JP2020012815A - 情報提供装置、情報提供方法、およびプログラム - Google Patents

情報提供装置、情報提供方法、およびプログラム Download PDF

Info

Publication number
JP2020012815A
JP2020012815A JP2019109809A JP2019109809A JP2020012815A JP 2020012815 A JP2020012815 A JP 2020012815A JP 2019109809 A JP2019109809 A JP 2019109809A JP 2019109809 A JP2019109809 A JP 2019109809A JP 2020012815 A JP2020012815 A JP 2020012815A
Authority
JP
Japan
Prior art keywords
image
unit
information
meaning
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019109809A
Other languages
English (en)
Other versions
JP7365145B2 (ja
Inventor
安昭 兵藤
Yasuaki Hyodo
安昭 兵藤
一浩 二宮
Kazuhiro Ninomiya
一浩 二宮
西岡 孝章
Takaaki Nishioka
孝章 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LY Corp
Original Assignee
Z Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018136146A external-priority patent/JP6606779B6/ja
Application filed by Z Holdings Corp filed Critical Z Holdings Corp
Priority to JP2019109809A priority Critical patent/JP7365145B2/ja
Publication of JP2020012815A publication Critical patent/JP2020012815A/ja
Application granted granted Critical
Publication of JP7365145B2 publication Critical patent/JP7365145B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Navigation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

【課題】風景を撮像した画像に基づき、利用者にとって有用な情報を提供する情報提供装置、情報提供方法及びプログラムを提供する。【解決手段】情報提供システム1は、情報処理装置100において、撮像装置20から、撮像部24により撮像され、位置特定部26により特定された位置情報が対応付けられた風景の画像を取得する取得部と、取得部により取得された画像から、風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、複数の特定モデルの中から、取得部が取得した画像の風景に適用される特定モデルを用いて、意味領域内の特定の意味を認識する認識部と、意味領域を含む画像が撮像された位置に対応付けて、認識部により認識された特定の意味を利用者に提供する提供部116と、を備える。【選択図】図1

