JP2020016472A - Gas concentration measuring device - Google Patents

Gas concentration measuring device Download PDF

Info

Publication number
JP2020016472A
JP2020016472A JP2018137880A JP2018137880A JP2020016472A JP 2020016472 A JP2020016472 A JP 2020016472A JP 2018137880 A JP2018137880 A JP 2018137880A JP 2018137880 A JP2018137880 A JP 2018137880A JP 2020016472 A JP2020016472 A JP 2020016472A
Authority
JP
Japan
Prior art keywords
gas
light
optical window
detection light
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018137880A
Other languages
Japanese (ja)
Inventor
駿佑 松井
Shunsuke Matsui
駿佑 松井
啓一 曽根
Keiichi Sone
啓一 曽根
健 安部
Takeshi Abe
健 安部
安彦 浦辺
Yasuhiko Urabe
安彦 浦辺
毅 原
Takeshi Hara
毅 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Sewerage Service Corp
Tokyo Gas Engineering Solutions Corp
Original Assignee
Tokyo Metropolitan Sewerage Service Corp
Tokyo Gas Engineering Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Sewerage Service Corp, Tokyo Gas Engineering Solutions Corp filed Critical Tokyo Metropolitan Sewerage Service Corp
Priority to JP2018137880A priority Critical patent/JP2020016472A/en
Publication of JP2020016472A publication Critical patent/JP2020016472A/en
Pending legal-status Critical Current

Links

Abstract

To provide a gas concentration measuring device with which it is possible to easily and quickly measure the accurate concentration of a gas to be detected.SOLUTION: Provided is a gas concentration measuring device comprising: a gas space inclusion member in which a space where a gas to be detected flows or a space where a gas to be detected stays is included; a detection light source for radiating detection light; a reflection member for reflecting the detection light passing through at least a portion of the gas space inclusion member; a light receiving unit for receiving reflected light from the reflection member and outputting a signal that corresponds to the light intensity of received light; and a concentration calculation unit for calculating the concentration of the gas to be detected on the basis of the signal outputted by the light receiving unit.SELECTED DRAWING: Figure 1

Description

本発明は、ガス濃度測定器に関する。   The present invention relates to a gas concentration measuring device.

特許文献1には、メタン等ガス分子の赤外光吸収特性を利用したガス検知器が開示されている。当該ガス検知器では、検出光として周波数変調した赤外レーザ光を用い、被検出ガスを通過した検出光の乱反射光を受光素子で受け、当該受光素子が出力する出力信号から、変調周波数に等しい周波数の基本波信号と変調周波数の2倍に等しい周波数の2倍波信号を検出する。そして、基本波信号に対する2倍波信号の強さから被検出ガスの濃度を算出している。   Patent Literature 1 discloses a gas detector using infrared light absorption characteristics of gas molecules such as methane. The gas detector uses infrared laser light that has been frequency-modulated as detection light, receives irregularly reflected light of the detection light that has passed through the gas to be detected by a light receiving element, and obtains an output signal equal to the modulation frequency from an output signal output by the light receiving element. A fundamental wave signal having a frequency and a second harmonic signal having a frequency equal to twice the modulation frequency are detected. Then, the concentration of the gas to be detected is calculated from the intensity of the second harmonic signal with respect to the fundamental signal.

特開2001−235420号公報JP 2001-235420 A

特許文献1に記載のガス検知器によれば、ガス管等の内部を流れる被検出ガス、あるいは、ガスセル等に封入されている被検出ガスを、容易かつ高速に検出することができる。しかし、当該ガス検知器で検知されるガスの濃度は、検出光が通過した光路長に依存する値、すなわちカラム濃度として得られることから、光路長が不明な場合は、正確な濃度を算出することができない問題がある。   According to the gas detector described in Patent Literature 1, a gas to be detected flowing inside a gas pipe or the like, or a gas to be detected sealed in a gas cell or the like can be easily and quickly detected. However, since the concentration of the gas detected by the gas detector depends on the optical path length through which the detection light has passed, that is, is obtained as a column concentration, if the optical path length is unknown, an accurate concentration is calculated. There is a problem that cannot be done.

本発明の目的は、被検出ガスの正確な濃度が容易且つ高速に測定可能なガス濃度測定装置を提供することにある。   An object of the present invention is to provide a gas concentration measuring device capable of easily and quickly measuring the accurate concentration of a gas to be detected.

