JP2020015282A - Manufacturing method of composite material - Google Patents

Manufacturing method of composite material Download PDF

Info

Publication number
JP2020015282A
JP2020015282A JP2018141259A JP2018141259A JP2020015282A JP 2020015282 A JP2020015282 A JP 2020015282A JP 2018141259 A JP2018141259 A JP 2018141259A JP 2018141259 A JP2018141259 A JP 2018141259A JP 2020015282 A JP2020015282 A JP 2020015282A
Authority
JP
Japan
Prior art keywords
aggregate
composite material
hopper
crushed
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018141259A
Other languages
Japanese (ja)
Inventor
宮内 裕司
Yuji Miyauchi
裕司 宮内
国飛 華
Guofei Hua
国飛 華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2018141259A priority Critical patent/JP2020015282A/en
Publication of JP2020015282A publication Critical patent/JP2020015282A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of a composite material by uniformly spraying a crushed material including a carbon fiber and a thermoplastic resin.SOLUTION: The manufacturing method of a composite material A includes a step of spraying an aggregate Y of a crushed material X including a carbon fiber having a weight average fiber length Lwx of 1 mm or over and a thermoplastic resin, followed by heating solidification, wherein the manufacturing method of the composite material A is characterized by that a variation coefficient of a basis weight of the sprayed aggregate Y is within 40%.SELECTED DRAWING: Figure 1

Description

本発明は、炭素繊維複合材料を破砕して得られた破砕材を用いて、複合材料を製造する方法に関する。   The present invention relates to a method for producing a composite material using a crushed material obtained by crushing a carbon fiber composite material.

炭素繊維を含む繊維強化プラスチックは、軽量性と高い機械特性を有することから種々の分野に展開されている。例えば特許文献1では、炭素繊維の集合体を含む複数の小片とマトリックス樹脂からなる炭素繊維強化プラスチックが記載されている。1cm〜50cmの小片を用いて成形することで、流動性の良く成形体を製造できることが記載されている。特許文献2には、ガラス品の破砕物を空気輸送する破砕物輸送管が記載されている。特許文献3には、供給ホッパからスクリーンを介して砂を捲く技術が記載されている。 BACKGROUND ART Fiber-reinforced plastics containing carbon fibers have been developed in various fields because of their light weight and high mechanical properties. For example, Patent Document 1 describes a carbon fiber reinforced plastic including a plurality of small pieces including an aggregate of carbon fibers and a matrix resin. By molding with a small piece of 1 cm 2 to 50 cm 2, it is described that can produce flowability of good moldings. Patent Document 2 describes a crushed material transport pipe that pneumatically transports a crushed glass product. Patent Literature 3 describes a technique of winding sand from a supply hopper through a screen.

特開2013−018859号公報JP 2013-018859 A 特公平01−009061号公報Japanese Patent Publication No. 01-009061 特開平04−215863号公報JP 04-215863A

しかしながら、特許文献1に記載の発明は、スタンパブルシートをカットした後、小片を1つ1つ並べる必要があり、並べるために時間がかかりすぎる。また、並べられた小片は1層のみであり、これをプレスして成形体を製造しても、小片間で橋渡しされている炭素繊維が存在しておらず、小片間の機械物性は極めて弱い。   However, in the invention described in Patent Document 1, it is necessary to arrange small pieces one by one after cutting the stampable sheet, and it takes too much time to arrange the small pieces. Further, the arranged small pieces are only one layer, and even if the molded body is manufactured by pressing this, there is no carbon fiber bridging between the small pieces, and the mechanical properties between the small pieces are extremely weak. .

特許文献2ではガラスの破砕品を輸送するために空気流を用いているものの、炭素繊維を含んだ複合材料の破砕品を空気輸送するための検討は不十分である。   In Patent Document 2, although an air stream is used to transport a crushed glass product, studies for pneumatic transport of a crushed composite material containing carbon fibers are insufficient.

特許文献3に記載の発明では、砂を捲いているため、炭素繊維を含んだ破砕材を捲く場合について、全く見当されておらず、不定形状の破砕材を散布するのは難しい。   In the invention described in Patent Literature 3, since sand is wound, no case of winding a crushed material containing carbon fibers has been found, and it is difficult to spray an irregularly shaped crushed material.

そこで本発明においては、炭素繊維と熱可塑性樹脂を含む破砕材を均一散布し、複合材料を製造する方法を提供する。   Therefore, the present invention provides a method for uniformly scattering a crushed material containing carbon fibers and a thermoplastic resin to produce a composite material.