Description

本発明は、情報提供装置、情報提供方法、およびプログラムに関する。
従来、同一地点の地物画像データを解析し、地物画像データの内容が異なるか否かを判定し、判定結果に基づいて、同一地点における地物画像データの内容変更を通知する地物画像データ変更通知装置が開示されている(例えば、特許文献1参照)。
特許第4895123号公報
しかしながら、従来の技術は、地物画像データの内容変更を通知するものであり、利用者にとって有用な情報を提供することができない場合があった。
本発明は、このような事情を考慮してなされたものであり、利用者にとってより有用な情報を提供することができる情報提供装置、情報処理方法、およびプログラムを提供することを目的の一つとする。
本発明の一態様は、位置特定部と撮像部を有する他装置から、前記位置特定部により特定された位置情報が対応付けられ、前記撮像部により風景が撮像された画像を取得する取得部と、前記取得部により取得された画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、複数の特定モデルの中から、前記取得部が取得した画像の風景に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識する認識部と、前記意味領域を含む画像が撮像された位置に対応付けて、前記認識部により認識された特定の意味を利用者に提供する提供部とを備える情報提供装置である。
本発明の一態様によれば、利用者にとってより有用な情報を提供することができる。
情報処理システム1の機能構成の一例を示す図である。 撮像装置20と情報処理装置100とにより実行される処理の流れをシーケンス図である。 基準情報44の内容の一例を示す図である。 対応情報42の内容の一例を示す図である。 更新された基準情報44の一例を示す図である。 撮像装置20に実行される処理の流れの一例を示すフローチャートである。 情報処理装置100により実行される特定処理の流れ一例を示すフローチャートである。 対象画像において矩形が導出された様子の一例を示す図である。 矩形の画像IMが特定モデル126に入力され、特定モデル126がレギュラーガソリンの価格を出力する様子の一例を示す図である。 認識情報128の内容の一例を示す図である。 端末装置300の表示される画像の一例を示す図である。 第2実施形態の撮像装置20Aの機能構成の一例を示す図である。 撮像装置20Aに実行される処理の流れの一例を示すフローチャートである。 撮像装置20Aが送信対象の画像とするか、送信対象外の画像とするかを判定する処理の概念図である。 第3実施形態の撮像装置20Aにより実行される処理の流れの一例を示すフローチャートである。 給油された前後の画像が特定される処理について説明するための図である。 パーキングに停車された前後の画像が特定される処理について説明するための図である。 複数の特定モデル126の内容の一例を示す図である。 第4実施形態の情報処理装置100により実行される処理の流れの一例を示すフローチャートである。 複数の特定モデル126の内容の一例を示す図である。 第5実施形態の情報処理装置100により実行される処理の流れの一例を示すフローチャートである。 第6実施形態の情報処理システム1Aの機能構成の一例を示す図である。 学習データ412の内容の一例を示す図である。 学習データ412の内容の他の一例を示す図である。
以下、図面を参照し、本発明の情報提供装置、情報提供方法、およびプログラムの実施形態について説明する。
[概要(その1)]
実施形態の情報処理装置は、一以上のプロセッサにより実現される。情報処理装置(サーバ)は、他装置と通信する通信部、風景を撮像する基準を示した基準情報に基づいて風景を撮像する撮像部に画像を撮像させる撮像制御部、および位置を取得する位置取得部を含む端末装置から、位置情報が対応付けられた前記風景が撮像された画像を取得し、取得した画像から、前記撮像された風景の表す意味を認識し、前記基準情報を前記端末装置に送信し、前記端末装置に前記画像を送信させる。
「端末装置(エッジ)」は、車両に搭載された端末装置であってもよいし、車両に取り付け可能な携帯型端末装置であってもよい。例えば、端末装置は、ドライブレコーダや、スマートフォンなどの端末装置である。また、端末装置は、車両に搭載された撮像部により撮像された画像を取得したり、車両に搭載された位置特定部の特定結果を取得したりしてもよい。以下の説明では、端末装置は、ドライブレコーダであるものとして説明する。
「基準情報」は、例えば、風景を撮像する位置を示す情報や、所定の出来事が起こった位置に基づく情報、所定の地物が存在する位置に基づく情報、車両の挙動(例えば速度など)を示す情報、車両の状態(例えば停車した状態や給油している状態)を示す情報である。所定の地物とは、例えばガソリンスタンドや、パーキングなどである。「風景の表す意味」とは、例えば、風景から認識される地物や文字、記号等である。
[概要(その2)]
実施形態の情報処理装置は、一以上のプロセッサにより実現される。情報処理装置は、他装置と通信する通信部、風景を撮像する撮像部に画像を撮像させる撮像制御部、位置を取得する位置取得部、および撮像された画像とモデル情報とに基づいて送信する画像を決定する決定部を含む端末装置から、位置情報が対応付けられた前記風景が撮像された画像を取得し、取得した画像から、前記撮像された風景の表す意味を認識する認識し、前記モデル情報を前記端末装置に送信し、前記端末装置に前記画像を送信させる。
「風景が撮像された画像」は、例えばガソリンスタンドや、パーキングなどの所定の地物が撮像された画像である。「モデル情報」は、撮像部に撮像された画像を入力すると送信対象の画像であるかを示す情報を出力するものである。モデル情報は、送信対象の画像と送信対象であることを示す情報とが対応付けられた学習データが機械学習されて生成されたものである。
[概要(その3)]
実施形態の情報処理装置(「情報提供装置」の一例)は、一以上のプロセッサにより実現される。情報処理装置は、位置特定部と撮像部を有する他装置から、位置特定部により特定された位置情報が対応付けられ、撮像部により風景が撮像された画像を取得し、取得した画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、前記意味領域内の特定の意味を認識し、前記意味領域を含む画像が撮像された位置に対応付けて、認識された特定の意味を利用者に提供する。
「地物」は、例えば、ガソリンスタンドまたはパーキングのうち一方または双方を含む。「意味領域」とは、例えば、ガソリンスタンドの看板やパーキングの看板などである。「特定の意味」とは、例えば、ガソリンスタンドの看板の燃料の価格や、パーキングの看板の空き状況を示す情報などである。「位置に対応付けて、認識した特定の意味を利用者に提供する」とは、例えば、その位置またはその位置(または付近)の事物に対応付けて、前記認識した特定の意味を利用者に提供することである。また、「特定の意味を利用者に提供する」とは、例えば、利用者が保持する端末装置に特定の意味を提供することや、利用者が保持する端末装置に提供するためにデータベースにおいて特定の意味を地物に対応付けて記憶させることである。
また、情報処理装置は、複数の特定モデルの中から、前記取得部が取得した画像が撮像された位置ごとに適用される特定モデルを用いて、前記意味領域内の特定の意味を認識してもよい。位置ごとに適用される特定モデルは、前記位置において撮像された学習用画像と前記学習用画像内の前記意味領域内の特定の意味とが互いに対応付けられた学習用データが機械学習されて生成されたものである。
また、情報処理装置は、複数の特定モデルの中から、前記取得部が取得した画像の風景に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識してもよい。画像の風景に適用される特定モデルは、前記風景が撮像された学習用画像と前記学習用画像内の前記意味領域内の特定の意味とが互いに対応付けられた学習用データが機械学習されて生成されたものである。
また、情報処理装置は、複数の特定モデルの中から、前記取得部が取得した画像に含まれる看板に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識してもよい。看板が適用される特定モデルは、前記看板が撮像された学習用画像と前記看板が示す特定の意味とが互いに対応付けられた学習用データが機械学習されて生成されたものである。
また、情報処理装置は、第1時刻において前記取得部により取得された特定事物を含む画像から前記画像内で前記特定事物の意味を表している意味領域を抽出し、第2時刻において前記取得部により取得された前記特定事物を含む画像から前記画像内で特定事物の意味を表している意味領域を抽出し、第1時刻において前記取得部により取得された画像の意味領域の情報と、第2時刻において前記取得部により取得された意味領域の情報との差分に基づいて、前記意味領域内の特定の意味を認識してもよい。特定の意味とは、例えば、車両の燃料の価格や、パーキングの空き状況である。
<第1実施形態>
[構成]
