JP2020019984A - Refining method of molten steel under reduced pressure - Google Patents

Refining method of molten steel under reduced pressure Download PDF

Info

Publication number
JP2020019984A
JP2020019984A JP2018143405A JP2018143405A JP2020019984A JP 2020019984 A JP2020019984 A JP 2020019984A JP 2018143405 A JP2018143405 A JP 2018143405A JP 2018143405 A JP2018143405 A JP 2018143405A JP 2020019984 A JP2020019984 A JP 2020019984A
Authority
JP
Japan
Prior art keywords
molten steel
powder
vacuum
refining
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018143405A
Other languages
Japanese (ja)
Other versions
JP6939733B2 (en
Inventor
勇輔 藤井
Yusuke Fujii
勇輔 藤井
中井 由枝
Yoshie Nakai
由枝 中井
菊池 直樹
Naoki Kikuchi
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018143405A priority Critical patent/JP6939733B2/en
Publication of JP2020019984A publication Critical patent/JP2020019984A/en
Application granted granted Critical
Publication of JP6939733B2 publication Critical patent/JP6939733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To refine a molten steel efficiently by controlling a residence time of a powder in flame in a case where the molten steel is refined by blowing the powder onto a molten steel bath surface together with a carrier gas through a top blowing lance that forms the flame below a tip under an atmosphere at a pressure lower than an atmospheric pressure.SOLUTION: The present invention provides a refining method of the molten steel under a reduced pressure in which a refining powder ejected together with a jet of carrier gas from the tip of the top blowing lance is heated by the flame formed at a tip of a top blowing lance 13 provided in a vacuum chamber 5 of a vacuum degassing apparatus 1, and a heated powder is blown on the molten steel bath surface in the vacuum chamber. The residence time of the powder in the flame is made 0.02 seconds or more.SELECTED DRAWING: Figure 1

Description

本発明は、大気圧よりも低い圧力の雰囲気下で、先端下方に火炎を形成する上吹きランスを介して搬送用ガスとともに粉体を溶鋼浴面に吹き付けて溶鋼を精錬する、減圧下での溶鋼の精錬方法に関する。   The present invention provides a method for refining molten steel by blowing powder onto a molten steel bath together with a carrier gas through an upper blowing lance that forms a flame below the tip under an atmosphere at a pressure lower than the atmospheric pressure. The present invention relates to a method for refining molten steel.

近年、鉄鋼材料は、その用途が多様化し、従来よりも苛酷な環境下で使用されることが多くなってきている。これに伴い、鉄鋼製品の機械的特性などに対する要求も、従来にも増して厳しくなっている。このような状況下において、構造物の高強度化、軽量化、低コスト化を目的として、高強度と高加工性とを兼備したマンガン含有低炭素鋼が開発され、ラインパイプ用鋼板や自動車用鋼板などの様々な分野で広く用いられている。ここで、マンガン含有低炭素鋼とは、炭素濃度が0.05質量%以下で、マンガン濃度が0.2質量%以上の鋼のことをいう。   In recent years, the use of steel materials has been diversified, and they are often used under more severe environments than before. Along with this, the demands on the mechanical properties and the like of steel products have become stricter than ever. Under these circumstances, manganese-containing low-carbon steels that combine high strength and high workability have been developed for the purpose of increasing the strength, weight, and cost of structures. Widely used in various fields such as steel sheets. Here, the manganese-containing low carbon steel refers to a steel having a carbon concentration of 0.05% by mass or less and a manganese concentration of 0.2% by mass or more.

ところで、製鋼工程において、溶鋼中のマンガン濃度の調整に用いる安価なマンガン源としては、マンガン鉱石や高炭素フェロマンガンなどがある。上記のマンガン含有低炭素鋼を溶製する場合には、転炉で溶銑を脱炭精錬する際に、転炉内に、マンガン源としてマンガン鉱石を投入してマンガン鉱石を還元したり、転炉出鋼時に高炭素フェロマンガンを溶鋼に添加したりして、マンガン成分の調整に費やす費用を抑えながら、溶鋼中のマンガン濃度を所定の濃度まで高めることが行われている(例えば、特許文献1を参照)。   By the way, in the steelmaking process, manganese ore, high-carbon ferromanganese and the like are used as inexpensive manganese sources used for adjusting the manganese concentration in the molten steel. When smelting the above manganese-containing low-carbon steel, when decarburizing and refining hot metal in a converter, manganese ore is introduced into the converter as a manganese source to reduce manganese ore, At the time of tapping, high-carbon ferromanganese is added to molten steel to increase the manganese concentration in the molten steel to a predetermined concentration while suppressing the cost of adjusting the manganese component (for example, Patent Document 1). See).

しかし、これらの安価なマンガン源を使用した場合には、マンガン鉱石を還元するために、転炉での脱炭精錬で溶鋼中の炭素濃度を十分に低減することができなくなったり、或いは、高炭素フェロマンガンに含有される炭素に起因して、転炉から出鋼後の溶鋼中の炭素濃度が上昇したりする。その結果、溶鋼中の炭素濃度がマンガン含有低炭素鋼の許容範囲を超えるおそれのある場合には、転炉からの出鋼後に別途、溶鋼から炭素を除去する処理(精錬)を施すことが必要となる。   However, when these inexpensive manganese sources are used, the carbon concentration in molten steel cannot be sufficiently reduced by decarburization refining in a converter in order to reduce manganese ore, or high Due to the carbon contained in the carbon ferromanganese, the carbon concentration in the molten steel after tapping from the converter increases. As a result, if there is a possibility that the carbon concentration in the molten steel may exceed the allowable range for manganese-containing low-carbon steel, it is necessary to perform a separate treatment (refining) to remove carbon from the molten steel after tapping from the converter. Becomes

転炉から出鋼された後の溶鋼中の炭素を効率良く除去(脱炭)する方法としては、RH真空脱ガス装置などの真空脱ガス設備を用い、溶鋼を減圧下の雰囲気に晒すことで未脱酸状態の溶鋼に含有される溶存酸素(溶鋼中に溶解している酸素)と溶鋼中炭素との反応を利用して脱炭する方法や、減圧下の溶鋼に酸素ガスなどの酸素源を吹き付けて、溶鋼中の炭素を酸素源で酸化して脱炭する方法などが知られている。これらの減圧下での脱炭方法は、大気圧下で行う転炉での脱炭精錬に対して、「真空脱炭精錬」と呼ばれている。   As a method for efficiently removing (decarburizing) the carbon in the molten steel after the steel is removed from the converter, a vacuum degassing device such as an RH vacuum degassing device is used, and the molten steel is exposed to an atmosphere under reduced pressure. Decarburization method using the reaction of dissolved oxygen (oxygen dissolved in molten steel) and carbon in molten steel contained in undeoxidized molten steel, and oxygen source such as oxygen gas to molten steel under reduced pressure Is known, and carbon in molten steel is oxidized with an oxygen source to decarbonize. These decarburization methods under reduced pressure are called "vacuum decarburization refining" as opposed to decarburization refining in a converter performed under atmospheric pressure.

安価なマンガン源によって持ち込まれる炭素を真空脱炭精錬によって除去するべく、例えば、特許文献2には、真空脱ガス設備における真空脱炭精錬の初期段階で、高炭素フェロマンガンを溶鋼中に投入する方法が提案され、また、特許文献3には、真空脱ガス設備で極低炭素鋼を溶製する際に、真空脱炭精錬の処理時間の20%が経過するまでの期間に、高炭素フェロマンガンを投入する方法が提案されている。   In order to remove carbon introduced by an inexpensive manganese source by vacuum decarburization refining, for example, in Patent Document 2, high-carbon ferromanganese is put into molten steel in an initial stage of vacuum decarburization refining in a vacuum degassing facility. Patent Document 3 discloses a method for melting ultra-low carbon steel in a vacuum degassing facility, in which a high-carbon ferromagnetic steel is used for a period up to 20% of the processing time of vacuum decarburization refining. A method of introducing manganese has been proposed.

しかし、マンガンを多量に含む溶鋼の真空脱炭精錬では、酸素が、溶鋼中の炭素だけでなく、溶鋼中のマンガンとも反応するので、添加されたマンガンの酸化ロスが発生してマンガン歩留まりが低下する。また、これにより、溶鋼中のマンガン含有量を精度良く制御することが難しくなる。   However, in vacuum decarburization refining of molten steel containing a large amount of manganese, oxygen reacts not only with carbon in the molten steel, but also with manganese in the molten steel, so oxidized loss of the added manganese occurs and the manganese yield decreases. I do. This also makes it difficult to accurately control the manganese content in the molten steel.

また、真空脱炭精錬において使用する好適な酸素源や脱炭反応促進方法について、例えば、特杵文献4には、真空槽内にミルスケールなどの固体酸素を投入し、これによってマンガンの酸化を抑制して優先的に脱炭反応を行わせる方法が提案され、特許文献5には、転炉での脱炭精錬終了時の溶鋼中炭素濃度と溶鋼温度とを規制した溶鋼に、真空脱ガス装置でマンガン鉱石を添加して溶鋼を真空脱炭精錬する方法が提案されている。   In addition, regarding a suitable oxygen source and a decarburization reaction promoting method used in vacuum decarburization refining, for example, in Japanese Patent Application Laid-Open No. H10-209, solid oxygen such as a mill scale is put into a vacuum chamber to thereby oxidize manganese. Patent Literature 5 proposes a method of controlling the concentration of carbon in molten steel and the temperature of molten steel at the end of decarburization refining in a converter by vacuum degassing. A method has been proposed in which manganese ore is added to a device to vacuum decarburize molten steel.

また更に、特許文献6には、溶鋼をRH真空脱ガス装置で真空脱炭精錬する際に、真空槽内の溶鋼表面に向けて、搬送用ガスとともにMnO粉やマンガン鉱石粉を上吹きして真空脱炭精錬する方法が提案されており、特許文献7には、RH真空脱ガス装置の真空槽内の溶鋼に、真空槽側壁に設けたノズルを介して搬送用ガスとともにマンガン鉱石粉を吹き込み、マンガン鉱石中の酸素によって溶鋼の脱炭を行うとともに、溶鋼中マンガン濃度を高める真空脱炭精錬方法が提案されている。   Further, in Patent Document 6, when molten steel is subjected to vacuum decarburization and refining with an RH vacuum degassing device, MnO powder or manganese ore powder is blown upward together with a carrier gas toward the molten steel surface in the vacuum chamber. A method of vacuum decarburization refining has been proposed. In Patent Document 7, manganese ore powder is blown into a molten steel in a vacuum tank of an RH vacuum degassing apparatus together with a carrier gas through a nozzle provided on a side wall of the vacuum tank. A vacuum decarburization refining method has been proposed in which molten steel is decarburized by oxygen in manganese ore and the manganese concentration in the molten steel is increased.

一方、鉄鋼材料の高付加価値化や使用用途の拡大に伴い、材料特性向上の要求が増しつつあり、この要求に応える手段の一つとして、鋼の高純度化、具体的には、溶鋼の低硫化が行われている。   On the other hand, with the increasing added value of steel materials and the expansion of uses, the demand for improved material properties is increasing. One of the means to meet this demand is to purify steel, specifically, Low sulfurization is taking place.

低硫鋼を溶製する際、一般的に、脱硫反応効率の高い溶銑段階で脱硫処理が行われるが、硫黄含有量を0.0024質量%以下とする低硫鋼や、硫黄含有量を0.0010質量%以下とする極低硫鋼では、溶銑段階での脱硫処理だけでは目的とする硫黄濃度まで十分に低下することが困難であり、したがって、硫黄含有量を0.0024質量%以下とする低硫鋼や硫黄含有量を0.0010質量%以下とする極低硫鋼では、溶銑段階の脱硫処理のみならず、転炉から出鋼後の溶鋼に対しても脱硫処理が施される。   When smelting low-sulfur steel, desulfurization is generally performed at the hot metal stage with a high desulfurization reaction efficiency. However, low-sulfur steel with a sulfur content of 0.0024 mass% or less or sulfur content of 0% or less is used. In ultra-low sulfur steel of 0.0010% by mass or less, it is difficult to sufficiently reduce the sulfur concentration to the target concentration only by the desulfurization treatment in the hot metal stage, and therefore, the sulfur content is 0.0024% by mass or less. In the case of low-sulfur steels and ultra-low-sulfur steels with a sulfur content of 0.0010% by mass or less, not only desulfurization treatment at the hot metal stage but also desulfurization treatment of molten steel after tapping from the converter is performed. .