上記課題を解決するために、本発明は以下の手段を提供する。
1. 重量平均繊維長Lwxが1mm以上の炭素繊維と熱可塑性樹脂とを含む破砕材Xの集合体Yを散布した後、加熱固化して複合材料Aを製造する方法であって、散布された集合体Yの目付の変動係数が40%以内である、複合材料Aの製造方法。
2. 長さ1mm以上の棘を有する破砕材Xが、集合体Yの30%以上を占める、前記1に記載の複合材料Aの製造方法。
3. 振動式フィーダーから破砕材Xの集合体Yを散布して複合材料Aを製造する、前記1又は2に記載の製造方法。
4. 集合体Yをホッパに貯留し、ホッパ吐出口から集合体Yを散布して複合材料Aを製造する方法であって、ホッパ下部に空気注入口を有するテーパー管を設け、ホッパ吐出口から吐出された集合体Yをテーパー管内で空気を吹き付けて均一化した後、ベルトコンベヤーへ集合体Yを散布する、前記1又は2いずれか1項に記載の複合材料Aを製造する方法。
5. 集合体Yをホッパに貯留し、ホッパ下部に設けた回転ローラへ、ホッパ吐出口から破砕材Xを吐出し、回転ローラからベルトコンベヤーへ破砕材Xの集合体Yを散布し、前記1又は2いずれか1項に記載の複合材料Aを製造する方法。
6. ホッパをベルトコンベヤーの幅方向に少なくとも3個以上並べて集合体Yを散布し、幅が1m以上の複合材料Aを得る、前記4又は5に記載の複合材料Aを製造する方法。
7. 重量平均繊維長Lwzの炭素繊維と熱可塑性樹脂とを含む集合体Zの上に、集合体Yを散布し加熱固化して、集合体Z由来の複合材料Bとの積層体を構成する層として複合材料Aを製造する前記1乃至6いずれか1項に記載の製造方法。
In order to solve the above problems, the present invention provides the following means.
1. A method of manufacturing a composite material A by spraying an aggregate Y of crushed materials X containing carbon fibers having a weight average fiber length Lwx of 1 mm or more and a thermoplastic resin, and then heating and solidifying the composite material A. A method for producing a composite material A, wherein the basis coefficient of variation of Y is within 40%.
2. 2. The method for producing a composite material A according to 1 above, wherein the crushed material X having spines having a length of 1 mm or more occupies 30% or more of the aggregate Y.
3. 3. The production method according to 1 or 2, wherein the composite material A is produced by spraying the aggregate Y of the crushed materials X from the vibrating feeder.
4. A method of manufacturing the composite material A by storing the assembly Y in a hopper and spraying the assembly Y from a hopper discharge port, wherein a tapered pipe having an air injection port is provided at a lower portion of the hopper, and the composite material A is discharged from the hopper discharge port. The method for producing a composite material A according to any one of the above 1 or 2, wherein the aggregate Y is blown with air in a tapered pipe to homogenize the aggregate Y, and then the aggregate Y is sprayed on a belt conveyor.
5. The aggregate Y is stored in a hopper, the crushed material X is discharged from a hopper discharge port to a rotating roller provided at a lower portion of the hopper, and the aggregate Y of the crushed material X is sprayed from the rotating roller to a belt conveyor. Or a method for producing the composite material A according to any one of 2.
6. 6. The method for producing the composite material A according to 4 or 5, wherein the aggregate Y is scattered by arranging at least three or more hoppers in the width direction of the belt conveyor to obtain a composite material A having a width of 1 m or more.
7. On the aggregate Z containing carbon fibers having a weight average fiber length Lwz and a thermoplastic resin, the aggregate Y is dispersed and heated and solidified to form a layer constituting a laminate with the composite material B derived from the aggregate Z. The manufacturing method according to any one of the above items 1 to 6, which manufactures the composite material A.

本発明によれば、破砕材を均一に散布し、破砕材は複数層に重ねられて複合材料を製造できるため、これを用いて成形した場合、良好な機械物性を有する成形体を製造できる。   ADVANTAGE OF THE INVENTION According to this invention, since a crushed material can be uniformly scattered and a crushed material can be laminated | stacked on several layers and a composite material can be manufactured, when shape | molding using this, a molded object with favorable mechanical physical properties can be manufactured.

破砕材Xの集合体Yの製造に用いる切断機200の構造を示す概略図。The schematic diagram which shows the structure of the cutting machine 200 used for manufacture of the assembly Y of the crushed material X. 振動式フィーダーを用いた集合体Yの散布方法の模式図。The schematic diagram of the dispersion | spreading method of the assembly Y using a vibrating feeder. 回転ローラを用いた集合体Yの散布方法の模式図。The schematic diagram of the dispersion | spreading method of the assembly Y using a rotating roller.