図1は、情報処理システム1の機能構成の一例を示す図である。情報処理システム1は、例えば、車両10と、情報処理装置100と、ニュースサーバ200と、端末装置300とを備える。これらの装置は、ネットワークNWを介して互いに通信する。ネットワークNWは、例えば、WAN(Wide Area Network)やLAN(Local Area Network)、インターネット、専用回線、無線基地局、プロバイダなどを含む。なお、情報処理装置100に含まれる構成または機能の一部または全部は、車両10に含まれてもよい。また、車両10に含まれる機能または構成の一部または全部は、情報処理装置100に含まれてもよい。
[車両]
車両10には、撮像装置20が搭載されている。撮像装置20は、例えば、通信部22と、撮像部24と、位置特定部26と、撮像制御部28と、送信制御部30と、記憶部40とを備える。撮像制御部28、および送信制御部30は、CPU(Central Processing Unit)等のハードウェアプロセッサが記憶部40に記憶された撮像アプリ46を実行することにより実現される。撮像制御部28および送信制御部30は、情報処理装置100と協働して、撮像部24に画像を撮像させたり、撮像された画像を情報処理装置100に送信したりする。記憶部40は、例えば、ROM(Read Only Memory)、フラッシュメモリ、SDカード、RAM(Random Access Memory)等によって実現される。記憶部40には、対応情報42、基準情報44、および撮像アプリ46が記憶されている。対応情報42および基準情報44の内容の詳細については後述する。
通信部22は、無線通信を行ってネットワークNWに接続し、ネットワークNWを介して他装置と通信する。撮像部24は、風景を撮像する。撮像部24によって、例えば、風景が動画として取得される。撮像部24は、例えば、CCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)カメラである。
位置特定部26は、GNSS(Global Navigation Satellite System)衛星から受信した信号に基づいて、自装置の位置を特定する。
撮像制御部28は、基準情報44に基づいて、撮像部24に風景を撮像させる。送信制御部30は、通信部22を用いて、撮像部24に撮像された画像を情報処理装置100に送信する。なお、撮像部24に撮像された画像は、車両10の通信部を用いて情報処理装置100に送信されてもよい。
[情報処理装置]
情報処理装置100は、例えば、通信部102と、第1処理部104と、第2処理部106と、第3処理部108と、追跡処理部110と、情報管理部112と、更新部114と、提供部116と、記憶部120とを備える。第1処理部104、第2処理部106、第3処理部108、追跡処理部110、情報管理部112、更新部114、および提供部116は、CPU等のハードウェアプロセッサが、記憶装置に記憶されたプログラムを実行することにより実現される。また、これらの機能部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。また、上記のプログラムは、予め記憶装置に格納されていてもよいし、DVDやCD−ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体が情報処理装置100のドライブ装置に装着されることで記憶装置にインストールされてもよい。
記憶部120は、例えば、ROM、フラッシュメモリ、SDカード、RAM、HDD(Hard Disc Drive)、レジスタ等によって実現される。また、記憶部120の一部または全部は、NAS(Network Attached Storage)や外部ストレージサーバ装置等であってもよい。記憶部120には、例えば、対応情報122、基準情報124、特定モデル126、および認識情報128が記憶されている。各情報の詳細については後述する。
通信部102は、ネットワークNWを介して、撮像装置20と通信する。通信部102は、例えば、NIC(Network Interface Card)等の通信インターフェースを含む。
第1処理部104は、撮像部24により撮像された動画を画像に分割し、処理対象の対象画像を生成する。
第2処理部106は、画像から所定の地物を含むと推定される矩形、または所定の特徴を有すると推定される矩形を導出する。第2処理部106は、所定の矩形検出アルゴリズムに基づいて、矩形を導出する。
第3処理部108は、第2処理部106により導出された矩形の画像を所定の特定モデル126に入力し、特定モデル126の出力結果に基づいて矩形に含まれる風景の表す意味を認識する。特定モデル126は、機械学習などによって生成されたニューラルネットワーク(Neural Network)などの画像を分類するためのモデルである。
追跡処理部110は、複数の対象画像において同一の地物を追跡し、同一の地物に対する処理結果を統合する。追跡処理部110は、例えば、所定数の画像において同一の地物に対する認識結果に基づいて、その地物の意味を抽出する。例えば、追跡処理部110は、連続した所定数の画像(フレーム)で地物の意味を認識する。また、追跡処理部110は、複数のフレーム間の地物の位置の移動を判定する。より具体的には、追跡処理部110は、複数の画像を用いて意味を認識する処理において、地物が2回ガソリンスタンドの看板と認識され、同一の地物が1回飲食店の看板と認識された場合、例えば、その地物はガソリンスタンドの看板であると特定する。
情報管理部112は、自装置により取得された情報や、自装置の処理結果を管理する。更新部114は、基準情報124を更新し、更新した基準情報124を撮像装置20に送信する。提供部116は、端末装置300の依頼に基づいて、認識情報128に含まれる情報を端末装置300に提供する。
ニュースサーバ200は、情報処理装置100にニュースに関する情報を提供する。ニュースに関する情報とは、例えば、事件やイベント、事故などのように世間が注目する出来事や、その出来事が起こった場所や位置を含む情報である。
端末装置300は、利用者が保持する端末装置である。端末装置300は、例えば、スマートフォンやタブレット端末、ナビゲーション装置などである。
[情報処理システムにより実行される処理]
図2は、撮像装置20と情報処理装置100とにより実行される処理の流れをシーケンス図である。本処理は、動画を撮像する場所・時間を、情報処理装置100が補正や指示し、撮像装置20が撮像部24に風景を撮像させる指示を行う。
まず、情報処理装置100が、撮像装置20に基準情報124を送信する(S10)。次に、撮像装置20は、送信された基準情報124を取得し、取得した基準情報124(44)を記憶部40に記憶させる(S12)。次に、撮像装置20は、位置特定部26により特定された位置情報と基準情報44とに基づいて、撮像部24に画像を撮像させ(S14)、撮像された画像と画像が撮像された位置情報とを対応付けた対応情報42を情報処理装置100に送信する(S16)。次に、情報処理装置100が、取得した対応情報42を記憶部120に記憶させる(S18)。
(基準情報)
図3は、基準情報44の内容の一例を示す図である。基準情報44は、風景を撮像する撮像領域と、撮像対象の時間帯とが対応付けられた情報である。基準情報44は、例えば、前回の画像からの情報抽出をもとに、撮像装置20などの移動体で撮像される場所や時間が規定された情報である。例えば、これまでに、その位置が撮像された画像が十分に集まっていない場合は、その位置が撮像されるように基準情報44が生成されている。図3に示す基準情報44には、撮像領域AR1〜AR3が含まれ、撮像領域AR1〜AR3には日時が対応付けられている。例えば、撮像領域AR1〜3は、所定の位置を中心として、所定の半径で形成された円で示される領域である。例えば、撮像装置20は、撮像領域AR1〜AR3に進入した場合に撮像部24に撮像を開始させる。なお、基準情報44は、撮像領域のみが対応付けられていてもよい。
(対応情報)
図4は、対応情報42の内容の一例を示す図である。対応情報42は、例えば、基準情報44に基づいて、撮像された動画(画像)と、その動画が撮像された日時とが互いに対応付けられた情報である。例えば、対応情報42において動画の撮像時刻ごとに位置情報が対応付けられている。
図2の説明に戻る。情報処理装置100が、対応情報122に基づいて、特定処理を実行する(ステップS20)。特定処理とは、画像において風景の表す意味を認識する処理である。特定処理の詳細については、後述する図7〜9で説明する。
次に、情報処理装置100が、基準情報124(44)を更新するタイミングが到来したか否かを判定する(S22)。基準情報124を更新するタイミングが到来した場合、情報処理装置100が、基準情報124を更新し(S24)、更新した基準情報124を撮像装置20に送信する(S26)。そして、撮像装置20は、更新された基準情報124(44)を取得し、取得した基準情報124に基づいて画像を取得する(S28)。
(更新された基準情報)
図5は、更新された基準情報44の一例を示す図である。例えば、情報処理装置100が、ニュースサーバ200からニュースに関する情報を取得した場合、取得したニュースに関する情報に基づいて、基準情報124を更新する。情報処理装置100は、ニュースに関する情報の位置を含む撮像領域AR4を撮像領域AR1〜AR3に加え、基準情報124を更新する。例えば、撮像領域AR4は、事件が起こった位置を中心として、所定の半径で形成された円で示される領域である。なお、更新は、基準情報44を前回送信したときから所定の期間が経過した場合に行われてもよい。
