JP2020021824A - Polishing fine particle and method of producing the same - Google Patents

Polishing fine particle and method of producing the same Download PDF

Info

Publication number
JP2020021824A
JP2020021824A JP2018144568A JP2018144568A JP2020021824A JP 2020021824 A JP2020021824 A JP 2020021824A JP 2018144568 A JP2018144568 A JP 2018144568A JP 2018144568 A JP2018144568 A JP 2018144568A JP 2020021824 A JP2020021824 A JP 2020021824A
Authority
JP
Japan
Prior art keywords
polishing
fine particles
particles
diamond
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018144568A
Other languages
Japanese (ja)
Inventor
恵友 鈴木
Yoshitomo Suzuki
恵友 鈴木
カチョーンルンルアン パナート
Khajornrungruang Panart
カチョーンルンルアン パナート
水田 浩徳
Hironori Mizuta
浩徳 水田
訓明 岡本
Noriaki Okamoto
訓明 岡本
松田 修
Osamu Matsuda
修 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Fujifilm Electronic Materials Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Fujifilm Electronic Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Fujifilm Electronic Materials Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2018144568A priority Critical patent/JP2020021824A/en
Publication of JP2020021824A publication Critical patent/JP2020021824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide a polishing fine particle capable of polishing or grinding a hard-to-work substrate, such as an SiC substrate, a GaN substrate, a sapphire substrate, and a diamond substrate, at high rate (high polishing speed or high grinding speed) and also capable of stably maintaining high polishing quality, and a method of producing the same.SOLUTION: The present invention relates to a polishing fine particle and a method of producing the same. The polishing fine particle includes a diamond particle and a carbon-containing structure derived from a fullerene derivative, the structure being immobilized on a surface of the diamond particle. In a Raman spectrum obtained by light with an excitation wavelength of 532 nm, when ID represents the maximum intensity of a peak present in a region of 1,300-1,350 cm, I represents the maximum intensity of a peak present in a region of 1,400-1,500 cm, and IG represents the maximum intensity of a peak present in a region of 1,500-1,650 cm, the peaks being derived from the diamond particle, I/D is 0 or more and less than 0.05, and IG/ID is 0 or more and less than 0.005.SELECTED DRAWING: None

Description

本発明は、SiC基板、GaN基板、サファイア基板、ダイヤモンド基板等の難加工基板の研磨(例えば、化学的機械的研磨:CMP)または研削に用いられる研磨微粒子およびその製造方法に関する。   The present invention relates to polishing fine particles used for polishing (for example, chemical mechanical polishing: CMP) or grinding of difficult-to-process substrates such as a SiC substrate, a GaN substrate, a sapphire substrate, and a diamond substrate, and a method for producing the same.

パワー半導体等に使用されるSiC基板、GaN基板やダイヤモンド基板、あるいはLED素子等に使用されるサファイア基板の化学的機械的研磨(CMP)において、研磨レート(研磨速度)や研磨品質の向上を目的に種々の研磨微粒子が提案されている。   For the purpose of improving the polishing rate (polishing speed) and polishing quality in the chemical mechanical polishing (CMP) of SiC substrates used for power semiconductors, GaN substrates and diamond substrates, or sapphire substrates used for LED devices and the like. Various abrasive fine particles have been proposed.

このような研磨微粒子としては、例えば、フラーレンまたはフラーレン化合物を溶媒に分散させた研磨剤(例えば、特許文献1)、アルカリ溶液にフラーレン粒子とシリカ粒子を混合した研磨剤(例えば、特許文献2)、表面に親水性のフラーレン誘導体の吸着性を備えた母体粒子と当該母体粒子の表面に吸着したフラーレン誘導体同士を化学結合させて形成したフラーレン誘導体被覆層とを有する複合化砥粒(例えば、特許文献3)等が提案されている。   As such abrasive fine particles, for example, an abrasive in which fullerene or a fullerene compound is dispersed in a solvent (for example, Patent Document 1), an abrasive in which fullerene particles and silica particles are mixed in an alkaline solution (for example, Patent Document 2) Composite abrasive grains having base particles having a hydrophilic fullerene derivative adsorptivity on the surface and fullerene derivative coating layers formed by chemically bonding the fullerene derivatives adsorbed on the surface of the base particles (for example, see Patent Reference 3) has been proposed.

特開2005−223278号公報JP 2005-223278 A 特開2012−248594号公報JP 2012-248594 A 特開2016−098354号公報JP-A-2006-098354

特許文献1の研磨剤は、その使用時において、研磨時に加わる外力によってフラーレン会合体が崩壊して粒子径が減少していくため、徐々に研磨レート(研磨速度)が低下するという問題がある。また、特許文献2の研磨剤は、その使用時において、研磨時に加わる外力によってシリカ粒子の表面を修飾しているフラーレン粒子が脱落し、シリカ粒子が被研磨材に直接接触するようになるため、表面粗さの増加を招くと共に研磨傷が発生する可能性も高くなるという問題がある。特許文献3の複合化砥粒を用いて難加工基板を研磨した場合、研磨レート(研磨速度)が十分ではなく、所望の時間で研磨または研削を完了させることが困難な場合があるという問題がある。   The polishing agent disclosed in Patent Document 1 has a problem in that, when used, the fullerene aggregates collapse due to external force applied during polishing and the particle size decreases, so that the polishing rate (polishing rate) gradually decreases. Further, in the polishing agent of Patent Document 2, when used, fullerene particles that modify the surface of the silica particles are dropped by external force applied during polishing, and the silica particles come into direct contact with the material to be polished, There is a problem that the surface roughness is increased and the possibility of occurrence of polishing scratches is increased. When a difficult-to-machine substrate is polished using the composite abrasive grains of Patent Document 3, the polishing rate (polishing rate) is not sufficient, and there is a problem that it may be difficult to complete polishing or grinding in a desired time in some cases. is there.

本発明はかかる状況に鑑みなされたもので、SiC基板、GaN基板、サファイア基板、ダイヤモンド基板等の難加工基板の研磨または研削を高レート(高い研磨または研削速度)で行うことができ、かつ、安定して高い研磨品質を保つことが可能な研磨微粒子およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can polish or grind a difficult-to-process substrate such as a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate at a high rate (high polishing or grinding speed), and An object of the present invention is to provide polishing fine particles capable of stably maintaining high polishing quality and a method for producing the same.

本発明者らは、鋭意検討を重ねた結果、ダイヤモンド粒子表面にフラーレン誘導体を付着させたダイヤモンド粒子にマイクロ波(MW)を照射することによって該フラーレン誘導体を炭素含有構造体に変質させた研磨微粒子を、難加工基板の研磨または研削に用いると、高レート(高い研磨または研削速度)で難加工基板を加工できることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the inventors of the present invention have found that abrasive particles obtained by irradiating microwave (MW) to a diamond particle having a fullerene derivative attached to the surface of the diamond particle to transform the fullerene derivative into a carbon-containing structure. Was found to be able to process difficult-to-process substrates at a high rate (high polishing or grinding speed) when used for polishing or grinding of difficult-to-process substrates, and completed the present invention.

本発明は、以下の構成よりなる。
(1)ダイヤモンド粒子と、該ダイヤモンド粒子の表面に固定化されたフラーレン誘導体由来の炭素含有構造体とを有し、
励起波長532nmの光で得られるラマンスペクトルにおいて、前記ダイヤモンド粒子に由来する1300〜1350cm−1の領域に存在するピークの最大強度をIDとし、1400〜1500cm−1の領域に存在するピークの最大強度をIとし、1500〜1650cm−1の領域に存在するピークの最大強度をIGとしたときに、I/IDが0以上0.05未満であり、かつ、IG/IDが0以上0.005未満である、研磨微粒子(以下、本発明の研磨微粒子と略記する場合がある)。
The present invention has the following configurations.
(1) having diamond particles and a carbon-containing structure derived from a fullerene derivative immobilized on the surface of the diamond particles;
In the Raman spectrum obtained by the light having an excitation wavelength of 532 nm, the maximum intensity of the peaks present in the region of 1300~1350Cm -1 derived from the diamond particles and ID, the maximum intensity of the peaks present in the region of 1400~1500Cm -1 Is I and the maximum intensity of the peak existing in the region of 1500 to 1650 cm -1 is IG, I / ID is 0 or more and less than 0.05, and IG / ID is 0 or more and less than 0.005. Abrasive fine particles (hereinafter sometimes abbreviated as the abrasive fine particles of the present invention).

(2)X線光電子分光法を用いた前記炭素含有構造体の表面分析で得られるC1sの光電子スペクトルにおいて、結合エネルギーが283.8〜284.2eVの範囲内における最大強度を第1cpsとし、結合エネルギーが284.8〜285.2eVの範囲内における最大強度を第2cpsとしたときに、第1cps/第2cpsが、1.35以上である、前記(1)に記載の研磨微粒子。   (2) In the C1s photoelectron spectrum obtained by surface analysis of the carbon-containing structure using X-ray photoelectron spectroscopy, the maximum intensity in the range of binding energy of 283.8 to 284.2 eV is set to 1 cps, and The abrasive fine particles according to (1), wherein the ratio of 1 cps / second cps is 1.35 or more when the maximum intensity in the energy range of 284.8 to 285.2 eV is set to 2 cps.

(3)炭素−水素伸縮振動に帰属されるフーリエ変換赤外分光スペクトルにおける2800〜3000cm−1の吸収ピーク強度の比率が、酸素−水素伸縮振動に帰属される3000〜3600cm−1の吸収ピーク強度に対して0以上0.5以下である、前記(1)または(2)に記載の研磨微粒子。 (3) The ratio of the absorption peak intensity at 2800 to 3000 cm −1 in the Fourier transform infrared spectroscopy attributed to carbon-hydrogen stretching vibration is the absorption peak intensity at 3000 to 3600 cm −1 attributed to oxygen-hydrogen stretching vibration. The abrasive fine particles according to the above (1) or (2), which has a value of 0 or more and 0.5 or less with respect to.

(4)前記炭素含有構造体が、ダイヤモンド粒子表面の一部または全体に存在している、前記(1)〜(3)のいずれか1つに記載の研磨微粒子。   (4) The abrasive fine particles according to any one of (1) to (3), wherein the carbon-containing structure is present on a part or the whole of the surface of the diamond particles.

(5)前記炭素含有構造体の厚さが、1nm以上100nm以下である、前記(1)〜(4)のいずれか1つに記載の研磨微粒子。   (5) The abrasive fine particles according to any one of (1) to (4), wherein the thickness of the carbon-containing structure is 1 nm or more and 100 nm or less.

(6)前記フラーレン誘導体が、水酸化フラーレンC60である、前記(1)〜(5)のいずれか1つに記載の研磨微粒子。 (6) the fullerene derivative is a fullerene C 60, wherein (1) to (5) abrasive particles according to any one of.

(7)前記研磨微粒子の平均粒子径が、0.006μm以上10.1μm以下である、前記(1)〜(6)のいずれか1つに記載の研磨微粒子。   (7) The abrasive fine particles according to any one of (1) to (6) above, wherein the average particle diameter of the abrasive fine particles is 0.006 μm or more and 10.1 μm or less.

(8)難加工基板の研磨または研削に用いられるものである、前記(1)〜(7)のいずれか1つに記載の研磨微粒子。   (8) The polishing fine particles according to any one of (1) to (7), which are used for polishing or grinding a difficult-to-process substrate.

(9)前記難加工基板が、SiC基板、GaN基板、サファイア基板またはダイヤモンド基板である、前記(8)に記載の研磨微粒子。   (9) The polishing fine particles according to (8), wherein the difficult-to-process substrate is a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate.

(10)ダイヤモンド粒子と、該ダイヤモンド粒子の表面に固定化されたフラーレン誘導体由来の炭素含有構造体とを有する研磨微粒子の製造方法であって、
ダイヤモンド粒子を分散させた溶液中にフラーレン誘導体を加えて混合し、該ダイヤモンド粒子の表面に該フラーレン誘導体を付着させる工程と、
前記フラーレン誘導体が付着している前記ダイヤモンド粒子にマイクロ波を照射して、該フラーレン誘導体を炭素含有構造体に変質させて、ダイヤモンド粒子に炭素含有構造体を固定化させる工程を有することを特徴とする、
研磨微粒子の製造方法。
(10) A method for producing abrasive fine particles having diamond particles and a carbon-containing structure derived from a fullerene derivative immobilized on the surface of the diamond particles,
Adding and mixing a fullerene derivative in a solution in which the diamond particles are dispersed, and attaching the fullerene derivative to the surface of the diamond particles;
Irradiating the diamond particles to which the fullerene derivative is attached with microwaves to transform the fullerene derivative into a carbon-containing structure, and fixing the carbon-containing structure to the diamond particles. Do
A method for producing abrasive fine particles.

