JP2020025411A - Battery control system and battery control device - Google Patents

Battery control system and battery control device Download PDF

Info

Publication number
JP2020025411A
JP2020025411A JP2018149053A JP2018149053A JP2020025411A JP 2020025411 A JP2020025411 A JP 2020025411A JP 2018149053 A JP2018149053 A JP 2018149053A JP 2018149053 A JP2018149053 A JP 2018149053A JP 2020025411 A JP2020025411 A JP 2020025411A
Authority
JP
Japan
Prior art keywords
battery
batteries
control
deterioration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018149053A
Other languages
Japanese (ja)
Inventor
継斌 呉
Jibin Wu
継斌 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018149053A priority Critical patent/JP2020025411A/en
Publication of JP2020025411A publication Critical patent/JP2020025411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

To provide a battery control system and a battery control device capable of suppressing an increase in the degree of deterioration of a particular battery due to discharge control.SOLUTION: The battery control system includes a plurality of batteries which are connected to a capacitance part, and a control unit that, when power is stored in the capacitance part, performs discharge control of sequentially discharging the plurality of batteries. The control unit variably sets a battery to be first charged during the discharge control, according to the respective degrees of deterioration in the plurality of batteries.SELECTED DRAWING: Figure 1

Description

本開示は、電池制御システムおよび電池制御装置に関する。   The present disclosure relates to a battery control system and a battery control device.

従来、複数の電池が並列に接続されたバッテリーが知られている(例えば、特許文献1参照)。各電池の正極は、それぞれ第1配線、および、放電抵抗が配置される第2配線に接続されており、第1配線および第2配線のそれぞれに切替部が設けられている。当該切替部の切替制御が行われることで電池毎に充放電することが可能となっている。   Conventionally, a battery in which a plurality of batteries are connected in parallel is known (for example, see Patent Document 1). The positive electrode of each battery is connected to a first wiring and a second wiring on which a discharge resistor is arranged, and a switching unit is provided for each of the first wiring and the second wiring. By performing the switching control of the switching unit, charging and discharging can be performed for each battery.

また、このようなバッテリーでは、後段回路の容量部を蓄電するために放電制御が行われることが一般的に知られている。具体的には、第1配線を非接続状態とし、かつ、第2配線を接続状態として電池を放電することで容量部が蓄電される。   Further, it is generally known that in such a battery, discharge control is performed in order to store the capacity of a subsequent circuit. Specifically, the first wiring is set to the non-connection state, and the second wiring is set to the connection state to discharge the battery.

特表2014−506105号公報JP 2014-506105 A

しかしながら、放電制御が電池毎に順に行われる場合、最初に放電制御を行う電池の放電量が、それ以降に放電制御を行う電池の放電量と比較して多くなる。そのため、容量部を蓄電する毎に、特定の電池から最初に放電制御が行われると、当該電池の劣化度合いが他の電池と比べて大きくなってしまうという問題が生じる。   However, when the discharge control is sequentially performed for each battery, the discharge amount of the battery that performs the discharge control first becomes larger than the discharge amount of the battery that performs the discharge control thereafter. For this reason, if the discharge control is first performed from a specific battery every time the capacity unit is charged, there is a problem that the degree of deterioration of the battery becomes larger than that of other batteries.

本開示の目的は、放電制御に起因して特定の電池の劣化度合いが大きくなることを抑制することが可能な電池制御システムおよび電池制御装置を提供することである。   An object of the present disclosure is to provide a battery control system and a battery control device capable of suppressing an increase in the degree of deterioration of a specific battery due to discharge control.

本開示に係る電池制御システムは、
容量部に接続される複数の電池と、
前記容量部を蓄電する際、前記複数の電池を順次放電させる放電制御を行う制御部と、
を備え、
前記制御部は、前記複数の電池の劣化度合いに応じて、前記放電制御において最初に放電させる電池を可変に設定する。
Battery control system according to the present disclosure,
A plurality of batteries connected to the capacity unit,
When storing the capacity unit, a control unit that performs discharge control to sequentially discharge the plurality of batteries,
With
The control unit variably sets a battery to be discharged first in the discharge control according to a degree of deterioration of the plurality of batteries.