また、更新部114は、前回撮像した時間、緯度経度、または速度のうちから一以上の項目に基づいて撮像位置や時間を修正した基準情報44を生成してもよい。この場合、例えば、更新部114は、前回、十分に撮像されたなった場所や時間帯の画像が撮像されるように基準情報44を更新(修正)する。また、所定速度以上で走行した場所は、十分に画像を撮像することができなかったため、再度、その場所を撮像するように基準情報44が生成される。この場合、情報処理装置100は、例えば、車両10や撮像装置20の移動速度を特定するための情報(例えば、速度そのものや、所定間隔で取得された位置情報)を取得する。
上述したように、情報処理装置100が、撮像装置20が撮像する場所や位置を修正し、撮像装置20に指示する。そして、撮像装置20が、指示に基づいて風景を撮像する。このように、撮像装置20と情報処理装置100とは、協働して処理を行うことにより、通信量を抑制しつつ必要な情報を取得することができる。
[撮像装置により実行される処理]
図6は、撮像装置20に実行される処理の流れの一例を示すフローチャートである。まず、撮像制御部28が、基準情報44と、位置特定部26により特定された位置とに基づいて、現在の位置が撮像する撮像領域内であるか否か判定する(S100)。撮像領域でない場合は、本フローチャートの1ルーチンの処理が終了する。
撮像領域である場合、撮像制御部28は、撮像部24に撮像を開始させる(S102)。次に、撮像制御部28は、撮像部24に撮像させた画像と、位置情報とを対応付けた対応情報42を記憶部40に記憶させる(S104)。次に、送信制御部30が、対応情報42を情報処理装置100に送信する(S106)。情報処理装置100は、送信された対応情報42を対応情報122として記憶部120に記憶させる。これにより本フローチャートの1ルーチンの処理が終了する。
例えば、車両に搭載されたドライブレコーダ等が撮像した動画を活用するために、その動画を情報処理装置100に全て送信すると通信量が許容量を超えてしまう場合がある。これに対して、上述した処理により、撮像装置20は、基準情報44に基づいて撮像した画像を情報処理装置100に送信することで、通信量を抑制しつつ必要な情報を情報処理装置100に送信することができる。
[情報処理装置により実行される特定処理]
図7は、情報処理装置100により実行される特定処理の流れ一例を示すフローチャートである。まず、情報処理装置100の第1処理部104が、対応情報122に未処理の動画が存在するか否かを判定する(S200)。未処理の動画が存在しない場合、本フローチャートの1ルーチンの処理が終了する。
未処理の動画が存在する場合、第1処理部104が動画を分割し(S202)、処理対象の対象画像を生成する(S204)。次に、第2処理部106は、対象画像において矩形を導出する(S206)。図8は、対象画像において矩形が導出された様子の一例を示す図である。対象画像において、所定の地物(特徴)を含むと推定される矩形が導出される。
次に、第3処理部108は、矩形の画像を特定モデル126に入力する(S208)。例えば、第3処理部108は、対象画像において導出された全ての矩形を取り出し、その取り出した矩形の画像を一つずつ選択し、選択した画像を特定モデル126に入力する。
次に、第3処理部108は、特定モデル126に出力された出力結果に基づいて、画像に含まれる地物を特定する(S210)。図9は、矩形の画像IMが特定モデル126に入力され、特定モデル126がレギュラーガソリンの価格を出力する様子の一例を示す図である。例えば、矩形の画像に、レギュラーガソリンの価格が記載された看板が含まれ、この画像(または画像の特徴)が特定モデル126に入力された場合、特定モデル126がレギュラーガソリンの価格を導出する。画像の特徴とは、例えば画素ごとの輝度や、輝度勾配、所定の範囲における複数の画素に基づいて導出された特徴量である。
図7の説明に戻る。次に、第3処理部108は、分割した全ての画像を処理したか否かを判定する(S212)。全ての画像を処理した場合、本フローチャートの1ルーチンの処理が終了する。全ての対象画像を処理していない場合、S204の処理に戻る。なお、本フローチャートの処理において、複数の対象画像が処理された場合、追跡処理部110が、複数の対象画像の処理結果を統合する処理を実行し、対象画像における同一の地物の意味を認識してもよい。
上述した処理により、情報処理装置100の情報管理部112は、例えば、認識情報128を生成する。図10は、認識情報128の内容の一例を示す図である。認識情報128は、例えば、動画ごとに規定された情報である。認識情報128は、例えば、画像の識別情報、画像が撮像された位置情報、矩形の識別情報、地物を示す情報、地物から導出される意味情報、画像の取得日時、および画像を撮像した撮像装置20の識別情報(ID)が対応付けられた情報である。
情報処理装置100は、認識情報128に基づいて、所定の位置に存在するガソリンスタンドのガソリン価格や、所定のパーキングの空き状況を認識することができる。そして、情報処理装置100は、上記の認識結果を端末装置300に送信することができる。これにより、端末装置300の利用者は、所望の地物に関する情報を取得することができる。
図11は、端末装置300の表示される画像の一例を示す図である。例えば、情報処理装置100の提供部116は、端末装置300の依頼に応じて、認識情報128を端末装置300に提供する。例えば、提供部116は、端末装置300から、端末装置300の位置情報Pcと共に位置情報Pcの周辺のガソリン価格の提供依頼を取得した場合、認識情報128から位置情報Pcの周辺のガソリンスタンドのガソリン価格を抽出し、抽出したガソリンスタンドの位置とガソリン価格とを対応付けた情報を端末装置300に提供する。これにより、図11に示すように位置情報Pcの周辺のガソリンスタンドのガソリン価格が端末装置300の表示部に表示される。
また、通信部102、車両10が走行する予定の経路(指定された経路)を取得してもよい。この場合、提供部116は、取得された経路に基づいて、上述した処理によって認識された燃料の価格、またはパーキングの空き状況を示す情報を利用者に提供してもよい。例えば、提供部116は、予定の経路の途中や道沿いに存在するガソリンスタンドの燃料の価格や、目的地の近くに存在する空き状況を利用者に提供してもよい。また、提供部116は、燃料の価格が、最も安いガソリンスタンドの位置を利用者に提供してもよい。
以上説明した第1実施形態によれば、情報処理装置100が、撮像装置20から、位置情報が対応付けられた前記風景が撮像された画像し、取得した画像から、撮像された風景の表す意味を認識し、基準情報124を撮像装置20に送信し、撮像装置20に画像を送信させることにより、通信量を抑制しつつ必要な情報を取得することができる。
<第2実施形態>
以下、第2実施形態について説明する。第1実施形態では、撮像装置20が、基準情報44に基づいて、撮像装置20の位置が撮像領域内に存在する場合に画像を撮像するものとして説明した。これに対して、第2実施形態では、撮像装置20は、基準情報44に代えて(または加えて)判定モデル45を情報処理装置100から取得する。そして、撮像装置20は、判定モデル45に基づいて、撮像した画像が送信対象であると判定した場合に、その画像を情報処理装置100に送信する。以下、第2実施形態について説明する。
図12は、第2実施形態の撮像装置20Aの機能構成の一例を示す図である。撮像装置20Aは、記憶部40に代えて記憶部40Aを備える。記憶部40Aには、判定モデル45が格納されている。判定モデル45は、画像を入力すると、その画像に対するスコアを導出するモデルである。例えば、判定モデル45は、画像が所定の地物(例えばガソリンスタンドやパーキング)を含む画像であることを示すスコアを導出するモデルである。判定モデル45は、学習データが機械学習などによって生成されたニューラルネットワークなどの画像を分類するためのモデルである。学習データは、例えば、所定の地物を含む画像と、その地物を識別するための情報とが互いに対応付けられた情報である。
撮像装置20Aは、撮像装置20の機能構成に加え、更に決定部29を備える。決定部29は、撮像部24に撮像された画像を判定モデル45に入力し、判定モデル45が出力したスコアを取得する。そして、決定部29は、取得したスコアに基づいて、その画像を情報処理装置100に送信するか否かを決定する。なお、第2実施形態の撮像制御部28は、例えば、常時、画像を撮像部24に撮像させる。
[撮像装置により実行される処理]
図13は、撮像装置20Aに実行される処理の流れの一例を示すフローチャートである。まず、撮像制御部28が、撮像部24に動画を撮像させる(S300)。次に、撮像制御部28は、撮像部24に撮像させた画像と、位置情報とを対応付けた対応情報42を記憶部40に記憶させる(S302)。次に、決定部29が、撮像した画像(動画を分割した画像)を判定モデル45に入力し(S304)、判定モデル45により出力された結果に基づいて、判定モデル45に入力した画像が送信対象の画像であるか否かを判定する(S306)。判定モデル45に入力した画像が送信対象の画像でない場合、本フローチャートの1ルーチンの処理が終了する。判定モデル45に入力した画像が送信対象の画像である場合、送信制御部30が、判定モデル45に入力された画像を情報処理装置100に送信する(S308)。これにより本フローチャートの1ルーチンの処理が終了する。
