2 (en) Method for stabilizing steelmaking slag
CN101376921A (en) Sintering gas flue gas sulfuric dioxide decrement discharge technology
US9051215B2 (en) Method and device for removing mercury during the production of cement clinker
CN104379708A (en) Coal deactivation processing device and equipment for producing modified coal using same
CN106064019A (en) Circulating flue gas desulfurization technology in nsp kiln
CN1775681A (en) Method for preparing desulfurizer magnesium oxide and sulfur dioxide utilizing desulfurizing by-product magnesium sulfite by magnesium process
JP4976721B2 (en) Exhaust gas circulation method sintering operation method and apparatus
CN101749951A (en) Treatment method for segmentation of metallurgy sintering smoke
JP2003164726A (en) Exhaust gas treatment method for sintering machine
JP6958158B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
CN105233645A (en) Energy saving and emission reduction comprehensive purifying treatment technology of coke oven flue gas
Chen et al. Application of modified coke to NOx reduction with recycling flue gas during iron ore sintering process
FI101810B (en) Method of sintering iron oxide-containing substances in a sintering machine
JP5573727B2 (en) Method for reforming hot metal desulfurization slag
JP6888591B2 (en) Recycling method of adsorbent for exhaust gas treatment
CN108607325B (en) Multi-adsorption-tower parallel flue gas purification treatment system and control method thereof
CN108267025B (en) Nitrogen oxide emission control method and device
CN108267024B (en) Nitrogen oxide emission control method and device
CN112110659A (en) Method for capturing CO by using steel slag2Method and device for eliminating free CaO
JP4979940B2 (en) Method for producing reduced iron
JP2007039747A (en) Blast furnace operating method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318