JP2020025424A - Lift stabilization structure and slide plate of hull - Google Patents

Lift stabilization structure and slide plate of hull Download PDF

Info

Publication number
JP2020025424A
JP2020025424A JP2018149666A JP2018149666A JP2020025424A JP 2020025424 A JP2020025424 A JP 2020025424A JP 2018149666 A JP2018149666 A JP 2018149666A JP 2018149666 A JP2018149666 A JP 2018149666A JP 2020025424 A JP2020025424 A JP 2020025424A
Authority
JP
Japan
Prior art keywords
lift
hull
boat body
acting
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018149666A
Other languages
Japanese (ja)
Inventor
剛 光用
Takeshi Mitsumoji
剛 光用
隆之 臼田
Takayuki Usuda
隆之 臼田
樹幸 小林
Shigeyuki Kobayashi
樹幸 小林
恭平 長尾
Kyohei Nagao
恭平 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018149666A priority Critical patent/JP2020025424A/en
Publication of JP2020025424A publication Critical patent/JP2020025424A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

To provide a lift stabilization structure of a hull which can stabilize lift acting on the hull with a simple, and a slide plate.SOLUTION: A lift stabilization structure 9 stabilizes lift acting on a hull 7 which supports slide plates 8A to 8C. When the hull 7 receives an obliquely upward flow F, the slide plates 8A to 8C comprises a lift increase part 10A which increases lift acting on the hull 7, and a lift reduction part 10B which reduces lift acting on the hull 7. The lift increase part 10A comprises an inclines plane 10a having a small inclination angle with a horizontal line, and the lift reduction part 10B comprises an inclined plane 10b having a large inclination angle with a horizontal line. The lift increase part 10A and the lift reduction part 10B are located along a lengthwise direction of the hull 7 at a prescribed compounding ratio. The lift increase part 10A increases lift acting on a midship part in the lengthwise direction of the hull 7, and the lift reduction part 10B reduces lift acting on both end parts in the lengthwise direction of the hull 7.SELECTED DRAWING: Figure 3

Description

この発明は、すり板を支持する舟体に作用する揚力を安定化させる舟体の揚力安定化構造、及びトロリ線と摺動するすり板に関する。   The present invention relates to a lift stabilizing structure for a boat body that stabilizes a lift acting on a boat body supporting a sliding plate, and a sliding plate that slides on a trolley wire.

新幹線(登録商標)の高速化にとって、車両各部から放射される空力音の提言は重要な課題である。パンタグラフは主要な空力音源であり、パンタグラフの各部材の中でも、舟体は最も寄与が大きい空力音源である。舟体の空力音低減には断面形状の平滑化が有効だが、揚力特性の安定化が損なわれる。ここで言う揚力特性の安定化とは、対向風の風向変化による揚力変化量が小さいことと、すり板摩耗による断面形状変化に対して、揚力変化量が小さいことの2点が必要である。なお、揚力に関しては、その値自体を集電系にとって適切な値(概ね静押上力54Nと同程度)に設定することも重要であるが、これについては、揚力を安定化させる技術と揚力の値自体を調整する技術などの様々な対策がある。   For speeding up the Shinkansen (registered trademark), proposal of aerodynamic noise radiated from each part of the vehicle is an important issue. The pantograph is a major aerodynamic sound source, and the hull is the most aerodynamic sound source among the members of the pantograph. To reduce the aerodynamic noise of the hull, smoothing of the cross-sectional shape is effective, but the stability of the lift characteristics is impaired. Here, the stabilization of the lift characteristics requires two points: a small change in the lift due to a change in the direction of the opposing wind, and a small change in the lift with respect to the change in the cross-sectional shape due to the wear of the sliding plate. It is important to set the lift itself to a value appropriate for the current collection system (approximately the same as the static push-up force of 54 N). There are various countermeasures such as techniques for adjusting the value itself.

従来の集電装置の揚力安定化構造(以下、従来技術1という)は、CFD解析及び最適化手法を組み合わせた手法により、空力音低減と揚力特性安定化を両立する平滑舟体形状を提案している(例えば、特許文献1参照)。この従来技術1は、集電舟の長さ方向と直交する平面で切断したときの下側以外の部分の断面形状が所定の目的関数が最小になるような舟体形状に形成されている。   The lift stabilization structure of the current collector (hereinafter referred to as Conventional Technique 1) proposes a smooth boat body shape that achieves both aerodynamic noise reduction and stabilization of the lift characteristics by combining CFD analysis and optimization techniques. (For example, see Patent Document 1). In the prior art 1, the cross section of a portion other than the lower side when cut along a plane perpendicular to the length direction of the current collecting boat is formed in a boat shape such that a predetermined objective function is minimized.

従来のパンタグラフの舟体(以下、従来技術2という)は、舟体底面から突出する突起部を備えており、車両の走行方向の前寄り又は後寄りの少なくとも一方に舟体の長手方向に長くこの突起部を形成している(例えば、特許文献2参照)。この従来技術2は、車両の走行方向の後寄りに形成された突起部を、舟体の長手方向の長さを設定することによって、この走行方向における揚力を調整している。   A conventional pantograph hull (hereinafter referred to as “prior art 2”) is provided with a protrusion projecting from the bottom of the hull, and is elongated in the longitudinal direction of the hull toward at least one of a forward position and a rearward position in the traveling direction of the vehicle. This projection is formed (for example, see Patent Document 2). In the prior art 2, the lift in the traveling direction is adjusted by setting the length of the protruding portion formed in the rearward direction of the vehicle in the longitudinal direction of the boat body.

特開2006-141169号公報JP 2006-141169 A

特開2018-046614号公報JP 2018-046614A

従来技術1は、すり板を含めた舟体の断面形状が曲面で構成されており、製造コストが高くなってしまう問題点がある。特に、すり板を曲面で加工するのは製造コストが極めて高い。また、従来技術1は、舟体とすり板を一体で断面形状の設計を行う場合、開発難度が高くなってしまう問題点がある。従来技術2は、揚力の値自体を調整することを目的としており、風向変化、すり板摩耗に対する揚力変化量の低減などの揚力の安定化を図ることができない問題点がある。同様に、舟体の断面形状をこの舟体の長手方向に非一様とする技術、あるいは、部分的に断面形状を変更する技術もあるが、これらの技術は主として揚力の値自体を調整することを目的としており、風向変化、すり板摩耗に対する揚力変化量を低減などの揚力を安定化せる効果は必ずしも得られない。特に、すり板摩耗による揚力変化量を舟体形状によって抑制することは困難である。   The prior art 1 has a problem in that the cross-sectional shape of the boat body including the slide plate is formed of a curved surface, and the manufacturing cost is increased. In particular, machining a ground plate with a curved surface is extremely expensive. Further, the prior art 1 has a problem that when designing the cross-sectional shape integrally with the boat body and the slide plate, the difficulty of development is increased. The prior art 2 aims at adjusting the value of the lift itself, and has a problem in that it is not possible to stabilize the lift such as a change in the lift due to a change in the wind direction or abrasion of the sliding plate. Similarly, there are techniques for making the cross section of the boat body non-uniform in the longitudinal direction of this boat body, or techniques for partially changing the cross section shape, but these techniques mainly adjust the value of the lift itself. Therefore, the effect of stabilizing the lift, such as reducing the amount of change in the lift with respect to the change in the wind direction and the wear of the sliding plate, is not always obtained. In particular, it is difficult to suppress the change in lift due to the wear of the sliding plate by the boat body shape.

この発明の課題は、簡単な構造によって舟体に作用する揚力を安定化させることができる舟体の揚力安定化構造及びすり板を提供することである。   An object of the present invention is to provide a lift stabilizing structure and a slide plate of a boat which can stabilize the lift acting on the boat with a simple structure.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図3〜図13に示すように、すり板(8A〜8C)を支持する舟体(7)に作用する揚力(+L)を安定化させる舟体の揚力安定化構造であって、前記すり板は、前記舟体が斜め上方向の流れ(F)を受けたときに、この舟体に作用する揚力を増加させる揚力増加部(10A)と、この舟体に作用する揚力を低減させる揚力低減部(10B)とを備えることを特徴とする舟体の揚力安定化構造(9)である。
The present invention solves the above-mentioned problems by the following means.
Note that description will be given with reference numerals corresponding to the embodiment of the present invention, but the present invention is not limited to this embodiment.
According to the first aspect of the present invention, as shown in FIGS. 3 to 13, a lift stabilizing structure of a hull for stabilizing a lift (+ L) acting on a hull (7) supporting a sliding plate (8 A to 8 C). A lift increasing portion (10A) for increasing a lift acting on the boat body when the boat body receives an obliquely upward flow (F); A lift stabilizing structure (9) for a hull, comprising: a lift reducing portion (10B) for reducing a lift to be generated.

請求項2の発明は、請求項1に記載の舟体の揚力安定化構造において、図6、図9及び図11〜図13に示すように、前記揚力増加部は、水平線とのなす傾斜角(θA)が小さい傾斜面(10a)を備え、前記揚力低減部は、水平線とのなす傾斜角(θB)が大きい傾斜面(10b)を備えることを特徴とする舟体の揚力安定化構造である。 According to a second aspect of the present invention, in the hull lift stabilizing structure according to the first aspect, as shown in FIGS. 6, 9, and 11 to 13, the lift increasing portion has an inclination angle formed with a horizontal line. The lift stabilization of the hull is characterized in that it has an inclined surface (10a) with a small (θ A ) and the inclined surface (10b) with a large inclination angle (θ B ) with the horizontal line. Structure.