本開示に係る電池制御装置は、
容量部に接続される複数の電池を有する電池制御システムの電池制御装置であって、
前記容量部を蓄電する際、前記複数の電池を順次放電させる放電制御を行う制御部を備え、
前記制御部は、前記複数の電池の劣化度合いに応じて、前記放電制御において最初に放電させる電池を可変に設定する。
Battery control device according to the present disclosure,
A battery control device of a battery control system having a plurality of batteries connected to a capacity unit,
When storing the capacity unit, a control unit that performs discharge control to sequentially discharge the plurality of batteries,
The control unit variably sets a battery to be discharged first in the discharge control according to a degree of deterioration of the plurality of batteries.

本開示によれば放電制御に起因して特定の電池の劣化度合いが大きくなることを抑制することができる。   According to the present disclosure, it is possible to suppress an increase in the degree of deterioration of a specific battery due to discharge control.

本開示の実施の形態に係る電池制御システムを示す図である。1 is a diagram illustrating a battery control system according to an embodiment of the present disclosure. 電池における使用時間と内部抵抗の値との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a usage time of a battery and a value of an internal resistance. 電池制御システムにおける制御の動作例を示すフローチャートである。5 is a flowchart illustrating an operation example of control in the battery control system.

以下、本実施の形態を図面に基づいて詳細に説明する。図1は、本開示の実施の形態に係る電池制御システム100を示す図である。   Hereinafter, the present embodiment will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a battery control system 100 according to an embodiment of the present disclosure.

図1に示すように、電池制御システム100は、電気自動車やハイブリッド自動車等の車両1(電動車両)に搭載され、例えばインバータ等の後段回路2に電力を出力する。なお、図1では、後段回路2は、モータ3に接続され、モータ3に電力を出力する。   As shown in FIG. 1, the battery control system 100 is mounted on a vehicle 1 (electric vehicle) such as an electric vehicle or a hybrid vehicle, and outputs power to a post-stage circuit 2 such as an inverter. In FIG. 1, the post-stage circuit 2 is connected to the motor 3 and outputs power to the motor 3.

電池制御システム100は、複数の電池110と、複数の放電抵抗120と、複数の第1切替部130と、複数の第2切替部140と、複数の第3切替部150と、制御部160と、記憶部170とを有する。   The battery control system 100 includes a plurality of batteries 110, a plurality of discharge resistors 120, a plurality of first switching units 130, a plurality of second switching units 140, a plurality of third switching units 150, and a control unit 160. , And a storage unit 170.

複数の電池110は、外部の交流電源等から電力を供給されることにより充電される車両用駆動電池であり、例えば、リチウムイオン電池等の二次電池である。各電池110の正極は、第1配線111および第2配線112で後段回路2に接続され、各電池110の負極は、第3配線113で後段回路2に接続される。   The plurality of batteries 110 are vehicle drive batteries that are charged by being supplied with power from an external AC power supply or the like, and are, for example, secondary batteries such as lithium ion batteries. The positive electrode of each battery 110 is connected to the subsequent circuit 2 by a first wiring 111 and a second wiring 112, and the negative electrode of each battery 110 is connected to the latter circuit 2 by a third wiring 113.

放電抵抗120は、後段回路2に過剰な突入電流が流れることを防止するために用いられる抵抗であり、各電池110の第2配線112に1つずつ配置される。   The discharge resistor 120 is a resistor used to prevent an excessive rush current from flowing in the subsequent circuit 2, and is disposed one by one on the second wiring 112 of each battery 110.

第1切替部130は、各電池110の第1配線111に配置されたリレーであり、制御部160の制御の下、第1配線111を接続状態と非接続状態とに切り替える。   The first switching unit 130 is a relay arranged on the first wiring 111 of each battery 110, and switches the first wiring 111 between a connected state and a disconnected state under the control of the control unit 160.

第2切替部140は、各電池110の第2配線112に配置されたリレーであり、制御部160の制御の下、第2配線112を接続状態と非接続状態とに切り替える。   The second switching unit 140 is a relay arranged on the second wiring 112 of each battery 110, and switches the second wiring 112 between a connected state and a disconnected state under the control of the control unit 160.

第3切替部150は、各電池110の第3配線113に配置されたリレーであり、制御部160の制御の下、第3配線113を接続状態と非接続状態とに切り替える。   The third switching unit 150 is a relay arranged on the third wiring 113 of each battery 110, and switches the third wiring 113 between a connected state and a disconnected state under the control of the control unit 160.

