JP2020019977A - Metal based corrosion resistant coating improving corrosion resistance of reinforcement, and method for forming the same - Google Patents

Metal based corrosion resistant coating improving corrosion resistance of reinforcement, and method for forming the same Download PDF

Info

Publication number
JP2020019977A
JP2020019977A JP2018142330A JP2018142330A JP2020019977A JP 2020019977 A JP2020019977 A JP 2020019977A JP 2018142330 A JP2018142330 A JP 2018142330A JP 2018142330 A JP2018142330 A JP 2018142330A JP 2020019977 A JP2020019977 A JP 2020019977A
Authority
JP
Japan
Prior art keywords
metal
zinc
coating
reinforcing bar
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018142330A
Other languages
Japanese (ja)
Other versions
JP7158197B2 (en
Inventor
浩輔 南
Kosuke Minami
浩輔 南
秀幸 梶田
Hideyuki Kajita
秀幸 梶田
佐藤 文則
Fuminori Sato
文則 佐藤
勇二 白根
Yuji Shirane
勇二 白根
太田 健司
Kenji Ota
健司 太田
伊達 重之
Shigeyuki Date
重之 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2018142330A priority Critical patent/JP7158197B2/en
Publication of JP2020019977A publication Critical patent/JP2020019977A/en
Application granted granted Critical
Publication of JP7158197B2 publication Critical patent/JP7158197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

To provide a metal based corrosion resistant coating for improving the durability of a reinforcement used for a concrete structure, and a method for forming the same.SOLUTION: A calcium compound is formed by applying calcium to a metal coating formed on the surface of a reinforcement and including zinc, and in this case, the metal coating including zinc is preferably formed by zinc thermal spray. In order to form the metal based corrosion resistant coating on the surface of the reinforcement, a zinc calcium compound is formed on the surface of the reinforcement by spraying a solution including calcium while forming (thermal-spraying) the metal coating including zinc on the surface of the reinforcement to form a calcium compound.SELECTED DRAWING: Figure 10

Description

本発明は鉄筋の耐食性を向上させた金属系防食被膜及びその生成方法に関するものであり、特に、コンクリート構造物に使用する鉄筋の耐久性を向上させるための金属系防食被膜及び金属系防食被膜を生成するための方法に関するものである。   The present invention relates to a metal-based anticorrosion coating having improved corrosion resistance of a reinforcing bar and a method for producing the same. In particular, the present invention relates to a metal-based anticorrosion coating and a metal-based anticorrosion coating for improving the durability of a reinforcing bar used for a concrete structure. It relates to a method for generating.

現在、コンクリート構造物の耐久性向上が重要視されており、なかでもコンクリート劣化の主な原因である鉄筋の防食について種々の技術が開示されている。(例えば、特許文献1〜3参照)。   At present, the importance of improving the durability of concrete structures has been emphasized, and various techniques have been disclosed for corrosion prevention of reinforcing steel, which is a main cause of concrete deterioration. (For example, refer to Patent Documents 1 to 3).

特許文献1に記載された技術は、桟橋、道路橋、橋脚、建築構造物などの鉄筋又は鉄系構造物を金属溶射被膜で電気防食する方法に関するものである。このコンクリート構造物の電気防食方法は、コンクリート表面のpHが11以下で、可溶性塩化物濃度がNaCl重量百分率で0.01%以上であるコンクリート表面に、コンクリート中において鉄よりも電位が卑な金属溶射被膜を密着させ、この溶射被膜とコンクリート中に埋め込まれた鉄筋又は鉄系構造物を電気的に接続するようにしたものである。   The technique described in Patent Literature 1 relates to a method of performing electrolytic protection of a reinforcing steel or an iron-based structure such as a pier, a road bridge, a pier, or a building structure with a metal spray coating. In this method for protecting a concrete structure from corrosion, a concrete surface having a pH of 11 or less and a soluble chloride concentration of 0.01% or more by weight as NaCl is placed on a concrete surface having a potential lower than iron in concrete. The thermal spray coating is closely adhered, and the thermal spray coating is electrically connected to a reinforcing bar or an iron-based structure embedded in concrete.

特許文献2に記載された技術は、鉄梁、鉄塔や、コンクリート用鉄筋等に使用される金属材の表面被覆組成物に関するものである。この金属材の表面組成物は、所定の一般式で表されるジホスホン酸誘導体の1種以上とポリマーラテックスを必須成分としている。   The technique described in Patent Document 2 relates to a surface coating composition of a metal material used for a steel beam, a steel tower, a reinforcing steel bar for concrete, and the like. The surface composition of the metal material contains one or more diphosphonic acid derivatives represented by a predetermined general formula and a polymer latex as essential components.