上記課題を解決するために、本発明の第1の態様においては、被検出ガスが流れる空間または前記被検出ガスを滞留する空間が内包されたガス空間内包部材と、検出光を放射する検出光源部と、前記ガス空間内包部材の少なくとも一部を通過する前記検出光を反射させる反射部材と、前記反射部材からの反射光を受光し、受光した光の強度に応じた信号を出力する受光部と、前記受光部が出力する前記信号に基づき前記被検出ガスの濃度を計算する濃度計算部と、を有するガス濃度測定装置を提供する。   In order to solve the above problems, in a first aspect of the present invention, a gas space inclusion member including a space in which a gas to be detected flows or a space in which the gas to be detected is retained, and a detection light source that emits detection light Unit, a reflecting member that reflects the detection light passing through at least a part of the gas space inclusion member, and a light receiving unit that receives the reflected light from the reflecting member and outputs a signal corresponding to the intensity of the received light. And a concentration calculator for calculating the concentration of the gas to be detected based on the signal output from the light receiver.

前記ガス空間内包部材が、前記検出光を透過する第1光学窓を有し、前記反射部材が、前記ガス空間内包部材の内部に設置され、前記反射光が前記第1光学窓を透過して前記受光部に受光されるものであっても良い。あるいは、前記ガス空間内包部材が、前記検出光を透過する第1光学窓と、前記第1光学窓を透過した前記検出光を透過する第2光学窓とを有し、前記反射部材が、前記ガス空間内包部材の外部に設置され、前記反射光が前記第1光学窓および前記第2光学窓を透過して前記受光部に受光されるものであっても良い。これらの場合、前記反射部材が、前記検出光とは光軸が異なり且つ前記検出光と平行な反射光を生じるプリズムであってもよい。   The gas space inclusion member has a first optical window that transmits the detection light, the reflection member is installed inside the gas space inclusion member, and the reflected light passes through the first optical window. The light may be received by the light receiving unit. Alternatively, the gas space inclusion member has a first optical window that transmits the detection light, and a second optical window that transmits the detection light that has passed through the first optical window, and the reflection member is The reflected light may be installed outside the gas space inclusion member, and the reflected light may be transmitted through the first optical window and the second optical window and received by the light receiving unit. In these cases, the reflection member may be a prism having an optical axis different from that of the detection light and generating reflected light parallel to the detection light.

前記反射部材を回転する回転機構をさらに有し、少なくとも前記被検出ガスの濃度を測定している間、前記回転機構により前記反射部材を回転するものであっても良い。   The apparatus may further include a rotation mechanism for rotating the reflection member, wherein the reflection mechanism is rotated by the rotation mechanism at least while measuring the concentration of the gas to be detected.

前記ガス空間内包部材が、前記検出光を透過する第1光学窓を有し、前記反射部材が、前記光学窓に対向する前記ガス空間内包部材の内壁であり、前記反射光が前記第1光学窓を透過して前記受光部に受光されるものであっても良い。   The gas space inclusion member has a first optical window that transmits the detection light, the reflection member is an inner wall of the gas space inclusion member facing the optical window, and the reflected light is the first optical window. The light may be transmitted through a window and received by the light receiving unit.

ガス濃度測定装置100の概要を示した構成図である。FIG. 1 is a configuration diagram illustrating an outline of a gas concentration measurement device 100. ガス濃度測定装置200の概要を示した構成図である。FIG. 1 is a configuration diagram illustrating an outline of a gas concentration measurement device 200. ガス濃度測定装置300の概要を示した構成図である。FIG. 1 is a configuration diagram illustrating an outline of a gas concentration measurement device 300. ガス濃度測定装置400の概要を示した構成図である。FIG. 1 is a configuration diagram showing an outline of a gas concentration measurement device 400. ガス濃度測定装置500の概要を示した構成図である。FIG. 2 is a configuration diagram showing an outline of a gas concentration measurement device 500. 模擬消化ガスごとの検知濃度(カラム密度)をメタン濃度に対してプロットしたグラフである。It is the graph which plotted the detection concentration (column density) for every simulated digestion gas with respect to methane concentration. 下水汚泥から生じた消化ガス内のメタン濃度を連続測定した結果を示す。The result of continuous measurement of the methane concentration in digestive gas generated from sewage sludge is shown.