(11)前記マイクロ波の主周波数が、0.5GHz以上15GHz以下である、前記(10)に記載の研磨微粒子の製造方法。   (11) The method for producing abrasive fine particles according to (10), wherein a main frequency of the microwave is 0.5 GHz or more and 15 GHz or less.

(12)前記フラーレン誘導体が、水酸化フラーレンC60である、前記(10)または(11)に記載の研磨微粒子の製造方法。 (12) the fullerene derivative is a fullerene C 60, A method of making an abrasive particle according to (10) or (11).

(13)前記溶液が、水溶液である、前記(10)〜(12)のいずれか1つに記載の研磨微粒子の製造方法。   (13) The method for producing abrasive fine particles according to any one of (10) to (12), wherein the solution is an aqueous solution.

本発明によれば、SiC基板、GaN基板、サファイア基板、ダイヤモンド基板等の難加工基板の研磨または研削を高レート(高い研磨または研削速度)で行うことができるため、難加工基板の加工時間を短縮したり、難加工基板の製造コストを低減させることができる。また、基板の研磨または研削を、本発明の研磨微粒子を含有する研磨液(研磨スラリー)で行うことにより、当該基板表面の凸部を平坦化でき、表面粗さ(Ra)が改善され高い平坦度を有する、研磨品質の高い基板を得ることができる。   According to the present invention, polishing or grinding of a difficult-to-process substrate such as a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate can be performed at a high rate (high polishing or grinding speed). It is possible to shorten the manufacturing cost and to reduce the manufacturing cost of a difficult-to-process substrate. Further, by performing polishing or grinding of the substrate with a polishing liquid (polishing slurry) containing the polishing fine particles of the present invention, the projections on the surface of the substrate can be flattened, and the surface roughness (Ra) is improved and the flatness is improved. A substrate having a high polishing quality can be obtained.

実施例1の研磨微粒子(本発明の研磨微粒子)のフーリエ変換赤外分光(FTIR)測定によるスペクトル図である。FIG. 3 is a spectrum diagram of Fourier transform infrared spectroscopy (FTIR) measurement of the polishing fine particles of Example 1 (the polishing fine particles of the present invention). 比較例2の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた粒子に紫外線(UV)を照射した研磨微粒子)のフーリエ変換赤外分光(FTIR)測定によるスペクトル図である。FIG. 7 is a spectrum diagram of Fourier transform infrared spectroscopy (FTIR) measurement of the polishing fine particles of Comparative Example 2 (polishing fine particles obtained by irradiating ultraviolet (UV) to particles obtained by attaching fullerene hydroxide to the surface of diamond particles). 比較例2の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた粒子に紫外線(UV)を照射した研磨微粒子)表面の100nmスケールの透過型電子顕微鏡(TEM)の画像である。10 is a transmission electron microscope (TEM) image on a 100 nm scale of the surface of the polishing fine particles of Comparative Example 2 (the polishing fine particles obtained by irradiating ultraviolet (UV) to particles obtained by attaching fullerene hydroxide to the surface of diamond particles). 比較例2の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた粒子に紫外線(UV)を照射した研磨微粒子)表面の10nmスケールの透過型電子顕微鏡(TEM)の画像である。9 is a 10-nm scale transmission electron microscope (TEM) image of the surface of the polishing fine particles of Comparative Example 2 (the polishing fine particles obtained by irradiating ultraviolet (UV) to particles obtained by attaching fullerene hydroxide to the surface of diamond particles). 実施例1の研磨微粒子(本発明の研磨微粒子)のラマン分光測定によるスペクトル図である。FIG. 2 is a spectrum diagram of the polishing fine particles of Example 1 (the polishing fine particles of the present invention) measured by Raman spectroscopy. 比較例1の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた(マイクロ波(MW)も紫外線(UV)も照射していない)研磨微粒子)のラマン分光測定によるスペクトル図である。FIG. 9 is a spectrum diagram of the polishing fine particles of Comparative Example 1 (polishing fine particles in which fullerene hydroxide is attached to the surface of diamond particles (not irradiated with microwave (MW) or ultraviolet light (UV))) by Raman spectroscopy. 比較例2の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた粒子に紫外線(UV)を照射した研磨微粒子)のラマン分光測定によるスペクトル図である。FIG. 9 is a spectrum diagram by Raman spectrometry of the polishing fine particles of Comparative Example 2 (polishing fine particles obtained by irradiating ultraviolet (UV) to particles obtained by attaching fullerene hydroxide to the surface of diamond particles). 実施例1の研磨微粒子(本発明の研磨微粒子)のX線光電子分光(XPS)測定によるスペクトル図である。FIG. 2 is a spectrum diagram of the abrasive fine particles of Example 1 (the abrasive fine particles of the present invention) measured by X-ray photoelectron spectroscopy (XPS). 比較例1の研磨微粒子(ダイヤモンド粒子の表面に水酸化フラーレンを付着させた(マイクロ波(MW)も紫外線(UV)も照射していない)研磨微粒子)のX線光電子分光(XPS)測定によるスペクトル図である。Spectrum of X-ray photoelectron spectroscopy (XPS) measurement of the polishing fine particles of Comparative Example 1 (the polishing fine particles having fullerene hydroxide adhered to the surface of diamond particles (not irradiated with microwave (MW) or ultraviolet (UV))) FIG. ダイヤモンド粒子のみからなる研磨微粒子を含有する研磨液(研磨スラリー)、実施例1で得られた研磨液(研磨スラリー)、比較例1で得られた研磨液(研磨スラリー)、または比較例2で得られた研磨液(研磨スラリー)を用いた場合におけるMRR(材料除去率)の結果を示す図である。Polishing liquid (polishing slurry) containing polishing fine particles consisting only of diamond particles, polishing liquid (polishing slurry) obtained in Example 1, polishing liquid (polishing slurry) obtained in Comparative Example 1, or Comparative Example 2 It is a figure which shows the result of MRR (material removal rate) in the case of using the obtained polishing liquid (polishing slurry). ダイヤモンド粒子のみからなる研磨微粒子を含有する研磨液(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を示す図である。FIG. 5 is a diagram showing a surface image (magnification of an objective lens: 20 times) of a sapphire wafer after polishing (second time) when a polishing liquid (polishing slurry) containing polishing fine particles consisting only of diamond particles is used. 実施例1で得られた研磨液(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を示す図である。FIG. 3 is a diagram showing a surface image (magnification of an objective lens: 20 times) of a sapphire wafer after polishing (second time) when the polishing liquid (polishing slurry) obtained in Example 1 is used. 比較例1で得られた研磨液(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を示す図である。FIG. 9 is a view showing a surface image (magnification of an objective lens: 20 times) of a sapphire wafer after polishing (second time) when the polishing liquid (polishing slurry) obtained in Comparative Example 1 is used. 比較例2で得られた研磨液(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハ表面の画像(対物レンズの倍率:20倍)を示す図である。FIG. 9 is a view showing an image (magnification of an objective lens: 20 times) of a sapphire wafer surface after polishing (second time) when the polishing liquid (polishing slurry) obtained in Comparative Example 2 is used.

−本発明の研磨微粒子−
本発明の研磨微粒子は、ダイヤモンド粒子と、該ダイヤモンド粒子の表面に固定化されたフラーレン誘導体由来の炭素含有構造体とを有することを特徴とするものである。
-Abrasive fine particles of the present invention-
The abrasive fine particles of the present invention are characterized by having diamond particles and a carbon-containing structure derived from a fullerene derivative immobilized on the surface of the diamond particles.

本発明にかかるダイヤモンド粒子は、粒子状であれば、一次粒子または一次粒子同士が凝集した凝集体(二次粒子)のいずれであってもよい。これらの粒子のなかでも、一次粒子が好ましい。   The diamond particles according to the present invention may be either primary particles or aggregates (secondary particles) obtained by aggregating the primary particles as long as the particles are particulate. Among these particles, primary particles are preferred.

本発明にかかるダイヤモンド粒子の平均粒子径としては、例えば、通常0.005μm以上10μm以下であり、0.05μm以上6μm以下が好ましく、0.05μm以上2μm以下がより好ましく、0.1μm以上1.2μm以下が特に好ましい。ここで、「平均粒子径」とは、レーザー回折法等により測定された個数基準の粒径頻度分布曲線の最頻値(モード径)をいう。   The average particle diameter of the diamond particles according to the present invention is, for example, usually from 0.005 μm to 10 μm, preferably from 0.05 μm to 6 μm, more preferably from 0.05 μm to 2 μm, and more preferably from 0.1 μm to 1. Particularly preferred is 2 μm or less. Here, the “average particle size” refers to a mode (mode size) of a number-based particle size frequency distribution curve measured by a laser diffraction method or the like.

本発明にかかるフラーレン誘導体としては、例えば、フラーレンC60、フラーレンC70、水酸化フラーレンC60、水酸化フラーレンC70、水素化フラーレンC60、水素化フラーレンC70、フラーレンスート、オニオンライクカーボン等が挙げられる。これらのフラーレン誘導体のなかでも、水酸化フラーレンC60および水酸化フラーレンC70が好ましく、入手が容易、かつ、水に対する分散性が高いという点で、水酸化フラーレンC60がより好ましい。 Examples of the fullerene derivative according to the present invention include fullerene C 60 , fullerene C 70 , fullerene hydroxide C 60 , fullerene hydroxide C 70 , hydrogenated fullerene C 60 , hydrogenated fullerene C 70 , fullerene soot, onion-like carbon, and the like. Is mentioned. Among these fullerene derivatives, preferably hydroxylated fullerene C 60 and fullerene C 70, readily available, and, in terms of high dispersibility in water, fullerene C 60 is more preferable.

本発明にかかる炭素含有構造体とは、上述のダイヤモンド粒子の表面に固定化されたものであり、上述のフラーレン誘導体に由来するものである。すなわち、炭素含有構造体は、該ダイヤモンド粒子の表面に該フラーレン誘導体を付着させたダイヤモンド粒子に対し、後述する条件でマイクロ波(MW)を照射させ、フラーレン誘導体同士を化学結合させる等により変質させることによって形成されるものである。   The carbon-containing structure according to the present invention is one that is immobilized on the surface of the above-described diamond particles and is derived from the above-described fullerene derivative. That is, the carbon-containing structure is deteriorated by, for example, irradiating microwaves (MW) to the diamond particles having the surface of the diamond particles to which the fullerene derivative is adhered under the conditions described below to chemically bond the fullerene derivatives to each other. It is formed by this.

本発明にかかる炭素含有構造体は、ダイヤモンド粒子表面の一部に存在していてもよいし、ダイヤモンド粒子表面の全体に存在していてもよく、なかでも、該炭素含有構造体は、ダイヤモンド粒子表面の一部または全部を被覆していることが好ましい。   The carbon-containing structure according to the present invention may be present on a part of the surface of the diamond particle, or may be present on the entire surface of the diamond particle. It is preferable to cover a part or all of the surface.

本発明にかかる炭素含有構造体の厚さとしては、通常1nm以上100nm以下であり、1nm以上20nm以下が好ましく、1nm以上10nm以下がより好ましい。ここで、炭素含有構造体の厚さは、例えば、透過型電子顕微鏡(TEM)等で測定すればよい。   The thickness of the carbon-containing structure according to the present invention is generally from 1 nm to 100 nm, preferably from 1 nm to 20 nm, more preferably from 1 nm to 10 nm. Here, the thickness of the carbon-containing structure may be measured by, for example, a transmission electron microscope (TEM).

このような形状の本発明の研磨微粒子は、以下の特性を有するものである。   The abrasive fine particles of the present invention having such a shape have the following characteristics.

すなわち、本発明の研磨微粒子は、励起波長532nmの光で得られるラマンスペクトルにおいて、ダイヤモンド粒子に由来する1300〜1350cm−1の領域に存在するピークの最大強度をIDとし、1400〜1500cm−1の領域に存在するピークの最大強度をIとし、1500〜1650cm−1の領域に存在するピークの最大強度をIGとしたときに、I/IDが0以上0.05未満であり、かつ、IG/IDが0以上0.005未満である、ことを特徴とするものである。励起波長532nmの光を用いたラマン分光分析法により得られるラマンスペクトルにおいて、1300〜1350cm−1の領域に存在するラマンシフトは、ダイヤモンド由来のピークでありDピークと呼ばれる。また、ラマン分光分析法により得られるラマンスペクトルにおいて、1500〜1650cm−1の領域に存在するラマンシフトは、グラフェンやグラフェンライクカーボン由来のピークでありGピークと呼ばれる。すなわち、本発明の研磨微粒子は、1300〜1350cm−1の領域に存在するダイヤモンド粒子由来のDピークに対して、1400〜1500cm−1の領域に存在するピークと、1500〜1650cm−1の領域に存在するグラフェンやグラフェンライクカーボン由来のGピークがほとんど確認できないか、あるいは検出限界以下である、という特徴を有するものである。 That is, the abrasive fine particles of the present invention have a maximum intensity of a peak existing in a region of 1300 to 1350 cm −1 derived from diamond particles in a Raman spectrum obtained with light having an excitation wavelength of 532 nm as ID, and a peak intensity of 1400 to 1500 cm −1 . When the maximum intensity of the peak existing in the region is I and the maximum intensity of the peak existing in the region of 1500 to 1650 cm -1 is IG, I / ID is 0 or more and less than 0.05, and IG / ID is 0 or more and less than 0.005. In a Raman spectrum obtained by Raman spectroscopy using light having an excitation wavelength of 532 nm, a Raman shift existing in a region of 1300 to 1350 cm −1 is a peak derived from diamond and is called a D peak. In a Raman spectrum obtained by Raman spectroscopy, a Raman shift existing in a region of 1500 to 1650 cm −1 is a peak derived from graphene or graphene-like carbon and is called a G peak. That is, the polishing particles of the present invention, with respect to D peak derived from the diamond particles present in the region of 1300~1350Cm -1, and peaks present in the region of 1400~1500Cm -1, in the region of 1500~1650Cm -1 It is characterized in that almost no G peaks derived from graphene or graphene-like carbon exist or are below the detection limit.