転炉から出鋼後の溶鋼に対して脱硫処理を行う方法は、例えば、取鍋内の溶鋼に脱硫剤をインジェクションする方法、取鍋内の溶鋼に脱硫剤を添加した後に溶鋼と脱硫剤とを攪拌する方法など、従来から様々な方法が提案されている。しかし、これらの方法は、転炉出鋼から真空脱ガス設備での処理までの期間に、新たな工程(脱硫工程)を追加することになり、溶鋼温度の低下や製造コストの上昇、更には生産性の低下などを招く。これらの問題を解決するために、真空脱ガス設備に脱硫機能を持たせることによって、二次精錬工程を集約し、簡素化する試みがなされている。   The method of performing desulfurization treatment on the molten steel after tapping from the converter is, for example, a method of injecting a desulfurizing agent into the molten steel in the ladle, adding the desulfurizing agent to the molten steel in the ladle, and then adding the desulfurizing agent to the molten steel. Conventionally, various methods have been proposed, such as a method of stirring a mixture. However, in these methods, a new process (desulfurization process) is added during the period from the output from the converter to the treatment in the vacuum degassing equipment, which lowers the molten steel temperature, increases the production cost, and further increases the production cost. This leads to lower productivity. In order to solve these problems, attempts have been made to consolidate and simplify the secondary refining process by providing a desulfurization function to the vacuum degassing equipment.

例えば、特許文献8には、真空脱ガス設備を用いた脱硫方法として、真空槽内の溶鋼浴面上に、上吹きランスからCaO系脱硫剤を搬送用ガスとともに吹き付けて溶鋼を脱硫する方法が提案されている。   For example, Patent Document 8 discloses a method of desulfurizing molten steel by spraying a CaO-based desulfurizing agent together with a carrier gas from a top blowing lance onto a molten steel bath surface in a vacuum chamber as a desulfurization method using vacuum degassing equipment. Proposed.

しかし、真空脱ガス設備での精錬中に、マンガン含有低炭素鋼を溶製するためのマンガン鉱石や、脱硫処理するためのCaO系脱硫剤などの酸化物粉体を上吹きランスから吹き付けると、吹き付け添加される酸化物粉体の顕熱、潜熱及び熱分解に要する分解熱によって溶鋼温度が低下する。尚、上吹きランスを介して、搬送用ガスとともに粉体を溶鋼に吹き付けることを「投射」ともいう。   However, during refining in a vacuum degassing facility, when manganese ore for smelting manganese-containing low-carbon steel or oxide powder such as CaO-based desulfurizing agent for desulfurization treatment is blown from the upper blowing lance, The molten steel temperature is lowered by the sensible heat, latent heat and decomposition heat required for the thermal decomposition of the oxide powder to be added by spraying. In addition, spraying powder along with a carrier gas onto molten steel via an upper blowing lance is also referred to as “projection”.

この溶鋼温度の低下を補償する方法として、真空脱ガス設備の前工程で溶鋼温度を高めておく方法や、真空脱ガス設備での精錬中に、溶鋼に金属アルミニウムを添加し、アルミニウムの燃焼熱で溶鋼温度を高める方法などが行われている。しかし、真空脱ガス設備の前工程で溶鋼温度を高める方法は、前工程における耐火物の損耗が大きく、コストアップを招く。また、真空脱ガス設備で金属アルミニウムを添加して昇温する方法は、生成したアルミニウム酸化物に起因して溶鋼の清浄度が低下したり、副原料コストが上昇したりするなどの弊害がある。   As a method of compensating for the decrease in the molten steel temperature, a method of increasing the molten steel temperature in the previous process of the vacuum degassing equipment, or adding metal aluminum to the molten steel during refining in the vacuum degassing equipment, and setting a heat of combustion of aluminum. For example, a method of raising the temperature of molten steel has been carried out. However, the method of raising the temperature of molten steel in the pre-process of the vacuum degassing facility causes large wear of refractories in the pre-process, resulting in a cost increase. In addition, the method of adding metal aluminum in a vacuum degassing facility to raise the temperature has a disadvantage such as a decrease in cleanliness of molten steel or an increase in auxiliary material costs due to the generated aluminum oxide. .

そこで、溶鋼温度の低下を抑制しながら酸化物の粉体を投射する方法が提案されている。例えば、特許文献9には、マンガン鉱石などの酸化物の粉体を、上吹きランス先端に設けられたバーナーの火炎で加熱しながら溶鋼浴面上に投射する方法が提案されている。また、特許文献10には、上吹きランスからCaO系脱硫剤を投射して溶鋼を脱硫する際に、上吹きランスから燃料ガスと酸素ガスとを噴出して上吹きランス先端下方にバーナーの火炎を形成し、この火炎によってCaO系脱硫剤を加熱、溶融して溶鋼浴面に到達させる方法が提案されている。   Therefore, a method of projecting an oxide powder while suppressing a decrease in molten steel temperature has been proposed. For example, Patent Document 9 proposes a method of projecting an oxide powder such as manganese ore onto a molten steel bath surface while heating it with a flame of a burner provided at the tip of an upper blowing lance. Further, Patent Document 10 discloses that when a CaO-based desulfurizing agent is projected from an upper blowing lance to desulfurize molten steel, a fuel gas and an oxygen gas are ejected from the upper blowing lance and a flame of a burner is provided below a tip of the upper blowing lance. A method has been proposed in which a CaO-based desulfurizing agent is heated and melted by the flame to reach a molten steel bath surface.

特開平4−88114号公報JP-A-4-88114 特開平2−47215号公報JP-A-2-47215 特開平1−301815号公報JP-A-1-301815 特開昭58−73715号公報JP-A-58-73715 特開昭63−293109号公報JP-A-63-293109 特開平5−239526号公報JP-A-5-239526 特開平1−92312号公報JP-A-1-92312 特開平5−311231号公報JP-A-5-31231 国際公開第2013/137292号International Publication No. 2013/137292 特開2012−172213号公報JP 2012-172213 A

マンガン鉱石やCaO系脱硫剤などの粉体を、上吹きランス先端に形成されるバーナー火炎内で加熱して溶鋼に投射し、これにより、反応速度を促進させると同時に、溶鋼温度を上昇させることを目的とする精錬方法では、投射される粉体の前記火炎内での滞留時間が、マンガン鉱石の歩留まりやCaO系脱硫剤の脱硫効率のみならず、粉体を介して行われる着熱効率を左右する。つまり、上吹きランスを介して投射する粉体の火炎内での滞留時間を制御しない場合には、粉体をバーナーの火炎で加熱して投射することによる効果を十分に得ることができない。   Heating powder such as manganese ore and CaO-based desulfurizing agent into the molten steel in a burner flame formed at the tip of the upper blowing lance, thereby increasing the reaction speed and simultaneously increasing the molten steel temperature In the refining method, the residence time of the projected powder in the flame affects not only the yield of the manganese ore and the desulfurization efficiency of the CaO-based desulfurizing agent, but also the heating efficiency performed through the powder. I do. That is, when the residence time of the powder projected through the upper blowing lance in the flame is not controlled, the effect of heating and projecting the powder with the flame of the burner cannot be sufficiently obtained.

しかしながら、特許文献9、10を含め、マンガン鉱石やCaO系脱硫剤といった粉体を火炎内で加熱して溶鋼に到達させ、溶鋼温度を上昇させるのに最適な粉体の投射条件は、未だ明らかにされていない。   However, the optimal powder projection conditions for heating powder such as manganese ore and CaO-based desulfurizing agent in a flame to reach the molten steel and raise the temperature of the molten steel, including Patent Documents 9 and 10, are still unclear. Has not been.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、大気圧よりも低い圧力の雰囲気下で、先端下方に火炎を形成する上吹きランスを介して搬送用ガスとともに粉体を溶鋼浴面に吹き付けて溶鋼を精錬するにあたり、上吹きランスを介して投射する粉体の火炎内での滞留時間を制御することで、効率的に溶鋼を精錬することのできる、減圧下での溶鋼の精錬方法を提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is to form a powder together with a carrier gas through an upper blowing lance which forms a flame below a tip under an atmosphere having a pressure lower than the atmospheric pressure. In refining molten steel by spraying it onto the molten steel bath surface, by controlling the residence time of the powder projected through the top blowing lance in the flame, the molten steel can be efficiently refined under reduced pressure. To provide a method for refining molten steel.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]真空脱ガス設備の真空槽に設置された上吹きランスの先端に形成される火炎で、該上吹きランスの先端から搬送用ガスの噴出流とともに噴射される精錬用の粉体を加熱し、加熱した粉体を真空槽内の溶鋼浴面に吹き付ける、減圧下での溶鋼の精錬方法であって、
前記粉体の前記火炎内での滞留時間を0.02秒以上とすることを特徴とする、減圧下での溶鋼の精錬方法。
[2]前記滞留時間を、下記の(1)式から(5)式を用いて算出することを特徴とする、上記[1]に記載の減圧下での溶鋼の精錬方法。
The gist of the present invention for solving the above problems is as follows.
[1] A flame formed at the tip of an upper blowing lance installed in a vacuum tank of a vacuum degassing facility, which heats a powder for refining, which is jetted from the tip of the upper blowing lance together with a jet of carrier gas. A method for refining molten steel under reduced pressure, wherein the heated powder is sprayed on a molten steel bath surface in a vacuum chamber,
A method for refining molten steel under reduced pressure, wherein a residence time of the powder in the flame is 0.02 seconds or more.
[2] The method for refining molten steel under reduced pressure according to the above [1], wherein the residence time is calculated from the following equation (1) using equation (5).

Figure 2020019984
Figure 2020019984

ここで、tは、粉体の火炎内での滞留時間(s)、uは、上吹きランスから出た直後の粉体の速度(m/s)、aは、粉体の加速度(m/s)、xは、上吹きランス先端から溶鋼浴面までの距離(m)、Fは、粉体の流れ方向に生じる抗力(N)、uは、上吹きランスから出た直後の噴出流のガス速度(m/s)、gは、重力加速度(m/s)、ρは、粉体の密度(kg/m)、ρは、上吹きランスから出た直後の噴出流のガス密度(kg/m)、μは、上吹きランスから出た直後の噴出流のガス粘性(Pa・s)、dは、粉体の直径(m)、Cは、粉体の抗力係数(−)、Reは、レイノズル数(−)である。
[3]前記上吹きランスとして、前記粉体を搬送用ガスとともに噴射する粉体噴射ノズルと、該粉体噴射ノズルの外周側に形成された、燃料噴射ノズル開口部を有する、燃料を噴射するための1個以上の燃料噴射ノズルと、前記粉体噴射ノズルの外周側に形成された、酸化性ガス噴射ノズル開口部を有する、燃料燃焼用の酸化性ガスを噴射するための1個以上の酸化性ガス噴射ノズルと、を備えている上吹きランスを使用することを特徴とする、上記[1]または上記[2]に記載の減圧下での溶鋼の精錬方法。
[4]前記真空脱ガス設備としてRH真空脱ガス装置を使用し、下記の(6)式を用いて算出される、RH真空脱ガス装置の真空槽における溶鋼の滞在時間が、5秒以上となるように、取鍋内の溶鋼を真空槽に環流させることを特徴とする、上記[1]から上記[3]のいずれかに記載の減圧下での溶鋼の精錬方法。
Here, t is the powder residence time in the flame (s), u p is the rate of the powder after leaving the top-blown lance (m / s), a p is the powder acceleration ( m / s 2), x is the distance from the top lance tip to the molten steel bath surface (m), F D occurs in the flow direction of the powder drag (N), u g exited from the top lance The gas velocity (m / s) of the immediately following jet flow, g is the gravitational acceleration (m / s 2 ), ρ p is the density of the powder (kg / m 3 ), and ρ g is from the top blowing lance. The gas density (kg / m 3 ) of the jet flow immediately after, μ g is the gas viscosity (Pa · s) of the jet flow immediately after leaving the top blowing lance, d p is the diameter (m) of the powder, C d is the drag coefficient (-) of the powder, and Re is the Reynolds number (-).
[3] As the upper blowing lance, a fuel injection nozzle having a powder injection nozzle for injecting the powder with the carrier gas and a fuel injection nozzle opening formed on the outer peripheral side of the powder injection nozzle is used to inject fuel. One or more fuel injection nozzles for injecting an oxidizing gas for fuel combustion having an oxidizing gas injection nozzle opening formed on the outer peripheral side of the powder injection nozzle. The method for refining molten steel under reduced pressure according to the above [1] or [2], wherein an upper blowing lance having an oxidizing gas injection nozzle is used.
[4] The residence time of the molten steel in the vacuum tank of the RH vacuum degassing device, calculated using the following formula (6), using an RH vacuum degassing device as the vacuum degassing device, is 5 seconds or more. The method for refining molten steel under reduced pressure according to any one of the above [1] to [3], wherein the molten steel in the ladle is recirculated to a vacuum tank.