制御部160は、例えば、電子制御ユニットであり、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力回路を備えている。制御部160は、予め設定されたプログラムに基づいて、第1切替部130、第2切替部140および第3切替部150を制御することで、複数の電池110の充放電を制御する。制御部160は、本開示の「電池制御装置」に対応する。   The control unit 160 is, for example, an electronic control unit, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output circuit (not shown). The control unit 160 controls charging and discharging of the plurality of batteries 110 by controlling the first switching unit 130, the second switching unit 140, and the third switching unit 150 based on a preset program. Control unit 160 corresponds to “battery control device” of the present disclosure.

また、制御部160は、例えば、車両1のシステム起動時に、各電池110が接続される後段回路2に設けられる容量部4を蓄電する制御を行う。容量部4は、各電池110の正極に接続される配線と、各電池110の負極に接続される配線とを繋ぐように配置される。   In addition, the control unit 160 performs control for storing electricity in the capacitance unit 4 provided in the subsequent circuit 2 to which each battery 110 is connected, for example, when the system of the vehicle 1 is started. The capacity unit 4 is arranged so as to connect a wire connected to the positive electrode of each battery 110 and a wire connected to the negative electrode of each battery 110.

具体的には、制御部160は、容量部4を蓄電する際、複数の電池110を順次放電させる放電制御を行う。放電制御は、各電池110の第3配線113を接続状態とした状態で、第1配線111を非接続状態にし、かつ、第2配線112を接続状態にすることで行われる。   Specifically, the control unit 160 performs discharge control for sequentially discharging the plurality of batteries 110 when storing the capacity unit 4. The discharge control is performed by setting the first wiring 111 to the non-connection state and setting the second wiring 112 to the connection state in a state where the third wiring 113 of each battery 110 is connected.

制御部160が、例えば、上に位置する電池110を最初に放電させる場合について説明する。図1における一番上の電池110Aの電圧値はV1であり、真ん中の電池110Bの電圧値はV2であり、一番下の電池110Cの電圧値はV3である。なお、以下の説明では、放電制御を行う前の各第1配線111、各第2配線112および各第3配線113は、全て非接続状態であることを前提とする。   The case where the control unit 160 first discharges the battery 110 located above, for example, will be described. The voltage value of the uppermost battery 110A in FIG. 1 is V1, the voltage value of the middle battery 110B is V2, and the voltage value of the lowermost battery 110C is V3. In the following description, it is assumed that all of the first wirings 111, each of the second wirings 112, and each of the third wirings 113 before the discharge control is in a disconnected state.

まず、制御部160は、一番上の電池110Aに対応する第3配線113を第3切替部150により接続状態とする。そして、制御部160は、一番上の電池110Aに対応する第2配線112を第2切替部140により接続状態とする。これにより、電池110Aの正極が放電抵抗120を介して容量部4に接続される。   First, the control unit 160 causes the third switching unit 150 to connect the third wiring 113 corresponding to the uppermost battery 110A. Then, the control unit 160 causes the second switching unit 140 to connect the second wiring 112 corresponding to the uppermost battery 110A. As a result, the positive electrode of battery 110A is connected to capacity unit 4 via discharge resistor 120.

ここで、容量部4が蓄電されていない状態で、第1配線111により電池110の正極に接続されると、過剰な突入電流が発生し、後段回路2に影響を与えてしまう。しかし、第2配線112により放電抵抗120を介して電池110の正極を容量部4に接続することで、過剰な突入電流を防止することができる。   Here, if the capacitor unit 4 is connected to the positive electrode of the battery 110 via the first wiring 111 in a state where power is not stored, an excessive rush current is generated, which affects the downstream circuit 2. However, by connecting the positive electrode of the battery 110 to the capacity unit 4 via the discharge resistor 120 by the second wiring 112, an excessive rush current can be prevented.

そして、制御部160は、電池110Aにおける電圧値と、容量部4の部分の電圧値とが等しくなった後、第2配線112を第2切替部140により非接続状態とし、第1配線111を第1切替部130により接続状態とする。これにより、放電対象の電池110Aの放電が終了する。このときの電池110Aの放電量は、容量部4の容量をCとすると、C×V1となる。なお、電池110Aにおける電圧値や容量部4の部分の電圧値は、図示しない電圧計等によって検出可能である。   Then, after the voltage value of the battery 110A and the voltage value of the capacitor unit 4 become equal, the control unit 160 disconnects the second wiring 112 by the second switching unit 140 and sets the first wiring 111 The first switching unit 130 sets the connection state. Thus, the discharging of the battery 110A to be discharged ends. At this time, the discharge amount of the battery 110A is C × V1, where C is the capacity of the capacity unit 4. The voltage value of the battery 110A and the voltage value of the capacity section 4 can be detected by a voltmeter (not shown) or the like.