励起波長532nmの光としては、例えば、半導体レーザー光等が挙げられる。   Examples of the light having an excitation wavelength of 532 nm include a semiconductor laser light.

ラマンスペクトルは、例えば、本発明の研磨微粒子をスライドガラス上に載せ、ラマン分光測定装置[例えば、(株)ラムダビジョン製「MicroRAM-300」等]を用いて測定すればよい。なお、本発明の研磨微粒子が溶液中に存在する場合には、例えば、任意の容器に該溶液(研磨液・研磨スラリー)を滴下し、真空乾燥機等を用いて水分を除去した後、該容器から研磨微粒子を取り出したものを測定に用いればよい。   The Raman spectrum may be measured, for example, by placing the abrasive fine particles of the present invention on a slide glass and using a Raman spectrometer (for example, “MicroRAM-300” manufactured by Lambda Vision Co., Ltd.). When the polishing particles of the present invention are present in a solution, for example, the solution (polishing liquid / polishing slurry) is dropped into an arbitrary container, and after removing water with a vacuum drier or the like, the water is removed. What has removed the abrasive fine particles from the container may be used for the measurement.

本発明において、1300〜1350cm−1の領域に存在するダイヤモンド粒子由来のDピークの最大強度;ID、1400〜1500cm−1の領域に存在するピークの最大強度;Iおよび1500〜1650cm−1の領域に存在するグラフェンやグラフェンライクカーボン由来のGピークの最大強度;IGは、以下の方法で求めた値を意味する。すなわち、ラマン分光測定装置(レーザーラマン分光光度計、励起波長:532nm)を用いて得られたラマンスペクトルにおける成分A〜Cのピークについて、各成分のベースラインから最大強度を求める。
成分A:波数;1300〜1350cm−1の領域:Dピーク、半値幅;4〜16cm−1
成分B:波数;1400〜1500cm−1の領域、半値幅;40〜120cm−1
成分C:波数;1500〜1650cm−1の領域:Gピーク、半値幅;40〜120cm−1
なお、各成分のベースラインは、以下の2点の強度値を結んだ直線とする。
成分Aのベースライン:1295cm−1の強度値と1360cm−1の強度値の2点を結んだ直線
成分Bのベースライン:1354cm−1の強度値と1600cm−1の強度値の2点を結んだ直線
成分Cのベースライン:1470cm−1の強度値と1680cm−1の強度値の2点を結んだ直線
各成分の最大強度は、各成分の波数領域における強度値(Y値)と、当該強度値からラマンシフト軸におろした垂線とベースラインとの交点における強度値(Z値)との差(Y値−Z値)を求め、数値が最も大きい値を最大強度とする。成分Aの最大強度を例にとると、成分AのY値と、成分AのZ値との差を求め、得られた強度値のうち、数値が最も大きい値を成分Aの最大強度とする。
成分Aの最大強度:波数;1300〜1350cm−1の領域において得られた強度値のうち、数値が最も大きい値
成分Bの最大強度:波数;1400〜1500cm−1の領域において得られた強度値のうち、数値が最も大きい値
成分Cの最大強度:波数;1500〜1650cm−1の領域において得られた強度値のうち、数値が最も大きい値
In the present invention, 1300~1350Cm maximum intensity of the D peak derived from the diamond particles present in the region of -1; regions I and 1500~1650cm -1; ID, the maximum intensity of the peaks present in the region of 1400~1500Cm -1 Is the maximum intensity of the G peak derived from graphene or graphene-like carbon; IG means a value obtained by the following method. That is, for the peaks of the components A to C in the Raman spectrum obtained using a Raman spectrometer (laser Raman spectrophotometer, excitation wavelength: 532 nm), the maximum intensity is obtained from the baseline of each component.
Component A: wave number; 1300 to 1350 cm -1 region: D peak, half width; 4 to 16 cm -1
Component B: wavenumber; region of 1400~1500cm -1, the half width; 40~120Cm -1
Component C: wave number; region of 1500 to 1650 cm -1 : G peak, half width; 40 to 120 cm -1
The base line of each component is a straight line connecting the following two intensity values.
Baseline components A: 1295 -1 of intensity values and 1360 cm -1 of the base of the linear component B that connects the two points of the intensity value line: connecting two points of the intensity values of the intensity values and 1600 cm -1 of 1354Cm -1 it linear component C baseline: the maximum intensity of the linear components that connects two points of the intensity values of 1470 cm -1 of the intensity values and 1680 cm -1, the intensity values in wavenumber region of each component and (Y value), the The difference (Y value−Z value) between the intensity value (Z value) at the intersection of the perpendicular line drawn on the Raman shift axis and the baseline is determined from the intensity value, and the value with the largest value is defined as the maximum intensity. Taking the maximum intensity of the component A as an example, the difference between the Y value of the component A and the Z value of the component A is determined, and the value having the largest numerical value among the obtained intensity values is defined as the maximum intensity of the component A. .
Maximum intensity of the component A: wavenumber; of the intensity values obtained in the region of 1300~1350Cm -1, value is the maximum intensity of the largest value component B: wavenumber; 1400~1500Cm resulting intensity values in the region of -1 Among the intensity values obtained in the range of 1500 to 1650 cm -1 , the largest value of the value component C having the largest numerical value among the values:

各成分の最大強度を求め、成分Aの最大強度を、1300〜1350cm−1の領域に存在するダイヤモンド粒子由来のDピークの最大強度;IDとし、成分Bの最大強度を、1400〜1500cm−1の領域に存在するピークの最大強度;Iとし、成分Cの最大強度を、1500〜1650cm−1の領域に存在するグラフェンやグラフェンライクカーボン由来のGピークの最大強度;IGとする。 The maximum intensity of each component is determined, and the maximum intensity of the component A is defined as the maximum intensity of a D peak derived from diamond particles existing in a region of 1300 to 1350 cm -1 ; ID, and the maximum intensity of the component B is set at 1400 to 1500 cm -1. The maximum intensity of the peak existing in the region of I; I and the maximum intensity of the component C as the maximum intensity of the G peak derived from graphene or graphene-like carbon existing in the region of 1500 to 1650 cm -1 ; IG.

このようにして得られた各成分のピークの最大強度から、成分A(Dピーク)の最大強度;IDに対する成分Bの最大強度;Iの比:I/IDと、成分A(Dピーク)の最大強度;IDに対する成分C(Gピーク)の最大強度;IGの比:IG/IDを求める。   From the maximum intensity of the peak of each component obtained in this manner, the maximum intensity of component A (D peak); the maximum intensity of component B with respect to ID; the ratio of I: I / ID, and the ratio of component A (D peak) Maximum intensity; maximum intensity of component C (G peak) to ID; ratio of IG: IG / ID is determined.

上述の手法でI/IDとIG/IDの両方を求めると、本発明の研磨微粒子は、I/IDが0以上0.05未満であり、かつ、IG/IDが0以上0.005未満である、という特徴を有する。   When both I / ID and IG / ID are obtained by the above method, the abrasive fine particles of the present invention have an I / ID of 0 or more and less than 0.05, and an IG / ID of 0 or more and less than 0.005. There is a feature that there is.

本発明の研磨微粒子において、I/IDは、0以上0.03未満であることが好ましく、0以上0.02未満であることがより好ましく、0以上0.01未満であることがさらに好ましく、0以上0.005未満であることが特に好ましい。   In the polishing fine particles of the present invention, the I / ID is preferably 0 or more and less than 0.03, more preferably 0 or more and less than 0.02, further preferably 0 or more and less than 0.01, It is particularly preferable that it is 0 or more and less than 0.005.

本発明の研磨微粒子において、IG/IDは、0以上0.004未満であることが好ましく、0以上0.003未満であることがより好ましく、0以上0.0024以下であることがさらに好ましい。   In the abrasive fine particles of the present invention, IG / ID is preferably 0 or more and less than 0.004, more preferably 0 or more and less than 0.003, and further preferably 0 or more and 0.0024 or less.

本発明の研磨微粒子において、I/IDとIG/IDの組み合わせとしては、I/IDが、0以上0.03未満であって、IG/IDが、0以上0.004未満であることが好ましい。   In the abrasive fine particles of the present invention, as a combination of I / ID and IG / ID, it is preferable that I / ID is 0 or more and less than 0.03, and IG / ID is 0 or more and less than 0.004. .

また、本発明の研磨微粒子は、以下の特性を有するものが好ましい。   The abrasive fine particles of the present invention preferably have the following characteristics.

本発明の研磨微粒子は、X線光電子分光法(XPS)を用いた炭素含有構造体の表面分析で得られるC1sの光電子スペクトルにおいて、結合エネルギーが283.8〜284.2eVの範囲内における最大強度を第1cpsとし、結合エネルギーが284.8〜285.2eVの範囲内における最大強度を第2cpsとしたときに、第1cps/第2cpsが1.35以上であることが好ましい。本発明の研磨微粒子は、X線光電子分光法(XPS)を用いた炭素含有構造体の表面分析により得られるC1sの光電子スペクトルにおいて、結合エネルギーが283.8〜284.2eVの範囲内にピークが強く表れ、当該ピークの最大強度は、フラーレン誘導体に由来するC−OH結合の結合エネルギーに基づく284.8〜285.2eVの範囲内のピークの最大強度に対して、1.35倍以上の強度を有することが好ましい。なお、第1cps/第2cpsの上限値は特に制限されないが、例えば、通常5.0以下、好ましくは3.0以下である。   The abrasive fine particles of the present invention have a maximum intensity in a C1s photoelectron spectrum obtained by surface analysis of a carbon-containing structure using X-ray photoelectron spectroscopy (XPS) in a binding energy range of 283.8 to 284.2 eV. Is the first cps, and when the maximum intensity within the binding energy range of 284.8 to 285.2 eV is the second cps, the first cps / second cps is preferably 1.35 or more. The polishing fine particles of the present invention have a binding energy having a peak in the range of 283.8 to 284.2 eV in the C1s photoelectron spectrum obtained by surface analysis of the carbon-containing structure using X-ray photoelectron spectroscopy (XPS). The maximum intensity of the peak is 1.35 times or more the maximum intensity of the peak in the range of 284.8 to 285.2 eV based on the binding energy of the C-OH bond derived from the fullerene derivative. It is preferable to have Although the upper limit of the first cps / second cps is not particularly limited, it is, for example, usually 5.0 or less, preferably 3.0 or less.

本発明の研磨微粒子において、第1cps/第2cpsは、1.40以上であることが好ましく、1.45以上であることがより好ましく、1.50以上であることがさらに好ましく、1.70以上であることが特に好ましい。   In the abrasive fine particles of the present invention, the first cps / second cps is preferably 1.40 or more, more preferably 1.45 or more, further preferably 1.50 or more, and still more preferably 1.70 or more. Is particularly preferred.