Figure 2020019984
Figure 2020019984

ここで、τは、溶鋼の真空槽における滞在時間(s)、ρは、溶鋼の密度(kg/m)、Sは、真空槽の敷から100mmの高さ位置の水平断面における真空槽内空虚部分の面積(m)、gは、重力加速度(m/s)、Qは、溶鋼の環流量(ton/min)、Sdは、浸漬管下端の水平断面における浸漬管内空虚部分の面積(m)、Hは、真空槽内の浴面静止状態での溶鋼高さ(m)である。
[5]前記粉体が、マンガン鉱石、マンガン系合金鉄、CaO系脱硫剤のうちのいずれか1種または2種以上であることを特徴とする、上記[1]から上記[4]のいずれかに記載の減圧下での溶鋼の精錬方法。
[6]前記真空槽内の雰囲気の圧力が、2.7kPa以上13.3kPa以下であることを特徴とする、上記[1]から上記[5]のいずれかに記載の減圧下での溶鋼の精錬方法。
Here, τ is the residence time (s) of the molten steel in the vacuum chamber, ρ M is the density of the molten steel (kg / m 3 ), and Sv is the vacuum in the horizontal section at a height of 100 mm from the floor of the vacuum chamber. The area (m 2 ) of the empty part in the tank, g is the gravitational acceleration (m / s 2 ), Q is the annular flow rate of the molten steel (ton / min), and Sd is the empty part in the horizontal cross section of the lower end of the dip pipe. (M 2 ) and H m are the height (m) of the molten steel in a vacuum bath with the bath surface stationary.
[5] The powder according to any one of [1] to [4], wherein the powder is one or more of manganese ore, manganese ferroalloy, and CaO-based desulfurizing agent. A method for refining molten steel under reduced pressure as described in (1).
[6] The molten steel under reduced pressure according to any of [1] to [5], wherein the pressure of the atmosphere in the vacuum chamber is 2.7 kPa or more and 13.3 kPa or less. Refining method.

本発明によれば、減圧雰囲気下で、上吹きランスの先端に形成される火炎で精錬用の粉体を加熱し、加熱した粉体を溶鋼に投射する際に、粉体の火炎内での滞留時間を0.02秒以上とするので、投射する粉体を効率的に加熱し且つ効率的に溶鋼を精錬することができる。その結果、精錬反応が促進され、且つ、高い着熱効率が得られ、精錬コストの削減に寄与する。   According to the present invention, under reduced pressure atmosphere, the powder for refining is heated by a flame formed at the tip of the upper blowing lance, and when the heated powder is projected on molten steel, Since the residence time is 0.02 seconds or more, the powder to be projected can be efficiently heated and the molten steel can be efficiently refined. As a result, the refining reaction is promoted, and a high heating efficiency is obtained, contributing to a reduction in the refining cost.

本発明を実施する際に用いるRH真空脱ガス装置の一例の概略縦断面図である。FIG. 1 is a schematic vertical sectional view of an example of an RH vacuum degassing apparatus used when carrying out the present invention. 使用する上吹きランスの一例の先端部の概略縦断面図である。It is an outline longitudinal section of the tip part of an example of the upper blowing lance used.

以下、本発明を具体的に説明する。本発明に係る減圧下での溶鋼の精錬方法を用いることができる真空脱ガス設備には、RH真空脱ガス装置、DH真空脱ガス装置、VAD炉、VOD炉などがあるが、それらの中で最も代表的なものは、RH真空脱ガス装置である。そこで、RH真空脱ガス装置を用いて本発明を実施する場合を例として、本発明を説明する。   Hereinafter, the present invention will be described specifically. Vacuum degassing equipment that can use the method of refining molten steel under reduced pressure according to the present invention includes RH vacuum degassing equipment, DH vacuum degassing equipment, VAD furnace, VOD furnace, and the like. The most typical one is an RH vacuum degasser. Therefore, the present invention will be described by way of an example in which the present invention is implemented using an RH vacuum degassing apparatus.

図1に、本発明を実施する際に用いるRH真空脱ガス装置の一例の概略縦断面図を示す。図1において、符号1はRH真空脱ガス装置、2は取鍋、3は溶鋼、4はスラグ、5は真空槽、6は上部槽、7は下部槽、8は上昇側浸漬管、9は下降側浸漬管、10は環流用ガス吹き込み管、11はダクト、12は原料投入口、13は上吹きランスであり、真空槽5は、上部槽6と下部槽7とから構成され、また、上吹きランス13は、真空槽5の上部に設置され、真空槽5の内部で上下移動が可能となっている。   FIG. 1 shows a schematic longitudinal sectional view of an example of an RH vacuum degassing apparatus used when carrying out the present invention. In FIG. 1, reference numeral 1 denotes an RH vacuum degassing apparatus, 2 denotes a ladle, 3 denotes molten steel, 4 denotes slag, 5 denotes a vacuum tank, 6 denotes an upper tank, 7 denotes a lower tank, 8 denotes an ascending-side immersion pipe, and 9 denotes a immersion pipe. Descending side immersion pipe, 10 is a reflux gas blowing pipe, 11 is a duct, 12 is a raw material inlet, 13 is an upper blowing lance, and the vacuum tank 5 is composed of an upper tank 6 and a lower tank 7, and The upper blowing lance 13 is installed above the vacuum chamber 5 and can move up and down inside the vacuum chamber 5.

RH真空脱ガス装置1では、溶鋼3を収容した取鍋2を昇降装置(図示せず)にて上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋内の溶鋼3に浸漬させる。そして、環流用ガス吹き込み管10から上昇側浸漬管8の内部に環流用ガスを吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置(図示せず)にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋内の溶鋼3は、環流用ガス吹き込み管10から吹き込まれる環流用ガスによるガスリフト効果によって、環流用ガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を経由して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が施される。   In the RH vacuum degassing apparatus 1, the ladle 2 containing the molten steel 3 is raised by an elevating device (not shown), and the ascending immersion pipe 8 and the descending immersion pipe 9 are immersed in the molten steel 3 in the ladle. . Then, while circulating gas is blown into the rising side immersion pipe 8 from the circulating gas blowing pipe 10, the inside of the vacuum tank 5 is evacuated by an exhaust device (not shown) connected to the duct 11, and the vacuum tank is evacuated. The inside of 5 is depressurized. When the inside of the vacuum chamber 5 is decompressed, the molten steel 3 in the ladle rises along with the reflux gas and rises the rising-side immersion pipe 8 by the gas lift effect of the reflux gas blown from the reflux gas blow-in pipe 10. The gas flows into the tank 5 and then returns to the ladle 2 via the descending immersion pipe 9 to form a so-called reflux, and is subjected to RH vacuum degassing refining.

上吹きランス13は、精錬用の粉体として、マンガン鉱石、マンガン系合金鉄、CaO系脱硫剤などの粉体の1種または2種以上を搬送用ガスとともに供給する粉体流路と、燃料である炭化水素系ガスを供給する燃料流路と、燃料の炭化水素系ガスを燃焼するための酸化性ガス(酸素含有ガス)を供給する酸化性ガス流路と、上吹きランス13を冷却するための冷却水の供給流路及び排水流路とを、それぞれ独立して有する多重管構造である。尚、マンガン系合金鉄とは、高炭素フェロマンガン、中炭素フェロマンガンなどであり、CaO系脱硫剤とは、生石灰(CaO)単独、生石灰に蛍石(CaF)やアルミナ(Al)を30質量%以下の範囲で添加・混合した混合体(プリメルトを含む)などである。 The upper blowing lance 13 is provided with a powder flow path for supplying one or more kinds of powders such as manganese ore, manganese-based iron alloy, and CaO-based desulfurizing agent together with a carrier gas as powder for refining, , An oxidizing gas passage for supplying an oxidizing gas (oxygen-containing gas) for burning the hydrocarbon gas as a fuel, and cooling the upper blowing lance 13. Pipe structure having a cooling water supply channel and a drain channel independently for each other. The manganese-based ferroalloys include high-carbon ferromanganese and medium-carbon ferromanganese, and the CaO-based desulfurizing agents include quicklime (CaO) alone, and quicklime containing fluorite (CaF 2 ) or alumina (Al 2 O 3). ) In a range of 30% by mass or less (including pre-melt).

図2に、使用する上吹きランス13の一例の先端部の概略縦断面図を示す。図2に示すように、上吹きランス13は、その先端部の略中心位置に、精錬用の粉体を搬送用ガスの噴出流とともに噴射するための粉体噴射ノズル21を備えている。そして、更に、粉体噴射ノズル21の外周側に、燃料噴射ノズル開口部24を有する、燃料を噴射するための1個以上の燃料噴射ノズル23と、粉体噴射ノズル21の外周側に、酸化性ガス噴射ノズル開口部26を有する、燃料燃焼用の酸化性ガスを噴射するための1個以上の酸化性ガス噴射ノズル25と、を備えている。尚、燃料の着火を容易にするために、上吹きランス13の先端に、燃料を着火するためのパイロットバーナー、スパークプラグなどを設けてもよい。   FIG. 2 shows a schematic longitudinal sectional view of a tip portion of an example of the upper blowing lance 13 to be used. As shown in FIG. 2, the upper blowing lance 13 is provided with a powder injection nozzle 21 for injecting the powder for refining together with the ejection flow of the carrier gas at a substantially central position of the tip portion. Further, one or more fuel injection nozzles 23 for injecting fuel having a fuel injection nozzle opening 24 on the outer peripheral side of the powder injection nozzle 21 and the outer peripheral side of the powder injection nozzle 21 are oxidized. One or more oxidizing gas injection nozzles 25 having an oxidizing gas injection nozzle opening 26 for injecting an oxidizing gas for fuel combustion. Note that a pilot burner, a spark plug, or the like for igniting the fuel may be provided at the tip of the upper blowing lance 13 to facilitate the ignition of the fuel.

粉体噴射ノズル21は、その形状が、粉体噴射ノズル開口部22に向かって断面積が徐々に広がったラバール構造であり、真空槽5の内部を環流する溶鋼3に、精錬用の粉体を搬送用ガスとともに噴射できるようになっている。また、粉体を噴射せずに、気体(例えば酸素ガス)だけを噴射できるようにもなっている。但し、粉体噴射ノズル21は、ラバール構造に限ることはなく、ストレート形状であってもよい。   The powder injection nozzle 21 has a Laval structure in which the cross-sectional area gradually widens toward the powder injection nozzle opening 22, and the powder for refining is applied to the molten steel 3 circulating inside the vacuum chamber 5. Can be injected together with the carrier gas. Further, it is also possible to inject only gas (for example, oxygen gas) without injecting powder. However, the powder injection nozzle 21 is not limited to the Laval structure, and may be a straight shape.

燃料噴射ノズル23は、火炎を形成するための燃料として、例えば炭化水素系ガスを噴射するようになっている。酸化性ガス噴射ノズル25は、燃料噴射ノズル23から噴射される燃料と混合して燃料を燃焼させるための酸化性ガスを噴射するようになっている。酸化性ガスとしては、通常、酸素ガスが使用されるが、酸素ガス含有量が空気以上である酸素含有ガスも酸化性ガスとして使用することができる。尚、ここでは、燃料として炭化水素系ガスを使用した例を説明するが、軽油、重油などの液体燃料も燃料として使用可能である。   The fuel injection nozzle 23 is configured to inject, for example, a hydrocarbon gas as fuel for forming a flame. The oxidizing gas injection nozzle 25 is configured to inject an oxidizing gas for burning the fuel by mixing with the fuel injected from the fuel injection nozzle 23. Oxygen gas is generally used as the oxidizing gas, but an oxygen-containing gas having an oxygen gas content equal to or higher than air can also be used as the oxidizing gas. Here, an example in which a hydrocarbon-based gas is used as the fuel will be described, but a liquid fuel such as light oil or heavy oil can also be used as the fuel.