その後、制御部160は、同様の放電を真ん中の電池110Bと、一番下の電池110Cにおいて順に行う。真ん中の電池110Bの放電量は、C×|V1−V2|となり、一番下の電池110Cの放電量は、C×|V3−(V1+V2)/2|となる。   Thereafter, the control unit 160 sequentially performs the same discharge in the middle battery 110B and the bottom battery 110C. The discharge amount of the middle battery 110B is C × | V1-V2 |, and the discharge amount of the bottom battery 110C is C × | V3- (V1 + V2) / 2 |.

このように、電池110Bの放電量および電池110Cの放電量は、放電対象の電池110の電圧値と、すでに放電が終了した電池110の電圧値(放電制御が終了した電池が複数ある場合、その平均電圧値)との差分値と容量部4の容量の積となる。   As described above, the discharge amount of the battery 110B and the discharge amount of the battery 110C are determined based on the voltage value of the battery 110 to be discharged and the voltage value of the battery 110 that has already been discharged (when there are a plurality of batteries whose discharge control has been completed, It is the product of the difference value from the average voltage value and the capacitance of the capacitance section 4.

これらの放電量は、すでに電池110Aの放電により、容量部4がある程度蓄電されていることから、電池110Aの放電量と比べると、少ない放電量となる。つまり、最初に放電させる電池110の放電量は、それ以降に放電させる電池110の放電量よりも多くなる。   These discharge amounts are smaller than the discharge amount of the battery 110A because the capacity part 4 is already charged to some extent by the discharge of the battery 110A. That is, the amount of discharge of the battery 110 discharged first is greater than the amount of discharge of the battery 110 discharged thereafter.

また、制御部160は、複数の電池110の劣化度合いに応じて、放電制御において最初に放電させる電池110を可変に設定する。具体的には、制御部160は、容量部4を蓄電する際、複数の電池110のうち、最も劣化度合いが小さい電池110を最初に放電させる。   Further, the control unit 160 variably sets the battery 110 to be discharged first in the discharge control according to the degree of deterioration of the plurality of batteries 110. Specifically, when storing the capacity unit 4, the control unit 160 first discharges the battery 110 having the smallest deterioration degree among the plurality of batteries 110.

上述したように、最初に放電させる電池110の放電量が、それ以降に放電させる電池110の放電量よりも多いので、容量部4を蓄電する毎に、同じ電池110を最初に放電させると、当該電池110の劣化度合いが他の電池110と比べて大きくなってしまうという問題が生じる。   As described above, the discharge amount of the battery 110 to be discharged first is larger than the discharge amount of the battery 110 to be discharged thereafter, so that every time the capacitor unit 4 is charged, the same battery 110 is discharged first. There is a problem that the degree of deterioration of the battery 110 becomes larger than that of the other batteries 110.

そこで、本実施の形態では、容量部4を蓄電する際、最も劣化度合いが小さい電池110を最初に放電させる。具体的には、制御部160は、容量部4を蓄電する際に、各電池110の内部抵抗に基づいて、複数の電池110の劣化度合いを判定する。   Therefore, in the present embodiment, when storing the capacity unit 4, the battery 110 with the least degree of deterioration is discharged first. Specifically, the control unit 160 determines the degree of deterioration of the plurality of batteries 110 based on the internal resistance of each battery 110 when storing the capacity unit 4.

複数の電池110の劣化度合いは、例えば、各電池110の内部抵抗の上昇率である。電池110の内部抵抗の値は、図2に示すように、電池110の使用時間が増大するにつれ上昇することが確認されている。なお、図2におけるT0は、電池110の使用開始時間であり、R0は、電池110の内部抵抗の初期値である。   The degree of deterioration of the plurality of batteries 110 is, for example, an increase rate of the internal resistance of each battery 110. It has been confirmed that the value of the internal resistance of the battery 110 increases as the usage time of the battery 110 increases, as shown in FIG. Note that T0 in FIG. 2 is the use start time of the battery 110, and R0 is the initial value of the internal resistance of the battery 110.