特許文献3に記載された技術は、鉄骨等の鉄材や鋼材の表面に防錆塗膜を形成する防錆処理方法に関するものである。この防錆処理方法は、キレートを有する高分子化合物を、鉄や鋼材の表面に塗布して、鉄や鋼材の表面に酸化鉄を反応させ、高分子キレート化合物の防錆被膜を形成するようにしたものである。   The technique described in Patent Literature 3 relates to a rust-preventive treatment method for forming a rust-preventive coating film on the surface of an iron material such as a steel frame or a steel material. This rust-prevention treatment method is to apply a polymer compound having a chelate to the surface of iron or steel material and to react iron oxide on the surface of iron or steel material to form a rust-preventive coating of the polymer chelate compound. It was done.

特開平6−136573号公報JP-A-6-136573 特開平4−337368号公報JP-A-4-337368 特開平2−159390号公報JP-A-2-159390

上記した各引用文献に記載された技術は、鉄筋等の表面に被膜を形成することにより鉄筋の防食を行うものであるが、このような被膜についての研究が十分になされていないという現状がある。   The technology described in each of the above cited references performs corrosion protection of the reinforcing bar by forming a coating on the surface of the reinforcing bar or the like, but there is a current situation that research on such a coating has not been sufficiently performed. .

例えば、鉄筋の防食方法の一つである金属被膜は、犠牲陽極として働いて鉄を保護し防食効果を発揮するという報告がある。一方で、金属被膜は強アルカリ環境下で溶出するという報告もあり、実際に被膜された鉄筋がコンクリート内部に置かれた場合の挙動に関する研究事例は少ない。   For example, there is a report that a metal film, which is one of the methods for preventing corrosion of a reinforcing bar, acts as a sacrificial anode to protect iron and exhibit an anticorrosion effect. On the other hand, there are reports that metal coatings elute in a strongly alkaline environment, and few studies have studied the behavior of coated steel when placed inside concrete.

そこで、本願の発明者は、各種金属被膜の耐アルカリ性の確認を目的とし、被膜の種類、および周辺環境の違いによる影響について評価した結果、耐食性を向上させた金属系防食被膜及びその生成方法に想到した。   Therefore, the inventors of the present application aimed at confirming the alkali resistance of various metal coatings, and evaluated the effect of the type of the coating and the difference in the surrounding environment. As a result, a metal-based anticorrosion coating with improved corrosion resistance and a method for producing the same were obtained. I arrived.

本発明は、上述した事情に鑑み提案されたもので、コンクリート構造物に使用する鉄筋の耐久性を向上させるための金属系防食被膜及び金属系防食被膜を生成するための方法を提供することを目的とする。   The present invention has been proposed in view of the above circumstances, and provides a metal-based anticorrosion coating for improving the durability of a reinforcing bar used for a concrete structure and a method for producing the metal-based anticorrosion coating. Aim.

本発明に係る鉄筋の耐食性を向上させた金属系防食被膜及びその生成方法は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明に係る鉄筋の耐食性を向上させた金属系防食被膜は、鉄筋の表面に形成した亜鉛を含む金属被膜に、カルシウムを付与してカルシウム化合物が生成された状態としたことを特徴とするものである。また、亜鉛を含む金属被膜は、亜鉛溶射により形成することが好ましい。   MEANS TO SOLVE THE PROBLEM The metal-based anticorrosion coating which improved the corrosion resistance of the rebar according to this invention, and its formation method have the following characteristics in order to achieve the above-mentioned objective. That is, the metal-based anticorrosion coating having improved corrosion resistance of the reinforcing bar according to the present invention is characterized in that a calcium compound is generated by adding calcium to a metal coating containing zinc formed on the surface of the reinforcing bar. Is what you do. Further, the metal film containing zinc is preferably formed by zinc spraying.

金属系防食被膜を生成するには、鉄筋の表面に亜鉛を含む金属被膜を形成しながらカルシウムを付与して、鉄筋の表面に亜鉛カルシウム化合物を生成させる。また、ロール状に巻き取られた鉄筋材料を引き出しながら、鉄筋の表面に亜鉛を含む金属被膜を形成するとともにカルシウムを付与して、鉄筋の表面に亜鉛カルシウム化合物を生成させてもよい。さらに、鉄筋の表面に亜鉛溶射を行うことにより金属被膜を形成することが好ましい。   In order to form a metal-based anticorrosion film, calcium is applied while forming a metal film containing zinc on the surface of the reinforcing bar, and a zinc-calcium compound is generated on the surface of the reinforcing bar. Alternatively, a zinc-containing metal coating may be formed on the surface of the reinforcing bar and calcium may be added to the surface of the reinforcing bar while the rolled-up reinforcing bar material is being pulled out to generate a zinc calcium compound on the surface of the reinforcing bar. Further, it is preferable to form a metal coating by performing zinc spraying on the surface of the reinforcing bar.