上吹きランスの13の外周側には、上吹きランス13を冷却するための冷却水給水路27及び冷却水排水路28が設けられている。冷却水給水路27及び冷却水排水路28は、鉛直方向下方側から見て環状形状を有しており、冷却水が上吹きランス13の先端部で反転して循環するようになっている。   A cooling water supply passage 27 and a cooling water drainage passage 28 for cooling the upper blowing lance 13 are provided on the outer peripheral side of the upper blowing lance 13. The cooling water supply channel 27 and the cooling water drainage channel 28 have an annular shape when viewed from the lower side in the vertical direction, and the cooling water is inverted and circulated at the tip of the upper blowing lance 13.

使用する上吹きランス13は、上記のように構成されており、燃料噴射ノズル23を介して噴射される燃料(炭化水素系ガス)が、酸化性ガス噴射ノズル25を介して噴射される酸化性ガス(酸素ガス、酸素富化空気、空気など)によって燃焼し、上吹きランス13の先端下方にバーナー火炎が形成される。   The upper blowing lance 13 used is configured as described above, and the fuel (hydrocarbon-based gas) injected through the fuel injection nozzle 23 is oxidized by the oxidizing gas injection nozzle 25. Burning is performed by gas (oxygen gas, oxygen-enriched air, air, etc.), and a burner flame is formed below the tip of the upper blowing lance 13.

上吹きランス13は、マンガン鉱石、マンガン系合金鉄、CaO系脱硫剤などの粉体を貯蔵しているホッパー(図示せず)と連結されており、これらの粉体が搬送用ガスとともに上吹きランス13に供給され、上吹きランス13の先端の粉体噴射ノズル21から噴射される。粉体の搬送用ガスとしては、通常、アルゴンガスや窒素ガスなどの不活性ガスを用いるが、マンガン含有低炭素鋼を溶製する場合のように、溶鋼3の真空脱炭精錬を行う場合には、酸化性ガスを搬送用ガスとして使用することもできる。粉体噴射ノズル21の外周に燃料噴射ノズル23及び酸化性ガス噴射ノズル25が配置されているので、粉体噴射ノズル21からの噴出流に対する上吹きランス13の先端下方に形成されるバーナー火炎の影響が少なくなり、前記噴出流とともに噴射される粉体の飛散が抑制される。   The upper blowing lance 13 is connected to a hopper (not shown) storing powders of manganese ore, manganese ferroalloy, CaO desulfurizing agent, etc., and these powders are blown up together with the carrier gas. The powder is supplied to the lance 13 and injected from the powder injection nozzle 21 at the tip of the upper blowing lance 13. An inert gas such as an argon gas or a nitrogen gas is usually used as a powder transfer gas. However, when performing vacuum decarburization refining of the molten steel 3 as in the case of melting manganese-containing low carbon steel. In the above, an oxidizing gas can be used as a carrier gas. Since the fuel injection nozzle 23 and the oxidizing gas injection nozzle 25 are arranged on the outer periphery of the powder injection nozzle 21, the burner flame formed below the tip of the upper blowing lance 13 with respect to the jet flow from the powder injection nozzle 21. The influence is reduced, and the scattering of the powder injected together with the jet flow is suppressed.

また、上吹きランス13は、燃料供給管(図示せず)及び酸化性ガス供給管(図示せず)と連結されており、燃料供給管からは、燃料として、プロパンガスや天然ガスなどの炭化水素系ガスが上吹きランス13に供給され、酸化性ガス供給管からは、炭化水素系ガスを燃焼させるための酸化性ガスが上吹きランス13に供給され、前述したように、炭化水素系ガスが上吹きランス13の先端に設けられた燃料噴射ノズル23から噴射され、酸化性ガスが、上吹きランス13の先端に設けられた酸化性ガス噴射ノズル25から噴射されるように構成されている。   The upper blowing lance 13 is connected to a fuel supply pipe (not shown) and an oxidizing gas supply pipe (not shown). From the fuel supply pipe, carbonized fuel such as propane gas or natural gas is supplied as fuel. A hydrogen-based gas is supplied to the upper blowing lance 13, and an oxidizing gas for burning the hydrocarbon-based gas is supplied to the upper blowing lance 13 from the oxidizing gas supply pipe. Is injected from a fuel injection nozzle 23 provided at the tip of the upper blowing lance 13, and the oxidizing gas is injected from an oxidizing gas injection nozzle 25 provided at the tip of the upper blowing lance 13. .

このように構成されるRH真空脱ガス装置1を用い、上吹きランス13の先端下方に燃料(炭化水素系ガス)の燃焼によって火炎を形成し、この火炎で上吹きランス13から投射する粉体を、加熱しながら真空槽5を環流する溶鋼3の浴面に向けて投射する。その際に、粉体の火炎内での滞留時間が0.02秒以上になるように制御する。粉体投射時の上吹きランス13のランス高さ(真空槽内の浴面静止状態での溶鋼湯面からランス先端までの距離)は、1.0〜7.0mとすることが好ましい。ランス高さが1.0m未満では、溶鋼3の飛沫によって燃料噴射ノズル23及び酸化性ガス噴射ノズル25が閉塞するおそれがあり、一方、ランス高さが7.0mを超えると、ダクト11に吸引される排気ガスとともに真空槽5から排出する粉体が多くなり、粉体の添加歩留まりが低下する。   Using the RH vacuum degassing apparatus 1 configured as described above, a flame is formed by the combustion of a fuel (hydrocarbon-based gas) below the tip of the upper blowing lance 13, and the powder projected from the upper blowing lance 13 by this flame Is projected onto the bath surface of the molten steel 3 which recirculates the vacuum tank 5 while heating. At that time, control is performed so that the residence time of the powder in the flame is 0.02 seconds or more. The lance height of the upper blowing lance 13 during powder projection (the distance from the molten steel surface to the tip of the lance when the bath surface in the vacuum chamber is stationary) is preferably 1.0 to 7.0 m. If the lance height is less than 1.0 m, the fuel injection nozzle 23 and the oxidizing gas injection nozzle 25 may be blocked by the splash of the molten steel 3, while if the lance height exceeds 7.0 m, the suction into the duct 11. The amount of powder discharged from the vacuum chamber 5 together with the exhaust gas to be discharged increases, and the yield of powder addition decreases.

粉体の火炎内での滞留時間は、火炎の長さと火炎を通過するときの粉体の速度で求められる。但し、粉体の火炎内での滞留時間を精度良く求めるためには、下記の(1)式から(5)式を用いて求めることが好ましい。   The residence time of the powder in the flame is determined by the length of the flame and the speed of the powder as it passes through the flame. However, in order to accurately obtain the residence time of the powder in the flame, it is preferable to use the following equations (1) to (5).

Figure 2020019984
Figure 2020019984

ここで、tは、粉体の火炎内での滞留時間(s)、uは、粉体の速度(m/s)、aは、粉体の加速度(m/s)、xは、上吹きランス先端から溶鋼浴面までの距離(m)、Fは、粉体の流れ方向に生じる抗力(N)、uは、上吹きランスから出た直後の噴出流のガス速度(m/s)、gは、重力加速度(m/s)、ρは、粉体の密度(kg/m)、ρは、上吹きランスから出た直後の噴出流のガス密度(kg/m)、μは、上吹きランスから出た直後の噴出流のガス粘性(Pa・s)、dは、粉体の直径(m)、Cは、粉体の抗力係数(−)、Reは、レイノズル数(−)である。 Here, t is the powder residence time in the flame (s), u p is the powder rate of (m / s), a p is the powder of the acceleration (m / s 2), x is , the distance from the top lance tip to the molten steel bath surface (m), F D occurs in the flow direction of the powder drag (N), u g is the gas velocity of the jet stream immediately after exiting from the top lance ( m / s), g is the gravitational acceleration (m / s 2 ), ρ p is the density of the powder (kg / m 3 ), and ρ g is the gas density of the jet immediately after leaving the top blowing lance ( kg / m 3 ), μ g are the gas viscosity (Pa · s) of the jet flow immediately after leaving the upper blowing lance, d p is the diameter of the powder (m), and C d is the drag coefficient of the powder. (−) And Re are the number of Reynolds nozzles (−).

真空槽5の内部の雰囲気の圧力を過剰に小さくすると、ダクト11に吸引される排気ガスとともに真空槽5から排出する粉体が多くなることから、これを防止するために、粉体投射時の真空槽5の内部の雰囲気の圧力を2.7kPa以上13.3kPa以下とすることが好ましい。   If the pressure of the atmosphere inside the vacuum chamber 5 is excessively reduced, the amount of powder discharged from the vacuum chamber 5 together with the exhaust gas sucked into the duct 11 increases. It is preferable that the pressure of the atmosphere inside the vacuum chamber 5 be set to 2.7 kPa or more and 13.3 kPa or less.

真空脱ガス設備としてRH真空脱ガス装置1を使用する場合には、粉体の熱を溶鋼3に高い効率で着熱させるために、下記の(6)式を用いて算出される、RH真空脱ガス装置1の真空槽5における溶鋼3の滞在時間が5秒以上となるように、取鍋2に収容された溶鋼3を真空槽5に環流させることが好ましい。但し、滞在時間が長くなりすぎると、真空脱ガス精錬の処理時間が長くなって、溶鋼3の温度低下が生ずる可能性があるので、滞在時間は2分以下とすることが望ましい。   When the RH vacuum degassing apparatus 1 is used as the vacuum degassing equipment, the RH vacuum is calculated using the following equation (6) in order to heat the powder to the molten steel 3 with high efficiency. It is preferable that the molten steel 3 stored in the ladle 2 be returned to the vacuum tank 5 so that the residence time of the molten steel 3 in the vacuum tank 5 of the degassing device 1 is 5 seconds or more. However, if the staying time is too long, the processing time of the vacuum degassing refining becomes long, and there is a possibility that the temperature of the molten steel 3 may decrease. Therefore, the staying time is desirably 2 minutes or less.

Figure 2020019984
Figure 2020019984

ここで、τは、溶鋼の真空槽における滞在時間(s)、ρは、溶鋼の密度(kg/m)、Sは、真空槽の敷から100mmの高さ位置の水平断面における真空槽内空虚部分の面積(m)、gは、重力加速度(m/s)、Qは、溶鋼の環流量(ton/min)、Sdは、浸漬管下端の水平断面における浸漬管内空虚部分の面積(m)、Hは、真空槽内の浴面静止状態での溶鋼高さ(m)である。 Here, τ is the residence time (s) of the molten steel in the vacuum chamber, ρ M is the density of the molten steel (kg / m 3 ), and Sv is the vacuum in the horizontal section at a height of 100 mm from the floor of the vacuum chamber. The area (m 2 ) of the empty part in the tank, g is the gravitational acceleration (m / s 2 ), Q is the annular flow rate of the molten steel (ton / min), and Sd is the empty part in the horizontal cross section of the lower end of the dip pipe. (M 2 ) and H m are the height (m) of the molten steel in a vacuum bath with the bath surface stationary.

また、真空脱ガス設備としてRH真空脱ガス装置1を使用する場合には、(1)式における上吹きランス先端から溶鋼浴面までの距離x(m)は、下記の(9)式から(11)式によって求めることができる。   When the RH vacuum degassing apparatus 1 is used as the vacuum degassing equipment, the distance x (m) from the tip of the upper blowing lance to the molten steel bath surface in the equation (1) is calculated from the following equation (9) as ( It can be obtained by equation (11).