制御部160は、容量部4を蓄電する際、各電池110の内部抵抗の初期値と現在値との差分値と、各電池110の使用時間とから、各電池110の内部抵抗の上昇率(時間変化)を算出する。制御部160は、複数の電池110の各内部抵抗の上昇率を比較して、内部抵抗の上昇率が最も小さい電池110を最初に放電させる。   When storing the capacity unit 4, the control unit 160 determines the rate of increase of the internal resistance of each battery 110 (from the difference between the initial value and the current value of the internal resistance of each battery 110 and the usage time of each battery 110). Change over time). The control unit 160 compares the rise rates of the internal resistances of the plurality of batteries 110 and discharges the battery 110 having the smallest rise rate of the internal resistance first.

このようにすることで、劣化度合いが最も小さい電池110を最初に放電させることができるので、特定の電池110を最初に放電することに起因して、当該電池110の劣化度合いが他の電池110と比べて大きくなってしまうことを抑制することができる。   By doing so, the battery 110 having the smallest degree of deterioration can be discharged first, so that the specific battery 110 is discharged first, so that the deterioration degree of the battery 110 becomes lower than that of the other batteries 110. It can be suppressed from becoming larger as compared with.

また、劣化度合いが最も小さい電池110を最初に放電させるので、各電池110の劣化量の差を比較的小さくすることができ、ひいては各電池110の劣化の進行を均等にしやすくすることができる。   Further, since the battery 110 with the smallest degree of deterioration is discharged first, the difference in the amount of deterioration between the batteries 110 can be made relatively small, and the progress of deterioration of each battery 110 can be easily made uniform.

なお、電池110の内部抵抗の値(現在値)は、例えば、電池110における電流値および電圧値に基づいて算出され得る。また、内部抵抗の初期値は、電池制御システム100の初期使用時に算出した内部抵抗の値としても良いし、予め測定された値としても良い。また、制御部160は、記憶部170等に記憶された値を参照して、電池110の内部抵抗の初期値や、電池110の使用時間を取得して、内部抵抗の上昇率を算出しても良い。   The value (current value) of the internal resistance of the battery 110 can be calculated based on, for example, the current value and the voltage value of the battery 110. Further, the initial value of the internal resistance may be a value of the internal resistance calculated at the time of initial use of the battery control system 100, or may be a value measured in advance. In addition, the control unit 160 refers to the value stored in the storage unit 170 or the like, acquires the initial value of the internal resistance of the battery 110 and the usage time of the battery 110, and calculates the rate of increase in the internal resistance. Is also good.

また、制御部160は、容量部4を蓄電する際、劣化度合いが小さい順に、複数の電池110を放電させる。例えば、電池110B、電池110A、電池110Cの順番で、劣化度合いが小さい場合、この順番で、各電池110が放電される。そして、次に容量部4を蓄電する際に、上記と劣化度合いが小さい順番が変動しない場合、上記と同じ順番で、各電池110が放電される。また、電池110C、電池110A、電池110Bの順番で劣化度合いが小さい場合、この順番で、各電池110が放電される。   Further, when storing the capacity unit 4, the control unit 160 discharges the plurality of batteries 110 in order of decreasing degree of deterioration. For example, when the degree of deterioration is small in the order of the battery 110B, the battery 110A, and the battery 110C, the batteries 110 are discharged in this order. When the order in which the degree of deterioration is smaller than the above does not change when the capacitor unit 4 is charged next, the batteries 110 are discharged in the same order as above. When the degree of deterioration is small in the order of the battery 110C, the battery 110A, and the battery 110B, the batteries 110 are discharged in this order.

このようにすることで、劣化度合いが大きい電池110の使用時間を、劣化度合いが小さい電池110の使用時間よりも短くできるので、劣化度合いが大きい電池110における劣化が進行しすぎることを抑制することができる。   By doing so, the use time of the battery 110 with a large degree of deterioration can be shorter than the use time of the battery 110 with a small degree of deterioration, so that the deterioration of the battery 110 with a large degree of deterioration is prevented from progressing too much. Can be.

以上のように構成された電池制御システム100における放電制御の動作例について説明する。図3は、電池制御システム100における制御の動作例を示すフローチャートである。図3における処理は、例えば、車両1が動作を開始した際に実行される。   An operation example of the discharge control in the battery control system 100 configured as described above will be described. FIG. 3 is a flowchart illustrating an operation example of control in the battery control system 100. The process in FIG. 3 is executed, for example, when the vehicle 1 starts operating.