本発明に係る鉄筋の耐食性を向上させた金属系防食被膜及びその生成方法によれば、鉄筋の表面に形成した亜鉛を含む金属被膜に、カルシウムを付与してカルシウム化合物が生成された状態とした金属系防食被膜とすることにより、カルシウムと亜鉛が反応してアルカリ性への耐久性が増すため、コンクリート構造物に使用する鉄筋の耐久性を向上させることができる。   According to the metal-based anticorrosion coating with improved corrosion resistance of the rebar according to the present invention and the method for producing the same, calcium is applied to the zinc-containing metal coating formed on the surface of the rebar to form a calcium compound. By using a metal-based anticorrosion coating, calcium and zinc react with each other to increase the durability to alkalinity, and thus the durability of the reinforcing steel used for the concrete structure can be improved.

また、亜鉛溶射により亜鉛を含む金属被膜を形成することにより、コンクリート中でアルカリ性に耐えた上で犠牲陽極の効果を発揮することができるため、より一層、コンクリート構造物に使用する鉄筋の耐久性を向上させることができる。   In addition, by forming a metal film containing zinc by spraying zinc, it is possible to exhibit the effect of a sacrificial anode after withstanding alkalinity in concrete, so that the durability of reinforcing steel used for concrete structures is further improved. Can be improved.

好適な金属系防食被膜を得るための実験における使用材料の説明図。Explanatory drawing of the material used in the experiment for obtaining a suitable metal-based anticorrosion coating. 好適な金属系防食被膜を得るための実験における金属系防食被膜の溶液配合の説明図。FIG. 4 is an explanatory diagram of a solution composition of a metal-based anticorrosion coating in an experiment for obtaining a suitable metal-based anticorrosion coating. 好適な金属系防食被膜を得るための実験に使用した膜厚測定機器の模式図。The schematic diagram of the film thickness measuring device used for the experiment for obtaining a suitable metal-based anticorrosion coating. 膜厚変化と浸漬日数の関係及び質量変化と浸漬日数の関係を示す説明図(水酸化ナトリウム水溶液)。Explanatory drawing (sodium hydroxide aqueous solution) which shows the relationship between film thickness change and immersion days, and the relationship between mass change and immersion days. 膜厚変化と浸漬日数の関係及び質量変化と浸漬日数の関係を示す説明図(細孔溶液)。Explanatory drawing (pore solution) showing the relationship between the change in film thickness and the number of days of immersion and the relationship between the change in mass and the number of days of immersion. 各溶液における浸漬試験前後のAl−Mg系被膜のESD分析結果を示す説明図。Explanatory drawing which shows the ESD analysis result of the Al-Mg type | system | group coating film before and behind the immersion test in each solution. 浸漬試験前後の亜鉛溶射被膜の表面形態を示す説明図。Explanatory drawing which shows the surface morphology of a zinc spray coating before and after an immersion test. 浸漬試験前後の亜鉛系被膜3種のESD分析結果を示す説明図(細孔溶液)。Explanatory drawing (pore solution) showing the results of ESD analysis of three types of zinc-based coatings before and after the immersion test. 本発明の実施形態に係る鉄筋の耐食性を向上させた金属系防食被膜に対する防食性能試験結果の説明図。FIG. 4 is an explanatory diagram of the results of an anticorrosion performance test on a metal-based anticorrosion coating with improved corrosion resistance of a reinforcing bar according to an embodiment of the present invention. 本発明の実施形態に係る鉄筋の耐食性を向上させた金属系防食被膜に対する防食性能試験評価の説明図。FIG. 4 is an explanatory diagram of an evaluation of a corrosion prevention performance test on a metal-based anticorrosion coating having improved corrosion resistance of a reinforcing bar according to an embodiment of the present invention.

以下、図面を参照して、本発明の実施形態に係る鉄筋の耐食性を向上させた金属系防食被膜及びその生成方法を説明する。図1〜図10は本発明の実施形態に係る耐食性を向上させた金属系防食被膜及びその生成方法における実験を説明するもので、図1は使用材料の説明図、図2は溶液配合の説明図、図3は膜厚測定機器の模式図、図4は膜厚変化と浸漬日数の関係(a)及び質量変化と浸漬日数の関係(b)を示す説明図(水酸化ナトリウム水溶液)、図5は膜厚変化と浸漬日数の関係(a)及び質量変化と浸漬日数の関係(b)を示す説明図(細孔溶液)、図6は各溶液における浸漬試験前後のAl−Mg系被膜のESD分析結果を示す説明図、図7は浸漬試験前後の亜鉛溶射被膜の表面形態を示す説明図、図8は浸漬試験前後の亜鉛系被膜3種のESD分析結果を示す説明図、図9は防食性能試験結果の説明図、図10は防食性能試験評価の説明図である。   Hereinafter, with reference to the drawings, a description will be given of a metal-based anticorrosion coating with improved corrosion resistance of a reinforcing bar according to an embodiment of the present invention, and a method for producing the same. 1 to 10 illustrate an experiment on a metal-based anticorrosion coating with improved corrosion resistance and a method of forming the same according to an embodiment of the present invention. FIG. 1 is an explanatory diagram of materials used, and FIG. FIG. 3, FIG. 3 is a schematic diagram of a film thickness measuring instrument, and FIG. 5 is an explanatory diagram (pore solution) showing the relationship between the change in film thickness and the number of days of immersion (a) and the relationship between the change in mass and the number of days of immersion (b). FIG. FIG. 7 is an explanatory view showing the results of the ESD analysis, FIG. 7 is an explanatory view showing the surface morphology of the zinc sprayed coating before and after the immersion test, FIG. 8 is an explanatory view showing the results of the ESD analysis of the three zinc-based coatings before and after the immersion test, and FIG. FIG. 10 is an explanatory diagram of the anticorrosion performance test results, and FIG. 10 is an explanatory diagram of the anticorrosion performance test evaluation.