[炭素繊維]
本発明に用いられる炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。本発明に用いられる炭素繊維は、表面にサイジング剤が付着しているものであってもよい。
[Carbon fiber]
Examples of the carbon fiber used in the present invention include polyacrylonitrile (PAN) -based carbon fiber, petroleum / coal pitch-based carbon fiber, rayon-based carbon fiber, cellulose-based carbon fiber, lignin-based carbon fiber, and phenol-based carbon fiber. However, in the present invention, any of these carbon fibers can be suitably used. Among them, in the present invention, it is preferable to use polyacrylonitrile (PAN) -based carbon fiber from the viewpoint of excellent tensile strength. The carbon fiber used in the present invention may have a sizing agent attached to the surface.

[炭素繊維の繊維長]
本発明における破砕材Xは重量平均繊維長Lwxの炭素繊維を含む。重量平均繊維長Lwは、1mm以上50mm以下が好ましく、1mm以上30mm以下がより好ましく、1mm以上20mm以下が更に好ましい。
[Carbon fiber length]
The crushed material X in the present invention contains carbon fibers having a weight average fiber length Lwx. The weight average fiber length Lw is preferably from 1 mm to 50 mm, more preferably from 1 mm to 30 mm, even more preferably from 1 mm to 20 mm.

Lwxが50mm以下であれば、複合材料Aの流動性が低下しにくく、プレス成形の際に所望の形状のプレス成形体を得られやすい。また、Lwxが1mm以上の場合、得られるプレス成形体の機械強度が低下しにくく好ましい。   When Lwx is 50 mm or less, the fluidity of the composite material A does not easily decrease, and a press-formed body having a desired shape can be easily obtained at the time of press-forming. Further, when Lwx is 1 mm or more, it is preferable that the mechanical strength of the obtained press-formed body does not easily decrease.

破砕材Xに含まれる炭素繊維は、互いに異なる炭素繊維を併用してもよい。換言すると、破砕材Xに含まれる炭素繊維は、重量平均繊維長の分布において単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。なお、射出成形体や押出成形体に含まれる炭素繊維は、炭素繊維を射出(押出)成形体中で均一に炭素繊維を分散させるために十分な混練工程を経たものは一般的に炭素繊維の重量平均繊維長は1mm未満となる。   The carbon fibers contained in the crushed material X may be different from each other. In other words, the carbon fibers contained in the crushed material X may have a single peak in the distribution of the weight-average fiber length, or may have a plurality of peaks. In addition, carbon fibers contained in an injection-molded body or an extruded body are generally obtained through a kneading step sufficient to uniformly disperse the carbon fibers in an injection-molded body. The weight average fiber length is less than 1 mm.

[平均繊維長]
炭素繊維の平均繊維長は、例えば、成形体から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(1)に基づいて求めることができる。
個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、一般的に以下の式(1)、(2)により求められる。
Ln=ΣLi/j・・・式(1)
Lw=(ΣLi)/(ΣLi)・・・式(2)
繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。複合材料Aからの炭素繊維の抽出は、例えば、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
[Average fiber length]
The average fiber length of the carbon fiber can be determined, for example, by measuring the fiber length of 100 fibers randomly extracted from a molded product to a unit of 1 mm using a caliper or the like, and based on the following equation (1). .
Assuming that the fiber length of each carbon fiber is Li and the measured number is j, the number average fiber length (Ln) and the weight average fiber length (Lw) are generally obtained by the following equations (1) and (2). Can be
Ln = ΣLi / j Equation (1)
Lw = (ΣLi 2 ) / (ΣLi) Equation (2)
When the fiber length is constant, the number average fiber length and the weight average fiber length have the same value. The extraction of the carbon fibers from the composite material A can be performed, for example, by performing a heat treatment at about 500 ° C. × 1 hour and removing the resin in a furnace.

[熱可塑性樹脂]
本発明に用いられる熱可塑性樹脂(熱可塑性のマトリクス樹脂)は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。熱可塑性樹脂としては、通常、軟化点が180℃〜350℃の範囲内のものが用いられるが、これに限定されるものではない。
[Thermoplastic resin]
The thermoplastic resin (thermoplastic matrix resin) used in the present invention is not particularly limited, and a resin having a desired softening point or melting point can be appropriately selected and used. As the thermoplastic resin, one having a softening point in the range of 180 ° C. to 350 ° C. is usually used, but is not limited thereto.

[散布された集合体Yの目付の変動係数]
本発明における散布された集合体Yの目付の変動係数は40%以下である。本発明における集合体Yの目付の変動係数とは、散布された集合体Yの面内の全範囲を25mm×25mmピッチで区分けしたときの各々の目付の変動係数を式(a)で算出したものであり、例えば、散布された集合体Yの区画が100mm×100mmの場合、4×4の16ヶ所に区分けして測定した変動係数で定義される。
[Coefficient of variation of the basis weight of the scattered aggregate Y]
The variation coefficient of the basis weight of the scattered aggregate Y in the present invention is 40% or less. The coefficient of variation of the basis weight of the assembly Y in the present invention is calculated by the equation (a) when the entire area in the plane of the dispersed assembly Y is divided at a pitch of 25 mm × 25 mm. For example, in the case where the section of the scattered aggregate Y is 100 mm × 100 mm, it is defined by the variation coefficient measured by dividing the area into 16 sections of 4 × 4.

