JP2020012629A - Anti-icing vaporization device - Google Patents

Anti-icing vaporization device Download PDF

Info

Publication number
JP2020012629A
JP2020012629A JP2019126154A JP2019126154A JP2020012629A JP 2020012629 A JP2020012629 A JP 2020012629A JP 2019126154 A JP2019126154 A JP 2019126154A JP 2019126154 A JP2019126154 A JP 2019126154A JP 2020012629 A JP2020012629 A JP 2020012629A
Authority
JP
Japan
Prior art keywords
fuel gas
thermoelectric
thermoelectric generator
pipe
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019126154A
Other languages
Japanese (ja)
Inventor
キム,ヨンキュ
Yong Kyu Kim
キム,ジェグァン
Jae Gwan Kim
イ,ドンキル
Dong Kil Lee
イ,ホキ
Ho Ki Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Heavy Industries Co Ltd
Original Assignee
Samsung Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Heavy Industries Co Ltd filed Critical Samsung Heavy Industries Co Ltd
Priority to JP2019126154A priority Critical patent/JP2020012629A/en
Publication of JP2020012629A publication Critical patent/JP2020012629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide an anti-icing vaporization device in which a vaporizer to perform heat exchange between a liquefied fuel gas and seawater prevents icing on a surface of a liquefied fuel gas transport pipe.SOLUTION: A vaporizer 300 includes a transport pipe 303 connecting an inlet part 301, into which a liquefied fuel gas is introduced, with an outlet part 302, from which the vaporized fuel gas is drawn. The vaporizer provides a space in which seawater heat-exchanged with the transport pipe flows. The vaporizer comprises a thermoelectric power generating unit 310 that can generate power by a temperature difference between two fluids. The vaporizer includes a heating unit 320, which is placed on a surface of the liquefied fuel gas inlet part of the transport pipe and prevents, by heating using power generated by the thermoelectric power generating unit, icing of a region of the transport pipe adjacent to the inlet part.SELECTED DRAWING: Figure 11

Description

本発明は、熱電発電モジュール並びにこれを含む熱電発電装置と結氷防止気化装置および気化燃料ガス液化工程装置に関する。   The present invention relates to a thermoelectric power generation module, a thermoelectric power generation device including the same, an anti-icing vaporization device, and a vaporized fuel gas liquefaction process device.

温室ガスおよび各種大気汚染物質の排出に対する国際海事機関(IMO)の規制が強化されるに伴い、造船および海運業界では、既存の燃料である重油やディーゼル油を利用する代わりに、清浄エネルギー源である天然ガスを船舶の燃料ガスとして利用する場合が多くなっている。   With the tightening of the International Maritime Organization's (IMO) regulations on greenhouse gas and various air pollutant emissions, the shipbuilding and shipping industry has been using clean energy sources instead of using existing fuels, heavy and diesel. In many cases, natural gas is used as fuel gas for ships.

燃料ガスのうち広く利用されており、重要な資源と見なされる天然ガスは、メタンを主成分とし、通常、貯蔵および輸送の容易性のために、天然ガスを約−162℃に冷却して、その体積を1/600に低減した無色透明な極低温液体である液化天然ガスに相変化して管理および運用を行っている。   Natural gas, which is widely used and regarded as an important resource in fuel gas, is based on methane and is usually cooled to about -162 ° C for ease of storage and transportation, It manages and operates by changing its phase to liquefied natural gas, a colorless and transparent cryogenic liquid whose volume has been reduced to 1/600.

液化天然ガスは、船体に断熱処理されて設置される貯蔵タンクに収容されて、液化天然ガスの需要先に輸送されたり、燃料タンクに収容されて、船舶のエンジンに燃料ガスとして供給され得る。   The liquefied natural gas may be stored in a storage tank installed on the hull insulated and transported to a demand destination of the liquefied natural gas, or stored in a fuel tank and supplied to a ship engine as fuel gas.

液化天然ガス等の液化燃料ガスを船舶のエンジン等に燃料ガスとして利用するためには、液化燃料ガスを気化させて供給する工程が要求されるが、近年、低温の液化燃料ガスと海水の温度差を利用して液化燃料ガスを気化させる気化器が利用されている。このような気化器は、気化器内部の移動管を介して液化燃料ガスを移動させると同時に、移動管の外部に海水を供給することにより、液化燃料ガスと海水の熱交換を介して液化燃料ガスを加熱して気化燃料ガスに相変化させることができる。   In order to use liquefied fuel gas such as liquefied natural gas as a fuel gas for a ship engine or the like, a process of vaporizing and supplying the liquefied fuel gas is required. A vaporizer that vaporizes a liquefied fuel gas using the difference is used. Such a vaporizer moves the liquefied fuel gas through a moving pipe inside the vaporizer and simultaneously supplies seawater to the outside of the moving pipe, so that the liquefied fuel gas is exchanged with the liquefied fuel gas through heat exchange with seawater. The gas can be heated and phase changed to a vaporized fuel gas.