<金属系防食被膜の概要>
本発明の実施形態に係る鉄筋の耐食性を向上させた金属系防食被膜は、鉄筋の表面に形成した亜鉛を含む金属被膜に、カルシウムを付与してカルシウム化合物が生成された状態としたものであり、亜鉛を含む金属被膜は、亜鉛溶射により形成したものである。
<Overview of metal anticorrosion coating>
The metal-based anticorrosion coating with improved corrosion resistance of the reinforcing bar according to the embodiment of the present invention is a metal coating containing zinc formed on the surface of the reinforcing bar, in which calcium is applied to form a calcium compound. The metal film containing zinc is formed by spraying zinc.

<金属系防食被膜の生成方法>
金属系防食被膜を生成するには、鉄筋の表面に亜鉛を含む金属被膜を形成(金属被膜を溶射)しながらカルシウムを付与することにより、鉄筋の表面に亜鉛カルシウム化合物を生成させる。
<Method of forming metallic anticorrosion coating>
In order to form a metal-based anticorrosive film, calcium is applied while forming a metal film containing zinc (spraying the metal film) on the surface of the reinforcing bar, thereby generating a zinc-calcium compound on the surface of the reinforcing bar.

この際、ロール状に巻き取られた鉄筋材料を引き出しながら、鉄筋の表面に亜鉛を含む金属被膜を形成するとともにカルシウムを付与して、鉄筋の表面に亜鉛カルシウム化合物を生成させてもよい。カルシウムを付与するには、例えば、カルシウムを含む溶液、スラリー、粉体等に鉄筋を潜らせたり、浸したり、吹き付けたりする方法が考えられる。さらに、鉄筋の表面に亜鉛溶射を行うことにより金属被膜を形成することが好ましい。   At this time, a zinc-containing metal coating may be formed on the surface of the reinforcing bar and calcium may be added to the surface of the reinforcing bar while drawing out the rolled-up reinforcing bar material to generate a zinc-calcium compound on the surface of the reinforcing bar. In order to apply calcium, for example, a method of immersing, dipping, or spraying a rebar in a solution, slurry, powder, or the like containing calcium can be considered. Further, it is preferable to form a metal coating by performing zinc spraying on the surface of the reinforcing bar.

<使用材料および配合条件>
以下、本発明に係る鉄筋の耐食性を向上させた金属系防食被膜及びその生成方法に想到した実験について説明する。実際のコンクリート内では被膜の腐食過程の確認が難しいため、実験ではコンクリート環境下を模擬した溶液を使用した。図1及び図2に使用材料および溶液配合を示す。
<Materials used and mixing conditions>
Hereinafter, a description will be given of an experiment conceived of a metal-based anticorrosion coating with improved corrosion resistance of a reinforcing bar according to the present invention and a method for producing the same. Since it was difficult to confirm the corrosion process of the coating in actual concrete, a solution simulating the concrete environment was used in the experiment. FIG. 1 and FIG. 2 show the materials used and the formulation of the solution.

試験片の母材はSS400とSPCCの2種とし、母材寸法は厚さt2.3mm,20×50mm2とした。これに各種防食被膜を厚さ100μm程度コートした。なお、SPCCはJIS G 3141により炭素含有量等が規定された冷間圧延鋼板である。 The base material of the test piece was two kinds of SS400 and SPCC, and the base material dimensions were a thickness t of 2.3 mm and 20 × 50 mm 2 . This was coated with various anticorrosion films having a thickness of about 100 μm. Note that SPCC is a cold-rolled steel sheet whose carbon content and the like are specified by JIS G 3141.