請求項3の発明は、請求項2に記載の舟体の揚力安定化構造において、前記揚力増加部は、前記傾斜面の傾斜角がこの傾斜面を流れが沿う角度であり、前記揚力低減部は、前記傾斜面の傾斜角がこの傾斜面で流れがはく離する角度であることを特徴とする舟体の揚力安定化構造である。   According to a third aspect of the present invention, in the lift stabilizing structure for a boat body according to the second aspect, the lift increasing portion is configured such that an inclination angle of the inclined surface is an angle along which the flow flows along the inclined surface, and the lift reducing portion. Is a lift stabilizing structure for a hull, wherein the inclination angle of the inclined surface is an angle at which the flow is separated on the inclined surface.

請求項4の発明は、請求項1から請求項3までのいずれか1項に記載の舟体の揚力安定化構造において、図3、図7、図8及び図10に示すように、前記揚力増加部及び前記揚力低減部は、前記舟体の長さ方向に沿って所定の配合割合で配置されていることを特徴とする舟体の揚力安定化構造である。   According to a fourth aspect of the present invention, in the lift stabilizing structure for a hull according to any one of the first to third aspects, as shown in FIG. 3, FIG. 7, FIG. 8, and FIG. The increasing portion and the lift reducing portion are arranged in a predetermined blending ratio along a length direction of the boat body, which is a lift stabilizing structure of the boat body.

請求項5の発明は、請求項1から請求項4までのいずれか1項に記載の舟体の揚力安定化構造において、図3及び図8に示すように、前記揚力増加部は、前記舟体の長さ方向の中央部に作用する揚力を増加させ、前記揚力低減部は、前記舟体の長さ方向の中央部よりも外側に作用する揚力を減少させることを特徴とする舟体の揚力安定化構造である。   According to a fifth aspect of the present invention, in the lift stabilizing structure for a hull according to any one of the first to fourth aspects, as shown in FIG. 3 and FIG. The lift of the hull, wherein the lift acting on the central portion in the longitudinal direction of the body is increased, and the lift reducing portion reduces the lift acting on the outer side of the longitudinal direction of the hull. It is a lift stabilization structure.

請求項6の発明は、請求項1から請求項4までのいずれか1項に記載の舟体の揚力安定化構造において、図7、図8及び図10に示すように、前記揚力増加部は、前記舟体の長さ方向の中央部よりも外側に作用する揚力を増加させ、前記揚力低減部は、前記舟体の長さ方向の中央部に作用する揚力を減少させることを特徴とする舟体の揚力安定化構造である。   According to a sixth aspect of the present invention, in the lift stabilizing structure for a hull according to any one of the first to fourth aspects, as shown in FIGS. The lift acting on the outside of the center of the hull in the longitudinal direction is increased, and the lift reducing unit reduces the lift acting on the center of the hull in the longitudinal direction. It is a lift stabilization structure of the hull.

請求項7の発明は、図2〜図4、図7、図8及び図10に示すように、トロリ線(1a)と摺動するすり板であって、請求項1から請求項6までのいずれか1項に記載の舟体の揚力安定化構造(9)を備えることを特徴とするすり板(8A〜8C)である。   As shown in FIGS. 2 to 4, 7, 8 and 10, the invention according to claim 7 is a slide plate that slides on the trolley wire (1a). A contact strip (8A to 8C) comprising the boat body lift stabilizing structure (9) according to any one of the preceding claims.

この発明によると、簡単な構造によって舟体に作用する揚力を安定化させることができる。   According to the present invention, the lift acting on the boat body can be stabilized with a simple structure.

この発明の第1実施形態に係る舟体の揚力安定化構造を備える集電装置を概略的に示す斜視図である。It is a perspective view showing roughly the current collection device provided with the lift stabilization structure of the hull concerning a 1st embodiment of this invention. この発明の第1実施形態に係る舟体の揚力安定化構造を備える集電装置を模式的に示す側面図である。It is a side view which shows typically the current collector provided with the lift stabilization structure of the boat body which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る舟体の揚力安定化構造を備える舟体を概略的に示す平面図である。It is a top view showing roughly the boat body provided with the lift stabilization structure of the boat body concerning a 1st embodiment of this invention. この発明の第1実施形態に係る舟体の揚力安定化構造を備える舟体を概略的に示す正面図である。It is a front view showing roughly the boat body provided with the lift stabilization structure of the boat body concerning a 1st embodiment of this invention. この発明の第1実施形態に係る舟体の揚力安定化構造を備える舟体の断面図であり、(A)は図4のV-VA線で切断した状態を示す断面図であり、(B)は図4のV-VB線で切断した状態を示す断面図であり、(C)は揚力増加部及び揚力低減部の作用を比較した表である。It is sectional drawing of the hull provided with the lift stabilization structure of the hull concerning 1st Embodiment of this invention, (A) is sectional drawing which shows the state cut | disconnected by the V-VA line of FIG. 4) is a cross-sectional view showing a state cut along the line V-VB in FIG. 4, and FIG. 4 (C) is a table comparing the effects of the lift increasing section and the lift reducing section. この発明の第1実施形態に係る舟体の揚力安定化構造を備えるすり板の外観図であり、(A)は平面図であり、(B)は(A)のVI-VIB線で切断した状態を示す断面図であり、(C)は(A)のVI-VIC線で切断した状態を示す断面図であり、(D)は(A)のVI-VID線で切断した状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the slide board provided with the lift stabilization structure of the boat body which concerns on 1st Embodiment of this invention, (A) is a top view, (B) cut | disconnected by the VI-VIB line of (A). It is sectional drawing which shows a state, (C) is sectional drawing which shows the state cut | disconnected by the VI-VIC line of (A), (D) is sectional drawing which shows the state cut | disconnected by the VI-VID line of (A). FIG. この発明の第2実施形態に係る舟体の揚力安定化構造を備える舟体を概略的に示す平面図である。It is a top view showing roughly the boat body provided with the lift stabilization structure of the boat body concerning a 2nd embodiment of this invention. この発明の第3実施形態に係る舟体の揚力安定化構造を備える舟体を概略的に示す平面図である。It is a top view showing roughly the boat body provided with the lift stabilization structure of the boat body concerning a 3rd embodiment of this invention. この発明の第3実施形態に係る舟体の揚力安定化構造を備えるすり板の外観図であり、(A)は平面図であり、(B)は(A)のIX-IXB線で切断した状態を示す断面図であり、(C)は(A)のIX-IXC線で切断した状態を示す断面図であり、(D)は(A)のIX-IXD線で切断した状態を示す断面図である。It is an external view of the slide board provided with the lift stabilization structure of the boat body which concerns on 3rd Embodiment of this invention, (A) is a top view, (B) cut | disconnected by the IX-IXB line of (A). It is sectional drawing which shows a state, (C) is sectional drawing which shows the state cut | disconnected by IX-IXC line of (A), (D) is sectional drawing which shows the state cut | disconnected by IX-IXD line of (A). FIG. この発明の第4実施形態に係る舟体の揚力安定化構造を備える舟体を概略的に示す平面図である。It is a top view showing roughly the boat body provided with the lift stabilization structure of the boat body concerning a 4th embodiment of this invention. この発明の第5実施形態に係る舟体の揚力安定化構造を備える舟体の断面形状が多角形の場合の断面図であり、(A)はすり板の傾斜面の傾斜角が小さいきときの断面図であり、(B)はすり板の傾斜面の傾斜角が大きいときの断面図である。It is sectional drawing in case the cross-sectional shape of the boat body provided with the boat body lift stabilization structure which concerns on 5th Embodiment of this invention is a polygon, (A) When the inclination angle of the inclined surface of a slide plate is small. (B) is a cross-sectional view when the inclination angle of the inclined surface of the slide plate is large. この発明の第5実施形態に係る舟体の揚力安定化構造を備える舟体の断面形状が前後非対称の場合の断面図であり、(A)はすり板の傾斜面の傾斜角が小さいときの断面図であり、(B)はすり板の傾斜面の傾斜角が大きいときの断面図である。It is a sectional view when the sectional shape of the hull provided with the lift stabilization structure of the hull according to the fifth embodiment of the present invention is asymmetric in the front-rear direction, and FIG. It is sectional drawing, (B) is sectional drawing when the inclination angle of the inclined surface of a sliding plate is large. この発明の第5実施形態に係る舟体の揚力安定化構造を備える舟体の断面形状が鈍頭の場合の断面図であり、(A)はすり板の傾斜面の傾斜角が小さきいときの断面図であり、(B)はすり板の傾斜面の傾斜角が大きいときの断面図である。It is sectional drawing in case the cross-sectional shape of the hull provided with the lift stability structure of the hull concerning 5th Embodiment of this invention is blunt, (A) When the inclination angle of the inclination surface of a slide plate is small. (B) is a cross-sectional view when the inclination angle of the inclined surface of the slide plate is large.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1〜図4に示す架線1は、線路上空に架設される架空電車線である。架線1は、所定の間隔をあけて支持点で支持されている。トロリ線1aは、集電装置3が接触移動する電線である。トロリ線1aは、集電装置3が摺動することによって、車両2に負荷電流を供給する。図2に示す車両2は、電車又は電気機関車などの電気車である。車両2は、例えば、高速で走行する新幹線(登録商標)などの鉄道車両である。車体2aは、乗客又は貨物を積載し輸送するための構造物である。
(1st Embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
The overhead line 1 shown in FIGS. 1 to 4 is an overhead train line that is installed over the track. The overhead wire 1 is supported at support points at predetermined intervals. The trolley wire 1a is an electric wire to which the current collector 3 moves. The trolley wire 1a supplies a load current to the vehicle 2 when the current collector 3 slides. The vehicle 2 shown in FIG. 2 is an electric vehicle such as a train or an electric locomotive. The vehicle 2 is, for example, a railway vehicle such as a Shinkansen (registered trademark) that runs at high speed. The vehicle body 2a is a structure for loading and transporting passengers or cargo.