図14は、撮像装置20Aが画像を送信対象の画像とするか、送信対象外の画像とするかを判定する処理の概念図である。図示する例では、判定モデル45は、画像にガソリンスタンドらしい地物が含まれる度合を示す情報を出力するモデルである。図14の上図のように判定モデル45が、入力された画像にガソリンスタンドらしい地物が含まれていることを示す結果を出力した場合、この画像を送信対象の画像とされる。図14の下図のように判定モデル45が、入力された画像にガソリンスタンドらしい地物が含まれていないことを示す結果を出力した場合、この画像を送信対象外の画像とされる。
なお、判定モデル45は、一つに限らず、複数用意されてもよい。例えば、撮像装置20は、画像を複数の判定モデル45に入力し、いずれかの判定モデル45が送信対象とする結果を出力した場合に、その画像を送信対象としてもよい。
また、決定部29は、複数の判定モデル45を用いて、第1の地物が認識された後に、第2の地物が認識されるまでの間において撮像された画像を情報処理装置100に送信してもよい。例えば、決定部29は、ガードレールが認識された後、赤いビルが認識されるまでの間において撮像された画像を情報処理装置100に送信してもよい。
以上説明した第2実施形態によれば、情報処理装置100が、判定モデル45を撮像装置20Aに送信する。そして、撮像装置20Aは、判定モデル45に基づいて、撮像部24により撮像された画像が送信対象の画像であると判定した場合に、その画像を情報処理装置100に送信する。このように、情報処理装置100は、広範囲において撮像領域を設定する必要がないため、より容易に通信量を抑制しつつ必要な情報を取得することができる。
<第3実施形態>
以下、第3実施形態について説明する。第3実施形態では、情報処理装置100は、基準情報44に代えて、所定の条件を撮像装置20Aに送信する。撮像装置20Aは、画像が撮像されたタイミングが所定の条件を満たす場合、そのタイミングで撮像された画像を情報処理装置100に送信する。所定の条件とは、車両に関する情報に対して設定される条件である。以下、第1実施形態との相違点を中心に第3実施形態について説明する。
図15は、第3実施形態の撮像装置20Aにより実行される処理の流れの一例を示すフローチャートである。本処理は、例えば、所定の間隔で実行される処理である。まず、撮像制御部28が、撮像部24に動画を撮像させる(S400)。次に、撮像制御部28は、撮像部24に撮像させた画像と、位置情報とを対応付けた対応情報42を記憶部40に記憶させる(S402)。なお、撮像装置20は、車両と通信し、時刻ごとの車両の状態を取得しているものとする。
次に、決定部29が、対応情報42および車両に関する情報を参照し、送信対象の画像を特定し(S404)、特定した画像を情報処理装置100に送信する(S406)。これにより本フローチャートの処理が終了する。
以下、対応情報42および車両に関する情報を参照し、送信対象の画像を特定する手法について説明する。例えば、決定部29は、予め設定された制御手順で車両が制御されたタイミングで撮像された画像を送信対象の画像として決定する。予め設定された制御手順で車両が制御されたとは、例えば、加速度が閾値以上に制御された状態や、速度が第1所定速度以上で制御された後、第2所定速度以下に制御された状態、操舵が所定度合以上操作されたことなどである。
また、決定部29は、車両の位置情報と速度情報とが所定の条件を満たすタイミングで撮像された画像を送信対象の画像として決定してもよい。例えば、高速道路において80km前後で走行していたが、所定の区間のみ50kmで走行した場合などのように速度が変化した前後の画像が情報処理装置100に送信されてもよい。この場合、事故や障害物などが存在している場合があるためである。
また、例えば、決定部29は、以下のように、車両の状態に基づいて、送信する画像を決定してもよい。例えば、(1)給油された前後の画像や、(2)パーキングに停車した前後の画像が情報処理装置100に送信されてもよい。(1)給油された前後の画像は、燃料タンクの燃料の変化に基づいて特定される。図16は、給油された前後の画像が特定される処理について説明するための図である。図16の縦軸は燃料タンクの燃料の度合を示し、図16の横軸は時間を示している。例えば、決定部29は、図中の時間P1に示すように燃料の度合が所定の傾きで上昇した場合、その時間に燃料が補給されたと判定し(例えば、ガソリンスタンドでガソリンが給油されたと判定し)、その前後の時間P2およびP3の画像を送信対象の画像と判定する。
上述したように、ガソリンスタンドの画像を送信対象とする場合において、撮像装置20Aは、上述したように処理により、より確実にガソリンスタンドの画像を情報処理装置100に送信することができる。
(2)パーキングに停車した前後の画像は、車両の速度とパーキングブレーキの状態とに基づいて特定される。図17は、パーキングに停車された前後の画像が特定される処理について説明するための図である。図17の縦軸は車両の速度を示し、図17の横軸は時間を示している。例えば、決定部29は、図中の時間P11に示すように車両の速度が所定時間ゼロであり、且つパーキングブレーキがオン状態である特定状態である場合、その時間にパーキングに車両が停車したと判定し、少なくとも特定状態の後の時間P13の画像を送信対象の画像と判定する。
上述したように、パーキングの画像を送信対象とする場合において、撮像装置20Aは、上述したように処理により、より確実にパーキングの画像を情報処理装置100に送信することができる。
以上説明した第3実施形態によれば、情報処理装置100が、所定の条件を撮像装置20Aに送信する。そして、撮像装置20Aは、所定の条件に基づいて、撮像部24により撮像された画像が送信対象の画像であると判定した場合に、その画像を情報処理装置100に送信する。このように、情報処理装置100は、広範囲において撮像領域を設定する必要がないため、より容易に通信量を抑制しつつ必要な情報を取得することができる。
<第4実施形態>
以下、第4実施形態について説明する。第4実施形態は、第1実施形態の処理を前提に説明する。第4実施形態では、情報処理装置100は、複数の特定モデル126を備える。そして、情報処理装置100は、複数の特定モデル126のうちから、画像が撮像された位置に基づいて特定モデル126を選択し、選択した特定モデル126に画像を入力して、画像を解析する。以下、第1実施形態との相違点を中心について説明する。
第4実施形態の情報処理装置100の記憶部120には、特定モデル126が記憶されている。図18は、複数の特定モデル126の内容の一例を示す図である。例えば、複数の特定モデル126は、それぞれ位置(或いは領域)、特定モデル126の種別、および認識対象が互いに対応付けられた情報である。位置に対応付けられた特定モデル126は、対応付けられた位置が撮像された画像の矩形に含まれる風景の表す意味を、他の特定モデル126よりも、精度よく認識可能な特定モデルである。なお、図示するように、特定モデル126の認識対象は一つに限らず、複数であってもよい。
図19は、第4実施形態の情報処理装置100により実行される処理の流れの一例を示すフローチャートである。図7と同様の処理については説明を省略する。S200の処理後、第1処理部104が、動画を分割する(S202)。次に、第1処理部104が、対象画像および対象画像が特定された位置を特定する(S203)。次に、第1処理部104が、特定された位置に基づいて、特定モデル126を特定する(S205)。次に、第2処理部106は、対象画像において矩形を導出する(S206)。次に、第3処理部108は、S205で特定された特定モデル126に矩形の画像を入力する(S208)。そして、以降の処理に進む。
上述したように、情報処理装置100は、画像に含まれた風景の位置に基づいて、用いる特定モデル126を特定することにより、より精度よく画像に含まれる意味を認識することができる。
以上説明した第4実施形態によれば、情報処理装置100は、画像が撮像された位置ごとに適用される複数の特定モデル126の中から、取得した画像が撮像された位置ごとに適用される特定モデル126を用いて、風景に含まれる地物に関連する特定の意味を表している意味領域内の特定の意味を認識し、認識した特定の意味を利用者に提供することにより、利用者にとってより有用な情報を提供することができる。
なお、例えば、対象画像が所定の位置に存在するガソリンスタンドの看板が撮像された画像である場合、第3処理部108は、同じガソリンスタンドの看板を撮像した前回の画像と、同じガソリンスタンドの看板を撮像した今回の画像との差分から価格の異同を抽出してもよい。例えば、第3処理部108は、前回撮像された画像および今回撮像された画像のガソリンの価格を含む矩形内の画像間の相違を導出し、導出した相違と、予め設定されたテンプレートとに基づいて、今回撮像された画像におけるガソリンの価格を導出してもよい。このように、第3処理部108は、画像認識を実施する際に前回撮像した画像との差分を元にガソリンの価格を抽出することができる。
<第5実施形態>
以下、第5実施形態について説明する。第5実施形態は、第2実施形態の処理を前提に説明する。第5実施形態では、第1処理部104が、複数の特定モデル126のうちから、撮像装置20から送信された画像の種別に基づいて特定モデル126を選択し、選択した特定モデル126に画像を入力して、画像を解析する。以下、第1実施形態との相違点を中心について説明する。