<耐アルカリ性試験>
実験において金属被膜の耐アルカリ性の評価は、JIS A 1193−2005「コンクリート用連続繊維補強材の耐アルカリ試験方法」に準拠して行った。蓋付きの容器に入れた100mリットルの各種溶液中に試験片を浸漬し、60℃の保温庫で7日間静置した。試験片を容器から取り出し、蒸留水で洗浄・乾燥後、質量および膜厚の測定、目視による被膜の状態観察を行った。これを1サイクルとしてそれぞれ4サイクル繰り返し行い、試験終了とした。被膜の測定は被膜表面に非接触で行う必要があるため、図3に示す膜圧測定機器を使用した。
<Alkali resistance test>
In the experiments, the evaluation of the alkali resistance of the metal coating was performed in accordance with JIS A 1193-2005 "Method for Testing Alkali Resistance of Continuous Fiber Reinforcement for Concrete". The test pieces were immersed in 100 ml of various solutions placed in a container with a lid, and allowed to stand in a 60 ° C. insulated cabinet for 7 days. The test piece was taken out of the container, washed and dried with distilled water, measured for mass and film thickness, and visually observed for the state of the coating. This was repeated as four cycles each as one cycle, and the test was completed. Since it is necessary to measure the film without contacting the film surface, a film pressure measuring device shown in FIG. 3 was used.

この膜圧測定機器は、図3に示すように、マグネットスタンド10の支柱11から延長して設けた支持竿12に取り付けたレーザー変位計20と、レーザー溶射位置に設置された測定対象固定機器30とからなる。測定対象固定機器は30、スライド可能な載置台31の上部にスチール板32を取り付け、スチール板32の上面に設けたガイド33に沿って試験片34を設置するようになっている。   As shown in FIG. 3, the film pressure measuring device includes a laser displacement meter 20 attached to a support rod 12 provided to extend from a support 11 of a magnet stand 10 and a measuring object fixing device 30 installed at a laser spraying position. Consists of The fixed device to be measured 30 is configured such that a steel plate 32 is mounted on a slidable mounting table 31 and a test piece 34 is set along a guide 33 provided on the upper surface of the steel plate 32.

<被膜表面形態の評価>
浸漬前後の試験片について、SEMにより試験前後の被膜表面の形態観察とEDS分析を行い、浸漬前後での被膜の表面性状変化と被膜を構成する元素の変化を確認した。また、EDS分析の結果からXRDによる化合物分析も行い、アルカリ溶液に浸漬したことで被膜表面に起こった反応についても考察した。
<Evaluation of coating surface morphology>
With respect to the test pieces before and after immersion, morphological observation of the film surface before and after the test and EDS analysis were performed by SEM, and changes in the surface properties of the film before and after immersion and changes in elements constituting the film were confirmed. In addition, a compound analysis by XRD was also performed based on the results of the EDS analysis, and a reaction that occurred on the surface of the coating film by immersion in an alkaline solution was also considered.

<結果および考察>
実験の範囲内では、被膜の防食性ならびに耐食性に及ぼす母材の種類による影響は確認されなかった。よって、SS400の結果についてのみ述べる。図4、図5に、膜厚の変化と浸漬日数の関係及び質量変化と浸漬日数の関係を示す。膜厚は初期値を100%とした増減率で示している。
<Results and discussion>
No effect of the type of base material on the corrosion resistance and corrosion resistance of the coating was found within the scope of the experiment. Therefore, only the result of SS400 will be described. 4 and 5 show the relationship between the change in film thickness and the number of days of immersion, and the relationship between the change in mass and the number of days of immersion. The film thickness is shown by an increase / decrease rate with the initial value being 100%.

図4、図5に示すように、「水酸化ナトリウム水溶液」に浸漬した被膜では、全被膜が試験終了までに溶液中に溶出したことが確認された。なお、蒸留水に浸漬した被膜では、変化が見られなかった。また、カルシウムを含む「細孔溶液」では、アルミマグネシウム(以下、Al−Mg系と記す)被膜のみ被膜がすべて溶出したが、他の亜鉛系被膜3種では、明らかな膜厚増加が見られ、また、質量についても増加傾向を示すことが確認された。図6にAl−Mg系の浸漬前後のEDS分析結果を示す。   As shown in FIGS. 4 and 5, it was confirmed that all the coatings were eluted into the solution by the end of the test in the coating immersed in “aqueous sodium hydroxide solution”. No change was observed in the coating immersed in distilled water. In the “pore solution” containing calcium, only the aluminum magnesium (hereinafter referred to as “Al—Mg”) coating was completely eluted, but in the other three zinc coatings, a clear increase in film thickness was observed. It was also confirmed that the mass also showed an increasing tendency. FIG. 6 shows the results of EDS analysis before and after immersion in the Al—Mg system.