散布された集合体の変動係数=100×総目付の標準偏差/総目付の平均値 式(a)
集合体Yの目付の変動係数は40%以下にすることにより、加熱されて作成された複合材料Aの成形時の賦形ムラや機械特性ムラを小ピッチで低減することができ、小型成形体や複雑形状の成形体においても、優れた成形性や機械特性を発揮させることができる。
Coefficient of variation of dispersed aggregate = 100 × standard deviation of total weight / average value of total weight Formula (a)
By setting the variation coefficient of the basis weight of the aggregate Y to 40% or less, it is possible to reduce shaping unevenness and mechanical characteristic unevenness at the time of molding of the composite material A formed by heating at a small pitch. Even in a molded article having a complicated shape, excellent moldability and mechanical properties can be exhibited.

[破砕材X]
破砕材Xの製法について特に限定は無いが、例えば炭素繊維強化熱可塑性樹脂の成形材料や成形体の製造過程で得られた端材などを用いる。成形材料や成形体の製造又は成形する際に出る端材(以下、単に端材と呼ぶ場合がある)を利用すれば、製造コストを低減でき省資源や地球環境保全に貢献することができる。破砕前の成形材料や成形体は特に限定されるものではなく、例えば特開2011−178890号公報や特開2011−178891号公報に記載の炭素繊維を10〜70wt%含んだ複合材料や、一方向性炭素繊維強化複合材料と組合せた、特開2011−241338号公報に記載のものなど、種々の材料を用いることもできる。
[Crushed material X]
There is no particular limitation on the method for producing the crushed material X. For example, a molding material of a carbon fiber reinforced thermoplastic resin or a scrap obtained in the process of producing a molded body is used. The use of offcuts (hereinafter, sometimes simply referred to as offcuts) produced during the production or molding of molding materials or molded articles can reduce production costs and contribute to resource saving and global environmental conservation. The molding material and the molded body before crushing are not particularly limited. For example, a composite material containing 10 to 70 wt% of carbon fibers described in JP-A-2011-178890 and JP-A-2011-178889, Various materials such as those described in JP-A-2011-241338 in combination with a directional carbon fiber reinforced composite material can also be used.

[破砕材Xの製造例]
図1は、実施の形態の破砕材Xの集合体Yの製造に用いる切断機200の構造を示す概略図である。切断機200は市販のプラスチック切断機である。成形材料又は成形体の破材、廃材、製造廃材(図1の101)を切断機200に供給して切断する。
[Example of manufacturing crushed material X]
FIG. 1 is a schematic diagram showing a structure of a cutting machine 200 used for manufacturing an aggregate Y of crushed materials X according to the embodiment. Cutting machine 200 is a commercially available plastic cutting machine. The broken material, waste material, and manufacturing waste material (101 in FIG. 1) of the molding material or the molded body are supplied to the cutting machine 200 and cut.

切断機200の切断刃寸法、切断刃間隔、粉砕時間、回転数を適宜変更して切断片の容積分布を測定することにより、切断片102の容積が破砕材Xの好ましい大きさに入る条件に調整することができる。さらに、切断片102をフィルター210に通し、一定粒度以下の切断片を破砕材Xとして回収する。フィルター210を通過しない切断片102は再度、切断機200に供給して切断を行う。このように、フィルター210の開口面積を調整することにより、破砕材Xを得る事が出来る。破砕材Xの集合体Yについて、破砕材Xの平面のうち、最大面積を有する平面の最小外接円の直径が5〜25mmであることが好ましい。破砕材Xの大きさは直径1〜20mm以下が好ましく、3〜15mmがより好ましい。   By appropriately changing the cutting blade dimensions, the cutting blade interval, the pulverizing time, and the number of revolutions of the cutting machine 200 and measuring the volume distribution of the cut pieces, the condition that the volume of the cut pieces 102 enters the preferable size of the crushed material X is obtained. Can be adjusted. Further, the cut pieces 102 are passed through a filter 210, and cut pieces having a certain particle size or less are collected as crushed materials X. The cut pieces 102 that do not pass through the filter 210 are supplied to the cutting machine 200 again to perform cutting. Thus, by adjusting the opening area of the filter 210, the crushed material X can be obtained. Regarding the aggregate Y of the crushed materials X, it is preferable that the diameter of the minimum circumscribed circle of the plane having the largest area among the planes of the crushed materials X is 5 to 25 mm. The size of the crushed material X is preferably 1 to 20 mm or less in diameter, more preferably 3 to 15 mm.