第5実施形態の情報処理装置100の記憶部120には、複数の特定モデル126が記憶されている。図20は、複数の特定モデル126の内容の一例を示す図である。例えば、複数の特定モデル126は、それぞれ画像の種別、モデルの種別、および認識対象が互いに対応付けられた情報である。画像の種別に対応付けられた特定モデル126は、対応付けられた種別の画像の矩形に含まれる風景の表す意味を、他の特定モデル126よりも、精度よく認識可能な特定モデルである。なお、例えば、画像の種別は、図示するようにガソリンスタンドやパーキングなどのように分類された種別に限らず、建物や看板などのように分類された種別であってもよい。また、図示するように、特定モデル126の認識対象は一つに限らず、複数であってもよい。
図21は、第5実施形態の情報処理装置100により実行される処理の流れの一例を示すフローチャートである。図7と同様の処理については説明を省略する。S200の処理後、第1処理部104が、動画を分割し(S202)、処理対象の対象画像を生成する(S204)。次に、第1処理部104は、対象画像の種別に基づいて、特定モデル126を特定する(S205#)。次に、第2処理部106は、対象動画において矩形を導出する(S206)。次に、第3処理部108は、S205#で特定した特定モデル126に矩形の画像を入力する(S208)。そして、以降の処理に進む。
上述したように、情報処理装置100は、画像の種別に基づいて、用いる特定モデル126を特定することにより、より精度よく画像に含まれる意味を認識することができる。
以上説明した第5実施形態によれば、情報処理装置100は、画像の風景(種別)ごとに適用される複数の特定モデル126の中から、取得した画像の風景ごとに適用される特定モデル126を用いて、風景に含まれる地物に関連する特定の意味を表している意味領域内の特定の意味を認識し、認識した特定の意味を利用者に提供することにより、利用者にとってより有用な情報を提供することができる。
<第6実施形態>
以下、第6実施形態について説明する。第6実施形態の情報処理システム1Aは、学習装置400を更に備える点で、各実施形態と異なる。以下、第1実施形態との相違点を中心について説明する。
図22は、第6実施形態の情報処理システム1Aの機能構成の一例を示す図である。情報処理システム1Aは、例えば、第1実施形態の情報処理システム1の機能構成に加え、更に学習装置400を備える。
学習装置400は、例えば、学習部410と、学習データ412とを備える。学習部410は、学習データ412に基づいて、特定モデル126を生成する。そして、学習装置400は、生成した特定モデル126を情報処理装置100に送信する。
図23は、学習データ412の内容の一例を示す図である。例えば、学習データ412は、ガソリンスタンドの燃料の価格が表された画像と、正解データとが対応付けられた情報である。ガソリンスタンドの燃料の価格が表された画像は、例えば、同じガソリンスタンドの燃料の価格が表示された看板が撮像された画像(または同じ位置や同じ風景が撮像された画像)であってもよいし、異なるガソリンスタンドの燃料の価格が表示された看板が撮像された画像であってもよい。正解データは、画像に含まれる地物の識別情報(例えばレギュラーガソリンの価格が表された看板)と、地物に表された情報(例えばレギュラーガソリンの価格)と、地物に対応する領域とが互いに対応付けられた情報である。
学習部410は、学習データ412を機械学習して、画像を入力するとレギュラーガソリンの価格、またはレギュラーガソリンの価格が画像に含まれていないことを示す情報を出力する特定モデル126を生成する。すなわち、同じ種類の看板を認識する処理が行われるため、看板専用に学習処理が行われ、精度の良い特定モデル126が生成される。
図24は、学習データ412の内容の他の一例を示す図である。例えば、学習データ412は、パーキングの空き状況が表された画像と、正解データとが対応付けられた情報である。パーキングの空き状況が表された画像は、例えば、同じパーキングの空き状況が表示された看板が撮像された画像(または同じ位置や同じ風景が撮像された画像)であってもよいし、異なるパーキングの空き状況が表示された看板が撮像された画像であってもよい。正解データは、画像に含まれる地物の識別情報(例えばパーキングの空き状況を表す看板)と、看板が空車または満車を示している情報と、地物に対応する領域とが互いに対応付けられた情報である。学習部410は、学習データ412を機械学習して、画像を入力するとパーキングの空き状況、またはパーキングの空き情報を表す看板が画像に含まれていないことを示す情報を出力する特定モデル126を生成する。
なお、所定の地物は、閉店したガソリンスタンドや、閉店したコンビニエンスストア、開店した店舗なであってもよい。この場合、正解データは、閉店したガソリンスタンドや、閉店したコンビニエンスストア、開店した店舗などの情報と、これらの領域を示す情報が対応付けられた情報である。学習部410は、この学習データ412を学習して、画像を入力すると、画像に閉店したガソリンスタンドが含まれる情報や、画像に閉店したコンビニエンスストアが含まれる情報、画像に開店した店舗が含まれることを示す情報を出力する特定モデル126を生成する。これにより、画像に基づいて、容易に店舗の開店や閉店を認識することができる。
また、所定の地物は、車両のナンバーや人物の顔等であってもよい。この場合、正解データは、車両のナンバーを含む画像と車両のナンバーの領域を示す情報とが対応付けられた情報や、人物の顔を含む画像と人物の顔の領域を示す情報とが対応付けられた情報である。学習部410は、この学習データ412を学習して、画像を入力すると、人物の顔を含むか否かを示す情報や、人物の顔の領域を示す情報を出力する特定モデル126を生成する。これにより、画像に基づいて人物の顔を容易に認識することができる。
このように、個々の看板や、同じ位置が撮像された画像の情報の差分などの情報を学習することにより、個々の看板や、所定の位置の意味情報をより精度よく認識することができる特定モデル126が生成される。特定モデル126は、画像の情報の差分が学習されて生成されたモデルであるため、情報処理装置100が、特定モデル126を用いて意味領域内の特定の意味を認識する処理は、第1時刻において取得された画像の意味領域の情報と、第2時刻において取得された意味領域の情報との差分に基づいて、意味領域内の特定の意味を認識する処理の一例である。
以上説明した第6実施形態によれば、学習装置400が、学習データ412を学習して、特定モデル126を生成する。情報処理装置100は、この特定モデル126を用いて、地物に関連する特定の意味を表している意味領域内の特定の意味を、精度よく認識することができる。この結果、利用者にとってより有用な情報を提供することができる。
また、上述したように学習データ412が機械学習されて、矩形導出モデルが生成されてもよい。矩形導出モデルは、例えば、第2処理部106が、矩形を導出する処理に用いるモデルである。これにより、情報処理装置100は、所定の地物を含む矩形を精度よく導出することができる。
また、上述したように学習データ412が機械学習されて、判定モデル45が生成されてもよい。これにより、情報処理装置100は、撮像装置20が送信対象の画像であるか否かを判定することができるモデルを撮像装置20に提供することができる。
以上説明した各実施形態によれば、情報処理装置100が、他装置と通信する通信部22、風景を撮像する基準を示した基準情報に基づいて風景を撮像する撮像部24に画像を撮像させる撮像制御部28、および位置を取得する位置特定部26を含む撮像装置20から、位置情報が対応付けられた風景が撮像された画像を取得する通信部102と、通信部102により取得された画像から、撮像された風景の表す意味を認識する第3処理部108と、基準情報を撮像装置20に送信し、撮像装置20に画像を送信させる更新部114とを備えることにより、通信量を抑制しつつ必要な情報を取得することができる。
また、以上説明した各実施形態によれば、情報処理装置100が、位置特定部と撮像部を有する他装置から、位置特定部により特定された位置情報が対応付けられ、撮像部24により風景が撮像された画像を取得する通信部102と、通信部102により取得された画像から、風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、意味領域内の特定の意味を認識する第3処理部108と、意味領域を含む画像が撮像された位置に対応付けて、第3処理部108により認識された特定の意味を利用者に提供する提供部116とを備えることにより、利用者にとってより有用な情報を提供することができる。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
10‥車両、20‥撮像装置、22‥通信部、24‥撮像部、26‥位置特定部、28‥撮像制御部、29‥決定部、30‥送信制御部、40、40A‥記憶部、42‥対応情報、44‥基準情報、45‥判定モデル、46‥撮像アプリ、100‥情報処理装置、102‥通信部、104‥第1処理部、106‥第2処理部、108‥第3処理部、110‥追跡処理部、112‥情報管理部、114‥更新部、116‥提供部、120‥記憶部、122‥対応情報、124‥基準情報、126‥特定モデル、128‥認識情報、200‥ニュースサーバ、300‥端末装置、400‥学習装置