図6に示すように、浸漬後の被膜のアルミニウム量はいずれの溶液においても、浸漬前に比べ大きく減少したが、マグネシウムは大きな変化は見られなかった。浸漬前のAl−Mg系被膜は、両性金属であるアルミニウムの含有量が多かった。そのため、アルカリ溶液に浸漬後はアルミニウムが溶出し、被膜が損失したものと推察される。なお、「細孔溶液+NaCl」に浸漬した被膜については、「細孔溶液」に浸漬したケースとほぼ同様の膜厚増加傾向を示した。   As shown in FIG. 6, the aluminum content of the coating after immersion was significantly reduced in each of the solutions as compared to before the immersion, but no significant change was observed in magnesium. The Al-Mg based coating before immersion had a high content of aluminum, which is an amphoteric metal. Therefore, it is presumed that aluminum was eluted after immersion in the alkaline solution and the coating was lost. The film immersed in “pore solution + NaCl” showed a film thickness increasing tendency almost similar to that of the case immersed in “pore solution”.

膜厚の増加が見られた細孔溶液に浸漬した亜鉛系被膜3種について、耐アルカリ性試験前後の被膜表面の形態観察およびEDS分析を行った。一例として、図7に亜鉛溶射の被膜表面形態の変化を示し、図8に亜鉛系被膜3種のEDS分析結果を示す。   With respect to the three zinc-based coatings immersed in the pore solution in which the film thickness increased, the morphological observation of the coating surface before and after the alkali resistance test and EDS analysis were performed. As an example, FIG. 7 shows changes in the surface morphology of the zinc sprayed coating, and FIG. 8 shows the results of EDS analysis of three types of zinc-based coatings.

浸漬試験終了後の被膜表面は凹凸が大きく、結晶のようなものが確認できた。また、亜鉛系被膜3種すべてにおいてカルシウムの増加量が大きいことが確認された。さらに、XRDによる化合物分析を行った結果、細孔溶液に浸漬した亜鉛系被膜3種において、亜鉛とカルシウムの化合物であるCaZn2(OH)6・2H2Oを検出した。したがって、カルシウムが存在する溶液における亜鉛系被膜の膜厚増加は、水溶液中のカルシウムと被膜中の亜鉛が反応し、亜鉛系被膜の表面に生成物が形成されたことに起因するものと推察する。 After the completion of the immersion test, the surface of the film had large irregularities, and a crystal-like thing was confirmed. It was also confirmed that the amount of increase in calcium was large in all three types of zinc-based coatings. Furthermore, as a result of compounds analysis by XRD, the zinc-based coating three immersed in pores solution was detected CaZn 2 (OH) 6 · 2H 2 O is a compound of zinc and calcium. Therefore, it is speculated that the increase in the thickness of the zinc-based film in the solution containing calcium is caused by the reaction between the calcium in the aqueous solution and the zinc in the film, and the formation of a product on the surface of the zinc-based film. .

<被膜の防食性能試験>
図9に被膜の防食性能試験結果を示す。腐食電流密度が小さいほど防食性能が高いため、亜鉛溶射が最も防食性能が高い材料であることが分かった。次に防食性能が高い材料は、Al−Mgで塩化物の影響を受けたとしても十分な防食性能を維持していると考えられる。亜鉛メッキは塩化物の影響を受ける環境下では防食効果が見込める材料だと分かった。また、亜鉛アルミニウム溶射は無垢よりも腐食しやすい材料であること分かった。
<Coating anti-corrosion performance test>
FIG. 9 shows the results of the corrosion prevention performance test of the coating. The smaller the corrosion current density, the higher the anticorrosion performance, so that zinc spraying was found to be the material with the highest anticorrosion performance. Next, it is considered that a material having a high anticorrosion performance maintains a sufficient anticorrosion performance even if it is affected by chlorides of Al-Mg. Zinc plating was found to be a material that can be expected to have an anticorrosion effect in environments affected by chlorides. It has also been found that zinc aluminum spray is a material that is more susceptible to corrosion than solid.

<試験結果に基づく知見>
図10に防食性能試験の評価を示す。各種金属系防食被膜の耐アルカリ性、耐食性の確認を目的とし、被膜の種類、および周辺環境の違いによる影響について評価した結果、試験の範囲で以下の知見が得られた。
(1)亜鉛系被膜3種を含むすべての被膜が、水酸化ナトリウム水溶液で溶出した。
(2)Al−Mg系被膜はアルミニウムの影響が強く、かつ亜鉛を含まないため被膜を保護する化合物の形成がなく全滅した。
(3)カルシウムが含まれる細孔溶液中では、被膜中の亜鉛との間で反応が起こったことにより化合物が表面に形成され、膜厚が増加した。
(4)亜鉛溶射して形成した被膜が、最も防食性能が高い材料であった。
<Knowledge based on test results>
FIG. 10 shows the evaluation of the anticorrosion performance test. For the purpose of confirming the alkali resistance and corrosion resistance of various metal-based anticorrosion coatings, the effects of different coating types and the surrounding environment were evaluated. As a result, the following findings were obtained within the range of the test.
(1) All the coatings including the three zinc-based coatings were eluted with the aqueous sodium hydroxide solution.
(2) The Al-Mg-based coating was strongly affected by aluminum and did not contain zinc, and was completely extinguished without the formation of a compound for protecting the coating.
(3) In the pore solution containing calcium, a compound was formed on the surface due to the reaction with zinc in the coating, and the film thickness increased.
(4) The coating formed by spraying zinc was the material with the highest anticorrosion performance.