図3に示すように、制御部160は、容量部4を蓄電する際、各電池110の内部抵抗の上昇率を算出する(ステップS101)。次に、制御部160は、各電池110の劣化度合いを判定する(ステップS102)。次に、制御部160は、判定した劣化度合いに基づいて、劣化度合いが小さい順位各電池110の放電制御を開始する(ステップS103)。   As shown in FIG. 3, the control unit 160 calculates the rate of increase in the internal resistance of each battery 110 when storing the capacity unit 4 (step S101). Next, the control unit 160 determines the degree of deterioration of each battery 110 (Step S102). Next, based on the determined degree of deterioration, the control unit 160 starts the discharge control of each battery 110 in the order of decreasing degree of deterioration (step S103).

次に、制御部160は、全ての電池110の放電が終了したか否かについて判定する(ステップS104)。判定の結果、全ての電池110の放電が終了していない場合(ステップS104、NO)、ステップS104の処理を繰り返す。一方、全ての電池110の放電が終了した場合(ステップS104、YES)、本制御は終了する。   Next, the control unit 160 determines whether or not all the batteries 110 have been discharged (step S104). As a result of the determination, if all the batteries 110 have not been completely discharged (step S104, NO), the process of step S104 is repeated. On the other hand, when all the batteries 110 have been discharged (step S104, YES), the present control ends.

以上のように構成された本実施の形態によれば、劣化度合いが最も小さい電池110を最初に放電させるので、特定の電池110を最初に放電することに起因して、当該電池110の劣化度合いが他の電池110と比べて大きくなってしまうことを抑制することができる。   According to the present embodiment configured as described above, since the battery 110 with the smallest degree of deterioration is discharged first, the degree of deterioration of the battery 110 due to the specific battery 110 being discharged first Can be suppressed from becoming larger than other batteries 110.

また、劣化度合いが最も小さい電池110を最初に放電させるので、各電池110の劣化量の差を比較的小さくすることができ、ひいては各電池110の劣化の進行を均等にしやすくすることができる。   Further, since the battery 110 with the smallest degree of deterioration is discharged first, the difference in the amount of deterioration between the batteries 110 can be made relatively small, and the progress of deterioration of each battery 110 can be easily made uniform.

なお、上記実施の形態では、内部抵抗の上昇率に基づいて各電池110の劣化度合いを判定していたが、本開示はこれに限定されない。例えば、電池110に流れた電流と、電池110の使用時間との積に基づいて、制御部160が各電池110の劣化度合いを判定しても良いし、電池110の内部抵抗の値そのものに基づいて、制御部160が各電池110の劣化度合いを判定しても良い。なお、各電池110には個体差があるため、各電池110の劣化度合いの判定精度向上の観点から、内部抵抗の上昇率を各電池110の劣化度合いの判定に用いるのが好ましい。   In the above embodiment, the degree of deterioration of each battery 110 is determined based on the rate of increase of the internal resistance, but the present disclosure is not limited to this. For example, the control unit 160 may determine the degree of deterioration of each battery 110 based on the product of the current flowing through the battery 110 and the usage time of the battery 110, or may determine the degree of deterioration of the battery 110 based on the value of the internal resistance itself. Thus, the control unit 160 may determine the degree of deterioration of each battery 110. Since there is an individual difference between the batteries 110, it is preferable to use the rate of increase of the internal resistance to determine the degree of deterioration of each battery 110 from the viewpoint of improving the accuracy of determining the degree of deterioration of each battery 110.

また、内部抵抗の値と、温度やSOC(State of charge)とに関連付けた電池110の劣化度合いを示すマップに基づいて、制御部160は電池110の劣化度合いを判定しても良い。当該マップは、記憶部170等に予め記憶される。これによれば、内部抵抗の上昇率等の、劣化度合いの判定に用いられるパラメータを算出する手間を省くことができる。   Further, control unit 160 may determine the degree of deterioration of battery 110 based on a map indicating the degree of deterioration of battery 110 associated with the value of the internal resistance and the temperature or SOC (State of charge). The map is stored in the storage unit 170 or the like in advance. According to this, it is possible to save the trouble of calculating the parameters used for determining the degree of deterioration, such as the rate of increase of the internal resistance.