Figure 2020019984
Figure 2020019984

ここで、Hは、真空槽の敷からランス先端までの距離(m)、Hは、真空槽内の溶鋼高さ(m)、hは、取鍋内溶鋼表面から真空槽内溶鋼表面までの距離(m)、hは、浸漬管の下端面から真空槽の敷までの距離(m)、hは、浸漬管の溶鋼への浸漬深さ(m)、Pは、大気圧(Pa)、Pは、真空槽内雰囲気の圧力(Pa)、ρは、スラグの密度(kg/m)、gは、重力加速度(m/s)、hは、スラグの厚み(m)、ρは、溶鋼の密度(kg/m)である。尚、真空槽の「敷」とは、真空槽5の底部を構成する耐火物の表面位置である。 Here, H L is the distance from the insole of the vacuum chamber to the lance tip (m), H m is the molten steel height in the vacuum chamber (m), h is the surface of molten steel vacuum chamber from a ladle of molten steel in the surface distance to (m), h a is the distance from the lower end surface of the dip tube to the insole of the vacuum chamber (m), h d is immersion depth of the molten steel dip tube (m), P 1 is larger Atmospheric pressure (Pa), P 2 is the pressure (Pa) of the atmosphere in the vacuum chamber, ρ S is the density of the slag (kg / m 3 ), g is the gravitational acceleration (m / s 2 ), and h s is the slag the thickness of the (m), the [rho M, a molten steel density (kg / m 3). The “lay” of the vacuum chamber is the surface position of the refractory constituting the bottom of the vacuum chamber 5.

以下、マンガン含有低炭素鋼、低硫鋼(硫黄含有量;0.0024質量%以下)及び極低硫鋼(硫黄含有量;0.0010質量%以下)を溶製する際に本発明を適用した例について説明する。先ず、マンガン含有低炭素鋼の溶製方法について説明する。   Hereinafter, the present invention is applied to smelting of manganese-containing low-carbon steel, low-sulfur steel (sulfur content: 0.0024% by mass or less) and extremely low-sulfur steel (sulfur content: 0.0010% by mass or less). An example will be described. First, a method for melting manganese-containing low carbon steel will be described.

高炉から出銑された溶銑を溶銑鍋やトーピードカーなどの保持容器や搬送容器で受銑し、受銑した溶銑を脱炭精錬の行われる転炉に搬送する。通常、この搬送の途中で、溶銑に対して脱硫処理や脱燐処理などの溶銑予備処理が施されており、本発明においては、マンガン含有低炭素鋼の成分規格上からは溶銑予備処理が必要でない場合でも、溶銑予備処理、特に脱燐処理を施すことが好ましい。   Hot metal from a blast furnace is received in a holding vessel or a transport vessel such as a hot metal pot or torpedo car, and the received hot metal is transported to a converter where decarburization and refining is performed. Usually, in the middle of this transportation, the hot metal is subjected to hot metal pretreatment such as desulfurization treatment and dephosphorization treatment, and in the present invention, hot metal pretreatment is necessary from the viewpoint of the component standard of the manganese-containing low carbon steel. If not, it is preferable to perform a hot metal pretreatment, particularly a dephosphorization treatment.

これは、マンガン含有低炭素鋼を溶製する場合、転炉での脱炭精錬では、安価なマンガン源としてマンガン鉱石を添加しており、脱燐処理を行わない場合には、転炉での脱炭精錬時に、脱炭反応と同時に脱燐反応を推進させることが必要となり、そのためには多量のCaO系媒溶剤を転炉内に添加する必要がある。その結果、スラグ量が増加してスラグに分配されるマンガン量が増加し、マンガンの歩留まりが低下してしまうからである。   This is because manganese ore is added as an inexpensive manganese source during decarburization refining in converters when smelting manganese-containing low carbon steel, and when dephosphorization is not performed, During the decarburization refining, it is necessary to promote the dephosphorization reaction simultaneously with the decarburization reaction, and for that purpose, it is necessary to add a large amount of a CaO-based solvent into the converter. As a result, the amount of slag increases, the amount of manganese distributed to the slag increases, and the yield of manganese decreases.

搬送された溶銑を転炉に装入し、その後、マンガン源としてマンガン鉱石を転炉内に添加し、更に必要に応じて少量の生石灰などのCaO系媒溶剤を添加し、酸素ガスを上吹き及び/または底吹きして脱炭精錬し、所定の成分組成の溶鋼とする。その後、金属アルミニウムやフェロシリコンなどの脱酸剤を溶鋼に添加せずに、つまり、溶鋼を未脱酸状態のままとして取鍋2に出鋼する。但し、その際に、高炭素フェロマンガンなどの安価なマンガン系合金鉄は所定量添加しても構わない。   The transported hot metal is charged into the converter, and then manganese ore is added as a manganese source into the converter, and if necessary, a small amount of CaO-based solvent such as quicklime is added, and oxygen gas is blown upward. And / or decarburization and refining by bottom blowing to obtain molten steel having a predetermined component composition. Thereafter, the molten steel is discharged to the ladle 2 without adding a deoxidizing agent such as metallic aluminum or ferrosilicon to the molten steel, that is, while keeping the molten steel in an undeoxidized state. However, at that time, a predetermined amount of inexpensive manganese-based ferroalloys such as high-carbon ferromanganese may be added.

尚、転炉での脱炭精錬では、前述したように、マンガン鉱石や高炭素フェロマンガンなどの安価なマンガン源を使用するので、溶鋼中の炭素濃度は必然的に高くなるが、その場合でも、マンガン濃度調整後の溶鋼中の炭素濃度は0.2質量%以下に抑えることが好ましい。溶鋼中炭素濃度が0.2質量%を超えると、次工程のRH真空脱ガス装置1における真空脱炭精錬時間が長くなり、生産性が低下するだけでなく、真空脱炭精錬時間の延長に伴う溶鋼温度の低下を補償するために出鋼時の溶鋼温度を高める必要が生じ、これに伴って鉄歩留まりの低下や耐火物損耗量の増大による耐火物コストの上昇を招くことから、好ましくない。   In addition, in the decarburization refining in the converter, as described above, an inexpensive manganese source such as manganese ore or high-carbon ferromanganese is used, so the carbon concentration in the molten steel is inevitably high. After the manganese concentration is adjusted, the carbon concentration in the molten steel is preferably suppressed to 0.2% by mass or less. When the carbon concentration in the molten steel exceeds 0.2% by mass, the vacuum decarburization refining time in the RH vacuum degassing apparatus 1 in the next step becomes longer, which not only reduces the productivity but also extends the vacuum decarburization refining time. It is necessary to increase the molten steel temperature during tapping in order to compensate for the accompanying decrease in the molten steel temperature, which leads to a decrease in iron yield and an increase in refractory wear due to an increase in refractory wear, which is not preferable. .

転炉から出鋼した溶鋼3をRH真空脱ガス装置1に搬送する。RH真空脱ガス装置1では、未脱酸状態の溶鋼3を取鍋2と真空槽5との間で環流する。溶鋼3は未脱酸状態であるので、溶鋼3が真空槽内の減圧下の雰囲気に晒されることで、溶鋼中の炭素と溶鋼中の溶存酸素とが反応し(C+O=CO)、真空脱炭精錬が進行する。また、溶鋼3の環流が開始されたなら、上吹きランス13から、アルゴンガスを搬送用ガスとしてマンガン鉱石を投射する。マンガン鉱石の投射に前後して、上吹きランス13から炭化水素系ガス及び酸化性ガスを噴射し、上吹きランス13の先端下方に火炎を形成させる。マンガン鉱石は火炎の熱で加熱されて溶鋼浴面に投射される。   The molten steel 3 discharged from the converter is conveyed to the RH vacuum degassing device 1. In the RH vacuum degassing apparatus 1, the molten steel 3 in an undeoxidized state is circulated between the ladle 2 and the vacuum tank 5. Since the molten steel 3 is in a non-deoxidized state, when the molten steel 3 is exposed to an atmosphere under reduced pressure in a vacuum chamber, carbon in the molten steel reacts with dissolved oxygen in the molten steel (C + O = CO) to remove the vacuum. Charcoal refining proceeds. When the recirculation of molten steel 3 is started, manganese ore is projected from upper lance 13 using argon gas as a carrier gas. Before and after the projection of the manganese ore, a hydrocarbon-based gas and an oxidizing gas are injected from the upper blowing lance 13 to form a flame below the tip of the upper blowing lance 13. The manganese ore is heated by the heat of the flame and projected onto the molten steel bath surface.

溶鋼浴面に投射されたマンガン鉱石は、溶鋼中の炭素によって還元され、溶鋼中のマンガン濃度を上昇させ、且つ、溶鋼中の炭素濃度を低下させる。つまり、マンガン鉱石は、溶鋼成分調整用のマンガン源として機能するのみならず、溶鋼3の脱炭反応の酸素源として機能する。   The manganese ore projected on the molten steel bath surface is reduced by the carbon in the molten steel, increasing the manganese concentration in the molten steel and decreasing the carbon concentration in the molten steel. That is, the manganese ore functions not only as a manganese source for adjusting the molten steel component, but also as an oxygen source for the decarburization reaction of the molten steel 3.

上吹きランス13の先端下方に火炎を形成させ、且つ、上吹きランス13からマンガン鉱石を投射させる際、上吹きランス13のランス高さ(浴面静止状態での溶鋼湯面からランス先端までの距離)を、好ましくは1.0〜7.0mとした上で、(1)式から(5)式及び(9)式から(11)式で算出される火炎内滞留時間が0.02秒以上となるように、上吹きランス13の先端に火炎を形成し、マンガン鉱石を投射する。このようにして投射することで、マンガン鉱石を効率的に加熱し且つ飛散させることなく効率的に溶鋼3に添加することができる。   When a flame is formed below the tip of the upper blowing lance 13 and the manganese ore is projected from the upper blowing lance 13, the lance height of the upper blowing lance 13 (from the molten steel surface to the lance tip when the bath surface is stationary). Distance) is preferably 1.0 to 7.0 m, and the residence time in the flame calculated from the expression (1) by the expression (5) and the expression (9) by the expression (11) is 0.02 seconds. As described above, a flame is formed at the tip of the upper blowing lance 13 and manganese ore is projected. By projecting in this manner, the manganese ore can be efficiently heated and added to the molten steel 3 without scattering.

その結果、マンガン鉱石の添加に伴う溶鋼3の温度低下を抑制することができ、また、マンガン鉱石は溶鋼3に効率良く添加されるので、安価なマンガン源であるマンガン鉱石の還元が促進されてマンガン歩留まりが向上し、マンガン含有低炭素鋼の製造コストが削減される。   As a result, the temperature drop of the molten steel 3 due to the addition of manganese ore can be suppressed, and since manganese ore is efficiently added to molten steel 3, reduction of manganese ore, which is an inexpensive manganese source, is promoted. The manganese yield is improved, and the manufacturing cost of manganese-containing low carbon steel is reduced.

マンガン含有低炭素鋼のマンガン濃度の規格に応じて、マンガン鉱石の添加のみでは溶鋼中マンガン濃度が規格を満足しない場合には、マンガン鉱石の添加前に、高炭素フェロマンガン(炭素含有量;約7質量%)を、上吹きランス13を介して火炎で加熱しつつ投射してもよい。また、高炭素フェロマンガンとマンガン鉱石とを混合した粉体を、上吹きランス13を介して火炎で加熱しつつ投射してもよい。粉体の粒度は、反応効率を高める観点から3mm以下のものを用いることが好ましい。   If the manganese concentration in the molten steel does not satisfy the standard only by adding manganese ore according to the manganese concentration specification of the manganese-containing low carbon steel, before adding the manganese ore, high carbon ferromanganese (carbon content; about 7% by mass) may be projected while being heated by a flame via the upper blowing lance 13. Alternatively, a powder obtained by mixing high-carbon ferromanganese and manganese ore may be projected while being heated by a flame via the upper blowing lance 13. The particle size of the powder is preferably 3 mm or less from the viewpoint of increasing the reaction efficiency.

真空脱炭精錬を所定時間行い、溶鋼中の炭素濃度が成分規格値の範囲内に達したなら、原料投入口12から溶鋼3に金属アルミニウムなどの強脱酸剤を添加して溶鋼中の溶存酸素濃度を低減し(脱酸処理)、真空脱炭精錬を終了する。尚、真空脱炭精錬終了後の溶鋼温度が、例えば連続鋳造工程などの次工程から要求される温度よりも低い場合には、更に原料投入口12から溶鋼3に金属アルミニウムを添加し、上吹きランス13から溶鋼浴面に酸素ガスを吹き付け、溶鋼中のアルミニウムを燃焼させることによって溶鋼温度を上昇させてもよい。   After performing vacuum decarburization refining for a predetermined time, when the carbon concentration in the molten steel reaches the range of the component standard value, a strong deoxidizing agent such as metallic aluminum is added to the molten steel 3 from the raw material inlet 12 to dissolve in the molten steel. The oxygen concentration is reduced (deoxidation treatment), and the vacuum decarburization refining is completed. If the temperature of the molten steel after the completion of the vacuum decarburization refining is lower than the temperature required from the next step, for example, the continuous casting step, metallic aluminum is further added to the molten steel 3 from the raw material charging port 12 and the top is blown. Oxygen gas may be blown from the lance 13 to the molten steel bath surface to burn aluminum in the molten steel, thereby increasing the temperature of the molten steel.