X線光電子分光の測定は、例えば、以下のように行えばよい。
対象となる本発明の研磨微粒子をイオン交換水等の水中に分散させた後、得られた分散液をレシプロシェーカー「SR-2RSS」[タイテック(株)製]等のシェーカーで分散させて分散液を得る。次いで、当該分散液をテーブルトップ遠心機「4000」[久保田商事(株)製]等の遠心機を用い、適当な回転数(例えば、回転数2,200rpm)で数分間遠心分離した後、上澄み液を取り除き、沈降物にイオン交換水を加えて分散させる。この操作を複数回繰り返し、遠心分離後の上澄み液が澄明になったことを目視で確認する。その後、分散液200μLを熱酸化膜ウエハに滴下し、自然乾燥させた後の研磨微粒子の測定対象部分に対して、X線光電子分光分析を行う。なお、X線光電子分光の測定にあたっては、X線光電子分光分析装置で研磨微粒子の測定対象部分のSi2pを測定し、Si2pスペクトルが得られないことを確認し、十分な量の研磨微粒子がウエハ上に堆積している状態で上記の分析を行うことが望ましい。
XPS測定は、例えば、以下の条件で行えばよい。
X線光電子分光分析装置:走査型デュアルX線光電子分光分析装置PHI Quantes[アルバック・ファイ(株)製]
励起源:mono.AIKα、10μm、25W、15kV
分析サイズ:約1mmの楕円形状
光電子取出角:0°
試料ステージチルト:45°
取り込み領域
Narrow Scan:Si2p(110〜95ev)、C1s(290〜280eV)
Pass Energy:69
The measurement of X-ray photoelectron spectroscopy may be performed, for example, as follows.
After the target abrasive particles of the present invention are dispersed in water such as ion-exchanged water, the resulting dispersion is dispersed with a shaker such as a reciprocating shaker “SR-2RSS” (manufactured by Taitec Co., Ltd.). Get. Next, the dispersion liquid is centrifuged at an appropriate rotation speed (for example, rotation speed of 2,200 rpm) for several minutes using a centrifuge such as a table top centrifuge “4000” (manufactured by Kubota Shoji Co., Ltd.), and then supernatant is removed. The liquid is removed, and ion-exchanged water is added to the precipitate to disperse it. This operation was repeated several times, and it was visually confirmed that the supernatant liquid after centrifugation became clear. Thereafter, 200 μL of the dispersion liquid is dropped on the thermal oxide film wafer, and X-ray photoelectron spectroscopy is performed on the measurement target portion of the polishing fine particles after air drying. In the measurement of X-ray photoelectron spectroscopy, X2 photoelectron spectroscopy was used to measure Si2p in the measurement target portion of the polishing fine particles, and it was confirmed that no Si2p spectrum was obtained. It is desirable to perform the above-mentioned analysis in a state where it is deposited on the surface.
The XPS measurement may be performed, for example, under the following conditions.
X-ray photoelectron spectrometer: Scanning dual X-ray photoelectron spectrometer PHI Quantes [manufactured by ULVAC-PHI, Inc.]
Excitation source: mono. AIKα, 10 μm 2 , 25 W, 15 kV
Analysis size: Elliptical photoelectron extraction angle of about 1 mm: 0 °
Sample stage tilt: 45 °
Capture area
Narrow Scan: Si2p (110 to 95 ev), C1s (290 to 280 eV)
Pass Energy: 69

さらに、本発明の研磨微粒子は、以下の特性を有するものがより好ましい。   Further, the abrasive fine particles of the present invention preferably have the following characteristics.

本発明の研磨微粒子は、炭素−水素伸縮振動に帰属されるフーリエ変換赤外分光(FTIR)スペクトルにおける2800〜3000cm−1の吸収ピーク強度の比率が、酸素−水素伸縮振動に帰属される3000〜3600cm−1の吸収ピーク強度に対して、0以上0.5以下であることがより好ましい。本発明の研磨微粒子は、炭素−水素伸縮振動に帰属されるフーリエ変換赤外分光(FTIR)スペクトルにおける2800〜3000cm−1の吸収ピーク強度に対して、酸素−水素伸縮振動に帰属される3000〜3600cm−1の吸収ピーク強度がほとんど確認できないか、あるいは当該吸収ピーク強度の方が小さいことがより好ましい。 The abrasive fine particles of the present invention have a ratio of the absorption peak intensity at 2800 to 3000 cm −1 in the Fourier transform infrared spectroscopy (FTIR) spectrum attributed to the carbon-hydrogen stretching vibration of 3000 to 8000 attributable to the oxygen-hydrogen stretching vibration. More preferably, it is 0 or more and 0.5 or less with respect to the absorption peak intensity at 3600 cm -1 . The abrasive fine particles of the present invention have an absorption peak intensity of 2800 to 3000 cm −1 in a Fourier transform infrared spectroscopy (FTIR) spectrum attributed to carbon-hydrogen stretching vibration, and have an absorption peak intensity of 3,000 to 8000 belonging to oxygen-hydrogen stretching vibration. It is more preferable that the absorption peak intensity at 3600 cm -1 is hardly confirmed or that the absorption peak intensity is smaller.

フーリエ変換赤外分光(FTIR)の測定は、例えば、本発明の研磨微粒子を臭化カリウムと混合して乳鉢ですり潰した後、得られた粉末をミクロ錠剤形成器等に採取し、フーリエ変換赤外分光測定装置を用いて行えばよい。なお、本発明の研磨微粒子が溶液中に存在する場合には、例えば、任意の容器に該溶液(研磨液・研磨スラリー)を滴下し、真空乾燥機等を用いて水分を除去した後、該容器から研磨微粒子を取り出したものを測定に用いればよい。
フーリエ変換赤外分光測定は、例えば、以下の条件で行えばよい。
フーリエ変換赤外分光測定装置:FT/IR-615[日本分光(株)製]
測定法:透過法
積算回数:16回
Fourier transform infrared spectroscopy (FTIR) can be measured, for example, by mixing the abrasive fine particles of the present invention with potassium bromide and crushing in a mortar, collecting the obtained powder in a microtablet forming device or the like, and performing Fourier transform red It may be performed using an external spectrometer. When the polishing particles of the present invention are present in a solution, for example, the solution (polishing liquid / polishing slurry) is dropped into an arbitrary container, and after removing water with a vacuum drier or the like, the water is removed. What has removed the abrasive fine particles from the container may be used for the measurement.
The Fourier transform infrared spectroscopy may be performed, for example, under the following conditions.
Fourier transform infrared spectrometer: FT / IR-615 [manufactured by JASCO Corporation]
Measuring method: Transmission method total number of times: 16 times

このようにして得られる本発明の研磨微粒子は、一次粒子または一次粒子同士が凝集した凝集体(二次粒子)のいずれであってもよく、特に限定されない。   The abrasive fine particles of the present invention thus obtained may be either primary particles or aggregates (secondary particles) in which the primary particles are aggregated, and are not particularly limited.

本発明の研磨微粒子の平均粒子径としては、例えば、通常0.006μm以上10.1μm以下であり、0.051μm以上6.1μm以下が好ましく、0.051μm以上2.02μm以下がより好ましく、0.101μm以上1.21μm以下が特に好ましい。ここで、「平均粒子径」とは、レーザー回折法等により測定された個数基準の粒径頻度分布曲線の最頻値(モード径)をいう。   The average particle diameter of the abrasive fine particles of the present invention is, for example, usually from 0.006 μm to 10.1 μm, preferably from 0.051 μm to 6.1 μm, more preferably from 0.051 μm to 2.02 μm, and Particularly preferred is a range of. Here, the “average particle size” refers to a mode (mode size) of a number-based particle size frequency distribution curve measured by a laser diffraction method or the like.

−本発明の研磨微粒子の製造方法−
本発明の研磨微粒子は、ダイヤモンド粒子を分散させた溶液中にフラーレン誘導体を加えて混合し、該ダイヤモンド粒子の表面に該フラーレン誘導体を付着させ(第1工程)、
次いで、上記フラーレン誘導体が付着している上記ダイヤモンド粒子にマイクロ波(MW)を照射して、該フラーレン誘導体を炭素含有構造体に変質させて、ダイヤモンド粒子に炭素含有構造体を固定化させる(第2工程)、ことによって製造することができる。
-Method for producing abrasive fine particles of the present invention-
The abrasive fine particles of the present invention are prepared by adding a fullerene derivative to a solution in which diamond particles are dispersed, mixing and adding the fullerene derivative to the surface of the diamond particles (first step),
Next, the above-mentioned diamond particles to which the fullerene derivative is attached are irradiated with microwaves (MW) to convert the fullerene derivative into a carbon-containing structure, thereby immobilizing the carbon-containing structure on the diamond particles (No. 2 steps).

本発明の研磨微粒子の製造方法におけるダイヤモンド粒子としては、本発明の研磨微粒子におけるダイヤモンド粒子と同様の平均粒子径を有するダイヤモンド粒子が挙げられる。また、本発明の研磨微粒子の製造方法におけるフラーレン誘導体としては、本発明の研磨微粒子におけるフラーレン誘導体と同様のものが挙げられる。   Examples of the diamond particles in the method for producing abrasive fine particles of the present invention include diamond particles having the same average particle diameter as the diamond particles in the abrasive fine particles of the present invention. In addition, examples of the fullerene derivative in the method for producing abrasive fine particles of the present invention include those similar to the fullerene derivative in the abrasive fine particles of the present invention.

本発明の研磨微粒子の製造方法の詳細な手順を以下に示す。
先ず、上述のダイヤモンド粒子5mg〜1.5gを50〜500mLの溶媒中に加えて、例えば、分散機等を用いて該ダイヤモンド粒子を分散させる。次いで、得られたダイヤモンド粒子の分散液中に、5mg〜1.5gのフラーレン誘導体を加えて、該ダイヤモンド粒子の表面に該フラーレン誘導体を付着させる(第1工程)。
次に、上記フラーレン誘導体が付着している上記ダイヤモンド粒子にマイクロ波(MW)を照射して、該フラーレン誘導体同士を化学結合させる等により炭素含有構造体に変質させて、ダイヤモンド粒子の表面に炭素含有構造体を固定化させる(第2工程)ことより、本発明の研磨微粒子を製造することができる。
The detailed procedure of the method for producing abrasive fine particles of the present invention will be described below.
First, 5 mg to 1.5 g of the above diamond particles are added to 50 to 500 mL of a solvent, and the diamond particles are dispersed using, for example, a disperser. Next, 5 mg to 1.5 g of the fullerene derivative is added to the obtained dispersion of diamond particles, and the fullerene derivative is attached to the surface of the diamond particles (first step).
Next, the diamond particles to which the fullerene derivative is attached are irradiated with microwaves (MW) to transform the fullerene derivative into a carbon-containing structure by, for example, chemically bonding each other. By fixing the containing structure (second step), the abrasive fine particles of the present invention can be produced.

本発明の製造方法にかかるダイヤモンド粒子の添加量としては、溶液中のダイヤモンド粒子の濃度が、例えば、通常0.01質量%以上0.3質量%以下、好ましくは0.03質量%以上0.2質量%以下、より好ましくは0.05質量%以上0.15質量%以下となるように添加することが望ましい。   The amount of the diamond particles to be added in the production method of the present invention is, for example, that the concentration of the diamond particles in the solution is, for example, generally 0.01% by mass to 0.3% by mass, preferably 0.03% by mass to 0.3% by mass. It is desirable to add so as to be 2% by mass or less, more preferably 0.05% by mass or more and 0.15% by mass or less.

ダイヤモンド粒子を分散させる溶媒としては、例えば、ポリウレタン製パッド等のCMPパッドを溶解または腐食させず、かつ、ダイヤモンド粒子を分散できる溶媒であれば特に制限されない。このような溶媒の具体例としては、例えば、イオン交換水、精製水、超純水等の水;例えば、メタノール、エタノール、プロパノール等のアルコール系溶媒;例えば、トルエン、キシレン等の芳香族炭化水素系溶媒;例えば、2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、4-メチル-2-ペンタノン(メチルイソブチルケトン)等のケトン系溶媒;例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)等のアミド系溶剤等が挙げられる。なお、これらの溶剤は、1種類の溶剤を単独で用いてもよいし、2種以上の溶剤を組み合わせて用いてもよい。   The solvent for dispersing the diamond particles is not particularly limited as long as the solvent does not dissolve or corrode a CMP pad such as a polyurethane pad and can disperse the diamond particles. Specific examples of such a solvent include, for example, water such as ion-exchanged water, purified water, and ultrapure water; for example, an alcoholic solvent such as methanol, ethanol, and propanol; and an aromatic hydrocarbon such as toluene and xylene. Ketone solvents such as 2-propanone (acetone), 2-butanone (ethyl methyl ketone) and 4-methyl-2-pentanone (methyl isobutyl ketone); for example, diethyl ether, diisopropyl ether, tetrahydrofuran, 1 And ether solvents such as 4-dioxane; for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidinone (N-methylpyrrolidone). These solvents may be used alone or in combination of two or more.

これらの溶媒のなかでも、イオン交換水、精製水、超純水等の水;およびメタノール、エタノール、プロパノール等のアルコール系溶媒が好ましく、イオン交換水、精製水、超純水等の水がより好ましい。   Among these solvents, water such as ion-exchanged water, purified water, and ultrapure water; and alcoholic solvents such as methanol, ethanol, and propanol are preferable, and water such as ion-exchanged water, purified water, and ultrapure water are more preferable. preferable.

上述の溶媒の使用量としては、例えば、通常50mL以上500mL以下であり、100mL以上300mL以下が好ましく、150mL以上250mL以下がより好ましい。   The use amount of the above-mentioned solvent is, for example, usually 50 mL or more and 500 mL or less, preferably 100 mL or more and 300 mL or less, and more preferably 150 mL or more and 250 mL or less.