(実施の形態1)
図1は、ガス濃度測定装置100の概要を示した構成図である。ガス濃度測定装置100は、検出光源部102、受光部104、信号検出部106、濃度計算部108、表示部110、ガス空間内包部材112、第1光学窓114および反射部材116を有する。被検出ガスは、たとえば、ガス空間内包部材112の内部を流れFの方向に流れる。検出光源部102が放射した検出光120が反射部材116で反射され、反射光122に含まれる被検出ガスの吸収に関する情報から、光路上のガスの濃度が測定される。
(Embodiment 1)
FIG. 1 is a configuration diagram showing an outline of the gas concentration measurement device 100. The gas concentration measuring device 100 includes a detection light source unit 102, a light receiving unit 104, a signal detection unit 106, a concentration calculation unit 108, a display unit 110, a gas space inclusion member 112, a first optical window 114, and a reflection member 116. The gas to be detected flows, for example, in the direction of the flow F inside the gas space inclusion member 112. The detection light 120 emitted by the detection light source unit 102 is reflected by the reflection member 116, and the concentration of the gas on the optical path is measured from the information on the absorption of the gas to be detected contained in the reflected light 122.

検出光源部102は、検出光120を放射する。検出光源部102は、たとえば周波数変調されたレーザ光を検出光120として放射する。レーザ光を周波数変調することでガス濃度に応じた2倍波信号が生じる。検出光120の波長(周波数)は、被検出ガスに吸収されるが背景ガスには吸収されない波長が好ましい。被検出ガスがメタンである場合、検出光120として発振波長が1.65μm帯の赤外レーザ光を用いることができる。被検出ガスが硫化水素である場合、検出光120として発振波長が1.57μm帯の赤外レーザ光を用いることができる。なお、検出光源部102に半導体レーザ発振器を用いる場合、被検出ガスが封入された標準セルを準備し、当該標準セルでの光吸収を参照して、検出光120の発振波長が被検出ガスの吸収線の中心に一致するよう半導体レーザ発振器の動作温度等を調整することが好ましい。   The detection light source unit 102 emits the detection light 120. The detection light source unit 102 emits, for example, frequency-modulated laser light as the detection light 120. By modulating the frequency of the laser light, a second harmonic signal corresponding to the gas concentration is generated. The wavelength (frequency) of the detection light 120 is preferably a wavelength that is absorbed by the gas to be detected but not absorbed by the background gas. When the gas to be detected is methane, an infrared laser beam having an oscillation wavelength of 1.65 μm can be used as the detection light 120. When the gas to be detected is hydrogen sulfide, an infrared laser beam having an oscillation wavelength of 1.57 μm can be used as the detection light 120. In the case where a semiconductor laser oscillator is used for the detection light source unit 102, a standard cell in which a gas to be detected is sealed is prepared, and the oscillation wavelength of the detection light 120 is adjusted to the wavelength of the gas to be detected by referring to the light absorption in the standard cell. It is preferable to adjust the operating temperature and the like of the semiconductor laser oscillator so as to coincide with the center of the absorption line.

受光部104は、反射部材116からの反射光122を受光し、受光した光の強度に応じた信号を出力する。受光部104として、たとえばフォトダイオード、フォトマルチプライヤー等の光電変換素子とその駆動検出回路を例示することができる。受光部104には、たとえばバンドパスフィルタ等の光学フィルタ、スリット、分光機構等を備えてもよい。   The light receiving unit 104 receives the reflected light 122 from the reflecting member 116 and outputs a signal corresponding to the intensity of the received light. Examples of the light receiving unit 104 include a photoelectric conversion element such as a photodiode and a photomultiplier and a drive detection circuit thereof. The light receiving unit 104 may include, for example, an optical filter such as a band-pass filter, a slit, a spectral mechanism, and the like.