図1〜図4に示す集電装置3は、トロリ線1aから車両2に電力を導くための装置である。集電装置3は、図2に示す台枠4と、碍子5と、図1及び図2に示す枠組6と、図1〜図5に示す舟体(集電舟)7と、図1〜図6に示すすり板8A〜8Cなどを備えている。図2に示す台枠4は、枠組6を支持する部材である、台枠4は、碍子5を介して車体2aの屋根上に設置されている。碍子5は、車体2aと台枠4との間を電気的に絶縁する部材である。図1及び図2に示す枠組6は、舟体7を支持する部材である。枠組6は、舟体7を支持した状態で上下方向に動作可能なリンク機構を備えており、台枠4に取り付けられて上昇力を付与する主ばね(押上げ用ばね)によって上方に押上げられている。枠組6は、舟支え部6aと、上枠6bと、下枠6cと、関節部(屈曲部)6dなどを備えている。舟支え部6aは、舟体7を支持する部分である。舟支え部6aは、舟体7を架線1に対して水平に押上げる。上枠6bは、舟支え部6aに回転自在に連結される部材である。下枠6cは、台枠4に回転自在に連結される部材である。下枠6cは、枠組6を昇降動作させる図示しない主軸及び主ばねに連結されている。関節部6dは、上枠6bと下枠6cとが回転自在に連結される中間ヒンジとして機能する部分である。図1及び図2に示す集電装置3は、車両2の進行方向(図中A方向)に対して非対称であり、一方向又は両方向に使用可能なシングルアーム式パンタグラフである。図1及び図2に示す集電装置3は、車両2の進行方向前側に関節部6dが位置するなびき方向に移動している。   The current collector 3 shown in FIGS. 1 to 4 is a device for guiding electric power to the vehicle 2 from the trolley wire 1a. The current collecting device 3 includes an underframe 4, an insulator 5, a frame 6 shown in FIGS. 1 and 2, a boat body (current collecting boat) 7 shown in FIGS. It is provided with the slide plates 8A to 8C shown in FIG. The underframe 4 shown in FIG. 2 is a member that supports the framework 6. The underframe 4 is installed on the roof of the vehicle body 2 a via the insulator 5. The insulator 5 is a member that electrically insulates between the vehicle body 2a and the underframe 4. The framework 6 shown in FIGS. 1 and 2 is a member that supports the boat 7. The frame 6 includes a link mechanism that can move in the vertical direction while supporting the boat body 7, and is pushed upward by a main spring (push-up spring) that is attached to the underframe 4 and applies an upward force. Have been. The frame 6 includes a boat support 6a, an upper frame 6b, a lower frame 6c, a joint (bend) 6d, and the like. The boat support 6a is a part that supports the boat 7. The boat support 6a pushes up the boat 7 horizontally with respect to the overhead wire 1. The upper frame 6b is a member rotatably connected to the boat support 6a. The lower frame 6c is a member that is rotatably connected to the underframe 4. The lower frame 6c is connected to a main shaft and a main spring (not shown) that move the frame 6 up and down. The joint 6d is a portion that functions as an intermediate hinge to which the upper frame 6b and the lower frame 6c are rotatably connected. The current collector 3 shown in FIGS. 1 and 2 is a single-arm pantograph that is asymmetric with respect to the traveling direction of the vehicle 2 (A direction in the drawings) and can be used in one direction or both directions. The current collector 3 shown in FIGS. 1 and 2 is moving in a fluttering direction in which the joint 6d is located on the front side in the traveling direction of the vehicle 2.

図1〜図5に示す舟体7は、すり板8A〜8Cを支持する部材である。舟体7は、一般にトロリ線1aと直交する方向(まくらぎ方向)に伸びた細長い金属製の柱状部材である。舟体7は、図2及び図5に示すように、この舟体7の中心軸に対して前後対称であり、前後がいずれも同一形状に形成されている。舟体7は、流れ(気流)Fのはく離を可能な限り防止するために断面形状が流線型又は流線型に近似した曲面で構成されており、滑らかな曲線によって構成されている。舟体7は、例えば、数値流体力学(Computational Fluid Dynamics(CFD))解析及び最適化手法を組み合わせた手法によって、空力音低減及び揚力特性安定化を両立可能なように舟体断面形状が平滑化されている。舟体7は、例えば、トロリ線1aに対する追従性能を向上させた新幹線用(高速用)パンタグラフ舟体である。舟体7は、図1〜図4に示すホーン7aと、図2、図4及び図5に示す上部7bと、図4及び図5に示す下部7cと、図2〜図5に示す前縁部7dなどを備えている。図1〜図4に示すホーン7aは、車両2が分岐器を通過するときに、この分岐器の上方で交差する2本のトロリ線1aのうち車両2の進行方向とは異なる方向のトロリ線1aへの割込みを防止するための部材である。ホーン7aは、舟体7の長さ方向の両端部から突出しており、図1に示すように先端部が下方に向かって湾曲して形成された金属製の部材である。図2、図4及び図5に示す上部7bは、すり板8A〜8Cが取り付けられる部分である。図4及び図5に示す下部7cは、舟支え部6aに支持される部分である。図2〜図5に示す前縁部7dは、舟体7の縁部を構成する部分である。   The boat body 7 shown in FIGS. 1 to 5 is a member that supports the slide plates 8A to 8C. The boat body 7 is an elongated metal columnar member generally extending in a direction (sleeper direction) orthogonal to the trolley wire 1a. As shown in FIGS. 2 and 5, the boat body 7 is symmetrical in the front-rear direction with respect to the center axis of the boat body 7, and both sides are formed in the same shape. The hull 7 has a cross-sectional shape of a streamline type or a curved surface similar to a streamline type in order to prevent the flow (airflow) F from being separated as much as possible, and has a smooth curve. The hull 7 has, for example, a hull cross-sectional shape smoothed by a method combining computational fluid dynamics (CFD) analysis and an optimization method so that aerodynamic noise reduction and lift characteristic stabilization can be compatible. Have been. The hull 7 is, for example, a shinkansen (high-speed) pantograph hull having improved follow-up performance with respect to the trolley wire 1a. The hull 7 includes a horn 7a shown in FIGS. 1 to 4, an upper part 7b shown in FIGS. 2, 4 and 5, a lower part 7c shown in FIGS. 4 and 5, and a front edge shown in FIGS. A portion 7d and the like are provided. The horn 7a shown in FIGS. 1 to 4 has a trolley wire in a direction different from the traveling direction of the vehicle 2 among the two trolley wires 1a crossing over the switch when the vehicle 2 passes through the switch. This is a member for preventing interruption to 1a. The horn 7a is a metal member protruding from both ends in the longitudinal direction of the boat body 7, and having a distal end portion curved downward as shown in FIG. The upper portion 7b shown in FIGS. 2, 4, and 5 is a portion to which the slide plates 8A to 8C are attached. The lower portion 7c shown in FIGS. 4 and 5 is a portion supported by the boat support 6a. The front edge 7d shown in FIGS. 2 to 5 is a portion constituting the edge of the boat 7.

舟体7には、図2に示すように、車両2がA方向に移動して流れFを受けたとき揚力+Lが作用する。簡単のため、舟体7の揚力が流れFの迎角αの変化に対して直線的に変化する場合を例とすると、流れFの迎角αが変化したときに、揚力+Lに加えて揚力±L’がこの舟体7に作用する。ここで、揚力+Lは、車両2が通常走行中に舟体7に作用する揚力である。揚力±L’は、迎角αが変化したときの揚力+Lの変化量である。迎角αは、舟体7の前後方向と流れFとのなす角である。舟体7には、流れFの迎角αが正の値(舟体7の前方から後方に向かって流れFが斜め上方向)であるときには、この舟体7を上昇させる方向を正とする揚力+L’がこの舟体7に作用する。一方、舟体7には、流れFの迎角αが負の値(舟体7の前方から後方に向かって流れFが斜め下方向)であるときには、この舟体7を下降させる方向を負とする揚力−L’がこの舟体7に作用する。   As shown in FIG. 2, when the vehicle 2 moves in the direction A and receives the flow F, a lift + L acts on the boat body 7. For simplicity, assuming that the lift of the hull 7 changes linearly with the change in the angle of attack α of the flow F, for example, when the angle of attack α of the flow F changes, the lift in addition to the lift + L ± L 'acts on this boat 7. Here, the lift + L is the lift acting on the boat 7 during normal running of the vehicle 2. Lift ± L ′ is the amount of change of lift + L when the angle of attack α changes. The angle of attack α is an angle between the front-rear direction of the hull 7 and the flow F. When the angle of attack α of the flow F is a positive value (the flow F is obliquely upward from the front to the rear of the boat 7), the direction in which the boat 7 is raised is positive. Lift + L 'acts on this boat 7. On the other hand, when the angle of attack α of the flow F is a negative value (the flow F is obliquely downward from the front to the rear of the boat 7), the direction in which the boat 7 descends is negative. The lift -L ′ acts on the boat 7.