ダイヤモンド粒子の分散液には、ダイヤモンド粒子の分散性を高めたり、フラーレン誘導体の溶解性または分散性を高めるために、塩基性物質を添加することが望ましい。   It is desirable to add a basic substance to the dispersion of the diamond particles in order to enhance the dispersibility of the diamond particles and to increase the solubility or dispersibility of the fullerene derivative.

上述の塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物;例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、(ヒドロキシエチル)トリメチルアンモニウムヒドロキシド[コリン]等の第4級アンモニウム塩;例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、トリス(ヒドロキシメチル)アミノメタン、2-(モルホリノ)エタノール等のアルカノールアミン等が挙げられる。なお、これらの塩基性化合物は、1種類の塩基性化合物を単独で用いてもよいし、2種以上の塩基性化合物を組み合わせて用いてもよい。   Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutyl Quaternary ammonium salts such as ammonium hydroxide and (hydroxyethyl) trimethylammonium hydroxide [choline]; for example, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, tris (hydroxymethyl) aminomethane, 2- ( (Morpholino) alkanolamines such as ethanol. In addition, these basic compounds may be used alone or in combination of two or more basic compounds.

上述の塩基性化合物の使用量としては、塩基性化合物を添加した後の溶液のpHが、例えば、通常8〜14、好ましくは9〜13、より好ましくは10.5〜12.5となるように添加することが望ましい。   The amount of the basic compound used is such that the pH of the solution after the addition of the basic compound is, for example, usually 8 to 14, preferably 9 to 13, and more preferably 10.5 to 12.5. It is desirable to add

また、上述の分散液には、通常この分野で一般的に用いられている分散剤や界面活性剤を添加してもよい。   Further, a dispersant or a surfactant generally used in this field may be added to the above-mentioned dispersion liquid.

本発明の製造方法にかかるフラーレン誘導体の添加量としては、溶液中のフラーレン誘導体の濃度が、例えば、通常0.05質量%以上0.2質量%以下、好ましくは0.05質量%以上0.18質量%以下、より好ましくは0.05質量%以上0.15質量%以下、さらに好ましくは0.07質量%以上0.12質量%以下となるように添加することが望ましい。   The addition amount of the fullerene derivative according to the production method of the present invention is such that the concentration of the fullerene derivative in the solution is, for example, usually from 0.05% by mass to 0.2% by mass, and preferably from 0.05% by mass to 0.2% by mass. It is desirable to add so as to be 18% by mass or less, more preferably 0.05% by mass or more and 0.15% by mass or less, further preferably 0.07% by mass or more and 0.12% by mass or less.

ダイヤモンド粒子の表面にフラーレン誘導体を付着させる際の温度は、例えば、通常−20℃以上80℃以下であり、0℃以上60℃以下が好ましく、5℃以上40℃以下がより好ましく、10℃以上35℃以下が特に好ましい。   The temperature at which the fullerene derivative is attached to the surface of the diamond particles is, for example, usually -20 ° C to 80 ° C, preferably 0 ° C to 60 ° C, more preferably 5 ° C to 40 ° C, and more preferably 10 ° C or more. Particularly preferred is 35 ° C. or lower.

ダイヤモンド粒子の表面にフラーレン誘導体を付着させる際の時間は、例えば、通常0.05時間以上24時間以下であり、0.1時間以上12時間以下が好ましく、0.5時間以上6時間以下がより好ましい。なお、ダイヤモンド粒子の表面にフラーレン誘導体を付着させるには、ダイヤモンド粒子の分散状態にかかわらず、上述の時間経過させればフラーレン誘導体を付着させることができるため、フラーレン誘導体を添加した溶液を静置してもよいし、適宜攪拌してもよく、なかでも、溶液を攪拌することが好ましい。   The time for attaching the fullerene derivative to the surface of the diamond particles is, for example, usually 0.05 hours to 24 hours, preferably 0.1 hours to 12 hours, more preferably 0.5 hours to 6 hours. preferable. In addition, regardless of the dispersion state of the diamond particles, the fullerene derivative can be attached to the surface of the diamond particles after the above-mentioned time has elapsed, regardless of the dispersion state of the diamond particles. Alternatively, the solution may be appropriately stirred, and among them, it is preferable to stir the solution.

本発明の製造方法にかかる第1工程は、必ずしも上述の条件で実施する必要はないが、上述の条件で第1工程を実施すれば、簡便かつ精度よく、望ましい態様の(フラーレン誘導体が付着した)ダイヤモンド粒子を得ることができる。   The first step according to the production method of the present invention does not necessarily need to be performed under the above-described conditions. However, if the first step is performed under the above-described conditions, the (fullerene derivative adheres) in a simple, accurate, and desirable mode. ) Diamond particles can be obtained.

ダイヤモンド粒子にマイクロ波(MW)を照射する際のマイクロ波としては、その主波長が、例えば、通常0.5GHz以上15GHz以下であり、0.8GHz以上3GHz以下であるマイクロ波が好ましく、1GHz以上3GHz以下であるマイクロ波がより好ましい。なお、マイクロ波の照射は、通常この分野で用いられるマイクロ波照射装置を用いて行えばよい。   As a microwave for irradiating the diamond particles with a microwave (MW), a microwave whose main wavelength is, for example, usually 0.5 GHz or more and 15 GHz or less, and preferably 0.8 GHz or more and 3 GHz or less is preferable, and 1 GHz or more. Microwaves below 3 GHz are more preferred. Note that microwave irradiation may be performed using a microwave irradiation apparatus usually used in this field.

ダイヤモンド粒子にマイクロ波(MW)を照射する際の照射強度としては、例えば、通常30W以上200W以下であり、50W以上150W以下が好ましく、80W以上120W以下がより好ましい。   The irradiation intensity when irradiating the diamond particles with microwaves (MW) is, for example, usually from 30 W to 200 W, preferably from 50 W to 150 W, more preferably from 80 W to 120 W.

ダイヤモンド粒子にマイクロ波(MW)を照射する際の照射時間としては、例えば、通常10秒以上300秒以下であり、30秒以上150秒以下が好ましく、60秒以上120秒以下がより好ましい。   The irradiation time when irradiating the diamond particles with microwaves (MW) is, for example, usually from 10 to 300 seconds, preferably from 30 to 150 seconds, more preferably from 60 to 120 seconds.

本発明の製造方法にかかる第2工程は、必ずしも上述の条件で実施する必要はないが、上述の条件で第2工程を実施すれば、簡便かつ精度よく、望ましい態様の本発明の研磨微粒子を得ることができる。   The second step according to the production method of the present invention does not necessarily need to be performed under the above-described conditions. However, if the second step is performed under the above-described conditions, the polishing fine particles of the present invention can be easily and accurately obtained in a desirable mode. Obtainable.

このようにして得られる本発明の研磨微粒子は、研磨液(研磨スラリー)の研磨剤(砥粒)として用いることができる。当該研磨液(研磨スラリー)としては、本発明の研磨微粒子の製造直後の溶液を、遠心分離機等で本発明の研磨微粒子と溶媒とに分離して本発明の研磨微粒子を取り出した後、水等に分散させて該研磨液(研磨スラリー)としてもよいし、本発明の研磨微粒子の製造過程で得られる製造直後の溶液をそのまま研磨液(研磨スラリー)としてもよい。なお、上述の分離操作に用いられる遠心分離機等は、通常この分野で用いられる遠心分離機を用いればよい。   The thus obtained polishing fine particles of the present invention can be used as an abrasive (abrasive) of a polishing liquid (polishing slurry). As the polishing liquid (polishing slurry), the solution immediately after the production of the polishing fine particles of the present invention is separated into the polishing fine particles of the present invention and a solvent by a centrifuge or the like, and the polishing fine particles of the present invention are taken out. The polishing liquid (polishing slurry) may be dispersed in the polishing solution or the like, or the solution immediately after the production obtained in the production process of the polishing fine particles of the present invention may be used as it is as the polishing liquid (polishing slurry). The centrifuge used for the above-mentioned separation operation may be a centrifuge usually used in this field.

本発明の研磨微粒子の製造直後の溶液を、遠心分離機等で本発明の研磨微粒子と溶媒とに分離して本発明の研磨微粒子を取り出した後、水等に分散させる操作を繰り返して、本発明の研磨微粒子を洗浄してもよい。   The solution immediately after the production of the abrasive fine particles of the present invention is separated into the abrasive fine particles of the present invention and a solvent by a centrifugal separator or the like, and the abrasive fine particles of the present invention are taken out. The abrasive particles of the invention may be washed.

上述の研磨液(研磨スラリー)を製造するにあたっては、溶液中での本発明の研磨微粒子の質量が0.05質量%以上0.15質量%以下となるように、本発明の研磨微粒子を水等の溶媒に分散させることが望ましい。   In producing the above-mentioned polishing liquid (polishing slurry), the polishing fine particles of the present invention are mixed with water so that the mass of the polishing fine particles of the present invention in the solution is 0.05% by mass or more and 0.15% by mass or less. It is desirable to disperse in a solvent such as

上述の研磨液(研磨スラリー)には、例えば、フィチン等のポリリン酸系分散剤、シリコン系分散剤等の分散剤、例えば、エチレングリコール等の粘度調整剤、界面活性剤等の、通常この分野で一般的に用いられている添加剤や研磨助剤を併用してもよい。   The above-mentioned polishing liquid (polishing slurry) usually contains, for example, a polyphosphoric acid-based dispersant such as phytin, a dispersant such as a silicon-based dispersant, for example, a viscosity modifier such as ethylene glycol, and a surfactant. May be used in combination with additives and polishing aids generally used.

SiC基板、GaN基板、サファイア基板、ダイヤモンド基板等の難加工基板の研磨(例えば、CMP等)や研削用の研磨剤(砥粒)として、本発明の研磨微粒子を研磨液(研磨スラリー)に用いれば、これらの難加工基板を高レート(高い研磨または研削速度)で加工できるばかりでなく、基板表面の凸部を平坦化でき、表面粗さ(Ra)が改善され、高い平坦度を有する基板を得ることができる。   The abrasive fine particles of the present invention are used in a polishing liquid (polishing slurry) as an abrasive (abrasive) for polishing (eg, CMP) or grinding a difficult-to-process substrate such as a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate. In addition, not only can these difficult-to-process substrates be processed at a high rate (high polishing or grinding speed), but also the projections on the substrate surface can be flattened, the surface roughness (Ra) can be improved, and a substrate having a high flatness can be obtained. Can be obtained.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されない。   Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to these examples.

実施例1:マイクロ波(MW)による炭素含有構造体を有する研磨微粒子の作製
常温下、水酸化カリウムでpHを12に調整した水溶液200mLに、平均粒子径が1μm(1000nm)のダイヤモンド粒子(エンギス社製「Hyprez 1-STD-MA」)200mgを分散させた。該分散液に、分散液中の水酸化フラーレンの濃度が0.1質量%となるように水酸化フラーレン[フロンティアカーボン(株)製]を加えて60分間撹拌し、ダイヤモンド粒子の表面に水酸化フラーレンを付着させた。次いで、水酸化フラーレンが付着したダイヤモンド粒子の分散液を一定量分取して、マイクロ波(MW)照射装置[(株)IDX社製「グリーンモチーフIb/II」]を用いて、マイクロ波(波長:135nm、パルス周波数:2.45GHz、照射強度:100W)を90秒間照射して、ダイヤモンド粒子の表面に付着している水酸化フラーレンを炭素含有構造体に変質させて、本発明の研磨微粒子を含有する研磨液(1.0質量%の研磨スラリー)を得た。得られた研磨微粒子のフーリエ変換赤外分光(FTIR)スペクトルを以下の条件で測定した。その結果を図1に示す。
<測定条件>
フーリエ変換赤外分光測定装置:FT/IR-615[日本分光(株)製]
測定法:透過法
積算回数:16回
Example 1 Preparation of Polished Fine Particles Having Carbon-Containing Structure by Microwave (MW) Diamond particles having an average particle diameter of 1 μm (1000 nm) were added to 200 mL of an aqueous solution adjusted to pH 12 with potassium hydroxide at room temperature. 200 mg of “Hyprez 1-STD-MA” manufactured by the company was dispersed. Fullerene hydroxide [manufactured by Frontier Carbon Co., Ltd.] was added to the dispersion so that the concentration of the fullerene hydroxide in the dispersion was 0.1% by mass, and the mixture was stirred for 60 minutes to form a hydroxide on the surface of the diamond particles. Fullerene was deposited. Next, a predetermined amount of the dispersion liquid of the diamond particles to which the fullerene hydroxide is adhered is fractionated, and is subjected to microwave (MW) irradiation using a microwave (MW) irradiator [“Green Motif Ib / II” manufactured by IDX Corporation]. (Wavelength: 135 nm, pulse frequency: 2.45 GHz, irradiation intensity: 100 W) for 90 seconds to change the fullerene hydroxide adhering to the surface of the diamond particles into a carbon-containing structure, thereby obtaining the abrasive fine particles of the present invention. (Polishing slurry of 1.0% by mass) was obtained. The Fourier transform infrared spectroscopy (FTIR) spectrum of the obtained abrasive fine particles was measured under the following conditions. The result is shown in FIG.
<Measurement conditions>
Fourier transform infrared spectrometer: FT / IR-615 [manufactured by JASCO Corporation]
Measuring method: Transmission method total number of times: 16 times