信号検出部106は、受光部104が出力した受光信号を受け、当該受光信号から、検出光120の変調周波数に等しい周波数の基本波信号、および変調周波数の2倍に等しい周波数の2倍波信号を検出する。基本波信号および2倍波信号の検出には同期検波を用いることができる。   The signal detecting unit 106 receives the light receiving signal output by the light receiving unit 104 and, based on the received light signal, a fundamental signal having a frequency equal to the modulation frequency of the detection light 120 and a second harmonic signal having a frequency equal to twice the modulation frequency. Is detected. Synchronous detection can be used to detect the fundamental wave signal and the second harmonic signal.

濃度計算部108は、受光部104が出力する信号に基づき被検出ガスの濃度を計算する。   The concentration calculator 108 calculates the concentration of the gas to be detected based on the signal output from the light receiver 104.

表示部110は、濃度計算部108が計算した被検出ガスの濃度を表示する。なお、表示部110を設ける代わりに、濃度値を有線または無線により出力する出力手段を設けてもよい。   The display unit 110 displays the concentration of the detected gas calculated by the concentration calculation unit 108. Instead of providing the display unit 110, an output unit for outputting the density value by wire or wirelessly may be provided.

ガス空間内包部材112は、被検出ガスが流れる空間または被検出ガスが滞留される空間を内包する。ガス空間内包部材112として、被検出ガスが流れるガス管あるいはガスセル、被検出ガスを滞留するガスセルを例示することができる。   The gas space inclusion member 112 includes a space in which the gas to be detected flows or a space in which the gas to be detected is retained. Examples of the gas space inclusion member 112 include a gas pipe or gas cell through which a gas to be detected flows, and a gas cell in which the gas to be detected stays.

ガス空間内包部材112には、第1光学窓114を有する。第1光学窓114は、検出光120を透過し、反射部材116に反射された反射光122を透過する。第1光学窓114として、たとえば光学ガラスが例示できるが、検出光120がある程度の透過率で透過する材料である限り、特に限定されない。   The gas space inclusion member 112 has a first optical window 114. The first optical window 114 transmits the detection light 120 and transmits the reflected light 122 reflected by the reflection member 116. As the first optical window 114, for example, optical glass can be exemplified, but there is no particular limitation as long as it is a material through which the detection light 120 transmits at a certain transmittance.

反射部材116は、ガス空間内包部材112の少なくとも一部を通過する検出光120を反射させる。反射部材116は、図1に示す通り、ガス空間内包部材112の内部に設置される。すなわち、反射部材116は、第1光学窓114から距離Lを隔てて設置される。この結果、被検出ガスの吸収に係る光路長が一定値(2L)に保たれ、濃度計算部108における濃度の絶対値計算が可能になる。たとえば、濃度計算部108において、基本波信号と2倍波信号の比に基づいて、背景ガスが存在する雰囲気における被検出ガスのコラム密度が計算され、さらに、コラム密度の値と光路長2Lの値とからガス濃度が計算される。   The reflection member 116 reflects the detection light 120 passing through at least a part of the gas space inclusion member 112. The reflection member 116 is installed inside the gas space inclusion member 112 as shown in FIG. That is, the reflection member 116 is installed at a distance L from the first optical window 114. As a result, the optical path length related to the absorption of the gas to be detected is kept at a constant value (2 L), and the absolute value of the concentration can be calculated by the concentration calculator 108. For example, the concentration calculator 108 calculates the column density of the gas to be detected in the atmosphere where the background gas exists, based on the ratio between the fundamental wave signal and the second harmonic signal, and further calculates the column density and the optical path length 2L. The gas concentration is calculated from the values.

本実施形態のガス濃度測定装置100によれば、検出光の光路長が一定に保たれるので、被検出ガスの光吸収に基づく計測において、コラム密度に留まらず、ガス濃度として測定が可能になる。また、光吸収に基づく計測なので高速かつ簡単なガス濃度測定が可能になる。さらに、半導体光源を用いることで装置を小型化することも可能になる。   According to the gas concentration measuring apparatus 100 of the present embodiment, the optical path length of the detection light is kept constant, so that in the measurement based on the light absorption of the gas to be detected, it is possible to measure not only the column density but also the gas concentration. Become. In addition, since the measurement is based on light absorption, high-speed and simple gas concentration measurement becomes possible. Furthermore, the use of a semiconductor light source also allows the device to be downsized.