図1〜図6に示すすり板8A〜8Cは、トロリ線1aと摺動する部材である。すり板8A〜8Cは、図3及び図4に示すように、車両2の進行方向と直交する方向(まくらぎ方向)に伸びた金属製又は炭素製の板状部材である。すり板8A〜8Cは、車両2の走行速度と同速度でトロリ線1aと摺動し大電流が流れるため、機械的強度、電気伝導性及び耐摩耗性などの一定の性能が要求される。すり板8A〜8Cは、例えば、鉄又は銅などの金属粉に黒鉛又はスズなどの低融点金属とクロム又はモリブデンなどの硬質金属とを混合し焼結させた焼結合金すり板、炭素を主成分とするカーボン系すり板などである。すり板8A〜8Cは、舟体7とは別個に製造される別部品であり、この舟体7に取り付けられている。すり板8A〜8Cは、舟体7との間で相対変位可能なようにばねなどの弾性体によって支持されている。   The sliding plates 8A to 8C shown in FIGS. 1 to 6 are members that slide on the trolley wire 1a. As shown in FIGS. 3 and 4, the contact plates 8 </ b> A to 8 </ b> C are metal or carbon plate-like members that extend in a direction (sleeper direction) perpendicular to the traveling direction of the vehicle 2. Since the slide plates 8A to 8C slide on the trolley wire 1a at the same speed as the traveling speed of the vehicle 2 and a large current flows, certain performance such as mechanical strength, electric conductivity, and wear resistance is required. The ground plates 8A to 8C are mainly made of a sintered alloy ground plate obtained by mixing a metal powder such as iron or copper with a low melting point metal such as graphite or tin and a hard metal such as chromium or molybdenum and then sintering the mixture. A carbon-based slide plate or the like as a component. The slide plates 8A to 8C are separate parts manufactured separately from the boat body 7, and are attached to the boat body 7. The slide plates 8A to 8C are supported by an elastic body such as a spring so as to be relatively displaceable with respect to the boat body 7.

図1及び図3〜図6に示すすり板8A,8Bは、車両2が本線走行時に主にトロリ線1aと摺動する主すり板として機能する。すり板8A,8Bは、図1、図3及び図4に示すように、舟体7の長さ方向(まくらぎ方向)に複数並べた状態でこの舟体7の中央部及び中央部よりも外側(両端部寄り)に配置されている。すり板8A,8Bは、図3に示すように、舟体7の進行方向(すり板8A,8Bの長さ方向と直交する方向(図3に示すA方向))に対して所定の傾斜角度で両端部が斜めに直線状に切断されている。すり板8A,8Bは、図3及び図6に示すように、平面形状が略平行四辺形の薄板状部材である。   The sliding plates 8A and 8B shown in FIGS. 1 and 3 to 6 function as main sliding plates that mainly slide on the trolley wire 1a when the vehicle 2 travels on a main line. As shown in FIG. 1, FIG. 3, and FIG. 4, a plurality of the contact plates 8A and 8B are arranged in the length direction (the sleeper direction) of the boat body 7 and the center portion and the center portion of the boat body 7 It is arranged outside (near both ends). As shown in FIG. 3, the slide plates 8A and 8B have a predetermined inclination angle with respect to the traveling direction of the boat body 7 (the direction orthogonal to the length direction of the slide plates 8A and 8B (the A direction shown in FIG. 3)). Both ends are cut obliquely in a straight line. As shown in FIGS. 3 and 6, the contact plates 8A and 8B are thin plate-like members having a substantially parallelogram planar shape.

図1、図3及び図4に示すすり板8Cは、すり板8A,8Bの補助的部分を構成する補助すり板として機能する。すり板8Cは、すり板8A,8Bに比べて摺動頻度が低く、舟体7の長さ方向にすり板8Aと並べた状態で舟体7の両端部に配置されている。すり板8Cは、図3に示すように、すり板8Bと隣接する側の端面が舟体7の長さ方向に対して斜めに形成され、すり板8Bと隣接する側とは反対側の端面が舟体7の長さ方向に対して略直交して形成されている薄板状部材である。すり板8A〜8Cは、図5及び図6に示す上部8aと、下部8bと、図6に示す前縁部8cと、図5及び図6に示す上側角部8dと、図6に示す端部8eと、図2、図3、図5及び図6に示す揚力安定化構造9などを備えている。   The sliding plate 8C shown in FIGS. 1, 3 and 4 functions as an auxiliary sliding plate constituting an auxiliary part of the sliding plates 8A and 8B. The sliding plate 8C has a lower sliding frequency than the sliding plates 8A and 8B, and is arranged at both ends of the boat 7 in a state of being arranged with the sliding plate 8A in the longitudinal direction of the boat 7. As shown in FIG. 3, the contact surface of the contact plate 8 </ b> C is formed such that the end surface on the side adjacent to the contact plate 8 </ b> B is formed obliquely to the longitudinal direction of the boat body 7, and the end surface on the opposite side to the contact surface on the contact plate 8 </ b> B. Is a thin plate-shaped member formed substantially perpendicular to the longitudinal direction of the boat body 7. The sliding plates 8A to 8C include an upper part 8a, a lower part 8b, a front edge part 8c shown in FIG. 6, an upper corner part 8d shown in FIGS. 5 and 6, and an end part shown in FIG. A portion 8e and a lift stabilizing structure 9 shown in FIGS. 2, 3, 5, and 6 are provided.

図5及び図6に示す上部8aは、トロリ線1aと接触する部分である。下部8bは、舟体7の上部7bに取り付けられる部分である。図6に示す前縁部8cは、すり板8A〜8Cの縁部を構成する部分である。前縁部8cは、すり板8A〜8Cの進行方向前側及び進行方向後側に形成されており、上部8aに対して垂直な平坦面(壁面)に形成されている。前縁部8cは、すり板8A〜8Cを舟体7に取り付けたときに、舟体7の上部7bの凹部と接合する。図5及び図6に示す上側角部8dは、上部8aと前縁部8cとが交わる部分である。端部8eは、すり板8Aとすり板8Bとが隣り合う側に形成されている。端部8eは、すり板8A,8Bの進行方向に対して所定の傾斜角で傾斜しており、すり板8A,8Bの上部8a及び下部8bに対して垂直な平坦面に形成されている。   The upper portion 8a shown in FIGS. 5 and 6 is a portion that comes into contact with the trolley wire 1a. The lower portion 8b is a portion attached to the upper portion 7b of the boat 7. The front edge portion 8c shown in FIG. 6 is a portion constituting the edge portions of the slide plates 8A to 8C. The front edge 8c is formed on the front side in the traveling direction and the rear side in the traveling direction of the slide plates 8A to 8C, and is formed on a flat surface (wall surface) perpendicular to the upper portion 8a. The front edge 8c is joined to the recess of the upper part 7b of the boat body 7 when the slide plates 8A to 8C are attached to the boat body 7. The upper corner 8d shown in FIGS. 5 and 6 is a portion where the upper portion 8a and the front edge 8c intersect. The end 8e is formed on the side where the slide plate 8A and the slide plate 8B are adjacent to each other. The end 8e is inclined at a predetermined inclination angle with respect to the traveling direction of the sliders 8A, 8B, and is formed as a flat surface perpendicular to the upper portion 8a and the lower portion 8b of the sliders 8A, 8B.

図2、図3、図5及び図6に示す揚力安定化構造9は、舟体7に作用する揚力+Lを安定化させる構造である。揚力安定化構造9は、揚力傾斜が正の特性を示す部分と揚力傾斜が負の特性を示す部分とを、舟体7の長さ方向に沿って混在させることによって、この舟体7の揚力特性を安定化させる。ここで、揚力傾斜とは、図2に示す迎角αに対する揚力±L’の変化を表す値である。揚力傾斜が正とは、揚力傾斜が右上がりの直線になるような特性を示すことをいう。揚力傾斜が負とは、迎角αに対する揚力±L’の変化を表す揚力傾斜が右下がりの直線になるような特性を示すことをいう。揚力安定化構造9は、図3〜図6に示すように、揚力増加部10Aと、揚力低減部10Bと、図3及び図6に示す接続部10Cなどを備えている。揚力安定化構造9は、図3に示すように、揚力増加部10A及び揚力低減部10Bが舟体7の長さ方向に沿って所定の配合割合で配置されている。   The lift stabilizing structure 9 shown in FIGS. 2, 3, 5, and 6 is a structure that stabilizes the lift + L acting on the boat body 7. The lift stabilization structure 9 mixes a portion having a positive lift gradient and a portion having a negative lift gradient along the length of the boat 7 so that the lift of the boat 7 is increased. Stabilizes characteristics. Here, the lift inclination is a value representing a change in the lift ± L ′ with respect to the angle of attack α shown in FIG. A positive lift gradient indicates that the lift gradient has a characteristic of rising straight to the right. The negative lift gradient indicates that the lift gradient indicating the change of the lift ± L ′ with respect to the angle of attack α has such a characteristic that the lift gradient becomes a straight line falling to the right. As shown in FIGS. 3 to 6, the lift stabilizing structure 9 includes a lift increasing section 10A, a lift reducing section 10B, and a connecting section 10C shown in FIGS. 3 and 6. As shown in FIG. 3, the lift stabilizing structure 9 has a lift increasing portion 10A and a lift reducing portion 10B arranged at a predetermined mixing ratio along the length direction of the boat body 7.