比較例1:炭素含有構造体を有さない研磨微粒子の作製
常温下、水酸化カリウムでpHを12に調整した水溶液200mLに、平均粒子径が1μm(1000nm)のダイヤモンド粒子(エンギス社製「Hyprez 1-STD-MA」)200mgを分散させた。該分散液に、分散液中の水酸化フラーレンの濃度が0.1質量%となるように水酸化フラーレン[フロンティアカーボン(株)製]を加えて60分間撹拌し、ダイヤモンド粒子の表面に水酸化フラーレンを付着させることで、比較用の研磨微粒子[ダイヤモンド粒子の表面に水酸化フラーレンを付着させた(マイクロ波(MW)も紫外線(UV)も照射していない)研磨微粒子]を含有する研磨液(1.0質量%の研磨スラリー)を得た。
Comparative Example 1: Preparation of Abrasive Fine Particles without Carbon-Containing Structure At room temperature, 200 mL of an aqueous solution adjusted to pH 12 with potassium hydroxide was mixed with diamond particles having an average particle size of 1 μm (1000 nm) (“Hyprez” manufactured by Engis Corporation) at room temperature. 1-STD-MA ") 200 mg was dispersed. Fullerene hydroxide [manufactured by Frontier Carbon Co., Ltd.] was added to the dispersion so that the concentration of the fullerene hydroxide in the dispersion was 0.1% by mass, and the mixture was stirred for 60 minutes to form a hydroxide on the surface of the diamond particles. A polishing liquid containing abrasive fine particles for comparison [abrasive fine particles in which fullerene hydroxide is adhered to the surface of diamond particles (not irradiated with microwave (MW) or ultraviolet (UV)) by adhering fullerenes] (1.0 mass% polishing slurry) was obtained.

比較例2:紫外線(UV)による炭素含有構造体を有する研磨微粒子の作製
常温下、水酸化カリウムでpHを12に調整した水溶液200mLに、平均粒子径が1μm(1000nm)のダイヤモンド粒子(エンギス社製「Hyprez 1-STD-MA」)200mgを分散させた。該分散液に、分散液中の水酸化フラーレンの濃度が0.1質量%となるように水酸化フラーレン[フロンティアカーボン(株)製]を加えて60分間撹拌し、ダイヤモンド粒子の表面に水酸化フラーレンを付着させた。次いで、水酸化フラーレンが付着したダイヤモンド粒子の分散液を一定量分取して、紫外線(UV)照射装置[スペクトラ・フィジックス(株)製「LD励起Qスイッチ固体レーザー」]を用いて、紫外線レーザー(波長:355nm、パルス周波数:50kHz、照射強度:270mW)を60分間照射して、比較用の研磨微粒子[ダイヤモンド粒子の表面に水酸化フラーレンを付着させた粒子に紫外線(UV)を照射した研磨微粒子]を含有する研磨液(1.0質量%の研磨スラリー)を得た。得られた研磨微粒子のフーリエ変換赤外分光(FTIR)スペクトルを以下の条件で測定した。その結果を図2に示す。また、得られた研磨微粒子表面の100nmスケールの透過型電子顕微鏡(TEM)画像を図3に、該研磨微粒子表面の10nmスケールの透過型電子顕微鏡(TEM)画像を図4に示す。
<測定条件>
フーリエ変換赤外分光測定装置:FT/IR-615[日本分光(株)製]
測定法:透過法
積算回数:16回
Comparative Example 2: Preparation of Polished Fine Particles Having Carbon-Containing Structure by Ultraviolet (UV) Diamond particles having an average particle diameter of 1 μm (1000 nm) (Engis Co., Ltd.) were added at room temperature to 200 mL of an aqueous solution adjusted to pH 12 with potassium hydroxide. 200 mg of “Hyprez 1-STD-MA” manufactured by the company was dispersed. Fullerene hydroxide [manufactured by Frontier Carbon Co., Ltd.] was added to the dispersion so that the concentration of the fullerene hydroxide in the dispersion was 0.1% by mass, and the mixture was stirred for 60 minutes to form a hydroxide on the surface of the diamond particles. Fullerene was deposited. Next, a predetermined amount of the dispersion liquid of the diamond particles to which the fullerene hydroxide is adhered is fractionated, and an ultraviolet (UV) irradiator [Spectrum Physics Co., Ltd. "LD excitation Q switch solid laser"] (Wavelength: 355 nm, pulse frequency: 50 kHz, irradiation intensity: 270 mW) for 60 minutes, and polishing fine particles for comparison [polishing by irradiating ultraviolet (UV) to particles in which fullerene hydroxide is adhered to the surface of diamond particles] (Fine particles) was obtained (a polishing slurry of 1.0% by mass). The Fourier transform infrared spectroscopy (FTIR) spectrum of the obtained abrasive fine particles was measured under the following conditions. The result is shown in FIG. FIG. 3 shows a transmission electron microscope (TEM) image of the obtained polishing fine particles on a 100 nm scale, and FIG. 4 shows a transmission electron microscope (TEM) image of the polishing fine particles on a 10 nm scale.
<Measurement conditions>
Fourier transform infrared spectrometer: FT / IR-615 [manufactured by JASCO Corporation]
Measuring method: Transmission method total number of times: 16 times

実験例1〜3:研磨微粒子のラマン分光測定
実施例1および比較例1〜2で得られた研磨スラリーをそれぞれプラスチックトレイに滴下し、真空乾燥機を用いて水分を除去した後、プラスチックトレイからスライドガラス上に取り出した研磨微粒子のラマンスペクトルを以下の条件で測定した。
<測定条件>
ラマン分光測定装置:(株)ラムダビジョン製「MicroRAM-300」
検出器:浜松ホトニクス(株)製「CI0151」
励起光源:半導体レーザー
励起波長:532nm
レーザー出力:30mW
ビーム径(各倍率における参考値):5μm(×50)
積算時間:10sec(1sec×10回)
上記の条件で測定したラマンスペクトルにおいて、1200〜1750cm−1の範囲の下記の3つの成分A〜Cについて、各成分のベースラインから最大強度を求めた。なお、各成分のベースラインは、以下の2点の強度値を結んだ直線とした。
成分Aのベースライン:1295cm−1の強度値と1360cm−1の強度値の2点を結んだ直線
成分Bのベースライン:1354cm−1の強度値と1600cm−1の強度値の2点を結んだ直線
成分Cのベースライン:1470cm−1の強度値と1680cm−1の強度値の2点を結んだ直線
各成分の最大強度は、各成分の以下の波数領域における強度値(Y値)と、当該強度値からラマンシフト軸におろした垂線とベースラインとの交点における強度値(Z値)との差(Y値−Z値)を求め、数値が最も大きい値を最大強度とした。その結果を表1に示す。また、得られた成分A〜Cの最大強度に基づいて、実施例1および比較例1〜2のそれぞれの研磨微粒子におけるI/IDおよびIG/IDを求めた。その結果を表1に併せて示す。さらに、実施例1の研磨微粒子(マイクロ波(MW)による炭素含有構造体を有する研磨微粒子:本発明の研磨微粒子)のラマン分光測定によるスペクトル図を図5に、比較例1の研磨微粒子(炭素含有構造体を有さない研磨微粒子)のラマン分光測定によるスペクトル図を図6に、比較例2の研磨微粒子(紫外線(UV)による炭素含有構造体を有する研磨微粒子)のラマン分光測定によるスペクトル図を図7にそれぞれ示す。
成分A:波数;1300〜1350cm−1の領域:Dピーク、半値幅;4〜16cm−1
成分B:波数;1400〜1500cm−1の領域、半値幅;40〜120cm−1
成分C:波数;1500〜1650cm−1の領域:Gピーク、半値幅;40〜120cm−1
成分Aの最大強度:波数;1300〜1350cm−1の領域において得られた強度値のうち、数値が最も大きい値;ID
成分Bの最大強度:波数;1400〜1500cm−1の領域において得られた強度値のうち、数値が最も大きい値;I
成分Cの最大強度:波数;1500〜1650cm−1の領域において得られた強度値のうち、数値が最も大きい値;IG
Experimental Examples 1 to 3: Raman spectroscopic measurement of abrasive fine particles The polishing slurries obtained in Example 1 and Comparative Examples 1 and 2 were each dropped on a plastic tray, and after removing water with a vacuum dryer, the polishing slurry was removed from the plastic tray. The Raman spectrum of the abrasive fine particles taken out on the slide glass was measured under the following conditions.
<Measurement conditions>
Raman spectrometer: Lambda Vision “MicroRAM-300”
Detector: "CI0151" manufactured by Hamamatsu Photonics KK
Excitation light source: Semiconductor laser Excitation wavelength: 532 nm
Laser output: 30mW
Beam diameter (reference value at each magnification): 5 μm (× 50)
Integrated time: 10sec (1sec x 10 times)
In the Raman spectrum measured under the above conditions, for the following three components A to C in the range of 1200 to 1750 cm −1 , the maximum intensity was determined from the baseline of each component. The base line of each component was a straight line connecting the following two intensity values.
Baseline components A: 1295 -1 of intensity values and 1360 cm -1 of the base of the linear component B that connects the two points of the intensity value line: connecting two points of the intensity values of the intensity values and 1600 cm -1 of 1354Cm -1 linear component C baseline: the maximum intensity of the linear components that connects two points of the intensity values of the intensity values and 1680 cm -1 in 1470 cm -1, the intensity values in the following wavenumber region of each component and (Y value) Then, the difference (Y value−Z value) between the intensity value (Z value) at the intersection of the perpendicular line drawn on the Raman shift axis and the baseline from the intensity value was determined, and the value with the largest numerical value was defined as the maximum intensity. Table 1 shows the results. Further, I / ID and IG / ID of each of the polished fine particles of Example 1 and Comparative Examples 1 and 2 were determined based on the maximum strengths of the obtained components A to C. The results are shown in Table 1. Further, FIG. 5 shows a spectrum diagram of the polishing fine particles of Example 1 (polishing fine particles having a carbon-containing structure by microwave (MW): the polishing fine particles of the present invention) measured by Raman spectroscopy. FIG. 6 is a spectrum diagram by Raman spectrometry of the polishing fine particles having no containing structure), and FIG. 6 is a spectrum diagram by Raman spectrometry of the polishing fine particles (polishing fine particles having the carbon-containing structure by ultraviolet (UV)) of Comparative Example 2. Are shown in FIG.
Component A: wave number; 1300 to 1350 cm -1 region: D peak, half width; 4 to 16 cm -1
Component B: wavenumber; region of 1400~1500cm -1, the half width; 40~120Cm -1
Component C: wave number; region of 1500 to 1650 cm -1 : G peak, half width; 40 to 120 cm -1
Maximum intensity of component A: wave number; value having the largest numerical value among intensity values obtained in an area of 1300 to 1350 cm -1 ; ID
Maximum intensity of component B: wave number; value having the largest numerical value among intensity values obtained in the region of 1400 to 1500 cm -1 ; I
Maximum intensity of component C: wave number; value with the largest numerical value among intensity values obtained in a region of 1500 to 1650 cm -1 ; IG