(実施の形態2)
図2は、ガス濃度測定装置200の概要を示した構成図である。ガス濃度測定装置200は、反射部材として、第1光学窓114に対向するガス空間内包部材112の内壁216を用いた例である。ガス濃度測定装置200によっても、ガス濃度測定装置100と同様に光路長2Lが固定され、同様の効果を得ることができる。
(Embodiment 2)
FIG. 2 is a configuration diagram showing an outline of the gas concentration measurement device 200. The gas concentration measurement device 200 is an example in which the inner wall 216 of the gas space inclusion member 112 facing the first optical window 114 is used as a reflection member. Also with the gas concentration measurement device 200, the optical path length 2L is fixed similarly to the gas concentration measurement device 100, and the same effect can be obtained.

(実施の形態3)
図3は、ガス濃度測定装置300の概要を示した構成図である。ガス濃度測定装置300は、反射部材として、プリズム316を用いた例である。プリズム316は、検出光120とは光軸が異なり且つ検出光120と平行な反射光122を生じる。ガス濃度測定装置300によっても、ガス濃度測定装置100〜200と同様に光路長2Lが固定され、同様の効果を得ることができる。
(Embodiment 3)
FIG. 3 is a configuration diagram showing an outline of the gas concentration measuring device 300. The gas concentration measuring device 300 is an example using a prism 316 as a reflecting member. The prism 316 generates reflected light 122 having an optical axis different from that of the detection light 120 and parallel to the detection light 120. Also with the gas concentration measuring device 300, the optical path length 2L is fixed similarly to the gas concentration measuring devices 100 to 200, and the same effect can be obtained.

(実施の形態4)
図4は、ガス濃度測定装置400の概要を示した構成図である。ガス濃度測定装置400は、ガス空間内包部材112が、第1光学窓114と、第1光学窓114に対向する第2光学窓402を有する例である。第1光学窓114を透過した検出光120は、第2光学窓402を透過する。この場合、反射部材416をガス空間内包部材112の外部に設置することができ、反射部材416の取り換え等を容易にすることができる。また、実施の形態5で説明する、反射部材への回転操作等を加えやすくなる。なお、反射部材416として、ガス濃度測定装置300で説明したプリズム316を適用してもよい。ガス濃度測定装置400によっても、ガス濃度測定装置100〜300と同様に光路長2Lが固定され、同様の効果を得ることができる。
(Embodiment 4)
FIG. 4 is a configuration diagram showing an outline of the gas concentration measuring device 400. The gas concentration measuring device 400 is an example in which the gas space inclusion member 112 has a first optical window 114 and a second optical window 402 facing the first optical window 114. The detection light 120 transmitted through the first optical window 114 transmits through the second optical window 402. In this case, the reflection member 416 can be installed outside the gas space inclusion member 112, and replacement of the reflection member 416 can be facilitated. Further, it becomes easy to add a rotation operation and the like to the reflection member described in the fifth embodiment. Note that the prism 316 described in the gas concentration measurement device 300 may be applied as the reflection member 416. Also with the gas concentration measuring device 400, the optical path length 2L is fixed similarly to the gas concentration measuring devices 100 to 300, and the same effect can be obtained.

(実施の形態5)
図5は、ガス濃度測定装置500の概要を示した構成図である。ガス濃度測定装置500は、反射部材516を回転させる例である。ガス濃度測定装置500は、回転機構520と、反射部材516および回転機構520を接続する軸522とを備え、少なくとも被検出ガスの濃度を測定している間、回転機構520により反射部材516を回転することで、測定値を安定化させることができる。なお、当該回転機構は、上記したガス濃度測定装置100、300においても適用することは可能である。ガス濃度測定装置500によっても、ガス濃度測定装置100〜400と同様に光路長2Lが固定され、同様の効果を得ることができる。
(Embodiment 5)
FIG. 5 is a configuration diagram showing an outline of the gas concentration measuring device 500. The gas concentration measuring device 500 is an example in which the reflecting member 516 is rotated. The gas concentration measuring device 500 includes a rotating mechanism 520 and a shaft 522 connecting the reflecting member 516 and the rotating mechanism 520, and rotates the reflecting member 516 by the rotating mechanism 520 at least while measuring the concentration of the gas to be detected. By doing so, the measured value can be stabilized. Note that the rotation mechanism can be applied to the gas concentration measurement devices 100 and 300 described above. Also with the gas concentration measuring device 500, the optical path length 2L is fixed similarly to the gas concentration measuring devices 100 to 400, and the same effect can be obtained.