図3、図4、図5(A)及び図6(A)に示す揚力増加部10Aは、舟体7が斜め上方向の流れFを受けたときに、この舟体7に作用する揚力+Lを増加させる部分である。揚力増加部10Aは、図6(A)に示すように、すり板8Aの進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。揚力増加部10Aは、図3に示す舟体7の長さ方向の中央部に作用する揚力+Lを増加させる。揚力増加部10Aは、図5(A)及び図6(B)に示すように、水平線とのなす傾斜角θAが小さい(浅い)傾斜面10aを備えている。揚力増加部10Aは、図5(A)に示すように、傾斜面10aの上側角部8dに流れFが沿うため流れFのはく離が生じず、空力音を低減する空力音低減部として機能する。一方、揚力増加部10Aは、図5(A)に示すように、揚力+Lの面では、傾斜面10aを流れFが沿って増速するため、流れFの風向変化やすり板8Aの摩耗に対して敏感であり、風向変化やすり板摩耗に対して揚力変化量が大きくなる。揚力増加部10Aは、特に、風向変化に対しては揚力傾斜が正の特性(吹き上げ方向で揚力+Lが増加する特性)である。 The lift increasing portion 10A shown in FIGS. 3, 4, 5A, and 6A has a lift + L acting on the hull 7 when the hull 7 receives the flow F in an obliquely upward direction. Is the part that increases. As shown in FIG. 6 (A), the lift increasing portion 10A is formed on the front edge 8c on the front side in the traveling direction and on the rear side in the traveling direction of the slider 8A. The lift increasing portion 10A increases the lift + L acting on the central portion in the longitudinal direction of the boat body 7 shown in FIG. Lift increasing portion 10A, as shown in FIG. 5 (A) and 6 (B), and a small tilt angle theta A between the horizontal line (shallow) inclined surface 10a. As shown in FIG. 5 (A), the lift F increases the flow F along the upper corner 8d of the inclined surface 10a, so that the flow F does not peel off and functions as an aerodynamic noise reducing unit that reduces aerodynamic noise. . On the other hand, as shown in FIG. 5 (A), the lift increasing portion 10A increases the speed of the flow F along the inclined surface 10a in the plane of the lift + L. And the change in lift is large with respect to wind direction change and file wear. The lift increasing section 10A has a characteristic in which the lift gradient is positive particularly with respect to a change in the wind direction (a characteristic in which the lift + L increases in the blowing direction).

図3、図4、図5(B)及び図6(B)に示す揚力低減部10Bは、舟体7が斜め上方向の流れFを受けたときに、この舟体7に作用する揚力+Lを低減させる部分である。揚力低減部10Bは、図6(B)に示すように、すり板8B,8Cの進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。揚力低減部10Bは、図3に示すように、舟体7の長さ方向の中央部よりも外側に作用する揚力+Lを低減させる。揚力低減部10Bは、図5(B)及び図6(C)に示すように、水平線とのなす傾斜角θB(傾斜角θB>傾斜角θA)が大きい(立っている)傾斜面10bを備えている。揚力低減部10Bは、図5(B)に示すように、傾斜面10bの上側角部8dで流れFがはく離するため空力音が大きくなる。一方、揚力低減部10Bは、揚力+Lの面では、傾斜面10bでの流れFのはく離によって、風向変化やすり板摩耗に対して揚力変化量が小さくなる。揚力低減部10Bは、特に、風向変化に対しては揚力傾斜が負の特性(吹き上げ方向で揚力+Lが減少する特性)である。 3, 4, 5 (B), and 6 (B), the lift reduction unit 10 </ b> B applies a lift + L acting on the hull 7 when the hull 7 receives the flow F in an obliquely upward direction. Is the part that reduces the As shown in FIG. 6B, the lift reduction portions 10B are formed on the front edges 8c on the front side in the traveling direction and on the rear side in the traveling direction of the slide plates 8B and 8C, respectively. As shown in FIG. 3, the lift reducing unit 10 </ b> B reduces the lift + L acting on the outer side of the center of the boat body 7 in the longitudinal direction. As shown in FIGS. 5 (B) and 6 (C), the lift reducing unit 10B has an inclined surface having a large (standing) inclination angle θ B (inclination angle θ B > inclination angle θ A ) with the horizontal line. 10b. As shown in FIG. 5 (B), the lift F reduces the flow F at the upper corner 8d of the inclined surface 10b, so that the aerodynamic noise increases. On the other hand, in the lift reduction unit 10B, in the plane of the lift + L, the amount of change in the lift with respect to the change in the wind direction and the abrasion of the flap is reduced by the separation of the flow F on the inclined surface 10b. The lift reducing unit 10B has a characteristic that the lift gradient is negative (a characteristic that the lift + L decreases in the blowing direction), particularly with respect to a change in the wind direction.

図5(A)(B)及び図6(B)(C)に示す傾斜面10a,10bは、例えば、すり板8A,8Bの前縁部8cに機械加工などによって所定の傾斜角(面取り角度)θA,θBで平坦面に形成された面取りである。傾斜面10a,10bは、図5(A)(B)に示すように、前縁部8cとの間に段部が形成されずに、この前縁部8cと滑らかに接続されるようにこの前縁部8cと連続して形成されている。図5(A)及び図6(B)に示す傾斜角θAは、傾斜面10aを流れFが沿う角度であり、図5(B)及び図6(C)に示す傾斜角θBは傾斜面10bで流れFがはく離する角度である。傾斜角θA,θBは、例えば、傾斜角θA=30°に設定した場合には傾斜角θB=60°に設定されており、傾斜角θA=30°に設定したときには傾斜角θB=45°に設定されており、傾斜角θA=45°に設定したときには傾斜角θB=60°に設定されている。 The inclined surfaces 10a and 10b shown in FIGS. 5A and 5B and FIGS. 6B and 6C are provided at a predetermined inclination angle (chamfer angle) by machining the front edges 8c of the slide plates 8A and 8B. ) This is a chamfer formed on a flat surface at θ A and θ B. As shown in FIGS. 5A and 5B, the inclined surfaces 10a and 10b are formed such that no step is formed between them and the front edge 8c, so that the inclined surfaces 10a and 10b are smoothly connected to the front edge 8c. It is formed continuously with the front edge 8c. Figure 5 (A) and 5 tilt angle theta A shown in FIG. 6 (B) is an angle along the F flows an inclined surface 10a, FIG. 5 (B) and the inclination angle theta B shown in FIG. 6 (C) is inclined This is the angle at which the flow F separates on the surface 10b. Inclination angle theta A, theta B, for example, in the case of setting the tilt angle θ A = 30 ° is set to the inclination angle θ B = 60 °, the inclination angle when setting the inclination angle θ A = 30 ° θ B is set to 45 °, and when the tilt angle θ A is set to 45 °, the tilt angle θ B is set to 60 °.

図3及び図6(A)(D)に示す接続部10Cは、揚力増加部10Aと揚力低減部10Bとを接続する部分である。接続部10Cは、図6(A)(D)に示すように、揚力増加部10A側の傾斜面10aと揚力低減部10B側の傾斜面10bとの間で、傾斜角θAから傾斜角θBへ移行する傾斜角θC1の傾斜面10cを備えている。接続部10Cは、この接続部10Cの傾斜角θC1が傾斜角θAから傾斜角θBへ徐々に移行する移行区間である。接続部10Cは、すり板8Aとすり板8Bとが隣接する部分の進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。接続部10Cは、図6(A)に示すように、すり板8A,8Bの上部8aを上方から見たときに、揚力増加部10A側の上側角部8dと揚力低減部10B側の上側角部8dとを例えば15°程度以下の所定の傾斜角(開き角度)θC2で、この接続部10Cの上側角部8dが直線状に接続する。接続部10Cは、揚力増加部10A及び揚力低減部10Bと同様にすり板8A,8Bの前縁部8cに機械加工などによって形成された面取りである。 The connecting portion 10C shown in FIGS. 3 and 6A and 6D is a portion connecting the lift increasing portion 10A and the lift reducing portion 10B. As shown in FIGS. 6A and 6D, the connecting portion 10C is provided between the inclined surface 10a on the lift increasing portion 10A side and the inclined surface 10b on the lift reducing portion 10B side from the inclination angle θ A to the inclination angle θ. An inclined surface 10c having an inclination angle θ C1 that shifts to B is provided. The connection portion 10C is a transition section in which the inclination angle θ C1 of the connection portion 10C gradually transitions from the inclination angle θ A to the inclination angle θ B. The connection portion 10C is formed at the front edge 8c on the front side in the traveling direction and on the rear side in the traveling direction of the portion where the slider 8A and the slider 8B are adjacent to each other. As shown in FIG. 6A, when the upper portions 8a of the contact plates 8A and 8B are viewed from above, the connecting portion 10C has an upper corner 8d on the lift increasing portion 10A side and an upper corner on the lift reducing portion 10B side. The upper corner 8d of the connecting portion 10C is linearly connected to the portion 8d at a predetermined inclination angle (opening angle) θ C2 of, for example, about 15 ° or less. The connecting portion 10C is a chamfer formed by machining or the like on the front edges 8c of the slide plates 8A and 8B, similarly to the lift increasing portion 10A and the lift reducing portion 10B.

次に、この発明の第1実施形態に係る舟体の揚力安定化構造の作用について説明する。
図2に示す車両2がA方向に走行すると、舟体7の表面で流れFがはく離して空力音が発生する。例えば、図1〜図5に示す舟体7から発生する空力音を低減したいときには、図5(A)に示す傾斜角θAが小さい空力音低減効果のあるすり板8A〜8Cを、図3に示す舟体7に一様に搭載することが考えられる。しかし、傾斜角θAが小さいすり板8A〜8Cを舟体7に一様に搭載すると、傾斜面10aに沿って流れFが増速するため揚力変化量が大きくなり、揚力+Lの安定化が損なわれてしまう。一方、図5(B)に示す傾斜角θBが大きいすり板8A〜8Cを図3に示す舟体7に一様に搭載すると、傾斜面10bから流れFがはく離するため、揚力+Lは安定化するが空力音が大きくなってしまう。
Next, the operation of the lift stabilizing structure for a boat body according to the first embodiment of the present invention will be described.
When the vehicle 2 shown in FIG. 2 travels in the direction A, the flow F is released on the surface of the boat 7 and aerodynamic noise is generated. For example, when it is desired to reduce the aerodynamic noise generated from the collector head 7 shown in Figures 1-5, the contact strip 8A~8C with inclination angle theta A small aerodynamic noise reducing effect shown in FIG. 5 (A), FIG. 3 It is conceivable that it is uniformly mounted on the boat body 7 shown in FIG. However, if uniformly mounting the sliding plate 8A~8C inclination angle theta A is small collector head 7, lift variation becomes large because the flow F is accelerated along the inclined surface 10a, stabilization of lift + L is Will be spoiled. On the other hand, if uniformly mounted on the boat body 7 shown in FIG. 3 the sliding plate 8A~8C large inclination angle theta B shown in FIG. 5 (B), since the flow F is peeled from the inclined surface 10b, lift + L is stable Aerodynamic noise increases.