強脱酸剤を添加して脱酸した溶鋼3は、その後、更に数分間、環流を継続する。溶鋼3のマンガン濃度が規格値未満の場合は、この環流中に金属マンガンや低炭素フェロマンガンを原料投入口12から溶鋼3に投入して、溶鋼3のマンガン濃度を調整する。更に、この環流中に、必要に応じて、アルミニウム、珪素、ニッケル、クロム、銅、ニオブ、チタンなどの成分調整剤を原料投入口12から溶鋼3に投入して溶鋼成分を所定の組成範囲に調整し、その後、真空槽5の内部を大気圧に戻して、真空脱ガス精錬を終了する。   The molten steel 3 deoxidized by the addition of the strong deoxidizer then continues refluxing for several more minutes. When the manganese concentration of the molten steel 3 is less than the standard value, metal manganese or low carbon ferromanganese is charged into the molten steel 3 from the raw material inlet 12 into the reflux to adjust the manganese concentration of the molten steel 3. Further, during this reflux, if necessary, a component adjuster such as aluminum, silicon, nickel, chromium, copper, niobium, or titanium is charged into the molten steel 3 from the raw material inlet 12 to bring the molten steel component into a predetermined composition range. After the adjustment, the inside of the vacuum chamber 5 is returned to the atmospheric pressure, and the vacuum degassing and refining is completed.

次に、低硫鋼及び極低硫鋼の溶製方法について説明する。   Next, a method for melting low-sulfur steel and ultra-low-sulfur steel will be described.

高炉から出銑された溶銑を溶銑鍋やトーピードカーなどの保持容器や搬送容器で受銑し、受銑した溶銑を脱炭精錬の行われる転炉に搬送する。この搬送の途中で、溶銑に対して溶銑予備処理の脱硫処理を実施する。溶銑予備処理の脱燐処理は、溶製する低硫鋼及び極低硫鋼の燐濃度規格上から実施する必要のある場合は実施するが、それ以外は実施しなくても構わない。   Hot metal from a blast furnace is received in a holding vessel or a transport vessel such as a hot metal pot or torpedo car, and the received hot metal is transported to a converter where decarburization and refining is performed. In the course of this transportation, the hot metal is subjected to a desulfurization treatment of the hot metal pretreatment. The dephosphorization treatment of the hot metal pretreatment is performed when it is necessary to perform the phosphorus concentration specification of the low sulfur steel and the ultra low sulfur steel to be melted, but other than that, it is not necessary to carry out.

搬送された溶銑を転炉に装入し、その後、必要に応じて、マンガン源としてマンガン鉱石を転炉内に添加し、更に必要に応じて少量の生石灰などのCaO系媒溶剤を添加し、酸素ガスを上吹き及び/または底吹きして脱炭精錬し、所定の成分組成の溶鋼とする。その後、金属アルミニウムやフェロシリコンなどの脱酸剤を溶鋼に添加せずに、つまり、溶鋼を、未脱酸状態のままとして取鍋2に出鋼する。但し、その際に、高炭素フェロマンガンなどの安価なマンガン系合金鉄は所定量添加しても構わない。   Charge the transferred hot metal into the converter, and then, if necessary, add manganese ore as a manganese source into the converter, and further add a small amount of CaO-based solvent such as quicklime as needed, Oxygen gas is blown up and / or blown down and decarburized and refined to obtain molten steel having a predetermined composition. Thereafter, without adding a deoxidizing agent such as metallic aluminum or ferrosilicon to the molten steel, that is, the molten steel is discharged to the ladle 2 in a non-deoxidized state. However, at that time, a predetermined amount of inexpensive manganese-based ferroalloys such as high-carbon ferromanganese may be added.

転炉から出鋼した溶鋼3をRH真空脱ガス装置1に搬送する。RH真空脱ガス装置1に搬送した未脱酸状態のままの溶鋼3に対し、必要に応じて、上吹きランス13から酸素ガスを溶鋼3に吹き付けて行う真空脱炭精錬を実施し、溶鋼3の炭素濃度を調整する。溶鋼中の炭素濃度が成分規格内に達したなら、原料投入口12から金属アルミニウムなどの強脱酸剤を溶鋼3に添加して脱酸処理を施し、溶鋼中の溶存酸素濃度を低減して真空脱炭精錬を終了する。   The molten steel 3 discharged from the converter is conveyed to the RH vacuum degassing device 1. The molten steel 3 which has been transported to the RH vacuum degassing apparatus 1 is subjected to vacuum decarburization refining by blowing oxygen gas from the top blowing lance 13 to the molten steel 3 as necessary, and Adjust the carbon concentration of. When the carbon concentration in the molten steel reaches the component standard, a strong deoxidizing agent such as metallic aluminum is added to the molten steel 3 from the raw material inlet 12 to perform a deoxidation treatment to reduce the dissolved oxygen concentration in the molten steel. End vacuum decarburization refining.

但し、溶製する低硫鋼及び極低硫鋼の炭素濃度規格が真空脱炭精錬を施さなくても溶製可能なレベルの場合には、真空脱炭精錬は実施しない。また、真空脱炭精錬を実施しない場合には、溶鋼3を未脱酸状態にする必要はなく、溶鋼3を転炉から取鍋2に出鋼する際に、出鋼中の溶鋼流に金属アルミニウムを添加して溶鋼を脱酸してもよい。その際、出鋼流に金属アルミニウムの他に、生石灰やCaOを含有する媒溶剤を添加してもよい。溶鋼3を取鍋2に出鋼した後、溶鋼上のスラグに金属アルミニウムなどのスラグ改質剤を添加し、スラグ中のFeOなどの鉄酸化物やMnOなどのマンガン酸化物を還元した後、RH真空脱ガス装置1に搬送することが好ましい。   However, if the carbon concentration standard of the low-sulfur steel and the ultra-low-sulfur steel to be smelted is at a level that can be smelted without vacuum decarburization refining, vacuum decarburization refining is not performed. When vacuum decarburization refining is not performed, the molten steel 3 does not need to be in a non-deoxidized state. When the molten steel 3 is discharged from the converter to the ladle 2, the molten steel flow during the tapping is The molten steel may be deoxidized by adding aluminum. At that time, a medium solvent containing quicklime or CaO may be added to the tapping flow in addition to metallic aluminum. After tapping the molten steel 3 into the ladle 2, a slag modifier such as metallic aluminum is added to the slag on the molten steel to reduce iron oxides such as FeO and manganese oxides such as MnO in the slag, It is preferable to convey to the RH vacuum degassing device 1.

また、真空脱炭精錬の終了後の溶鋼温度が、例えば連続鋳造工程などの次工程から要求される温度よりも低い場合には、更に原料投入口12から溶鋼3に金属アルミニウムを添加し、上吹きランス13から溶鋼浴面に酸素ガスを吹き付け、溶鋼中アルミニウムを燃焼させることによって溶鋼温度を上昇させてもよい。また、未脱酸状態の溶鋼3を真空脱炭精錬する場合には、前述したマンガン含有低炭素鋼の溶製方法と同様に、マンガン鉱石を火炎で加熱しながら上吹きランス13から投射してもよい。   When the temperature of the molten steel after the completion of the vacuum decarburization refining is lower than the temperature required from the next step, for example, a continuous casting step, metallic aluminum is further added to the molten steel 3 from the raw material inlet 12 and Oxygen gas may be blown from the blowing lance 13 onto the molten steel bath surface to burn aluminum in the molten steel to increase the temperature of the molten steel. When the undeoxidized molten steel 3 is subjected to vacuum decarburization refining, the manganese ore is projected from the upper blowing lance 13 while heating the manganese ore with a flame in the same manner as in the above-described manganese-containing low carbon steel smelting method. Is also good.

その後、金属アルミニウムなどの強脱酸剤で脱酸処理した溶鋼3に、上吹きランス13からCaO系脱硫剤を噴射すると同時に、上吹きランス13の先端に形成した火炎でCaO系脱硫剤を加熱し、溶鋼浴面に投射して脱硫処理を実施する。   Thereafter, a CaO-based desulfurizing agent is injected from the upper blowing lance 13 into the molten steel 3 which has been deoxidized with a strong deoxidizing agent such as metallic aluminum, and the CaO-based desulfurizing agent is heated by a flame formed at the tip of the upper blowing lance 13. Then, it is projected on a molten steel bath surface to perform a desulfurization treatment.

上吹きランス13の先端下方に火炎を形成させ、且つ、上吹きランス13からCaO系脱硫剤を投射させる際、上吹きランス13のランス高さ(浴面静止状態での溶鋼湯面からランス先端までの距離)を、好ましくは1.0〜7.0mとした上で、(1)式から(5)式及び(9)式から(11)式で算出される火炎内滞留時間が0.02秒以上となるように、上吹きランス13の先端に火炎を形成し、CaO系脱硫剤を投射する。このようにして投射することで、CaO系脱硫剤を効率的に加熱し且つ飛散させることなく効率的に溶鋼3に添加することができる。   When a flame is formed below the tip of the upper blowing lance 13 and the CaO-based desulfurizing agent is projected from the upper blowing lance 13, the lance height of the upper blowing lance 13 (from the molten steel surface when the bath surface is stationary, the lance tip Distance) is preferably 1.0 to 7.0 m, and the flame residence time calculated from the equations (1) to (5) and (9) to (11) is 0.1. A flame is formed at the tip of the upper blowing lance 13 so as to be 02 seconds or longer, and a CaO-based desulfurizing agent is projected. By projecting in this manner, the CaO-based desulfurizing agent can be efficiently heated and added to the molten steel 3 without scattering.

その結果、CaO系脱硫剤の添加に伴う溶鋼3の温度低下を抑制することができ、また、加熱されたCaO系脱硫剤が溶鋼3に効率良く添加されるので、脱硫反応が促進されて高い脱硫率を得ることができる。   As a result, the temperature drop of the molten steel 3 due to the addition of the CaO-based desulfurizing agent can be suppressed, and the heated CaO-based desulfurizing agent is efficiently added to the molten steel 3, so that the desulfurization reaction is promoted and high. Desulfurization rate can be obtained.

添加するCaO系脱硫剤としては、生石灰(CaO)単独、生石灰に蛍石(CaF)やアルミナ(Al)を30質量%以下の範囲で添加・混合した混合体(プリメルトを含む)などを使用することができる。CaO系脱硫剤の粒度は、反応効率を高める観点から3mm以下のものを用いることが好ましい。 As the CaO-based desulfurizing agent to be added, quicklime (CaO) alone, a mixture (including premelt) obtained by adding and mixing fluorite (CaF 2 ) and alumina (Al 2 O 3 ) to quicklime in a range of 30% by mass or less. Etc. can be used. The particle size of the CaO-based desulfurizing agent is preferably 3 mm or less from the viewpoint of increasing the reaction efficiency.

溶鋼3の硫黄濃度が所定値以下に低減したなら、上吹きランス13からのCaO系脱硫剤の投射を中止して脱硫処理を終了する。その後も溶鋼3を数分間に亘って環流し、この環流中に、必要に応じて、アルミニウム、珪素、ニッケル、クロム、銅、ニオブ、チタンなどの成分調整剤を原料投入口12から溶鋼3に投入して溶鋼成分を所定の組成範囲に調整し、その後、真空槽5の内部を大気圧に戻して、真空脱ガス精錬を終了する。   When the sulfur concentration of the molten steel 3 has decreased to a predetermined value or less, the projection of the CaO-based desulfurizing agent from the upper blowing lance 13 is stopped, and the desulfurization process is terminated. Thereafter, the molten steel 3 is circulated for several minutes, and a component adjuster such as aluminum, silicon, nickel, chromium, copper, niobium, and titanium is supplied from the raw material inlet 12 to the molten steel 3 as needed. The molten steel component is charged to adjust the composition to a predetermined composition range. Thereafter, the inside of the vacuum chamber 5 is returned to the atmospheric pressure, and the vacuum degassing refining is completed.