また、制御部160は、内部抵抗の上昇率、電池110に流れた電流と電池110の使用時間との積、およびマップのうち、二つ以上を用いて、電池110の劣化度合いを判定しても良い。   The control unit 160 determines the degree of deterioration of the battery 110 using two or more of the rate of increase of the internal resistance, the product of the current flowing through the battery 110 and the usage time of the battery 110, and the map. Is also good.

また、上記実施の形態では、制御部160が、容量部4を蓄電する際、劣化度合いが小さい順に、複数の電池110を放電させていたが、本開示はこれに限定されない。例えば、2番目以降に放電させる電池110の順番は、任意に決定されても良い。また、複数の電池110の劣化度合いが全て同じである場合についても、放電させる電池110の順番は、任意に決定されても良い。   Further, in the above embodiment, when the control unit 160 stores the power in the capacitance unit 4, the control unit 160 discharges the plurality of batteries 110 in ascending order of deterioration, but the present disclosure is not limited to this. For example, the order of the batteries 110 to be discharged after the second may be arbitrarily determined. Also, in the case where the degrees of deterioration of the plurality of batteries 110 are all the same, the order of the batteries 110 to be discharged may be arbitrarily determined.

また、上記実施の形態では、制御部160が、最も劣化度合いが小さい電池110を最初に放電させていたが、本開示はこれに限定されない。例えば、最も劣化度合いが小さい第1電池と、その次に劣化度合いが小さい第2電池との、劣化度合いの差が微少である場合、第2電池を最初に放電させるようにしても良い。   Further, in the above embodiment, control unit 160 first discharges battery 110 with the lowest degree of deterioration, but the present disclosure is not limited to this. For example, when the difference in the degree of deterioration between the first battery with the smallest degree of deterioration and the second battery with the next smallest degree of deterioration is very small, the second battery may be discharged first.

また、上記実施の形態では、電池制御システム100が3つの電池110で構成されていたが、本開示はこれに限定されず、2つの電池110で構成されていても良いし、4つ以上の電池110で構成されていても良い。   Further, in the above embodiment, the battery control system 100 is configured with three batteries 110, but the present disclosure is not limited to this, and may be configured with two batteries 110, or with four or more batteries. The battery 110 may be configured.

その他、上記実施の形態は、何れも本開示を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely an example of a specific example in carrying out the present disclosure, and the technical scope of the present disclosure should not be interpreted in a limited manner. That is, the present disclosure can be embodied in various forms without departing from the gist or the main features thereof.

本開示の電池制御システムは、放電制御に起因して特定の電池の劣化度合いが大きくなることを抑制することが可能な電池制御システムおよび電池制御装置として有用である。   INDUSTRIAL APPLICABILITY The battery control system according to the present disclosure is useful as a battery control system and a battery control device that can suppress an increase in the degree of deterioration of a specific battery due to discharge control.

1 車両
2 後段回路
3 モータ
4 容量部
100 電池制御システム
110 電池
111 第1配線
112 第2配線
113 第3配線
120 放電抵抗
130 第1切替部
140 第2切替部
150 第3切替部
160 制御部
170 記憶部
REFERENCE SIGNS LIST 1 vehicle 2 rear circuit 3 motor 4 capacity unit 100 battery control system 110 battery 111 first wiring 112 second wiring 113 third wiring 120 discharge resistance 130 first switching unit 140 second switching unit 150 third switching unit 160 control unit 170 Memory

Claims (7)