[破砕材の面粗度]
上述の切断機200の切断刃で端材を切断した場合、粉砕材Xの面のうち、面粗度(Rz)が500μm以上である破砕面を少なくとも1面有することとなる。
面粗度(Rz)が大きくなると、集合体Y中で破砕材X同士が絡み合い、通常の散布方法では均一散布しにくくなる。本発明における好ましい複合材料Aの製造方法を用いれば、より大きな課題を持った破砕材Xの集合体Yであっても、均一に散布することが可能となる。
[Surface roughness of crushed material]
When the cutting material is cut by the cutting blade of the above-described cutting machine 200, among the surfaces of the crushed material X, there is at least one crushed surface having a surface roughness (Rz) of 500 μm or more.
When the surface roughness (Rz) is large, the crushed materials X are entangled in the aggregate Y, and it is difficult to uniformly scatter the crushed materials X by a normal spraying method. By using the preferred method for producing the composite material A in the present invention, even the aggregate Y of the crushed materials X, which has a larger problem, can be uniformly dispersed.

[破砕材Xの棘]
上述の切断機200の切断刃は連続使用すると熱を帯びる。熱を帯びた切断刃で端材を切断すると、端材に含まれる熱可塑性樹脂が溶融し、棘を有する破砕材Xが製造される。
長さ1mm以上の棘を有する破砕材Xが、集合体Yの30%以上を占める場合、集合体Y中で、破砕材Xの棘が絡み合うため、通常の散布方法では均一散布しにくくなる。本発明における好ましい複合材料Aの製造方法を用いれば、棘を持った破砕材Xの集合体Yであっても、均一に散布することが可能となる。
長さ1mm以上の棘を有する破砕材Xが、集合体の40%以上を占めることが好ましい。
[Spike of crushed material X]
The cutting blade of the above-described cutting machine 200 becomes hot when used continuously. When the cut material is cut with a hot cutting blade, the thermoplastic resin contained in the cut material is melted, and a crushed material X having spines is manufactured.
When the crushed material X having the barbs having a length of 1 mm or more occupies 30% or more of the aggregate Y, since the barbs of the crushed material X are entangled in the aggregate Y, it is difficult to uniformly scatter with the normal spraying method. By using the preferred method of manufacturing the composite material A according to the present invention, even the aggregate Y of the crushed material X having thorns can be uniformly dispersed.
It is preferable that the crushed material X having barbs having a length of 1 mm or more occupy 40% or more of the aggregate.

[集合体Yの散布方法(振動式フィーダーの利用)]
本発明における集合体Yの散布は、振動式フィーダーから破砕材Xの集合体Yを散布して複合材料Aを製造することが好ましい。図2は振動式フィーダーを利用した集合体Yの散布方法を模式図である。集合体Yは振動式フィーダー301内で振動しながらベルトコンベヤー302へ散布されるため、容易に散布された集合体Yの目付の変動係数が40%以下とすることができる。
[Method of dispersing aggregate Y (using vibratory feeder)]
In the dispersion of the aggregate Y in the present invention, it is preferable to produce the composite material A by spraying the aggregate Y of the crushed material X from the vibrating feeder. FIG. 2 is a schematic diagram showing a method of dispersing the aggregate Y using a vibrating feeder. Since the aggregate Y is scattered on the belt conveyor 302 while vibrating in the vibrating feeder 301, the weight coefficient of variation of the easily scattered aggregate Y can be 40% or less.

また、振動式フィーダーをMD方向(Machine Direction)に2台以上並べれば、1度目に散布された集合体Yの目付にムラがあったとしても、2度目の集合体Yの散布により目付は均一化される。一方、振動式フィーダーを幅方向に2台以上並べ、1台あたりの散布幅を小さくすれば、やはり集合体Yの目付ムラは改善する。   In addition, if two or more vibrating feeders are arranged in the machine direction (MD), even if the weight of the aggregate Y sprayed for the first time is uneven, the weight of the aggregate Y is uniform by the second spray of the aggregate Y. Be transformed into On the other hand, by arranging two or more vibrating feeders in the width direction and reducing the scatter width per unit, the basis weight unevenness of the aggregate Y is also improved.

[集合体Yの散布方法(ホッパからの散布)]
集合体Yをホッパに投入し、ホッパ吐出口から集合体を散布する場合、ホッパ内で破砕材同士が絡み合ったり、突っ張りあったりして、吐出口から均一かつ連続に破砕材を吐出するのは難しい。そこで、本発明においては、以下の方法を採用することが好ましい。
[Method of spraying aggregate Y (spraying from hopper)]
When the aggregate Y is put into the hopper and the aggregate is sprayed from the hopper discharge port, the crushed materials are entangled or struck in the hopper, so that the crushed material is uniformly and continuously discharged from the discharge port. difficult. Therefore, in the present invention, it is preferable to employ the following method.