しかし、液化燃料ガスと海水の温度差によって気化器の引込み部と隣接した液化燃料ガス移動管の表面に結氷が発生し、結氷に起因して移動管と海水の熱交換が円滑に行われないため、気化器の性能が低下する問題点が存在する。   However, due to the temperature difference between the liquefied fuel gas and the seawater, icing occurs on the surface of the liquefied fuel gas moving pipe adjacent to the inlet of the vaporizer, and heat transfer is not performed smoothly due to the icing. Therefore, there is a problem that the performance of the vaporizer is reduced.

また、液化燃料ガスを貯蔵タンクに収容する時、外部の熱が貯蔵タンクの内部に持続的に伝達されて、液化燃料ガスが気化して発生する蒸発ガスが貯蔵タンクの内部に蓄積される。このような蒸発ガスは、貯蔵タンクの内部圧力を上昇させて貯蔵タンクの変形および毀損を誘発することができ、液化燃料ガスを輸送する過程で船舶の振動により貯蔵タンクおよび船舶の構造的な問題を引き起こす問題点が存在する。   Further, when the liquefied fuel gas is stored in the storage tank, external heat is continuously transmitted to the inside of the storage tank, and evaporative gas generated by vaporization of the liquefied fuel gas is accumulated in the storage tank. Such evaporative gas can increase the internal pressure of the storage tank and induce deformation and damage of the storage tank. In the course of transporting the liquefied fuel gas, the vibration of the ship causes structural problems of the storage tank and the ship. There is a problem that causes

これにより、蒸発ガスまたは気化燃料ガスのうち船舶のエンジン等に供給されない余分の気化燃料ガス等を効果的に処理および利用する方案が要求される。また、液化燃料ガス、蒸発ガスまたは気化燃料ガス等を運用する過程で極低温の液化燃料ガスとその周辺との温度差によって発生するエネルギーを活用するための方案が要求される。   This requires a method of effectively processing and utilizing excess vaporized fuel gas or the like that is not supplied to the engine of the ship, among the vaporized gas or the vaporized fuel gas. In addition, there is a need for a method for utilizing energy generated due to a temperature difference between an extremely low temperature liquefied fuel gas and its surroundings in the process of operating the liquefied fuel gas, the evaporative gas or the vaporized fuel gas.

本発明は、極低温の流体とその周辺との温度差を利用して電力を生産し、これを通じてエネルギーを効率的に利用できる熱電発電モジュール並びにこれを含む熱電発電装置と結氷防止気化装置および気化燃料ガス液化工程装置を提供する。   The present invention provides a thermoelectric power generation module capable of efficiently utilizing energy through the use of a temperature difference between a cryogenic fluid and its surroundings to efficiently use energy, a thermoelectric power generation device including the module, an anti-icing vaporizer, and a vaporizer. A fuel gas liquefaction process apparatus is provided.

本発明は、蒸発ガスまたは気化燃料ガスを圧縮する過程に要求される電力および液化燃料ガスを加圧して移送する過程に要求される電力を節減できる熱電発電モジュール並びにこれを含む熱電発電装置と結氷防止気化装置および気化燃料ガス液化工程装置を提供する。   SUMMARY OF THE INVENTION The present invention provides a thermoelectric power generation module capable of reducing power required for a process of compressing an evaporative gas or a vaporized fuel gas and power required for a process of compressing and transferring a liquefied fuel gas, a thermoelectric power generation device including the module, and ice formation. An apparatus for preventing vaporization and an apparatus for liquefying vaporized fuel gas are provided.

本発明の一態様によれば、流体が流れる配管と、前記配管を取り囲み、前記流体と外側の空気との温度差によって電力を生産する熱電発電部とを含む熱電発電モジュールが提供され得る。   According to one aspect of the present invention, there can be provided a thermoelectric power generation module including a pipe through which a fluid flows, and a thermoelectric power generation unit that surrounds the pipe and generates electric power by a temperature difference between the fluid and outside air.

前記熱電発電部は、前記配管の外周面と接する第1シェルと、前記第1シェルと一定間隔で離隔する第2シェルと、前記第1シェルと前記第2シェルとの間に設けられる複数の熱電素子部とを含む熱電発電モジュールが提供され得る。   The thermoelectric generator includes a first shell that is in contact with an outer peripheral surface of the pipe, a second shell that is separated from the first shell at a predetermined interval, and a plurality of shells that are provided between the first shell and the second shell. A thermoelectric power generation module including a thermoelectric element unit can be provided.

前記第1シェルと前記第2シェルとの間に不活性ガスが含まれる熱電発電モジュールが提供され得る。   A thermoelectric power module including an inert gas between the first shell and the second shell may be provided.