図5(A)に示すように、揚力増加部10Aの傾斜面10aの傾斜角θAが小さいため、傾斜面10aの上側角部8dに流れFが沿って流れFのはく離が生じず、空力音が小さくなる。一方、図5(B)に示すように、揚力低減部10Bの傾斜角θBが大きいため、傾斜面10bの上側角部8dで流れFがはく離して空力音が大きくなる。このため、傾斜角θAが小さい揚力増加部10Aを備えるすり板8Aを舟体7に一様に搭載した場合に比べて、傾斜角θAが小さい揚力増加部10Aと傾斜角θBが大きい揚力低減部10Bとが混在するすり板8A,8Bを舟体7に搭載した場合には、空力音が大きくなる。しかし、傾斜角θBが大きい揚力低減部10Bの配合割合を最適な割合に設定して、揚力低減部10Bの舟体7への設置範囲を最小限に留めることによって、空力音の増加が最小限に抑えられる。 As shown in FIG. 5 (A), since the inclination angle θ A of the inclined surface 10a of the lift increasing portion 10A is small, the flow F does not occur along the upper corner 8d of the inclined surface 10a, and the flow F does not peel off, and the aerodynamics The sound becomes smaller. On the other hand, as shown in FIG. 5 (B), due to the large inclination angle theta B of lift reduction portion 10B, aerodynamic noise increases flow F is then peeled in the upper corner portions 8d of the inclined surface 10b. Therefore, as compared with the case of uniformly mounting the sliding plate 8A having a tilt angle theta A small lift increasing portion 10A in the collector head 7, a large inclination angle theta B and the inclination angle theta A small lift increasing portion 10A When the sliding plates 8A and 8B in which the lift reducing portion 10B is mixed are mounted on the boat body 7, the aerodynamic noise increases. However, the increase in the aerodynamic noise is minimized by setting the blending ratio of the lift reduction unit 10B having the large inclination angle θ B to the optimum ratio and minimizing the installation range of the lift reduction unit 10B on the hull 7. Can be kept to a minimum.

また、図5(A)に示すように、揚力増加部10Aの傾斜面10aの傾斜角θAが小さいため、風向変化に対しては揚力傾斜が正の特性を示す。一方、図5(B)に示すように、揚力低減部10Bの傾斜面10bの傾斜角θBが大きいため、風向変化に対しては揚力傾斜が負の特性を示す。揚力傾斜が正の特性を示す揚力増加部10Aと、揚力傾斜が負の特性を示す揚力低減部10Bとが混在するため、両者の特性が打ち消しあって揚力変化量が小さくなる。 Further, as shown in FIG. 5 (A), since the inclination angle theta A of the inclined surface 10a of the lift increasing portion 10A is smaller, lift slope positive characteristics with respect to the wind direction changes. On the other hand, as shown in FIG. 5 (B), since the inclination angle theta B of the inclined surface 10b of the lift reduction portion 10B is large, indicating lift slope negative characteristics with respect to the wind direction changes. Since the lift increasing portion 10A having a positive lift inclination characteristic and the lift reducing portion 10B having a negative lift inclination characteristic coexist, both characteristics cancel each other out and the amount of change in the lift is reduced.

さらに、図5(A)に示すように、揚力増加部10Aの傾斜面10aの傾斜角θAが小さいため、傾斜面10aを流れFが沿って増速し、風向変化やすり板摩耗に対して揚力変化量が大きくなる。例えば、傾斜角θAが小さい揚力増加部10Aを備えるすり板8Aを舟体7に一様に搭載した場合には、風向変化やすり板摩耗に対して敏感になり揚力変化量が大きくなる。一方、図5(B)に示すように、揚力低減部10Bの傾斜面10bの傾斜角θBが大きいため、傾斜面10bでの流れFのはく離によって、風向変化やすり板摩耗に対して揚力変化量が小さくなる。傾斜角θBが大きい揚力低減部10Bの寄与により、傾斜角θAが小さい揚力増加部10Aを備えるすり板8Aを舟体7に一様に搭載した場合に比べて、揚力変化量が小さくなる。 Furthermore, as shown in FIG. 5 (A), since the inclination angle theta A of the inclined surface 10a of the lift increasing portion 10A is small, Hayashi increased flow F is along the inclined surface 10a, with respect to the wind direction changes rasp plate wear The change in lift increases. For example, when a uniformly mounting the sliding plate 8A having a tilt angle theta A small lift increasing portion 10A in the collector head 7, lift variation becomes sensitive to wind direction change rasp plate wear becomes large. On the other hand, as shown in FIG. 5 (B), due to the large inclination angle theta B of the inclined surface 10b of the lift reduction portion 10B, by separation of the stream F of the inclined surface 10b, the lift force changes with respect to the wind direction changes rasp plate wear The amount is smaller. The contribution of the inclination angle theta B is greater lift reduction unit 10B, as compared with the case of uniformly mounting the sliding plate 8A having a tilt angle theta A small lift increasing portion 10A in the collector head 7, lift variation is small .

この発明の第1実施形態に係る舟体の揚力安定化構造及びすり板には、以下に記載するような効果がある。
(1) この第1実施形態では、舟体7が斜め上方向の流れFを受けたときに、この舟体7に作用する揚力+Lを増加させる揚力増加部10Aと、この舟体7に作用する揚力+Lを低減させる揚力低減部10Bとをすり板8A〜8Cが備えている。このため、揚力増加部10Aと揚力低減部10Bとを混在させることによって、揚力特性を安定化させることができる。特に、空力音低減を目的として舟体断面形状を平滑化した場合には、揚力の安定化が困難な平滑化舟体に対して揚力特性を安定化させることができる。
The boat body lift stabilizing structure and the sliding plate according to the first embodiment of the present invention have the following effects.
(1) In the first embodiment, when the boat body 7 receives the flow F in an obliquely upward direction, the lift increasing portion 10A that increases the lift + L acting on the boat body 7 and the lift body 10A acting on the boat body 7 The lift plates 8A to 8C are provided with a lift reduction unit 10B that reduces the lift + L to be applied. For this reason, by mixing the lift increasing section 10A and the lift reducing section 10B, the lift characteristics can be stabilized. In particular, when the hull cross-sectional shape is smoothed for the purpose of reducing aerodynamic noise, the lift characteristics can be stabilized for a smoothed hull in which it is difficult to stabilize the lift.

(2) この第1実施形態では、水平線とのなす傾斜角θAが小さい傾斜面10aを揚力増加部10Aが備えており、水平線とのなす傾斜角θBが大きい傾斜面10bを揚力低減部10Bが備えている。このため、傾斜角θAが小さい揚力増加部10Aを備えるすり板8Aを舟体7の長さ方向に一様に配置せずに、傾斜角θBが大きい揚力低減部10Bを備えるすり板8Bをすり板8Aと混在させることによって、揚力変化量を少なくすることができるとともに、空力音の増加を最小限に抑えることができる。また、傾斜角θA,θBを調整することによって、揚力+Lの安定化だけではなく、揚力+Lの値自体を調整することができるとともに揚力特性も微調整することができる。 (2) In the first embodiment, provided with the lift increasing portion 10A of the tilt angle theta A small inclined surfaces 10a of the horizontal lines, lift reducer inclination angle theta B is larger inclined surface 10b formed between the horizontal line 10B is provided. For this reason, the slider 8B provided with the lift reducing portion 10B having the larger inclination angle θ B is not arranged uniformly in the longitudinal direction of the boat body 7 with the lift increasing portion 10A having the smaller inclination angle θ A. Is mixed with the contact plate 8A, the change in lift can be reduced, and the increase in aerodynamic noise can be minimized. By adjusting the inclination angles θ A and θ B , not only the stabilization of the lift + L can be adjusted, but also the value itself of the lift + L can be adjusted and the lift characteristics can be finely adjusted.

(3) この第1実施形態では、揚力増加部10Aの傾斜面10aの傾斜角θAがこの傾斜面10aを流れFが沿う角度であり、揚力低減部10Bの傾斜面10bの傾斜角θBがこの傾斜面10bで流れFがはく離する角度である。このため、空力音低減効果のある揚力増加部10Aによって揚力低減部10Bから発生する空力音の増加を最小限に抑えることができる。また、揚力増加部10Aの揚力傾斜の正の特性と揚力低減部10Bの揚力傾斜の負の特性とが混在するため、両者の特性が打ち消しあって揚力変化量を小さくすることができる。さらに、揚力低減部10Bの寄与によって、すり板摩耗時の揚力変化量を小さくすることができる。 (3) In the first embodiment, the inclination angle θ A of the inclined surface 10a of the lift increasing portion 10A is the angle along which the flow F flows along the inclined surface 10a, and the inclination angle θ B of the inclined surface 10b of the lift reducing portion 10B. Is the angle at which the flow F separates on the inclined surface 10b. Therefore, an increase in aerodynamic noise generated from the lift reducing unit 10B can be minimized by the lift increasing unit 10A having an aerodynamic noise reducing effect. Further, since the positive characteristic of the lift gradient of the lift increasing unit 10A and the negative characteristic of the lift gradient of the lift reducing unit 10B coexist, both characteristics cancel each other, and the amount of change in lift can be reduced. Further, by the contribution of the lift reducing portion 10B, the amount of change in lift at the time of wear of the slide plate can be reduced.