Figure 2020021824
Figure 2020021824

実験例4〜5:研磨微粒子のX線光電子分光(XPS)測定
実施例1および比較例1で得られた研磨スラリーを、レシプロシェーカー「SR-2RSS」[タイテック(株)製]を用いて分散させた後、当該分散液をテーブルトップ遠心機「4000」[久保田商事(株)製]を用い、回転数2,200rpmで15分間遠心分離した後、上澄み液を取り除き、沈降物にイオン交換水を加えて分散させ、これを遠心分離する操作を3回繰り返した。3回遠心分離後の上澄み液が澄明になったことを目視で確認した後、分散液200μLを熱酸化膜ウエハに滴下し、自然乾燥させた後の研磨微粒子の測定対象部分に対して、以下の条件でX線光電子分光測定を行った。なお、X線光電子分光の測定にあたっては、X線光電子分光分析装置で研磨微粒子の測定対象部分のSi2pを測定し、Si2pスペクトルが得られなかったことから、十分な量の研磨微粒子がウエハ上に堆積している状態で実施した。
<測定条件>
X線光電子分光分析装置:走査型デュアルX線光電子分光分析装置PHI Quantes[アルバック・ファイ(株)製]
励起源:mono.AIKα、10μm、25W、15kV
分析サイズ:約1mmの楕円形状
光電子取出角:0°
試料ステージチルト:45°
取り込み領域
Narrow Scan:Si2p(110〜95ev)、C1s(290〜280eV)
Pass Energy:69
Experimental Examples 4 to 5: X-ray Photoelectron Spectroscopy (XPS) Measurement of Polished Fine Particles The polishing slurries obtained in Example 1 and Comparative Example 1 were dispersed using a reciprocating shaker “SR-2RSS” (manufactured by Taitec Corporation). After that, the dispersion was centrifuged at 2,200 rpm for 15 minutes using a table-top centrifuge "4000" (manufactured by Kubota Corporation), the supernatant was removed, and ion-exchanged water was added to the sediment. , And the operation of centrifuging the mixture was repeated three times. After visually confirming that the supernatant liquid after centrifugation three times became clear, 200 μL of the dispersion liquid was dropped on the thermal oxide film wafer, and the measurement target portion of the abrasive fine particles after air drying was subjected to the following. X-ray photoelectron spectroscopy was performed under the following conditions. In the measurement of X-ray photoelectron spectroscopy, a sufficient amount of the polishing fine particles was deposited on the wafer because the Si2p spectrum was not obtained by measuring Si2p in the measurement target portion of the polishing fine particles with an X-ray photoelectron spectroscopy analyzer. The test was carried out in a state where it was deposited.
<Measurement conditions>
X-ray photoelectron spectrometer: Scanning dual X-ray photoelectron spectrometer PHI Quantes [manufactured by ULVAC-PHI, Inc.]
Excitation source: mono. AIKα, 10 μm 2 , 25 W, 15 kV
Analysis size: Elliptical photoelectron extraction angle of about 1 mm: 0 °
Sample stage tilt: 45 °
Capture area
Narrow Scan: Si2p (110 to 95 ev), C1s (290 to 280 eV)
Pass Energy: 69

X線光電子分光(XPS)測定により、C1sの光電子スペクトルにおける各結合エネルギーにおける強度を0.1eV間隔で求めた。結合エネルギーが283.8〜284.2eVにおける強度と、結合エネルギーが284.8〜285.2eVにおける強度を表2に示す。また、得られた各強度に基づいて、実施例1および比較例1のそれぞれの研磨微粒子における第1cps(結合エネルギーが283.8〜284.2eVの範囲内における最大強度)および第2cps(結合エネルギーが284.8〜285.2eVの範囲内における最大強度)を選択し、これらに基づいて第1cps/第2cpsを求めた。さらに、実施例1の研磨微粒子(マイクロ波(MW)による炭素含有構造体を有する研磨微粒子:本発明の研磨微粒子)のX線光電子分光(XPS)測定によるスペクトル図を図8に、比較例1の研磨微粒子(炭素含有構造体を有さない研磨微粒子)のX線光電子分光(XPS)測定によるスペクトル図を図9にそれぞれ示す。   The intensity at each binding energy in the photoelectron spectrum of C1s was determined at intervals of 0.1 eV by X-ray photoelectron spectroscopy (XPS) measurement. Table 2 shows the intensity at a binding energy of 283.8 to 284.2 eV and the intensity at a binding energy of 284.8 to 285.2 eV. Further, based on the obtained intensities, the first cps (maximum intensity in a binding energy range of 283.8 to 284.2 eV) and the second cps (binding energy) of the respective polishing fine particles of Example 1 and Comparative Example 1 were obtained. (The maximum intensity in the range of 284.8 to 285.2 eV) was selected, and the first cps / second cps was determined based on these. Further, FIG. 8 shows a spectrum diagram of the polishing fine particles of Example 1 (polishing fine particles having a carbon-containing structure by microwave (MW): the polishing fine particles of the present invention) measured by X-ray photoelectron spectroscopy (XPS), and Comparative Example 1 X-ray photoelectron spectroscopy (XPS) measurement of the abrasive fine particles (abrasive fine particles having no carbon-containing structure) is shown in FIG.

Figure 2020021824
Figure 2020021824

実験例6:研磨微粒子のMRRの評価
ダイヤモンド粒子を、溶液中のダイヤモンド粒子の質量が0.13質量%となるように該ダイヤモンド粒子を水に分散させて、ダイヤモンド粒子のみからなる研磨微粒子を含有する研磨液(研磨スラリー)を製造し、評価に用いた。実施例1で得られた研磨液(研磨スラリー)および比較例1〜2で得られた研磨液(研磨スラリー)については、そのまま評価に用いた。
次に、あらかじめ荒研磨を実施したサファイアウエハに対し、下記の条件で化学的機械的研磨(CMP)を行い、以下の計算式(1)および(2)に従って、1時間当たりの材料除去率(Material Removal Rate:MRR)を研磨スラリー毎に算出した。その結果を表3および図10に示す。
<研磨条件>
研磨装置:卓上型片面研磨装置DIA LAP ACE ML-160A((株)マルトー製)
研磨パッド:SUBA 600(アンカーテクノ(株)製)
研磨圧力:45.9kPa(6.6psi)
プラテン回転数:60回転/分
ヘッド回転数:60回転/分
研磨時間:1時間
研磨液(研磨スラリー)の供給レート:0.3mL/分(掛け流し)
研磨液の温度:25℃
研磨対象物:サファイアウエハ(伝導型:A型)
研磨対象面積:113.04mm
<計算式>
(1)研磨取りしろ[cm]=研磨前後のサファイアウエハの質量の差[g]/サファイアウエハの密度[g/cm](=3.98g/cm)/研磨対象面積[cm](=113.04mm
(2)研磨レート[μm/時間]=研磨取りしろ[cm]×10/研磨時間(1時間)
Experimental Example 6: Evaluation of MRR of polishing fine particles Diamond particles were dispersed in water such that the mass of the diamond particles in the solution was 0.13% by mass, and the polishing particles contained only the diamond particles. A polishing liquid (polishing slurry) was prepared and used for evaluation. The polishing liquid (polishing slurry) obtained in Example 1 and the polishing liquid (polishing slurry) obtained in Comparative Examples 1 and 2 were used for evaluation as they were.
Next, chemical mechanical polishing (CMP) is performed on the sapphire wafer that has been subjected to rough polishing in advance under the following conditions, and the material removal rate per hour (according to the following formulas (1) and (2)) Material removal rate (MRR) was calculated for each polishing slurry. The results are shown in Table 3 and FIG.
<Polishing conditions>
Polishing device: Desktop type single-side polishing device DIA LAP ACE ML-160A (Malto Co., Ltd.)
Polishing pad: SUBA 600 (made by Anchor Techno Co., Ltd.)
Polishing pressure: 45.9 kPa (6.6 psi)
Platen rotation speed: 60 rotations / minute Head rotation speed: 60 rotations / minute Polishing time: 1 hour Supply rate of polishing liquid (polishing slurry): 0.3 mL / minute (flowing)
Polishing liquid temperature: 25 ° C
Polishing object: Sapphire wafer (conductivity type: A type)
Area to be polished: 113.04 mm 2
<Calculation formula>
(1) white polished up [cm] = the mass difference before and after polishing of the sapphire wafer [g] / density of the sapphire wafer [g / cm 3] (= 3.98g / cm 3) / polished area [cm 2] (= 113.04 mm 2 )
(2) Polishing rate [μm / hour] = polishing margin [cm] × 10 4 / polishing time (1 hour)

Figure 2020021824
Figure 2020021824

表3および図10の結果から明らかなように、実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合には、ダイヤモンド粒子のみからなる研磨微粒子(研磨スラリー)や、比較例1の研磨微粒子(研磨スラリー)を使用した場合に比べて、MRRが2倍以上高くなることがわかった。また、比較例2の研磨微粒子(研磨スラリー)を使用した場合よりも、実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合の方が、MRRが高くなることがわかった。
実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合のMRRと、比較例1のマイクロ波(MW)も紫外線(UV)も照射していない研磨微粒子(研磨スラリー)を使用した場合のMRRが異なることから、マイクロ波(MW)を照射することによって、ダイヤモンド粒子の表面に付着している水酸化フラーレンが化学結合する等により変質していることが示唆される。さらに、実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合のMRRと、比較例2の紫外線(UV)を照射した研磨微粒子(研磨スラリー)を使用した場合のMRRが異なることから、マイクロ波照射によって、水酸化フラーレンが変質することで生じた炭素含有構造体は、紫外線(UV)照射によって、水酸化フラーレンが変質することで生じた構造体とは異なるものであることが示唆される。
As is clear from the results of Table 3 and FIG. 10, when the polishing fine particles (polishing slurry) of the present invention of Example 1 were used, the polishing fine particles (polishing slurry) consisting only of diamond particles and the polishing fine particles of Comparative Example 1 were used. It was found that the MRR was more than twice as high as that in the case of using the polishing fine particles (polishing slurry). Further, it was found that the MRR was higher when the polishing fine particles (polishing slurry) of Example 1 of the present invention were used than when the polishing fine particles (polishing slurry) of Comparative Example 2 were used.
The MRR when the polishing fine particles (polishing slurry) of the present invention of Example 1 are used and the polishing fine particles (polishing slurry) of Comparative Example 1 to which neither the microwave (MW) nor the ultraviolet light (UV) is irradiated. Are different from each other, it is suggested that the irradiation of microwaves (MW) alters the fullerene hydroxide attached to the surface of the diamond particles due to chemical bonding and the like. Furthermore, since the MRR when using the polishing fine particles (polishing slurry) of the present invention of Example 1 and the MRR when using the polishing fine particles (polishing slurry) irradiated with ultraviolet rays (UV) of Comparative Example 2 are different, Suggests that the carbon-containing structure caused by the alteration of the fullerene hydroxide by microwave irradiation is different from the structure caused by the alteration of the fullerene hydroxide by ultraviolet (UV) irradiation Is done.

実験例7:研磨微粒子のRaの評価
ダイヤモンド粒子を、溶液中のダイヤモンド粒子の質量が0.13質量%となるように該ダイヤモンド粒子を水に分散させて、ダイヤモンド粒子のみからなる研磨微粒子を含有する研磨液(研磨スラリー)を製造し、評価に用いた。実施例1で得られた研磨液(研磨スラリー)および比較例1〜2で得られた研磨液(研磨スラリー)については、そのまま評価に用いた。
次に、あらかじめ荒研磨を実施して表面の粗さを均一にしたサファイアウエハに対し、下記の条件で化学的機械的研磨(CMP)を行い、原子間力顕微鏡(AFM)を用いて研磨後のウエハの表面粗さ(Ra)を測定した。なお、Raの測定にあたっては、各研磨液(研磨スラリー)を用いて2回研磨を行い、かつ、研磨後の各ウエハについて任意の3カ所で500nmの範囲で測定を行って、その平均値をRaとした。その結果を表4に示す。また、ダイヤモンド粒子のみからなる研磨微粒子(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を図11に、実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を図12に、比較例1の研磨微粒子(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を図13に、比較例2の研磨微粒子(研磨スラリー)を使用した場合における研磨後(2回目)のサファイアウエハの表面画像(対物レンズの倍率:20倍)を図14にそれぞれ示す。
<研磨条件>
研磨装置:(株)マルトー製「卓上型片面研磨装置DIA LAP ACE ML-160A」
研磨パッド:アンカーテクノ(株)製「SUBA 600」
研磨圧力:45.9kPa(6.6psi)
プラテン回転数:60回転/分
ヘッド回転数:60回転/分
研磨時間:1時間
研磨液(研磨スラリー)の供給レート:0.3mL/分(掛け流し)
研磨液の温度:25℃
研磨対象物:サファイアウエハ(伝導型:A型)
研磨対象面積:113.04mm
<Raの測定条件>
原子間力顕微鏡装置:SPA-300V(セイコーインスツル(株)製)
カンチレバー:POINTPROVE-PLUS Silicon-SPM-Sensor PPP-cont-20
Experimental Example 7 Evaluation of Ra of Polished Fine Particles Diamond particles were dispersed in water such that the mass of the diamond particles in the solution was 0.13% by mass, and contained abrasive fine particles consisting of diamond particles only. A polishing liquid (polishing slurry) was prepared and used for evaluation. The polishing liquid (polishing slurry) obtained in Example 1 and the polishing liquid (polishing slurry) obtained in Comparative Examples 1 and 2 were used for evaluation as they were.
Next, the sapphire wafer, which has been subjected to rough polishing in advance to have a uniform surface roughness, is subjected to chemical mechanical polishing (CMP) under the following conditions, and polished using an atomic force microscope (AFM). The surface roughness (Ra) of the wafer was measured. Incidentally, when the measurement of Ra, was ground twice with each polishing liquid (abrasive slurry), and performs the measurement in the range of 500 nm 2 at any three locations for each wafer after polishing, the average value Was defined as Ra. Table 4 shows the results. FIG. 11 shows the surface image (magnification of the objective lens: 20 times) of the sapphire wafer after polishing (second time) in the case of using polishing fine particles (polishing slurry) consisting only of diamond particles. FIG. 12 shows the surface image of the sapphire wafer after polishing (second time) (magnification of the objective lens: 20 times) when the polishing fine particles (polishing slurry) were used, and the polishing fine particles (polishing slurry) of Comparative Example 1 were used. FIG. 13 shows the surface image (magnification of the objective lens: 20 times) of the sapphire wafer after polishing (second time) in the case where the polishing was performed (second time), and after polishing (second time) in the case where the polishing fine particles (polishing slurry) of Comparative Example 2 were used. FIG. 14 shows the surface image (magnification of the objective lens: 20 times) of the sapphire wafer of FIG.
<Polishing conditions>
Polishing equipment: “Desktop single-side polishing machine DIA LAP ACE ML-160A” manufactured by Maruto Co., Ltd.
Polishing pad: "SUBA 600" manufactured by Anchor Techno Co., Ltd.
Polishing pressure: 45.9 kPa (6.6 psi)
Platen rotation speed: 60 rotations / minute Head rotation speed: 60 rotations / minute Polishing time: 1 hour Supply rate of polishing liquid (polishing slurry): 0.3 mL / minute (flowing)
Polishing liquid temperature: 25 ° C
Polishing object: Sapphire wafer (conductivity type: A type)
Area to be polished: 113.04 mm 2
<Ra measurement conditions>
Atomic force microscope: SPA-300V (manufactured by Seiko Instruments Inc.)
Cantilever: POINTPROVE-PLUS Silicon-SPM-Sensor PPP-cont-20