以上説明したように、本発明によれば、減圧雰囲気下で、上吹きランスの先端に形成される火炎で精錬用の粉体を加熱し、加熱した粉体を溶鋼に投射する際に、粉体の火炎内での滞留時間を0.02秒以上とするので、投射する粉体を効率的に加熱することができ、且つ、投射する粉体で効率的に溶鋼を精錬することができる。その結果、精錬反応が促進され、且つ、高い着熱効率が得られ、精錬コストの削減が可能となる。   As described above, according to the present invention, the powder for refining is heated with a flame formed at the tip of the upper blowing lance under a reduced pressure atmosphere, and when the heated powder is projected on the molten steel, Since the residence time of the body in the flame is 0.02 seconds or more, the powder to be projected can be efficiently heated, and the molten steel can be efficiently refined with the powder to be projected. As a result, the refining reaction is promoted, and high heat transfer efficiency is obtained, so that the refining cost can be reduced.

尚、上記説明は、RH真空脱ガス装置を用いた例で説明したが、DH真空脱ガス装置やVOD炉などの他の真空脱ガス設備を用いる場合でも、上記方法に準ずることで、マンガン含有低炭素鋼、低硫鋼及び極低硫鋼などを溶製することができる。   Although the above description has been made with reference to the example using the RH vacuum degassing apparatus, even when using other vacuum degassing equipment such as a DH vacuum degassing apparatus or a VOD furnace, the manganese-containing gas is removed by following the above method. Low carbon steel, low sulfur steel, extremely low sulfur steel and the like can be melted.

[実施例1]
本発明をRH真空脱ガス装置で実施した例である。転炉から出鋼された、取鍋内の未脱酸状態の300トンの溶鋼を、図1に示すRH真空脱ガス装置を用いて真空脱炭精錬し、マンガン含有低炭素鋼を溶製する試験を実施した。転炉からの出鋼時の溶鋼成分は、炭素濃度が0.03〜0.04質量%、マンガン濃度が0.07〜0.08質量%であった。RH真空脱ガス装置への到着時の溶鋼中の溶存酸素濃度は、0.04〜0.07質量%であった。
[Example 1]
This is an example in which the present invention is implemented in an RH vacuum degassing apparatus. 300 tons of undeoxidized molten steel in the ladle, which has been discharged from the converter, is vacuum decarburized and refined using the RH vacuum degassing device shown in FIG. 1 to produce manganese-containing low carbon steel. The test was performed. The molten steel component at the time of tapping from the converter had a carbon concentration of 0.03 to 0.04 mass% and a manganese concentration of 0.07 to 0.08 mass%. The concentration of dissolved oxygen in the molten steel upon arrival at the RH vacuum degassing device was 0.04 to 0.07% by mass.

RH真空脱ガス装置の真空槽の上部から挿入した上吹きランスのランス高さを5〜7mで固定し、真空脱炭精錬中に、上吹きランスから、燃料としてLNGと、燃料燃焼用の酸化ガスとして酸素ガスとを供給して、上吹きランスの先端にバーナー火炎を生成させた。同時に、アルゴンガスを搬送用ガスとして、マンガン鉱石を200kg/minの添加速度で、5kg/溶鋼−ton(添加量;1.5トン)投射し、溶鋼への着熱率及びマンガン歩留まりを評価した。粉体の火炎内滞留時間は、(1)式から(5)式及び(9)式から(11)式を用いて算出した。   The height of the lance of the upper blowing lance inserted from the upper part of the vacuum tank of the RH vacuum degassing device is fixed at 5 to 7 m, and during the vacuum decarburization refining, LNG as fuel and oxidation for fuel combustion are supplied from the upper blowing lance. Oxygen gas was supplied as a gas to generate a burner flame at the tip of the upper blowing lance. At the same time, 5 kg / molten steel-ton (addition amount: 1.5 ton) was injected with manganese ore at a rate of 200 kg / min using argon gas as a carrier gas, and the heat transfer rate to the molten steel and the manganese yield were evaluated. . The residence time of the powder in the flame was calculated using the equations (1) to (5) and the equations (9) to (11).

上吹きランスからのLNGの流量は500Nm/h、燃料燃焼用の酸素ガスの流量は1100Nm/h、搬送用ガスのアルゴンガスの流量は250〜500Nm/hとした。全ての試験で、粉体投射中の真空槽内雰囲気の圧力を6.7kPaとし、環流用アルゴンガスの流量は3000NL/minとした。ここで、単位「Nm」及び単位「NL」の「N」は、気体が0℃で1気圧の標準状態にあるとした場合の体積であることを意味している。 The flow rate of LNG from the upper blowing lance was 500 Nm 3 / h, the flow rate of oxygen gas for fuel combustion was 1100 Nm 3 / h, and the flow rate of argon gas for carrier gas was 250 to 500 Nm 3 / h. In all tests, the pressure of the atmosphere in the vacuum chamber during powder projection was 6.7 kPa, and the flow rate of the argon gas for circulation was 3000 NL / min. Here, “N” in the unit “Nm 3 ” and the unit “NL” means the volume when the gas is in a standard state at 0 ° C. and 1 atm.

表1に試験結果を示す。表1に示す着熱率は、下記の(12)式を用いて算出した。
着熱率(%)=[溶鋼への入熱量(cal)/バーナー燃焼の総熱量(cal)]×100…(12)
ここで、溶鋼への入熱量は、バーナー燃焼の総発熱量のうちの溶鋼に着熱した熱量(cal)であり、バーナー燃焼の総熱量(cal)は、燃料の発熱量(cal/Nm)と処理中に使用した燃料の流量(Nm)との積で求められる値である。
Table 1 shows the test results. The heat transfer rates shown in Table 1 were calculated using the following equation (12).
Heat transfer rate (%) = [heat input to molten steel (cal) / total heat of burner combustion (cal)] x 100 ... (12)
Here, the amount of heat input to the molten steel is the amount of heat (cal) that has reached the molten steel out of the total amount of heat generated by the burner combustion, and the total amount of heat (cal) of the burner combustion is the amount of heat generated by the fuel (cal / Nm 3). ) And the flow rate (Nm 3 ) of the fuel used during the treatment.

Figure 2020019984
Figure 2020019984

表1から、以下のことがわかる。   Table 1 shows the following.

マンガン鉱石の火炎内滞留時間が増加するに伴って、着熱率が増加した。これは、火炎内滞留時間の増加に伴って、伝熱媒体であるマンガン鉱石の温度が上昇したためであると考えられる。また、マンガン鉱石の火炎内滞留時間の増加に伴って、マンガン歩留が増加した。これは、火炎内滞留時間の増加に伴って、マンガン鉱石の温度が上昇し、マンガン鉱石の溶融が促進され、その結果、マンガン鉱石の還元速度が増加したためと考えられる。   As the residence time of the manganese ore in the flame increased, the heat rate increased. This is considered to be because the temperature of the manganese ore as the heat transfer medium increased with the increase in the residence time in the flame. In addition, the manganese yield increased with the increase of the manganese ore residence time in the flame. This is considered to be because the temperature of the manganese ore was increased with the increase in the residence time in the flame, and the melting of the manganese ore was promoted. As a result, the reduction rate of the manganese ore was increased.

[実施例2]
本発明をRH真空脱ガス装置で実施した例である。転炉から出鋼された、取鍋内の脱酸処理された300トンの溶鋼に対して、図1に示すRH真空脱ガス装置を用いて脱硫処理を行った。尚、RH真空脱ガス精錬前の溶鋼組成は、炭素濃度が0.08〜0.10質量%、珪素濃度が0.1〜0.2質量%、アルミニウム濃度が0.020〜0.035質量%、硫黄濃度が0.0032〜0.0033質量%、溶鋼温度は1600〜1650℃であった。
[Example 2]
This is an example in which the present invention is implemented in an RH vacuum degassing apparatus. Desulfurization treatment was performed on 300 tons of deoxidized molten steel in a ladle using a RH vacuum degassing apparatus shown in FIG. 1. The molten steel composition before the RH vacuum degassing refining has a carbon concentration of 0.08 to 0.10 mass%, a silicon concentration of 0.1 to 0.2 mass%, and an aluminum concentration of 0.020 to 0.035 mass. %, The sulfur concentration was 0.0032 to 0.0033% by mass, and the molten steel temperature was 1600 to 1650 ° C.

脱硫処理の前に、必要に応じて取鍋内溶鋼の温度測定を行い、脱硫剤添加前に必要な溶鋼温度が確保されているかを確認した。この時に必要な温度とは、処理予定時間経過による温度低下と脱硫剤添加による温度低下とを考慮して、処理装置や処理条件毎に決められる温度である。温度不足の場合には、原料投入口から金属アルミニウムを溶鋼に添加し、上吹きランスから酸素ガスを吹き付け、金属アルミニウムの燃焼による溶鋼温度の昇温処理を行った。   Before the desulfurization treatment, the temperature of the molten steel in the ladle was measured as necessary, and it was confirmed whether the required molten steel temperature was secured before the desulfurizing agent was added. The temperature required at this time is a temperature determined for each processing apparatus and processing condition in consideration of a temperature reduction due to the lapse of the scheduled processing time and a temperature reduction due to the addition of the desulfurizing agent. When the temperature was insufficient, metallic aluminum was added to the molten steel from the raw material charging port, oxygen gas was blown from the upper blowing lance, and the temperature of the molten steel was increased by burning the metallic aluminum.

その後、原料投入口から、脱酸目的及び成分調整用の金属アルミニウムを溶鋼に添加し、添加後、真空槽の上部から挿入した上吹きランスのランス高さを5〜7mで固定し、上吹きランスから、燃料としてLNGと、燃料燃焼用の酸化ガスとして酸素ガスとを供給して、上吹きランスの先端にバーナー火炎を生成させた。同時に、アルゴンガスを搬送用ガスとして、CaO−Alのプリメルト脱硫剤を200kg/minの添加速度で、5kg/溶鋼−ton(添加量;1.5トン)投射して脱硫処理を行い、低硫鋼(硫黄含有量;0.0024質量%以下)が効率的に溶製できるかを評価した。粉体の火炎内滞留時間は、(1)式から(5)式及び(9)式から(11)式を用いて算出した。 Then, metal aluminum for the purpose of deoxidation and component adjustment is added to the molten steel from the material input port, and after the addition, the lance height of the upper blowing lance inserted from the upper part of the vacuum chamber is fixed at 5 to 7 m, and the upper blowing is performed. LNG as fuel and oxygen gas as oxidizing gas for fuel combustion were supplied from the lance to generate a burner flame at the tip of the upper blowing lance. At the same time, as a carrier gas, argon gas, a pre-melt the desulfurizing agent in CaO-Al 2 O 3 at an addition rate of 200 kg / min, 5 kg / molten steel -ton (amount: 1.5 tons) projected to perform desulfurization treatment It was evaluated whether low-sulfur steel (sulfur content: 0.0024% by mass or less) can be efficiently melted. The residence time of the powder in the flame was calculated using the equations (1) to (5) and the equations (9) to (11).

上吹きランスからのLNGの流量は500Nm/h、燃料燃焼用の酸素ガスの流量は1100Nm/h、搬送用ガスのアルゴンガスの流量は250〜500Nm/hとした。全ての試験で、粉体投射中の真空槽内雰囲気の圧力を6.7kPaとし、環流用アルゴンガスの流量は3000NL/minとした。 The flow rate of LNG from the upper blowing lance was 500 Nm 3 / h, the flow rate of oxygen gas for fuel combustion was 1100 Nm 3 / h, and the flow rate of argon gas for carrier gas was 250 to 500 Nm 3 / h. In all tests, the pressure of the atmosphere in the vacuum chamber during powder projection was 6.7 kPa, and the flow rate of the argon gas for circulation was 3000 NL / min.