(4) この第1実施形態では、揚力増加部10A及び揚力低減部10Bが舟体7の長さ方向に沿って所定の配合割合で配置されている。このため、揚力増加部10A及び揚力低減部10Bを適切な配分で配置することによって、舟体7に作用する揚力+Lを安定化させることができる。また、揚力増加部10A及び揚力低減部10Bの配合割合を調整することによって、揚力+Lの安定化だけではなく、揚力+Lの値自体を調整することができるとともに揚力特性も微調整することができる。 (4) In the first embodiment, the lift increasing portion 10A and the lift reducing portion 10B are arranged at a predetermined mixing ratio along the length direction of the boat body 7. For this reason, by arranging the lift increasing section 10A and the lift reducing section 10B in an appropriate distribution, the lift + L acting on the boat body 7 can be stabilized. Further, by adjusting the mixing ratio of the lift increasing section 10A and the lift reducing section 10B, not only the stabilization of the lift + L can be adjusted, but also the value itself of the lift + L can be adjusted and the lift characteristics can be finely adjusted. .

(5) この第1実施形態では、揚力増加部10Aが舟体7の長さ方向の中央部に作用する揚力+Lを増加させ、揚力低減部10Bが舟体7の長さ方向の中央部よりも外側に作用する揚力+Lを低減させる。このため、例えば、揚力増加部10Aを備えるすり板8Aを舟体7の長さ方向の中央部付近に配置し、揚力低減部10Bを備えるすり板8Bを舟体7の両端部寄りに配置するだけで、舟体7に作用する揚力+Lを安定化させることができる。また、揚力増加部10A及び揚力低減部10Bの位置を調整することによって、揚力+Lの安定化だけではなく、揚力+Lの値自体を調整することができるとともに揚力特性も微調整することができる。 (5) In the first embodiment, the lift increasing section 10A increases the lift + L acting on the center of the boat body 7 in the length direction, and the lift reduction section 10B increases the lift + L from the center of the boat body 7 in the length direction. Also reduces the lift + L acting on the outside. For this reason, for example, the slide plate 8A provided with the lift increasing portion 10A is disposed near the center in the longitudinal direction of the boat body 7, and the slide plate 8B provided with the lift reduction portion 10B is disposed near both ends of the boat body 7. By itself, the lift + L acting on the boat body 7 can be stabilized. Further, by adjusting the positions of the lift increasing unit 10A and the lift reducing unit 10B, not only the stabilization of the lift + L can be adjusted, but also the value itself of the lift + L can be adjusted and the lift characteristics can be finely adjusted.

(6) この第1実施形態では、揚力安定化構造9をすり板8A,8Bが備えている。このため、すり板8A,8Bに簡単な構造で製作が容易な揚力安定化構造9を設けるだけで、舟体7に作用する揚力+Lを安定化させることができる。 (6) In the first embodiment, the lift plates 8A and 8B have the lift stabilizing structure 9. Therefore, the lift + L acting on the boat body 7 can be stabilized only by providing the lift plates 8A and 8B with the lift stabilizing structure 9 which is simple and easy to manufacture.

(第2実施形態)
以下では、図1〜図6に示す部分と同一の部分については、同一の番号を付して詳細な説明を省略する。
図7に示す揚力増加部10Aは、図3に示す揚力増加部10Aとは逆に、舟体7の長さ方向の中央部よりも外側に作用する揚力+Lを増加させる。図7に示す揚力低減部10Bは、図3に示す揚力低減部10Bとは逆に、舟体7の長さ方向の中央部に作用する揚力+Lを低減させる。この第2実施形態には、第1実施形態と同様の効果がある。
(2nd Embodiment)
In the following, the same parts as those shown in FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description is omitted.
The lift increasing section 10A shown in FIG. 7 increases the lift + L acting on the outer side of the longitudinal center portion of the boat 7 in contrast to the lift increasing section 10A shown in FIG. The lift reduction unit 10B shown in FIG. 7 reduces the lift + L acting on the central portion of the boat body 7 in the longitudinal direction, contrary to the lift reduction unit 10B shown in FIG. The second embodiment has the same effects as the first embodiment.

(第3実施形態)
図8及び図9に示す揚力増加部10Aは、すり板8Aの進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。揚力増加部10Aは、図8に示す舟体7の長さ方向の中央部に作用する揚力+Lを増加させる。図8及び図9に示す揚力低減部10Bは、すり板8B,8Cの進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。揚力低減部10Bは、図8に示す舟体7の長さ方向の中央部よりも外側に作用する揚力+Lを低減させる。図8及び図9に示す接続部10Cは、図3及び図6に示す接続部10Cとは異なり、すり板8Bの長さ方向のほぼ中間部の進行方向前側及び進行方向後側の前縁部8cにそれぞれ形成されている。この第3実施形態には、第1実施形態及び第2実施形態と同様の効果がある。
(Third embodiment)
The lift increasing portions 10A shown in FIGS. 8 and 9 are formed on the front edge 8c on the front side in the traveling direction and on the rear side in the traveling direction of the slider 8A, respectively. The lift increasing portion 10A increases the lift + L acting on the central portion in the longitudinal direction of the boat body 7 shown in FIG. The lift reducing portion 10B shown in FIGS. 8 and 9 is formed at the front edge 8c on the front side in the traveling direction and on the rear side in the traveling direction of the slide plates 8B and 8C, respectively. The lift reducing portion 10B reduces the lift + L acting on the outer side of the center of the boat body 7 in the longitudinal direction shown in FIG. The connecting portion 10C shown in FIGS. 8 and 9 is different from the connecting portion 10C shown in FIGS. 3 and 6 in that the front edge portion in the traveling direction at the substantially middle portion in the longitudinal direction of the slide plate 8B and the front edge portion in the traveling direction are rearward. 8c. The third embodiment has the same effects as the first embodiment and the second embodiment.

(第4実施形態)
図10に示す揚力増加部10Aは、図8に示す揚力増加部10Aとは逆に、舟体7の長さ方向の中央部よりも外側に作用する揚力+Lを増加させる。図10に示す揚力低減部10Bは、図8に示す揚力低減部10Bとは逆に、舟体7の長さ方向の中央部に作用する揚力+Lを低減させる。この第4実施形態には、第1実施形態〜第3実施形態と同様の効果がある。
(Fourth embodiment)
The lift increasing portion 10A shown in FIG. 10 increases the lift + L acting on the outer side of the longitudinal center portion of the boat body 7, in contrast to the lift increasing portion 10A shown in FIG. The lift reduction unit 10B shown in FIG. 10 reduces the lift + L acting on the central portion of the boat body 7 in the longitudinal direction, contrary to the lift reduction unit 10B shown in FIG. The fourth embodiment has the same effects as the first to third embodiments.

(第5実施形態)
図11〜図13に示す舟体7は、図1〜図10に示す舟体7と同様に、傾斜角θA,θBによって流れFが沿う場合とはく離する場合の両方の流れFを実現可能な断面形状である。図11に示す舟体7は、断面形状が多角形である。すり板8Aは、図11(A)に示すように、傾斜面10aの傾斜角θAが小さい揚力増加部10Aと、図11(B)に示すように傾斜面10aの傾斜角θBが大きい揚力低減部10Bとを備えている。図12に示す舟体7は、断面形状が前後非対称である。すり板8Aは、図12(A)に示すように、傾斜面10aの傾斜角θAが小さい揚力増加部10Aと、図12(B)に示すように傾斜面10aの傾斜角θBが大きい揚力低減部10Bとを備えている。図13に示す舟体7は、断面形状が鈍頭である。すり板8Aは、図13(A)に示すように、傾斜面10aの傾斜角θAが小さい揚力増加部10Aと、図13(B)に示すように傾斜面10aの傾斜角θBが大きい揚力低減部10Bとを備えている。この第5実施形態には、第1実施形態〜第4実施形態と同様の効果がある。
(Fifth embodiment)
The boat body 7 shown in FIGS. 11 to 13 realizes both the flow F when the flow F follows and the flow F separates by the inclination angles θ A and θ B , similarly to the boat body 7 shown in FIGS. Possible cross-sectional shapes. The boat body 7 shown in FIG. 11 has a polygonal cross section. Sliding plate 8A, as shown in FIG. 11 (A), a lift increasing portion 10A tilt angle theta A small inclined surfaces 10a, is larger inclination angle theta B of the inclined surface 10a as shown in FIG. 11 (B) And a lift reduction unit 10B. The boat body 7 shown in FIG. Sliding plate 8A, as shown in FIG. 12 (A), a lift increasing portion 10A tilt angle theta A small inclined surfaces 10a, is larger inclination angle theta B of the inclined surface 10a as shown in FIG. 12 (B) And a lift reduction unit 10B. The boat body 7 shown in FIG. 13 has a blunt cross section. Sliding plate 8A, as shown in FIG. 13 (A), a lift increasing portion 10A tilt angle theta A small inclined surfaces 10a, is larger inclination angle theta B of the inclined surface 10a as shown in FIG. 13 (B) And a lift reduction unit 10B. The fifth embodiment has the same effects as the first to fourth embodiments.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、集電装置3としてシングルアーム式パンタグラフを例に挙げて説明したが、菱型パンタグラフなどの他の形式のパンタグラフについても、この発明を適用することができる。また、この実施形態では、すり板8A〜8Cの進行方向の前後に前縁部8cを形成する場合を例に挙げて説明したが、前縁部8cを省略して傾斜面10a〜10cと下部8bとが交差するように形成する場合についても、この発明を適用することができる。さらに、この実施形態では、主すり板に相当するすり板8A,8Bが4枚である場合を例に挙げて説明したが、すり板8A,8Bが3枚以下又は5枚以上である場合についても、この発明を適用することができる。
(Other embodiments)
The present invention is not limited to the embodiments described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, a single-arm pantograph has been described as an example of the current collector 3, but the present invention can be applied to other types of pantographs such as a rhombic pantograph. Further, in this embodiment, the case where the front edge 8c is formed before and after in the traveling direction of the slide plates 8A to 8C has been described as an example, but the front edge 8c is omitted and the inclined surfaces 10a to 10c and the lower portion are formed. The present invention can also be applied to a case where it is formed so as to intersect with 8b. Further, in this embodiment, the case where the number of the slide plates 8A and 8B corresponding to the main slide plate is four has been described as an example, but the case where the number of the slide plates 8A and 8B is three or less or five or more is described. The present invention can also be applied to the present invention.