1.空気吹き付け
本発明において、集合体Yをホッパに貯留し、ホッパ吐出口から集合体Yを散布して複合材料Aを製造する方法であって、ホッパ下部に空気注入口を有するテーパー管を設け、ホッパ吐出口から吐出された集合体をテーパー管内で空気を吹き付けて均一化した後、ベルトコンベヤーに散布することが好ましい。
空気注入口には圧縮空気を吹き込むことが好ましく、圧縮空気の風量は10NL/min以上1000NL/min以下であることが好ましい。
空気を集合体Yへ吹き付けることにより、ホッパ中で不均一に堆積している破砕材Xの集合体Yを均一化できる。
1. In the present invention, the method of manufacturing the composite material A by storing the aggregate Y in the hopper and spraying the aggregate Y from the hopper discharge port in the present invention, wherein a tapered pipe having an air injection port is provided at a lower portion of the hopper, It is preferable that the assembly discharged from the hopper discharge port is blown with air in a tapered pipe to make it uniform, and then sprayed on a belt conveyor.
Preferably, compressed air is blown into the air inlet, and the flow rate of the compressed air is preferably 10 NL / min or more and 1000 NL / min or less.
By blowing air on the aggregate Y, the aggregate Y of the crushed material X that is unevenly deposited in the hopper can be made uniform.

2.回転ローラの利用
本発明において、集合体Yをホッパ(例えば図3の403)に貯留し、ホッパ下部に設けた回転ローラへ、ホッパ吐出口(例えば図3の405のクリアランス)から破砕材Xを吐出し、回転ローラからベルトコンベヤーへ破砕材Xの集合体Yを散布することが好ましい。このとき、ホッパ下部の供給口の大きさは150mm以下であることが好ましい。150mm以下であれば、ホッパ内の破砕材Xの集合体Yが回転ローラに引き出される形で吐出されるため好ましい。
2. Use of Rotary Roller In the present invention, the aggregate Y is stored in a hopper (for example, 403 in FIG. 3), and the crushed material X is transferred from a hopper discharge port (for example, a clearance 405 in FIG. 3) to a rotary roller provided below the hopper. It is preferable to discharge and spray the aggregate Y of the crushed material X from the rotating roller to the belt conveyor. At this time, the size of the supply port at the lower part of the hopper is preferably 150 mm or less. If it is 150 mm or less, it is preferable because the aggregate Y of the crushed material X in the hopper is discharged while being pulled out by the rotating roller.

2.1 回転ローラ
回転ローラの周速に特に限定は無いが、1m/min以上であることが好ましく、2m/min以上であることがより好ましい。
ローラ表面は、50mm以下の間隔で溝又は突起を有することが好ましく、ローラ表面は100メッシュ以下のシボ加工がされていても良い。また、ローラ表面は、表面粗さRa(算術平均粗さ)が3μm以上15μm以下の梨地加工されたものであることが好ましい。該表面粗さRaは3μm以上10μm以下がより好ましく、4μm以上6μm以下が更に好ましい。
2.1 Rotary Roller The peripheral speed of the rotary roller is not particularly limited, but is preferably 1 m / min or more, more preferably 2 m / min or more.
The roller surface preferably has grooves or projections at intervals of 50 mm or less, and the roller surface may be subjected to graining of 100 mesh or less. Further, it is preferable that the roller surface has a matte finish having a surface roughness Ra (arithmetic average roughness) of 3 μm or more and 15 μm or less. The surface roughness Ra is more preferably 3 μm or more and 10 μm or less, and still more preferably 4 μm or more and 6 μm or less.

3.複数のホッパ
ホッパから集合体Yを散布する場合、ホッパを複合材料の幅方向に少なくとも3個以上並べて集合体Yを散布するのが好ましい。
幅方向に小さなホッパを並べることで、ホッパ内で絡み合う破砕材Xを減少させることができ、ホッパから吐出される集合体Yの散布を均一化することができる。
3. When the aggregate Y is sprayed from a plurality of hoppers, it is preferable that at least three or more hoppers are arranged in the width direction of the composite material to spray the aggregate Y.
By arranging small hoppers in the width direction, it is possible to reduce the amount of the crushed material X entangled in the hopper, and it is possible to evenly distribute the aggregate Y discharged from the hopper.

[積層体の製造]
重量平均繊維長Lwzの炭素繊維と熱可塑性樹脂とを含む集合体Zの上に、集合体Yを散布し、加熱固化して複合材料Aと、集合体Z由来の複合材料Bとの積層体を製造しても良い。ここで、Lwz>Lwxである。
[Manufacture of laminated body]
A laminate Y of a composite material A and a composite material B derived from the aggregate Z is sprayed on the aggregate Y on the aggregate Z containing the carbon fibers having the weight average fiber length Lwz and the thermoplastic resin, and solidified by heating. May be manufactured. Here, Lwz> Lwx.