上記したガス濃度測定装置100〜500において、検出光源部102および受光部104と第1光学窓114との間に適切な光学系を設けても良い。たとえば、光量が少ない場合は集光レンズを設け、光量が多い場合は減衰器(アッテネーター)を設けても良い。また、検出光源部102および受光部104と第1光学窓114との間の光路に光ファイバーを用いても良い。この場合、検出回路等の電子機器部分をガス空間内包部材112から物理的に隔離し、防爆構造を容易に構成することができる。   In the gas concentration measuring devices 100 to 500 described above, an appropriate optical system may be provided between the detection light source unit 102 and the light receiving unit 104 and the first optical window 114. For example, a condensing lens may be provided when the amount of light is small, and an attenuator (attenuator) may be provided when the amount of light is large. Further, an optical fiber may be used in an optical path between the detection light source unit 102 and the light receiving unit 104 and the first optical window 114. In this case, the electronic device portion such as the detection circuit is physically separated from the gas space enclosing member 112, so that the explosion-proof structure can be easily configured.

(実施例)
実施例として、消化ガス内のメタンガス濃度を測定した結果の一例を示す。ガス濃度測定装置として前記した実施の形態3のガス濃度測定装置300を用いた。試料ガスとして、メタン濃度が0%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%の模擬消化ガスを作成し、各模擬消化ガスのカラム密度を測定した。検出光には、メタン以外の他のガスの影響を受けにくい、波長1.6537μmのレーザ光を用いた。
(Example)
As an example, an example of a result of measuring a methane gas concentration in a digestion gas will be described. The gas concentration measuring device 300 of the third embodiment described above was used as the gas concentration measuring device. As a sample gas, simulated digestion gas having a methane concentration of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% was prepared. The column density of the gas was measured. As the detection light, a laser light having a wavelength of 1.6535 μm, which is hardly affected by other gases other than methane, was used.

図6は、試料ガスとして作成した模擬消化ガスごとの検知濃度(カラム密度)をメタン濃度に対してプロットしたグラフである。光路長が一定であるため、測定値である検知濃度は、模擬消化ガスのメタン濃度にほぼ比例していることがわかる。当該結果を用いて、カラム濃度として測定された測定値を光路長に依存しないガス濃度に変換(校正)することができる。   FIG. 6 is a graph in which the detected concentration (column density) of each simulated digestion gas created as a sample gas is plotted against the methane concentration. Since the optical path length is constant, it can be seen that the detected concentration, which is a measured value, is substantially proportional to the methane concentration of the simulated digested gas. Using the result, the measured value measured as the column concentration can be converted (calibrated) into a gas concentration independent of the optical path length.

図7は、下水汚泥から生じた消化ガス内のメタン濃度を連続測定した結果を示す。約14時間に渡り、58%〜60%程度のメタンガスを含む消化ガスが連続して排出されている様子が観測できた。   FIG. 7 shows the results of continuous measurement of the methane concentration in digested gas generated from sewage sludge. Over a period of about 14 hours, it was observed that digestion gas containing about 58% to 60% of methane gas was continuously discharged.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As described above, the present invention has been described using the embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various changes or improvements can be made to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

100…ガス濃度測定装置、102…検出光源部、104…受光部、106…信号検出部、108…濃度計算部、110…表示部、112…ガス空間内包部材、114…第1光学窓、116…反射部材、120…検出光、122…反射光、200…ガス濃度測定装置、216…ガス空間内包部材の内壁、300…ガス濃度測定装置、316…プリズム、400…ガス濃度測定装置、402…第2光学窓、416…反射部材、500…ガス濃度測定装置、516…反射部材、520…回転機構、522…軸。   Reference Signs List 100: Gas concentration measuring device, 102: Detection light source unit, 104: Light receiving unit, 106: Signal detection unit, 108: Concentration calculation unit, 110: Display unit, 112: Gas space inclusion member, 114: First optical window, 116 … Reflecting member, 120 detection light, 122 reflected light, 200 gas concentration measuring device, 216 inner wall of gas space inclusion member, 300 gas concentration measuring device, 316 prism, 400 gas concentration measuring device, 402 Second optical window, 416: reflective member, 500: gas concentration measuring device, 516: reflective member, 520: rotating mechanism, 522: axis.