Figure 2020021824
Figure 2020021824

表4の結果から明らかなように、ウエハの表面研磨において、実施例1の本発明の研磨微粒子(研磨スラリー)を使用した場合には、ダイヤモンド粒子のみからなる研磨微粒子(研磨スラリー)、比較例1の研磨微粒子(研磨スラリー)、または比較例2の研磨微粒子(研磨スラリー)を使用した場合と同等以上のRaを示し、研磨後のウエハの表面粗さを改善でき、高い平坦度を有するウエハが得られることがわかった。   As is clear from the results in Table 4, when the polishing fine particles (polishing slurry) of the present invention of Example 1 were used in the surface polishing of the wafer, the polishing fine particles (polishing slurry) consisting only of diamond particles, the comparative example Wafer having a Ra equal to or higher than that of the case of using the polishing fine particles (polishing slurry) 1 or the polishing fine particles (polishing slurry) of Comparative Example 2, improving the surface roughness of the polished wafer, and having a high flatness Was obtained.

以上の結果から、本発明の研磨微粒子を研磨液(研磨スラリー)の研磨剤(砥粒)として用いれば、サファイア基板等の難加工基板の研磨または研削を高レート(高い研磨または研削速度)で行うことができることから、難加工基板の加工時間を短縮したり、難加工基板の製造コストを低減できることがわかった。また、基板の研磨または研削を、本発明の研磨微粒子を含有する研磨液(研磨スラリー)で行うことにより、当該基板表面の凸部を平坦化でき、表面粗さ(Ra)が改善され高い平坦度を有する、研磨品質の高い基板が得られることがわかった。   From the above results, when the abrasive fine particles of the present invention are used as an abrasive (abrasive) of a polishing liquid (polishing slurry), polishing or grinding of a difficult-to-process substrate such as a sapphire substrate can be performed at a high rate (high polishing or grinding speed). Since it can be performed, it has been found that the processing time of a difficult-to-process substrate can be reduced and the manufacturing cost of the difficult-to-process substrate can be reduced. Further, by performing polishing or grinding of the substrate with a polishing liquid (polishing slurry) containing the polishing fine particles of the present invention, the projections on the surface of the substrate can be flattened, and the surface roughness (Ra) is improved and the flatness is improved. It has been found that a substrate having a high polishing quality can be obtained.

本発明の研磨微粒子は、SiC基板、GaN基板、サファイア基板、ダイヤモンド基板等の難加工基板の研磨または研削を高レート(高い研磨または研削速度)で行うことができ、かつ、安定して高い研磨品質を保つことができるため、難加工基板の加工時間を短縮したり、難加工基板の製造コストを低減できる研磨液(研磨スラリー)を提供することができる。   The polishing fine particles of the present invention can perform polishing or grinding of a difficult-to-process substrate such as a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate at a high rate (high polishing or grinding speed), and stably perform high polishing. Since the quality can be maintained, it is possible to provide a polishing liquid (polishing slurry) capable of shortening the processing time of a difficult-to-process substrate and reducing the manufacturing cost of the difficult-to-process substrate.

Claims (13)

ダイヤモンド粒子と、該ダイヤモンド粒子の表面に固定化されたフラーレン誘導体由来の炭素含有構造体とを有し、
励起波長532nmの光で得られるラマンスペクトルにおいて、前記ダイヤモンド粒子に由来する1300〜1350cm−1の領域に存在するピークの最大強度をIDとし、1400〜1500cm−1の領域に存在するピークの最大強度をIとし、1500〜1650cm−1の領域に存在するピークの最大強度をIGとしたときに、I/IDが0以上0.05未満であり、かつ、IG/IDが0以上0.005未満である、研磨微粒子。
Having diamond particles and a carbon-containing structure derived from a fullerene derivative immobilized on the surface of the diamond particles,
In the Raman spectrum obtained by the light having an excitation wavelength of 532 nm, the maximum intensity of the peaks present in the region of 1300~1350Cm -1 derived from the diamond particles and ID, the maximum intensity of the peaks present in the region of 1400~1500Cm -1 Is I and the maximum intensity of the peak existing in the region of 1500 to 1650 cm -1 is IG, I / ID is 0 or more and less than 0.05, and IG / ID is 0 or more and less than 0.005. Abrasive fine particles.
X線光電子分光法を用いた前記炭素含有構造体の表面分析で得られるC1sの光電子スペクトルにおいて、結合エネルギーが283.8〜284.2eVの範囲内における最大強度を第1cpsとし、結合エネルギーが284.8〜285.2eVの範囲内における最大強度を第2cpsとしたときに、第1cps/第2cpsが1.35以上である、請求項1に記載の研磨微粒子。 In a C1s photoelectron spectrum obtained by surface analysis of the carbon-containing structure using X-ray photoelectron spectroscopy, the maximum intensity within a binding energy range of 283.8 to 284.2 eV is 1 cps, and the binding energy is 284. 2. The polishing fine particles according to claim 1, wherein the ratio of 1 cps / second cps is 1.35 or more when the maximum intensity in the range of 0.8 to 285.2 eV is set to 2 cps. 炭素−水素伸縮振動に帰属されるフーリエ変換赤外分光スペクトルにおける2800〜3000cm−1の吸収ピーク強度の比率が、酸素−水素伸縮振動に帰属される3000〜3600cm−1の吸収ピーク強度に対して0以上0.5以下である、請求項1に記載の研磨微粒子。 The ratio of the absorption peak intensity at 2800 to 3000 cm −1 in the Fourier transform infrared spectroscopy attributed to carbon-hydrogen stretching vibration is relative to the absorption peak intensity at 3000 to 3600 cm −1 assigned to oxygen-hydrogen stretching vibration. 2. The abrasive fine particles according to claim 1, wherein the abrasive fine particles have a size of 0 or more and 0.5 or less. 前記炭素含有構造体が、ダイヤモンド粒子表面の一部または全体に存在している、請求項1に記載の研磨微粒子。 The polishing fine particles according to claim 1, wherein the carbon-containing structure is present on a part or the whole of the surface of the diamond particles. 前記炭素含有構造体の厚さが、1nm以上100nm以下である、請求項1に記載の研磨微粒子。 The polishing fine particles according to claim 1, wherein the thickness of the carbon-containing structure is 1 nm or more and 100 nm or less. 前記フラーレン誘導体が、水酸化フラーレンC60である、請求項1に記載の研磨微粒子。 The fullerene derivative is a fullerene C 60, abrasive particles of claim 1. 前記研磨微粒子の平均粒子径が、0.006μm以上10.1μm以下である、請求項1に記載の研磨微粒子。 The polishing fine particles according to claim 1, wherein the average particle diameter of the polishing fine particles is 0.006 µm or more and 10.1 µm or less. 難加工基板の研磨または研削に用いられるものである、請求項1に記載の研磨微粒子。 The polishing fine particles according to claim 1, which is used for polishing or grinding a difficult-to-process substrate. 前記難加工基板が、SiC基板、GaN基板、サファイア基板またはダイヤモンド基板である、請求項8に記載の研磨微粒子。 The polishing fine particles according to claim 8, wherein the difficult-to-process substrate is a SiC substrate, a GaN substrate, a sapphire substrate, or a diamond substrate. ダイヤモンド粒子と、該ダイヤモンド粒子の表面に固定化されたフラーレン誘導体由来の炭素含有構造体とを有する研磨微粒子の製造方法であって、
ダイヤモンド粒子を分散させた溶液中にフラーレン誘導体を加えて混合し、該ダイヤモンド粒子の表面に該フラーレン誘導体を付着させる工程と、
前記フラーレン誘導体が付着している前記ダイヤモンド粒子にマイクロ波を照射して、該フラーレン誘導体を炭素含有構造体に変質させて、ダイヤモンド粒子に炭素含有構造体を固定化させる工程を有することを特徴とする、
研磨微粒子の製造方法。
Diamond particles, a method for producing abrasive fine particles having a carbon-containing structure derived from a fullerene derivative immobilized on the surface of the diamond particles,
Adding and mixing a fullerene derivative in a solution in which the diamond particles are dispersed, and attaching the fullerene derivative to the surface of the diamond particles;
Irradiating the diamond particles to which the fullerene derivative is attached with microwaves to transform the fullerene derivative into a carbon-containing structure, and fixing the carbon-containing structure to the diamond particles. Do
A method for producing abrasive fine particles.
前記マイクロ波の主周波数が、0.5GHz以上15GHz以下である、請求項10に記載の研磨微粒子の製造方法。 The method according to claim 10, wherein a main frequency of the microwave is 0.5 GHz or more and 15 GHz or less. 前記フラーレン誘導体が、水酸化フラーレンC60である、請求項10に記載の研磨微粒子の製造方法。 The fullerene derivative is a fullerene C 60, A method of making an abrasive particle according to claim 10. 前記溶液が、水溶液である、請求項10に記載の研磨微粒子の製造方法。 The method according to claim 10, wherein the solution is an aqueous solution.
JP2018144568A 2018-07-31 2018-07-31 Polishing fine particle and method of producing the same Pending JP2020021824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144568A JP2020021824A (en) 2018-07-31 2018-07-31 Polishing fine particle and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144568A JP2020021824A (en) 2018-07-31 2018-07-31 Polishing fine particle and method of producing the same

Publications (1)

Publication Number Publication Date
JP2020021824A true JP2020021824A (en) 2020-02-06

Family

ID=69589991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144568A Pending JP2020021824A (en) 2018-07-31 2018-07-31 Polishing fine particle and method of producing the same

Country Status (1)

Country Link
JP (1) JP2020021824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806501A (en) * 2022-04-28 2022-07-29 浙江奥首材料科技有限公司 Modified diamond powder, preparation method and application thereof, and polishing solution containing modified diamond powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806501A (en) * 2022-04-28 2022-07-29 浙江奥首材料科技有限公司 Modified diamond powder, preparation method and application thereof, and polishing solution containing modified diamond powder
CN114806501B (en) * 2022-04-28 2023-04-28 浙江奥首材料科技有限公司 Modified diamond powder, preparation method, application and polishing solution containing modified diamond powder

Similar Documents

Publication Publication Date Title
KR100761636B1 (en) A Cerium Oxide Particle
US6615499B1 (en) Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same and method for manufacturing semiconductor device
JP3462052B2 (en) Cerium oxide abrasive and substrate polishing method
JP4523935B2 (en) An aqueous polishing slurry for polishing a silicon carbide single crystal substrate and a polishing method.
TW531555B (en) Cerium oxide slurry for polishing, process for preparing the slurry, and process for polishing with the slurry
JP2008138097A (en) Polishing method of hard crystal substrate and oily polishing slurry
JP2012134515A (en) Method for polishing substrate surface
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
CN101069271A (en) Process for producing abrasive, abrasive produced by the same, and process for producing silicon wafer
JP2020021824A (en) Polishing fine particle and method of producing the same
JP6951933B2 (en) Finish polishing liquid composition for silicon wafer
JP4267546B2 (en) Substrate manufacturing method
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP4356636B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
CN113740331A (en) Dislocation detection method of rare earth metal oxide crystal
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
WO2023157599A1 (en) Method for growing diamond on silicon substrate and method for selectively growing diamond on silicon substrate
JPH11181405A (en) Cerium oxide abrasive and grinding of substrate
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JPH10106993A (en) Polishing method of substrate
JP2008063421A (en) Polishing material composition and its manufacturing method
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190710