[炭素繊維の体積割合]
破砕材Xに含まれる炭素繊維の炭素繊維体積割合(Vf)は、下記式(3)で求めることができる。
炭素繊維体積割合に特に限定は無いが、炭素繊維体積割合(Vf)は、10Vol%〜60Vol%であることが好ましく、20Vol%〜50Vol%であることがより好ましく、25Vol%〜45Vol%であればさらに好ましい。
炭素繊維体積割合(Vf)=100×炭素繊維体積/(炭素繊維体積+熱可塑性樹脂体積) 式(3)
本発明においては、破砕材Xの炭素繊維体積割合Vfと、集合体Z由来の複合材料Bの炭素繊維体積割合Vfとが、Vf≦Vfの関係を満たすことが、製造プロセス上好ましい。
[Volume ratio of carbon fiber]
The carbon fiber volume ratio (Vf) of the carbon fibers contained in the crushed material X can be obtained by the following equation (3).
The carbon fiber volume ratio is not particularly limited, but the carbon fiber volume ratio (Vf) is preferably from 10 Vol% to 60 Vol%, more preferably from 20 Vol% to 50 Vol%, even if it is from 25 Vol% to 45 Vol%. Is more preferred.
Carbon fiber volume ratio (Vf) = 100 × carbon fiber volume / (carbon fiber volume + thermoplastic resin volume) Equation (3)
In the present invention, a carbon fiber volume fraction Vf x crushing material X, and the carbon fiber volume fraction Vf B of the composite material B from assembly Z is that satisfy the relationship of Vf x ≦ Vf B, the production process preferable.

炭素繊維と熱可塑性樹脂を含む複合材料Bを破砕して破砕材Xとして切り出して用いた場合、Vf=Vfとなり、複合材料Bの端材を砕いた後、更に熱可塑性樹脂を添加して破砕材Xを製造した場合はVf<Vfとなる。すなわち、Vf≦Vfとなるような製造方法を採用すれば、複合材料Bを切り出した後に残った端材を効率的に利用できる。 When used in excised as crushed material X by crushing a composite material B comprising carbon fibers and a thermoplastic resin, Vf X = Vf B becomes, after crushed scraps of the composite material B, further adding a thermoplastic resin If it produces a crushed material X Te becomes Vf X <Vf B. That is, if a manufacturing method that satisfies Vf X ≦ Vf B is adopted, the scraps left after cutting out the composite material B can be efficiently used.

[複合材料Aの製造]
複合材料Aは、ベルトコンベヤー(例えば図2の302、図3の402)の上で集結した集合体Yを加熱して熱可塑性樹脂を溶融させ、集合体Y同士を溶融結合し、冷却固化して得られる。
[Production of composite material A]
The composite material A heats the aggregate Y assembled on the belt conveyor (for example, 302 in FIG. 2 and 402 in FIG. 3) to melt the thermoplastic resin, melt-bond the aggregates Y, and solidify by cooling. Obtained.

101:成形材料又は成形体の破材、廃材、製造廃材
102:切断片
200:切断機
210:フィルター
Y:集合体Y
301:振動式フィーダー
302:ベルトコンベヤー
401:回転ローラ
402:ベルトコンベヤー
403:ホッパ
404:ゲート
405:クリアランス
406:破砕材X
101: Broken material, waste material, manufacturing waste material of molding material or molded body 102: Cut piece 200: Cutting machine 210: Filter Y: Assembly Y
301: Vibratory feeder 302: Belt conveyor 401: Rotary roller 402: Belt conveyor 403: Hopper 404: Gate 405: Clearance 406: Crushed material X

Claims (7)