(2) この実施形態では、車両2の進行方向前側に関節部6dが位置するなびき方向に集電装置3が移動する場合を例に挙げて説明したが、車両2の進行方向後側に関節部6dが位置する反なびき方向に集電装置3が移動する場合についても、この発明を適用することができる。また、この実施形態では、すり板8A〜8Cの進行方向の前後の傾斜面10aの傾斜角θAが同一であり、すり板8A〜8Cの進行方向の前後の傾斜面10bの傾斜角θBが同一である場合を例に挙げて説明したが、このような構造にこの発明を限定するものではない。例えば、すり板8A〜8Cの進行方向の前後の傾斜面10aの傾斜角θAをそれぞれ異なる角度に変更したり、すり板8A〜8Cの進行方向の前後の傾斜面10bの傾斜角θBをそれぞれ異なる角度に変更したりすることによって、なびき方向及び反なびき方向の揚力特性をある程度独立に制御することができると推測される。 (2) In this embodiment, the case has been described as an example where the current collector 3 moves in the fluttering direction in which the joint 6d is located in front of the vehicle 2 in the traveling direction. The present invention can also be applied to a case where the current collector 3 moves in the anti-fluttering direction where the portion 6d is located. Further, in this embodiment, sliding plate inclination angle theta A of the front and rear of the inclined surface 10a in the traveling direction of 8A-8C are the same, the inclination angle of the inclined surface 10b of the front and rear in the traveling direction of the sliding plate 8A-8C theta B Are described as an example, but the present invention is not limited to such a structure. For example, change to different angles inclination angle theta A of the front and rear of the inclined surface 10a in the traveling direction of the sliding plate 8A-8C, the inclination angle theta B of the inclined surface 10b of the front and rear in the traveling direction of the sliding plate 8A-8C By changing the angles to different angles, it is presumed that the lift characteristics in the flutter direction and the anti-flutter direction can be controlled to some extent independently.

1 架線
1a トロリ線(電車線)
2 車両
2a 車体
3 集電装置
6 枠組
6a 舟支え部
6b 上枠
6c 下枠
6d 関節部
7 舟体
8A〜8C すり板
9 揚力安定化構造
10A 揚力増加部
10B 揚力低減部
10C 接続部
10a〜10c 傾斜面
F 流れ
α 迎角
L 揚力
±L’ 揚力の変化量
θA,θB,θC1,θC2 傾斜角
1 overhead wire 1a trolley line (train line)
DESCRIPTION OF SYMBOLS 2 Vehicle 2a Body 3 Current collector 6 Frame 6a Boat support 6b Upper frame 6c Lower frame 6d Joint 7 Boat body 8A-8C Slipping plate 9 Lift stabilization structure 10A Lift increase section 10B Lift decrease section 10C Connection section 10a-10c Slope F Flow α Attack angle L Lift ± L 'Lift change θ A , θ B , θ C1 , θ C2 Tilt angle

Claims (7)

すり板を支持する舟体に作用する揚力を安定化させる舟体の揚力安定化構造であって、
前記すり板は、前記舟体が斜め上方向の流れを受けたときに、この舟体に作用する揚力を増加させる揚力増加部と、この舟体に作用する揚力を低減させる揚力低減部とを備えること、
を特徴とする舟体の揚力安定化構造。
A lift stabilizing structure of the hull for stabilizing the lift acting on the hull supporting the sliding plate,
When the boat body receives a diagonally upward flow, the boat body includes a lift increasing section that increases the lift acting on the boat, and a lift reducing section that reduces the lift acting on the boat. Preparing,
Lift stabilization structure of the hull characterized by the following.
請求項1に記載の舟体の揚力安定化構造において、
前記揚力増加部は、水平線とのなす傾斜角が小さい傾斜面を備え、
前記揚力低減部は、水平線とのなす傾斜角が大きい傾斜面を備えること、
を特徴とする舟体の揚力安定化構造。
The lift stabilizing structure for a boat body according to claim 1,
The lift increasing portion includes an inclined surface having a small inclination angle with the horizontal line,
The lift reduction unit includes an inclined surface having a large inclination angle with a horizontal line,
Lift stabilization structure of the hull characterized by the following.
請求項2に記載の舟体の揚力安定化構造において、
前記揚力増加部は、前記傾斜面の傾斜角がこの傾斜面を流れが沿う角度であり、
前記揚力低減部は、前記傾斜面の傾斜角がこの傾斜面で流れがはく離する角度であること、
を特徴とする舟体の揚力安定化構造。
A lift stabilizing structure for a hull according to claim 2,
In the lift increasing section, the inclination angle of the inclined surface is an angle along which the flow follows the inclined surface,
The lift reduction unit, the inclination angle of the inclined surface is an angle at which the flow is separated on the inclined surface,
Lift stabilization structure of the hull characterized by the following.
請求項1から請求項3までのいずれか1項に記載の舟体の揚力安定化構造において、
前記揚力増加部及び前記揚力低減部は、前記舟体の長さ方向に沿って所定の配合割合で配置されていること、
を特徴とする舟体の揚力安定化構造。
A lift stabilizing structure for a hull according to any one of claims 1 to 3,
The lift increasing section and the lift reducing section are arranged at a predetermined mixing ratio along the length direction of the boat body,
Lift stabilization structure of the hull characterized by the following.
請求項1から請求項4までのいずれか1項に記載の舟体の揚力安定化構造において、
前記揚力増加部は、前記舟体の長さ方向の中央部に作用する揚力を増加させ、
前記揚力低減部は、前記舟体の長さ方向の中央部よりも外側に作用する揚力を減少させること、
を特徴とする舟体の揚力安定化構造。
In the lift stabilizing structure of the hull according to any one of claims 1 to 4,
The lift increasing portion increases a lift acting on a central portion in a longitudinal direction of the boat body,
The lift reduction unit reduces the lift acting on the outer side of the center of the boat body in the longitudinal direction,
Lift stabilization structure of the hull characterized by the following.
請求項1から請求項4までのいずれか1項に記載の舟体の揚力安定化構造において、
前記揚力増加部は、前記舟体の長さ方向の中央部よりも外側に作用する揚力を増加させ、
前記揚力低減部は、前記舟体の長さ方向の中央部に作用する揚力を減少させること、
を特徴とする舟体の揚力安定化構造。
In the lift stabilizing structure of the hull according to any one of claims 1 to 4,
The lift increasing portion increases the lift acting on the outer side of the center of the boat body in the longitudinal direction,
The lift reducing unit reduces lift acting on a central portion in a longitudinal direction of the boat body,
Lift stabilization structure of the hull characterized by the following.
トロリ線と摺動するすり板であって、
請求項1から請求項6までのいずれか1項に記載の舟体の揚力安定化構造を備えること、
を特徴とするすり板。
A sliding plate that slides with a trolley wire,
A lift stabilizing structure for a hull according to any one of claims 1 to 6,
A slide plate characterized by the following.
JP2018149666A 2018-08-08 2018-08-08 Lift stabilization structure and slide plate of hull Pending JP2020025424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149666A JP2020025424A (en) 2018-08-08 2018-08-08 Lift stabilization structure and slide plate of hull

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149666A JP2020025424A (en) 2018-08-08 2018-08-08 Lift stabilization structure and slide plate of hull

Publications (1)

Publication Number Publication Date
JP2020025424A true JP2020025424A (en) 2020-02-13

Family

ID=69619109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149666A Pending JP2020025424A (en) 2018-08-08 2018-08-08 Lift stabilization structure and slide plate of hull

Country Status (1)

Country Link
JP (1) JP2020025424A (en)

Similar Documents

Publication Publication Date Title
US10239568B2 (en) Fuel efficiency of road vehicles
US20110095562A1 (en) Vehicle and vehicle substructure
WO2012043798A1 (en) Impact mitigating structure of contact strip piece
JP2006296070A (en) Collector shoe device
JP2020025424A (en) Lift stabilization structure and slide plate of hull
GB2511871A (en) Improvements in the fuel efficiency of road vehicles
CN105922998B (en) Rail vehicle pod and rail vehicle
KR101794256B1 (en) Air resistance reduction device for vehicle
JP3775930B2 (en) Current collector
JP4526992B2 (en) Pantograph mechanism
CN112009578A (en) Van-type trailer guiding device and low-wind-resistance van-type trailer
JP2022091528A (en) Collector head
CN220884581U (en) Spoiler and rear bumper and vehicle comprising same
US20220134887A1 (en) Pantograph and rail vehicle comprising such a pantograph
JP4475535B2 (en) Noise suppression structure for current collector
JP2023046540A (en) Dynamic lift characteristic stabilization structure of collector shoe and dynamic lift characteristic stabilization design method of collector shoe
JP4725835B2 (en) Lifting characteristics stabilization structure of current collector boat
JP4430880B2 (en) Projection for electrostatic antenna of high-speed traveling vehicle
JPH0787610A (en) Low areodynamic noise current collector
JP2006264375A (en) Trolley line for railway and cross-section shape setting method of trolley line for railway
JP4501011B2 (en) Railway vehicle current collector
JP4364592B2 (en) Rectification device between railway vehicles
JP4688696B2 (en) Current collector boat equipment for railway vehicles
WO2013161017A1 (en) Pantograph device
CN208325034U (en) Automobile fog light peripheral structure