表2に試験結果を示す。表2に示す着熱率は、上記の(12)式を用いて算出した。また、脱硫率は、脱硫処理前の溶鋼中硫黄濃度と脱硫処理後の溶鋼中硫黄濃度との差分の脱硫処理前の溶鋼中硫黄濃度に対する比率(百分率)である。表2の「脱硫評価」の欄では、脱硫処理後の溶鋼中硫黄濃度が0.0024質量%以下の試験は「○」、つまり合格、0.0024質量%超えの試験は「×」、つまり不合格として表示した。   Table 2 shows the test results. The heat transfer rates shown in Table 2 were calculated using the above equation (12). The desulfurization rate is a ratio (percentage) of the difference between the sulfur concentration in molten steel before desulfurization and the sulfur concentration in molten steel after desulfurization to the sulfur concentration in molten steel before desulfurization. In the column of “Evaluation of desulfurization” in Table 2, the test in which the sulfur concentration in the molten steel after the desulfurization treatment is 0.0024% by mass or less is “○”, that is, the test is passed, and the test in which the sulfur concentration exceeds 0.0024% by mass is “X”, that is, Indicated as failed.

Figure 2020019984
Figure 2020019984

表2から、以下のことがわかる。   Table 2 shows the following.

CaO−Alのプリメルト脱硫剤の火炎内滞留時間が増加するに伴って、着熱率が増加した。これは、火炎内滞留時間の増加に伴って、伝熱媒体であるCaO−Alのプリメルト脱硫剤の温度が上昇したためであると考えられる。 As the residence time of the CaO-Al 2 O 3 premelt desulfurizing agent in the flame increased, the heat rate increased. This is with an increase of the flame retention time is believed that the temperature of the pre-melt the desulfurizing agent in the CaO-Al 2 O 3 is a heat transfer medium is due to increase.

また、CaO−Alのプリメルト脱硫剤を投射することで、全ての試験で低硫鋼(硫黄含有量;0.0024質量%以下)の溶製が可能であった。但し、火炎内滞留時間が0.02秒以上の試験では、脱硫率が高位であった。 Further, by projecting a pre-melt the desulfurizing agent in CaO-Al 2 O 3, low硫鋼in all tests; was possible melting of (sulfur content 0.0024 mass% or less). However, in the test where the residence time in the flame was 0.02 seconds or more, the desulfurization rate was high.

火炎内滞留時間が0.02秒以上の試験で脱硫率が高位であったのは、脱硫剤が高温まで加熱されたことで、脱硫剤の溶融が促進されたためであると考えられる。これは、火炎内滞留時間の増加に伴って、伝熱媒体であるCaO−Alのプリメルト脱硫剤の温度が上昇し、脱硫剤の温度が上昇、プリメルト脱硫剤の溶融が促進されたためであると考えられる。 It is considered that the reason why the desulfurization rate was high in the test in which the residence time in the flame was 0.02 seconds or more was that the melting of the desulfurizing agent was promoted by heating the desulfurizing agent to a high temperature. This is because the temperature of the pre-melt desulfurizing agent of CaO-Al 2 O 3 as the heat transfer medium increased with the increase of the residence time in the flame, the temperature of the desulfurizing agent increased, and the melting of the pre-melt desulfurizing agent was promoted. It is considered to be.

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
21 粉体噴射ノズル
22 粉体噴射ノズル開口部
23 燃料噴射ノズル
24 燃料噴射ノズル開口部
25 酸化性ガス噴射ノズル
26 酸化性ガス噴射ノズル開口部
27 冷却水給水路
28 冷却水排水路
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Lower tank 8 Upside immersion pipe 9 Downside immersion pipe 10 Gas flow pipe for reflux 11 Duct 12 Material inlet 13 Upper blowing lance 21 Powder Body injection nozzle 22 Powder injection nozzle opening 23 Fuel injection nozzle 24 Fuel injection nozzle opening 25 Oxidizing gas injection nozzle 26 Oxidizing gas injection nozzle opening 27 Cooling water supply channel 28 Cooling water drainage channel

Claims (6)

真空脱ガス設備の真空槽に設置された上吹きランスの先端に形成される火炎で、該上吹きランスの先端から搬送用ガスの噴出流とともに噴射される精錬用の粉体を加熱し、加熱した粉体を真空槽内の溶鋼浴面に吹き付ける、減圧下での溶鋼の精錬方法であって、
前記粉体の前記火炎内での滞留時間を0.02秒以上とすることを特徴とする、減圧下での溶鋼の精錬方法。
The flame formed at the tip of the upper lance installed in the vacuum chamber of the vacuum degassing equipment heats the powder for refining, which is ejected from the tip of the upper lance together with the jet of carrier gas, and heats the powder. Spraying the powder to a molten steel bath surface in a vacuum chamber, a method of refining molten steel under reduced pressure,
A method for refining molten steel under reduced pressure, wherein a residence time of the powder in the flame is 0.02 seconds or more.
前記滞留時間を、下記の(1)式から(5)式を用いて算出することを特徴とする、請求項1に記載の減圧下での溶鋼の精錬方法。
Figure 2020019984
ここで、tは、粉体の火炎内での滞留時間(s)、uは、上吹きランスから出た直後の粉体の速度(m/s)、aは、粉体の加速度(m/s)、xは、上吹きランス先端から溶鋼浴面までの距離(m)、Fは、粉体の流れ方向に生じる抗力(N)、uは、上吹きランスから出た直後の噴出流のガス速度(m/s)、gは、重力加速度(m/s)、ρは、粉体の密度(kg/m)、ρは、上吹きランスから出た直後の噴出流のガス密度(kg/m)、μは、上吹きランスから出た直後の噴出流のガス粘性(Pa・s)、dは、粉体の直径(m)、Cは、粉体の抗力係数(−)、Reは、レイノズル数(−)である。
The method for refining molten steel under reduced pressure according to claim 1, wherein the residence time is calculated using the following equations (1) to (5).
Figure 2020019984
Here, t is the powder residence time in the flame (s), u p is the rate of the powder after leaving the top-blown lance (m / s), a p is the powder acceleration ( m / s 2), x is the distance from the top lance tip to the molten steel bath surface (m), F D occurs in the flow direction of the powder drag (N), u g exited from the top lance The gas velocity (m / s) of the immediately following jet flow, g is the gravitational acceleration (m / s 2 ), ρ p is the density of the powder (kg / m 3 ), and ρ g is from the top blowing lance. The gas density (kg / m 3 ) of the jet flow immediately after, μ g is the gas viscosity (Pa · s) of the jet flow immediately after leaving the top blowing lance, d p is the diameter (m) of the powder, C d is the drag coefficient (-) of the powder, and Re is the Reynolds number (-).
前記上吹きランスとして、
前記粉体を搬送用ガスとともに噴射する粉体噴射ノズルと、
該粉体噴射ノズルの外周側に形成された、燃料噴射ノズル開口部を有する、燃料を噴射するための1個以上の燃料噴射ノズルと、
前記粉体噴射ノズルの外周側に形成された、酸化性ガス噴射ノズル開口部を有する、燃料燃焼用の酸化性ガスを噴射するための1個以上の酸化性ガス噴射ノズルと、
を備えている上吹きランスを使用することを特徴とする、請求項1または請求項2に記載の減圧下での溶鋼の精錬方法。
As the upper blowing lance,
A powder injection nozzle for injecting the powder with a carrier gas,
One or more fuel injection nozzles for injecting fuel, having a fuel injection nozzle opening formed on the outer peripheral side of the powder injection nozzle;
One or more oxidizing gas injection nozzles for injecting oxidizing gas for fuel combustion, having an oxidizing gas injection nozzle opening formed on the outer peripheral side of the powder injection nozzle,
The method for refining molten steel under reduced pressure according to claim 1 or 2, wherein an upper-blown lance having:
前記真空脱ガス設備としてRH真空脱ガス装置を使用し、下記の(6)式を用いて算出される、RH真空脱ガス装置の真空槽における溶鋼の滞在時間が、5秒以上となるように、取鍋内の溶鋼を真空槽に環流させることを特徴とする、請求項1から請求項3のいずれか1項に記載の減圧下での溶鋼の精錬方法。
Figure 2020019984
ここで、τは、溶鋼の真空槽における滞在時間(s)、ρは、溶鋼の密度(kg/m)、Sは、真空槽の敷から100mmの高さ位置の水平断面における真空槽内空虚部分の面積(m)、gは、重力加速度(m/s)、Qは、溶鋼の環流量(ton/min)、Sdは、浸漬管下端の水平断面における浸漬管内空虚部分の面積(m)、Hは、真空槽内の浴面静止状態での溶鋼高さ(m)である。
An RH vacuum degassing device is used as the vacuum degassing device, and the residence time of the molten steel in the vacuum tank of the RH vacuum degassing device, calculated using the following equation (6), is set to 5 seconds or more. The method for refining molten steel under reduced pressure according to any one of claims 1 to 3, wherein the molten steel in the ladle is returned to the vacuum tank.
Figure 2020019984
Here, τ is the residence time (s) of the molten steel in the vacuum chamber, ρ M is the density of the molten steel (kg / m 3 ), and Sv is the vacuum in the horizontal section at a height of 100 mm from the floor of the vacuum chamber. The area (m 2 ) of the empty part in the tank, g is the gravitational acceleration (m / s 2 ), Q is the annular flow rate of the molten steel (ton / min), and Sd is the empty part in the horizontal cross section of the lower end of the dip pipe. (M 2 ) and H m are the height (m) of the molten steel in a vacuum bath with the bath surface stationary.
前記粉体が、マンガン鉱石、マンガン系合金鉄、CaO系脱硫剤のうちのいずれか1種または2種以上であることを特徴とする、請求項1から請求項4のいずれか1項に記載の減圧下での溶鋼の精錬方法。   5. The powder according to claim 1, wherein the powder is one or more of manganese ore, manganese ferroalloy, and CaO desulfurizing agent. 6. Of refining molten steel under reduced pressure. 前記真空槽内の雰囲気の圧力が、2.7kPa以上13.3kPa以下であることを特徴とする、請求項1から請求項5のいずれか1項に記載の減圧下での溶鋼の精錬方法。   The method for refining molten steel under reduced pressure according to any one of claims 1 to 5, wherein the pressure of the atmosphere in the vacuum chamber is not less than 2.7 kPa and not more than 13.3 kPa.
JP2018143405A 2018-07-31 2018-07-31 Refining method of molten steel under reduced pressure Active JP6939733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143405A JP6939733B2 (en) 2018-07-31 2018-07-31 Refining method of molten steel under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143405A JP6939733B2 (en) 2018-07-31 2018-07-31 Refining method of molten steel under reduced pressure

Publications (2)

Publication Number Publication Date
JP2020019984A true JP2020019984A (en) 2020-02-06
JP6939733B2 JP6939733B2 (en) 2021-09-22

Family

ID=69589547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143405A Active JP6939733B2 (en) 2018-07-31 2018-07-31 Refining method of molten steel under reduced pressure

Country Status (1)

Country Link
JP (1) JP6939733B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194307A (en) * 2001-09-28 2003-07-09 Nippon Sanso Corp Burner lance and refining method
WO2013137292A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Vacuum refining method of molten steel
JP2017025373A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Desulfurization method of molten steel
WO2017145877A1 (en) * 2016-02-24 2017-08-31 Jfeスチール株式会社 Method for refining molten steel in vacuum degassing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194307A (en) * 2001-09-28 2003-07-09 Nippon Sanso Corp Burner lance and refining method
WO2013137292A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Vacuum refining method of molten steel
JP2017025373A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Desulfurization method of molten steel
WO2017145877A1 (en) * 2016-02-24 2017-08-31 Jfeスチール株式会社 Method for refining molten steel in vacuum degassing equipment

Also Published As

Publication number Publication date
JP6939733B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP5382275B1 (en) Vacuum refining method for molten steel
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
WO2013057927A1 (en) Powder injection lance and method of refining molten iron using said powder injection lance
JP6036172B2 (en) Method of refining hot metal in converter
JP6028755B2 (en) Method for melting low-sulfur steel
JP6269550B2 (en) Method for melting high manganese steel
JP6124022B2 (en) Melting method of low carbon high manganese steel
JP2013163828A (en) Method for producing molten steel
TWI685577B (en) Smelting method of high manganese steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP2013209703A (en) Refining method of molten iron
JP6323688B2 (en) Desulfurization method for molten steel
JPH06240338A (en) Method for desulfurizing molten steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP4360270B2 (en) Method for refining molten steel
JP6939733B2 (en) Refining method of molten steel under reduced pressure
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP5621618B2 (en) Method for melting manganese-containing low carbon steel
JP3668172B2 (en) Hot metal refining method
JP2013209737A (en) Method for producing molten steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150