Claims (6)

被検出ガスが流れる空間または前記被検出ガスを滞留する空間が内包されたガス空間内包部材と、
検出光を放射する検出光源部と、
前記ガス空間内包部材の少なくとも一部を通過する前記検出光を反射させる反射部材と、
前記反射部材からの反射光を受光し、受光した光の強度に応じた信号を出力する受光部と、
前記受光部が出力する前記信号に基づき前記被検出ガスの濃度を計算する濃度計算部と、を有するガス濃度測定装置。
A gas space inclusion member in which a space in which the gas to be detected flows or a space in which the gas to be detected is retained is included,
A detection light source unit that emits detection light,
A reflecting member that reflects the detection light passing through at least a part of the gas space inclusion member,
A light receiving unit that receives the reflected light from the reflecting member and outputs a signal corresponding to the intensity of the received light,
A gas concentration measurement unit that calculates a concentration of the gas to be detected based on the signal output by the light receiving unit.
前記ガス空間内包部材が、前記検出光を透過する第1光学窓を有し、
前記反射部材が、前記ガス空間内包部材の内部に設置され、
前記反射光が前記第1光学窓を透過して前記受光部に受光される
請求項1に記載のガス濃度測定装置。
The gas space inclusion member has a first optical window that transmits the detection light,
The reflection member is installed inside the gas space inclusion member,
The gas concentration measurement device according to claim 1, wherein the reflected light passes through the first optical window and is received by the light receiving unit.
前記ガス空間内包部材が、前記検出光を透過する第1光学窓と、前記第1光学窓を透過した前記検出光を透過する第2光学窓とを有し、
前記反射部材が、前記ガス空間内包部材の外部に設置され、
前記反射光が前記第1光学窓および前記第2光学窓を透過して前記受光部に受光される
請求項1に記載のガス濃度測定装置。
The gas space inclusion member has a first optical window transmitting the detection light, and a second optical window transmitting the detection light transmitted through the first optical window,
The reflection member is installed outside the gas space inclusion member,
The gas concentration measurement device according to claim 1, wherein the reflected light passes through the first optical window and the second optical window and is received by the light receiving unit.
前記反射部材が、前記検出光とは光軸が異なり且つ前記検出光と平行な反射光を生じるプリズムである
請求項2または請求項3に記載のガス濃度測定装置。
The gas concentration measuring device according to claim 2, wherein the reflection member is a prism having an optical axis different from that of the detection light and generating reflected light parallel to the detection light.
前記反射部材を回転する回転機構をさらに有し、
少なくとも前記被検出ガスの濃度を測定している間、前記回転機構により前記反射部材を回転する
請求項1から請求項4の何れか一項に記載のガス濃度測定装置。
A rotating mechanism for rotating the reflecting member,
The gas concentration measuring device according to any one of claims 1 to 4, wherein the reflecting member is rotated by the rotating mechanism at least while measuring the concentration of the gas to be detected.
前記ガス空間内包部材が、前記検出光を透過する第1光学窓を有し、
前記反射部材が、前記光学窓に対向する前記ガス空間内包部材の内壁であり、
前記反射光が前記第1光学窓を透過して前記受光部に受光される
請求項1に記載のガス濃度測定装置。
The gas space inclusion member has a first optical window that transmits the detection light,
The reflection member is an inner wall of the gas space inclusion member facing the optical window,
The gas concentration measurement device according to claim 1, wherein the reflected light passes through the first optical window and is received by the light receiving unit.
JP2018137880A 2018-07-23 2018-07-23 Gas concentration measuring device Pending JP2020016472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018137880A JP2020016472A (en) 2018-07-23 2018-07-23 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018137880A JP2020016472A (en) 2018-07-23 2018-07-23 Gas concentration measuring device

Publications (1)

Publication Number Publication Date
JP2020016472A true JP2020016472A (en) 2020-01-30