重量平均繊維長Lwxが1mm以上の炭素繊維と熱可塑性樹脂とを含む破砕材Xの集合体Yを散布した後、加熱固化して複合材料Aを製造する方法であって、散布された集合体Yの目付の変動係数が40%以内である、複合材料Aの製造方法。   A method of manufacturing a composite material A by spraying an aggregate Y of crushed materials X containing carbon fibers having a weight average fiber length Lwx of 1 mm or more and a thermoplastic resin, and then heating and solidifying the composite material A. A method for producing a composite material A, wherein the basis coefficient of variation of Y is within 40%. 長さ1mm以上の棘を有する破砕材Xが、集合体Yの30%以上を占める、請求項1に記載の複合材料Aの製造方法。   The method for producing a composite material A according to claim 1, wherein the crushed material X having barbs having a length of 1 mm or more occupies 30% or more of the aggregate Y. 振動式フィーダーから破砕材Xの集合体Yを散布して複合材料Aを製造する、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1, wherein the composite material A is manufactured by spraying the aggregate Y of the crushed materials X from the vibrating feeder. 集合体Yをホッパに貯留し、ホッパ吐出口から集合体Yを散布して複合材料Aを製造する方法であって、ホッパ下部に空気注入口を有するテーパー管を設け、ホッパ吐出口から吐出された集合体Yをテーパー管内で空気を吹き付けて均一化した後、ベルトコンベヤーへ集合体Yを散布する、請求項1又は2いずれか1項に記載の複合材料Aを製造する方法。   A method of manufacturing the composite material A by storing the assembly Y in a hopper and spraying the assembly Y from a hopper discharge port, wherein a tapered pipe having an air injection port is provided at a lower portion of the hopper, and the composite material A is discharged from the hopper discharge port. The method for producing a composite material A according to any one of claims 1 and 2, wherein the aggregate Y is blown with air in a tapered pipe to homogenize, and then the aggregate Y is sprayed on a belt conveyor. 集合体Yをホッパに貯留し、ホッパ下部に設けた回転ローラへ、ホッパ吐出口から破砕材Xを吐出し、回転ローラからベルトコンベヤーへ破砕材Xの集合体Yを散布し、請求項1又は2いずれか1項に記載の複合材料Aを製造する方法。   The aggregate Y is stored in a hopper, the crushed material X is discharged from a hopper discharge port to a rotating roller provided at a lower portion of the hopper, and the aggregate Y of the crushed material X is sprayed from the rotating roller to a belt conveyor. (2) A method for producing the composite material A according to any one of (2). ホッパをベルトコンベヤーの幅方向に少なくとも3個以上並べて集合体Yを散布し、幅が1m以上の複合材料Aを得る、請求項4又は5に記載の複合材料Aを製造する方法。   The method for producing a composite material A according to claim 4 or 5, wherein the assembly Y is scattered by arranging at least three or more hoppers in the width direction of the belt conveyor to obtain a composite material A having a width of 1 m or more. 重量平均繊維長Lwzの炭素繊維と熱可塑性樹脂とを含む集合体Zの上に、集合体Yを散布し加熱固化して、集合体Z由来の複合材料Bとの積層体を構成する層として複合材料Aを製造する請求項1乃至6いずれか1項に記載の製造方法。   On the aggregate Z containing carbon fibers having a weight average fiber length Lwz and a thermoplastic resin, the aggregate Y is dispersed and heated and solidified to form a layer constituting a laminate with the composite material B derived from the aggregate Z. The method according to claim 1, wherein the composite material A is manufactured.
JP2018141259A 2018-07-27 2018-07-27 Manufacturing method of composite material Pending JP2020015282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141259A JP2020015282A (en) 2018-07-27 2018-07-27 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141259A JP2020015282A (en) 2018-07-27 2018-07-27 Manufacturing method of composite material

Publications (1)

Publication Number Publication Date
JP2020015282A true JP2020015282A (en) 2020-01-30

Family

ID=69581141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141259A Pending JP2020015282A (en) 2018-07-27 2018-07-27 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP2020015282A (en)

Similar Documents

Publication Publication Date Title
JP5512908B1 (en) Random mat and fiber reinforced composite material molded body
JP3563704B2 (en) Method for producing woody molded body
WO2013094706A1 (en) Random mat and reinforcing fiber composite material
WO2012165418A1 (en) Method for manufacturing compact with sustained isotropy
JP6379035B2 (en) Random mat and fiber reinforced composite material molded body
JPH06134837A (en) Production of composite product
JP5531170B1 (en) Random mat and fiber reinforced composite material molded body
JP2014205833A (en) Recycling of broad goods with thermoplastic stabilizer materials
WO2016002470A1 (en) Method for producing fiber-reinforced plastic
WO2015111536A1 (en) Molding material for injection molding, extrusion molding, or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellets, molded article, method for producing injection molded article, and injection molded article
WO2021058677A1 (en) Manufacturing method for structural components and structural component
JP5956150B2 (en) Carbon fiber reinforced thermoplastic resin and method for producing molded article thereof
JP5650559B2 (en) Method for producing composite molded body
JP2020015282A (en) Manufacturing method of composite material
JPS63132036A (en) Manufacture of fiber reinforced composite material
WO2021077849A1 (en) Glass fiber group and glass fiber reinforced resin-based composite material
JP6173996B2 (en) Twin screw extruder used for the production of fiber reinforced resin composition
KR102309200B1 (en) Cleaning agent and cleaning method for molding machine cleaning
JP3634732B2 (en) Method for producing fiber-reinforced thermoplastic resin molded body
Chansoda et al. Comparative study on the wood-based PLA fabricated by compression molding and additive manufacturing
CN105729816A (en) Spun-bonded polypropylene board and manufacturing method thereof
JP3725488B2 (en) Manufacturing method of plastic molding
JP2000044808A (en) Aggregate for asphalt mixture
JP2014118426A (en) Method for producing carbon fiber composite material
JP2018199230A (en) Method and apparatus for recycling and producing pellet including carbon fiber