Claims (14)

  1. 位置特定部と撮像部を有する他装置から、前記位置特定部により特定された位置情報が対応付けられ、前記撮像部により風景が撮像された画像を取得する取得部と、
    前記取得部により取得された画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、複数の特定モデルの中から、前記取得部が取得した画像の風景に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識する認識部と、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識部により認識された特定の意味を利用者に提供する提供部と、
    を備える情報提供装置。
  2. 前記特定モデルは、前記風景が撮像された学習用画像と前記学習用画像内の前記意味領域内の特定の意味とが互いに対応付けられた学習用データが機械学習されて生成されたものである、
    請求項1に記載の情報提供装置。
  3. 位置特定部と撮像部を有する他装置から、前記位置特定部により特定された位置情報が対応付けられ、前記撮像部により風景が撮像された画像を取得する取得部と、
    前記取得部により取得された画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、複数の特定モデルの中から、前記取得部が取得した画像に含まれる看板に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識する認識部と、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識部により認識された特定の意味を利用者に提供する提供部と、
    を備える情報提供装置。
  4. 前記特定モデルは、前記看板が撮像された学習用画像と前記看板が示す特定の意味とが互いに対応付けられた学習用データが機械学習されて生成されたものである、
    請求項3に記載の情報提供装置。
  5. 前記地物は、ガソリンスタンドまたはパーキングのうち一方または双方である、
    請求項1から4のうちいずれか1項に記載の情報提供装置。
  6. 前記認識部は、前記取得部により取得された画像から前記画像内で車両用の燃料価格を表している意味領域を抽出し、前記意味領域内において燃料価格を認識し、
    前記提供部は、前記意味領域を含む画像が撮像された位置に対応付けて、前記認識部により認識された燃料価格を利用者に提供する、
    請求項1から4のうちいずれか1項に記載の情報提供装置。
  7. 前記取得部は、指定された経路を取得し、
    前記提供部は、前記取得部により取得された経路に基づいて、前記認識部が認識した前記燃料価格を利用者に提供する、
    請求項6に記載の情報提供装置。
  8. 前記認識部は、前記取得部により取得された画像から前記画像内でパーキングの空き状況を表している意味領域を抽出し、前記意味領域内において空き状況を認識し、
    前記提供部は、前記意味領域を含む画像が撮像された位置に対応付けて、前記認識部により認識されたパーキングの空き状況を利用者に提供する、
    請求項1から4のうちいずれか1項に記載の情報提供装置。
  9. 前記取得部は、指定された経路を取得し、
    前記提供部は、前記取得部により取得された経路に基づいて、前記認識部が認識した前記空き状況を利用者に提供する、
    請求項8に記載の情報提供装置。
  10. 前記意味領域を含む画像が撮像された位置と、前記認識部により認識された特定の意味とを互いに対応付けた認識情報を管理する情報管理部を、更に備え、
    前記提供部は、前記情報管理部により管理されている認識情報を利用者に提供する、
    請求項1から8のうちいずれか1項に記載の情報提供装置。
  11. コンピュータが、
    位置を特定する特定部により特定された位置情報が対応付けられ、撮像部により風景が撮像された画像を取得し、
    前記取得した画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、
    複数の特定モデルの中から、前記取得した画像の風景に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識し、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識された特定の意味を利用者に提供する、
    情報提供方法。
  12. コンピュータに、
    位置を特定する特定部により特定された位置情報が対応付けられ、撮像部により風景が撮像された画像を取得させ、
    前記取得させた画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出させ、
    複数の特定モデルの中から、前記取得させた画像の風景に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識させ、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識された特定の意味を利用者に提供させる、
    プログラム。
  13. コンピュータが、
    位置を特定する特定部により特定された位置情報が対応付けられ、撮像部により風景が撮像された画像を取得し、
    前記取得した画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出し、
    複数の特定モデルの中から、前記取得した画像に含まれる看板に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識し、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識された特定の意味を利用者に提供する、
    情報提供方法。
  14. コンピュータに、
    位置を特定する特定部により特定された位置情報が対応付けられ、撮像部により風景が撮像された画像を取得させ、
    前記取得させた画像から、前記風景に含まれる地物に関連する特定の意味を表している意味領域を抽出させ、
    複数の特定モデルの中から、前記取得させた画像に含まれる看板に適用される特定モデルを用いて、前記意味領域内の特定の意味を認識させ、
    前記意味領域を含む画像が撮像された位置に対応付けて、前記認識された特定の意味を利用者に提供させる、
    プログラム。
JP2019109809A 2018-07-19 2019-06-12 情報提供装置、情報提供方法、およびプログラム Active JP7365145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019109809A JP7365145B2 (ja) 2018-07-19 2019-06-12 情報提供装置、情報提供方法、およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136146A JP6606779B6 (ja) 2018-07-19 2018-07-19 情報提供装置、情報提供方法、およびプログラム
JP2019109809A JP7365145B2 (ja) 2018-07-19 2019-06-12 情報提供装置、情報提供方法、およびプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018136146A Division JP6606779B6 (ja) 2018-07-19 2018-07-19 情報提供装置、情報提供方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2020012815A true JP2020012815A (ja) 2020-01-23
JP7365145B2 JP7365145B2 (ja) 2023-10-19