Family

ID=69580262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018137880A Pending JP2020016472A (en) 2018-07-23 2018-07-23 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP2020016472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057305A (en) * 2020-10-29 2022-05-09 국방과학연구소 Non-contact mass flow rate measurement methodology for high speed flow in a narrow flow passage and mass flow rate measurement system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535265A (en) * 1978-09-05 1980-03-12 Fuji Electric Co Ltd Infrared-ray gas analyzer
JPH0448246A (en) * 1990-06-15 1992-02-18 Tlv Co Ltd Near infrared humidity measuring instrument
JPH06308020A (en) * 1993-04-20 1994-11-04 Japan Radio Co Ltd Sample cell
JP2000046737A (en) * 1998-07-29 2000-02-18 Taiheiyo Tanko Kk Apparatus and method for measurement of concentration of gas
JP2007040887A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Gas analyzer
JP2013238496A (en) * 2012-05-15 2013-11-28 Metawater Co Ltd Pretreatment apparatus of infrared analyzer
JP2017211357A (en) * 2015-12-03 2017-11-30 富士電機株式会社 Laser type gas analyzer
JP2018091757A (en) * 2016-12-05 2018-06-14 東京ガスエンジニアリングソリューションズ株式会社 Gas detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535265A (en) * 1978-09-05 1980-03-12 Fuji Electric Co Ltd Infrared-ray gas analyzer
JPH0448246A (en) * 1990-06-15 1992-02-18 Tlv Co Ltd Near infrared humidity measuring instrument
JPH06308020A (en) * 1993-04-20 1994-11-04 Japan Radio Co Ltd Sample cell
JP2000046737A (en) * 1998-07-29 2000-02-18 Taiheiyo Tanko Kk Apparatus and method for measurement of concentration of gas
JP2007040887A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Gas analyzer
JP2013238496A (en) * 2012-05-15 2013-11-28 Metawater Co Ltd Pretreatment apparatus of infrared analyzer
JP2017211357A (en) * 2015-12-03 2017-11-30 富士電機株式会社 Laser type gas analyzer
JP2018091757A (en) * 2016-12-05 2018-06-14 東京ガスエンジニアリングソリューションズ株式会社 Gas detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安部 健ら: "赤外レーザー吸収を用いた硫化水素検知機の開発", 第50回下水道研究発表会講演集, JPN6022053907, 2013, pages 1045 - 1047, ISSN: 0004950806 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057305A (en) * 2020-10-29 2022-05-09 국방과학연구소 Non-contact mass flow rate measurement methodology for high speed flow in a narrow flow passage and mass flow rate measurement system
KR102521173B1 (en) * 2020-10-29 2023-04-13 국방과학연구소 Non-contact mass flow rate measurement methodology for high speed flow in a narrow flow passage

Similar Documents

Publication Publication Date Title
AU2001279533B2 (en) System and method for signal acquisition in a distance meter
JP5624548B2 (en) Method and apparatus for wavelength modulation spectroscopy
US9546950B2 (en) Optical gas sensing apparatus with explosion-proof enclosure
AU2004276642A1 (en) Gas flux measuring device
JP6148836B2 (en) Gas concentration measuring device
JP2018502289A (en) Spectroscopic apparatus and spectral method
JPS61133841A (en) Infrared ray analyzer
JP2020016472A (en) Gas concentration measuring device
JP2796650B2 (en) Multi-gas detector
JP2008232918A (en) Gas detector
JP3059661B2 (en) Gas concentration measurement device
ES2908830T3 (en) Device and method for remote sensing of a target gas
US10663398B2 (en) System for determining the characteristics of a gas and related method for measuring such characteristics
EP3726199A1 (en) Particle sensor
Azimirad et al. Design of an electronic system for laser methane gas detectors using the tunable diode laser absorption spectroscopy method
CN113091944B (en) Primary thermometer based on MEMS micro air chamber and measuring method thereof
JP6148924B2 (en) Gas detector
JP2019184302A (en) Concentration measurement device
JP5962327B2 (en) Concentration measuring device and concentration measuring method
Brown et al. The effect of variation in refractive index on transmission in fibre optic sensors
US20220120677A1 (en) Device for measuring a relative humidity level inside the enclosure of a watch case
JPS5811565B2 (en) fiber optic equipment
GB2123547A (en) Ultraviolet spectral hygrometer for gas moisture determination
CN101968386A (en) Optical fiber temperature and concentration sensor
KR20010077451A (en) Apparatus for detecting the concentration of gas using aerometric chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221223