上述した試験結果に基づく知見により、鉄筋の耐食性を向上させた金属系防食被膜は、鉄筋の表面に形成した亜鉛を含む金属被膜に、カルシウムを付与してカルシウム化合物を生成させたものであることが好適であり、さらに、亜鉛を含む金属被膜は、亜鉛溶射により形成することが好ましいとの結論に至った。   According to the findings based on the above test results, the metal-based anticorrosion coating with improved corrosion resistance of the reinforcing bar is a metal coating containing zinc formed on the surface of the reinforcing bar, with calcium added to generate a calcium compound. Is preferred, and the metal coating containing zinc is preferably formed by zinc spraying.

10 マグネットスタンド
11 支柱
12 支持竿
20 レーザー変位計
30 測定対象固定機器
31 載置台
32 スチール板
33 ガイド
34 試験片
DESCRIPTION OF SYMBOLS 10 Magnet stand 11 Prop 12 Support pole 20 Laser displacement meter 30 Fixed device to be measured 31 Mounting table 32 Steel plate 33 Guide 34 Test piece

Claims (5)

コンクリート構造物に使用する鉄筋の耐久性を向上させるための金属系防食被膜であって、
鉄筋の表面に形成した亜鉛を含む金属被膜に、カルシウムを付与してカルシウム化合物が生成された状態としたことを特徴とする鉄筋の耐食性を向上させた金属系防食被膜。
A metal-based anticorrosion coating for improving the durability of reinforcing steel used for concrete structures,
A metal-based anticorrosion film having improved corrosion resistance of a reinforcing bar, wherein calcium is applied to a zinc-containing metal coating formed on the surface of a reinforcing bar to form a calcium compound.
前記亜鉛を含む金属被膜は、亜鉛溶射により形成することを特徴とする請求項1に記載の鉄筋の耐食性を向上させた金属系防食被膜。   The metal-based anticorrosion coating according to claim 1, wherein the zinc-containing metal coating is formed by zinc spraying. コンクリート構造物に使用する鉄筋の耐久性を向上させるための金属系防食被膜の生成方法であって、
鉄筋の表面に亜鉛を含む金属被膜を形成しながらカルシウムを付与して、鉄筋の表面に亜鉛カルシウム化合物を生成させることを特徴とする鉄筋の耐食性を向上させた金属系防食被膜の生成方法。
A method for producing a metal-based anticorrosion coating for improving the durability of a reinforcing bar used for a concrete structure,
A method for producing a metal-based anticorrosion film having improved corrosion resistance of a reinforcing bar, wherein calcium is applied while forming a metal film containing zinc on the surface of the reinforcing bar to generate a zinc-calcium compound on the surface of the reinforcing bar.
ロール状に巻き取られた鉄筋材料を引き出しながら、鉄筋の表面に亜鉛を含む金属被膜を形成するとともにカルシウムを付与して、鉄筋の表面に亜鉛カルシウム化合物を生成させることを特徴とする請求項3に記載の鉄筋の耐食性を向上させた金属系防食被膜の生成方法。   4. A zinc-calcium compound is generated on the surface of the reinforcing bar by forming a zinc-containing metal coating on the surface of the reinforcing bar and applying calcium to the surface of the reinforcing bar while drawing out the rolled-up reinforcing bar material. The method for producing a metal-based anticorrosion coating in which the corrosion resistance of the reinforcing bar is improved. 鉄筋の表面に亜鉛溶射を行うことにより金属被膜を形成することを特徴とする請求項3又は4に記載の鉄筋の耐食性を向上させた金属系防食被膜の生成方法。   5. The method according to claim 3, wherein the metal coating is formed by spraying zinc on the surface of the reinforcing steel.
JP2018142330A 2018-07-30 2018-07-30 METHOD FOR FORMING METAL-BASED CORROSION-PROOF COATING WITH IMPROVED CORROSION RESISTANCE OF REINFORCEMENT Active JP7158197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142330A JP7158197B2 (en) 2018-07-30 2018-07-30 METHOD FOR FORMING METAL-BASED CORROSION-PROOF COATING WITH IMPROVED CORROSION RESISTANCE OF REINFORCEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142330A JP7158197B2 (en) 2018-07-30 2018-07-30 METHOD FOR FORMING METAL-BASED CORROSION-PROOF COATING WITH IMPROVED CORROSION RESISTANCE OF REINFORCEMENT