容量部に接続される複数の電池と、
前記容量部を蓄電する際、前記複数の電池を順次放電させる放電制御を行う制御部と、
を備え、
前記制御部は、前記複数の電池の劣化度合いに応じて、前記放電制御において最初に放電させる電池を可変に設定する、
電池制御システム。
A plurality of batteries connected to the capacity unit,
When storing the capacity unit, a control unit that performs discharge control to sequentially discharge the plurality of batteries,
With
The control unit is configured to variably set a battery to be discharged first in the discharge control according to the degree of deterioration of the plurality of batteries.
Battery control system.
前記制御部は、前記容量部を蓄電する際、前記複数の電池のうち、最も劣化度合いが小さい電池を最初に放電させる、
請求項1に記載の電池制御システム。
The control unit, when storing the capacity unit, among the plurality of batteries, first discharge the battery with the smallest degree of deterioration,
The battery control system according to claim 1.
前記制御部は、前記容量部を蓄電する際、劣化度合いが小さい順に、前記複数の電池を放電させる、
請求項2に記載の電池制御システム。
The control unit, when storing the capacity unit, discharges the plurality of batteries in order of decreasing degree of deterioration,
The battery control system according to claim 2.
前記制御部は、前記電池の内部抵抗に基づいて、前記劣化度合いを判定する、
請求項1〜3の何れか1項に記載の電池制御システム。
The control unit determines the degree of deterioration based on an internal resistance of the battery.
The battery control system according to claim 1.
前記制御部は、放電対象の電池の電圧値と、前記容量部の電圧値との関係に基づいて、前記放電対象の電池の放電制御を終了する、
請求項1〜4の何れか1項に記載の電池制御システム。
The control unit, based on the relationship between the voltage value of the battery to be discharged and the voltage value of the capacitance unit, ends the discharge control of the battery to be discharged.
The battery control system according to claim 1.
前記複数の電池は何れも、電動車両に設けられた車両駆動用電池であり、
前記制御部は、前記電動車両のシステム起動時に前記容量部を蓄電する際、前記放電制御を行う、
請求項1〜5の何れか1項に記載の電池制御システム。
All of the plurality of batteries are vehicle driving batteries provided in the electric vehicle,
The control unit performs the discharge control when storing the capacity unit at the time of starting the system of the electric vehicle,
The battery control system according to claim 1.
容量部に接続される複数の電池を有する電池制御システムの電池制御装置であって、
前記容量部を蓄電する際、前記複数の電池を順次放電させる放電制御を行う制御部を備え、
前記制御部は、前記複数の電池の劣化度合いに応じて、前記放電制御において最初に放電させる電池を可変に設定する、
電池制御装置。
A battery control device of a battery control system having a plurality of batteries connected to a capacity unit,
When storing the capacity unit, a control unit that performs discharge control to sequentially discharge the plurality of batteries,
The control unit is configured to variably set a battery to be discharged first in the discharge control according to the degree of deterioration of the plurality of batteries.
Battery control device.
JP2018149053A 2018-08-08 2018-08-08 Battery control system and battery control device Pending JP2020025411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149053A JP2020025411A (en) 2018-08-08 2018-08-08 Battery control system and battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149053A JP2020025411A (en) 2018-08-08 2018-08-08 Battery control system and battery control device

Publications (1)

Publication Number Publication Date
JP2020025411A true JP2020025411A (en) 2020-02-13

Family

ID=69619102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149053A Pending JP2020025411A (en) 2018-08-08 2018-08-08 Battery control system and battery control device

Country Status (1)

Country Link
JP (1) JP2020025411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900777A (en) * 2020-08-04 2020-11-06 深圳市宝润科技有限公司 Capacitor battery discharge circuit, method and computer readable storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900777A (en) * 2020-08-04 2020-11-06 深圳市宝润科技有限公司 Capacitor battery discharge circuit, method and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP6791386B2 (en) Charging time calculation method and charging control device
JP6295858B2 (en) Battery management device
JP5547348B2 (en) Method for balancing the state of charge of a battery with multiple battery cells, and corresponding battery management system and battery
WO2012132246A1 (en) Battery power supply apparatus and battery power supply system
JP5623629B2 (en) Remaining life judgment method
JP5376045B2 (en) Battery pack
TWI510949B (en) System and method of controlling charging and discharging of batteries
JP6102746B2 (en) Storage battery device and charge control method
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
JP2013169055A (en) Voltage balance control device
JP2017125680A (en) Battery control device
JPWO2012029221A1 (en) Battery power supply and battery power supply system
JP2018120663A (en) Power storage device and power storage control method
JP5298800B2 (en) Power storage device
KR101567557B1 (en) Voltage balancing apparatus and method of secondary battery cells
JP2011155774A (en) Control device of power storage element
JP2014171323A (en) Cell balance device
WO2015133401A1 (en) Control unit, storage battery system, battery cell balancing method, and program
JP6332273B2 (en) Storage system, storage battery control method and program
JP2020025411A (en) Battery control system and battery control device
JP2018125154A (en) Power storage device and power storage control method
JP2021150076A (en) Power storage device
JP2013210348A (en) Method for diagnosing deterioration of battery pack and charge/discharge monitoring control system
JP2023066868A (en) power storage device
JP5601569B2 (en) Voltage regulation system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191028