Family

ID=88328458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109809A Active JP7365145B2 (ja) 2018-07-19 2019-06-12 情報提供装置、情報提供方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP7365145B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024180768A1 (ja) * 2023-03-02 2024-09-06 日本電信電話株式会社 解析システム、および解析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083297A (ja) * 2000-06-28 2002-03-22 Matsushita Electric Ind Co Ltd 物体認識方法および物体認識装置
JP2016045678A (ja) * 2014-08-22 2016-04-04 パイオニア株式会社 価格表示システム、価格判定装置、表示装置、価格判定方法、および、価格判定プログラム
JP2016197314A (ja) * 2015-04-03 2016-11-24 株式会社日立製作所 運転支援システム、運転支援装置及び運転支援方法
JP2018081404A (ja) * 2016-11-15 2018-05-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 識別方法、識別装置、識別器生成方法及び識別器生成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083297A (ja) * 2000-06-28 2002-03-22 Matsushita Electric Ind Co Ltd 物体認識方法および物体認識装置
JP2016045678A (ja) * 2014-08-22 2016-04-04 パイオニア株式会社 価格表示システム、価格判定装置、表示装置、価格判定方法、および、価格判定プログラム
JP2016197314A (ja) * 2015-04-03 2016-11-24 株式会社日立製作所 運転支援システム、運転支援装置及び運転支援方法
JP2018081404A (ja) * 2016-11-15 2018-05-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 識別方法、識別装置、識別器生成方法及び識別器生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024180768A1 (ja) * 2023-03-02 2024-09-06 日本電信電話株式会社 解析システム、および解析方法

Also Published As

Publication number Publication date
JP7365145B2 (ja) 2023-10-19

Similar Documents

Publication Publication Date Title
US10540554B2 (en) Real-time detection of traffic situation
JP6418266B2 (ja) 音声コマンドに対応した視覚コンテキストを表示する三次元ヘッドアップディスプレイ装置
KR101823464B1 (ko) 지역 사진 및 거리뷰의 간판 이미지를 활용한 지역 정보 검출 및 보정 방법 및 시스템
US11127162B2 (en) Method and apparatus for improved location decisions based on surroundings
CN111174782B (zh) 位姿估计方法、装置、电子设备及计算机可读存储介质
US11430199B2 (en) Feature recognition assisted super-resolution method
JP6606779B6 (ja) 情報提供装置、情報提供方法、およびプログラム
US11270136B2 (en) Driving support device, vehicle, information providing device, driving support system, and driving support method
US20220303738A1 (en) On-board machine vision device for activating vehicular messages from traffic signs
CN113221756A (zh) 交通标志检测方法及相关设备
CN116959265A (zh) 交通信息提示方法、装置、电子设备和可读存储介质
Khan et al. Outdoor mobility aid for people with visual impairment: Obstacle detection and responsive framework for the scene perception during the outdoor mobility of people with visual impairment
JP7365145B2 (ja) 情報提供装置、情報提供方法、およびプログラム
JP7160763B2 (ja) 情報処理装置、情報処理システム、情報処理方法、プログラム、およびアプリケーションプログラム
JP6686076B2 (ja) 情報処理装置、情報処理方法、プログラム、およびアプリケーションプログラム
JP7258666B2 (ja) 情報提供装置、情報提供システム、情報提供方法、およびプログラム
JP7258667B2 (ja) 情報提供装置、情報提供システム、および情報提供方法
KR20160117985A (ko) 녹화 영상 중개 서비스 방법 및 시스템
JP2021124633A (ja) 地図生成システム及び地図生成プログラム
KR101762514B1 (ko) 지도 기반 촬상 위치 정보 제공 방법 및 장치
JP6443144B2 (ja) 情報出力装置、情報出力プログラム及び情報出力方法、並びに情報出力システム
US20230137094A1 (en) Measurement device, measurement system, measurement method, and computer program product
JP2019197359A (ja) 一般物体認識システム
KR102650518B1 (ko) 차량번호를 이용한 입주자 확인 서비스 제공 시스템
US20240233343A1 (en) Vector Map Verification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20231026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231030

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350