Publications (2)

Publication Number Publication Date
JP2020019977A true JP2020019977A (en) 2020-02-06
JP7158197B2 JP7158197B2 (en) 2022-10-21

Family

ID=69588080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142330A Active JP7158197B2 (en) 2018-07-30 2018-07-30 METHOD FOR FORMING METAL-BASED CORROSION-PROOF COATING WITH IMPROVED CORROSION RESISTANCE OF REINFORCEMENT

Country Status (1)

Country Link
JP (1) JP7158197B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121650A (en) * 1986-02-06 1988-05-25 アンスチチユ ドウ ルシエルシユ ドウ ラ シデルルジ− フランセ−ズ(イルシツド) Method for protecting and coating steel product and coated steel product
JP2002266472A (en) * 2001-03-07 2002-09-18 Aichi Aen Mekki Kk Galvanized construction steel material with excellent corrosion resistance
KR20110077429A (en) * 2009-12-30 2011-07-07 이명훈 Preparation of anti-corrosive zn series plating material on steel bar for embedded concrete by hot-dip galvanizing method
CN103233218A (en) * 2013-04-27 2013-08-07 宁波科鑫腐蚀控制工程有限公司 Zinc and epoxy double coating reinforcing steel bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121650A (en) * 1986-02-06 1988-05-25 アンスチチユ ドウ ルシエルシユ ドウ ラ シデルルジ− フランセ−ズ(イルシツド) Method for protecting and coating steel product and coated steel product
JP2002266472A (en) * 2001-03-07 2002-09-18 Aichi Aen Mekki Kk Galvanized construction steel material with excellent corrosion resistance
KR20110077429A (en) * 2009-12-30 2011-07-07 이명훈 Preparation of anti-corrosive zn series plating material on steel bar for embedded concrete by hot-dip galvanizing method
CN103233218A (en) * 2013-04-27 2013-08-07 宁波科鑫腐蚀控制工程有限公司 Zinc and epoxy double coating reinforcing steel bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"溶融亜鉛めっき鉄筋の耐食性向上に関する研究", 三重県科学技術振興センター工業研究部研究報告, JPN6022023893, 2002, JP, pages 29 - 32, ISSN: 0004796460 *

Also Published As

Publication number Publication date
JP7158197B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
Abedi Esfahani et al. Study of corrosion behavior of arc sprayed aluminum coating on mild steel
Umoren et al. Recent developments on the use of polymers as corrosion inhibitors-a review
Cao et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution
Katayama et al. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area
Zhang et al. Studies on the formation process and anti-corrosion performance of polypyrrole film deposited on the surface of Q235 steel by an electrochemical method
Yang et al. Corrosion behaviour of superplastic Zn–Al alloys in simulated acid rain
Catubig et al. The use of cerium and praseodymium mercaptoacetate as thiol-containing inhibitors for AA2024-T3
Zuo et al. Investigation of composition and structure for a novel Ti–Zr chemical conversion coating on 6063 aluminum alloy
Hou et al. A combined inhibiting effect of sodium alginate and sodium phosphate on the corrosion of magnesium alloy AZ31 in NaCl solution
Monticelli et al. Surface-active substances as inhibitors of localized corrosion of the aluminium alloy AA 6351
JP6455526B2 (en) Electrical steel sheet
Simões et al. An environmentally acceptable primer for galvanized steel: formulation and evaluation by SVET
Yang et al. Formation of protective conversion coating on Mg surface by inorganic inhibitor
Bobzin et al. Corrosion of wire arc sprayed ZnMgAl
Sugimura et al. Long-term corrosion protection of arc spray Zn-Al-Si coating system in dilute chloride solutions and sulfate solutions
Kannan et al. Performance of a magnesium-rich primer on pretreated AA2024-T351 in selected laboratory and field environments: conversion coating pretreatments
JP5733667B2 (en) External spray tube
JP2020019977A (en) Metal based corrosion resistant coating improving corrosion resistance of reinforcement, and method for forming the same
Kerstner et al. Anticorrosive performance of commercial nanoceramic coatings on AISI 1010 steel
Paul Behavior of damaged thermally sprayed aluminum (TSA) in aerated and deaerated seawater
Nagaraj et al. Protective polyurea coating for enhanced corrosion resistance of sole bars in railway coaches
JP5459035B2 (en) Durability judgment method for coated steel
Thirupathi et al. Corrosion inhibition behaviour on carbon steel in well-water by Ethanolic extract of Portulaca quadrifida (Chicken weed) leaves
Glogović et al. Corrosion properties of thermal sprayed aluminium (TSA) coatings deposited by powder flame spraying
Li et al. Comparative studies on the initial stage of arc-sprayed and zinc-rich powder coatings in sulfur-rich environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7158197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150