前記第1シェルと前記第2シェルとの間の圧力は、前記配管の内部圧力と同じ熱電発電モジュールが提供され得る。   A thermoelectric power generation module may be provided in which the pressure between the first shell and the second shell is the same as the internal pressure of the pipe.

貯蔵タンクに貯蔵された液化燃料ガスの蒸発ガスを圧縮する圧縮機と、前記圧縮機を通った流体と前記貯蔵タンクから供給された液化燃料ガスとの温度差を用いて発電を行う熱電発電部と、前記熱電発電部を通過した前記流体および前記液化燃料ガスを気化させてエンジンに供給する気化器とを含む熱電発電装置が提供され得る。   A compressor for compressing the evaporative gas of the liquefied fuel gas stored in the storage tank, and a thermoelectric generator for generating electric power using a temperature difference between the fluid passing through the compressor and the liquefied fuel gas supplied from the storage tank And a vaporizer for vaporizing the fluid and the liquefied fuel gas passing through the thermoelectric generator and supplying the vaporized gas to the engine.

前記流体が前記気化器に移動する通路を提供し、前記熱電発電部の一面と接触する第1配管と、前記液化燃料ガスが前記気化器に移動する通路を提供し、前記熱電発電部の他面と接触する第2配管とをさらに含む熱電発電装置が提供され得る。   A first pipe that provides a passage for the fluid to move to the vaporizer; a first pipe that contacts one surface of the thermoelectric generator; and a passage for the liquefied fuel gas to move to the vaporizer; A thermoelectric generator may be provided further comprising a second pipe in contact with the surface.

前記第2配管に設置されて、前記液化燃料ガスを昇圧させて移送する第1ポンプと、前記第1ポンプと前記気化器との間に設置されて、前記第1ポンプから流出した前記液化燃料ガスを昇圧させる第2ポンプと、前記熱電発電部が生成した電気を変換させて前記圧縮機と前記第1ポンプおよび前記第2ポンプに供給する変換部とをさらに含む熱電発電装置が提供され得る。   A first pump installed in the second pipe to transfer the liquefied fuel gas by increasing the pressure; and a liquefied fuel flowing out of the first pump installed between the first pump and the vaporizer. A thermoelectric generator may further be provided that further includes a second pump for increasing the pressure of gas and a converter for converting electricity generated by the thermoelectric generator to supply the compressor and the first and second pumps to the compressor. .

前記第1配管および前記第2配管のうち一方は、他方の少なくとも一部を囲む熱電発電装置が提供され得る。   A thermoelectric generator may be provided in which one of the first pipe and the second pipe surrounds at least a part of the other.

前記熱電発電部は、前記第1配管と前記液化燃料ガスが接触しないように前記第1配管と前記液化燃料ガスとの間に隔壁として使用される熱電発電装置が提供され得る。   A thermoelectric generator may be provided in which the thermoelectric generator is used as a partition wall between the first pipe and the liquefied fuel gas such that the first pipe does not contact the liquefied fuel gas.

前記気化器は、前記流体および前記液化燃料ガスが流入する引込み部と気化燃料が引き出される引き出し部とを連結させる移動管を含み、前記移動管と熱交換する海水が流れる空間を提供する熱電発電装置が提供され得る。   The vaporizer includes a moving pipe that connects a drawing part into which the fluid and the liquefied fuel gas flow and a drawing part from which the vaporized fuel is drawn, and a thermoelectric generator that provides a space through which seawater that exchanges heat with the moving pipe flows. An apparatus may be provided.

液化燃料ガスが引入される引込み部と気化燃料ガスが引き出される引き出し部とを連結させる移動管を含み、前記移動管と熱交換する海水が流れる空間を提供して、液化燃料ガスを気化燃料ガスに気化させる気化器と、前記移動管を介して移動する前記液化燃料ガスおよび前記気化燃料ガスのうち少なくとも一つを含む流体と前記海水との温度差により発電可能な熱電発電部と、前記引込み部の表面に配置されて、前記熱電発電部により生成された電力を利用して前記引込み部と隣接した前記移動管領域が結氷するのを防止する発熱部とを含む結氷防止気化装置が提供され得る。   A moving pipe that connects a drawing section into which the liquefied fuel gas is drawn and a drawing section from which the vaporized fuel gas is drawn, to provide a space through which seawater that exchanges heat with the moving pipe flows to convert the liquefied fuel gas into a vaporized fuel gas; A thermoelectric power generation unit capable of generating power by a temperature difference between the seawater and a fluid containing at least one of the liquefied fuel gas and the vaporized fuel gas moving through the moving pipe; An anti-icing vaporizer is provided that is disposed on a surface of the unit and includes a heating unit that uses the electric power generated by the thermoelectric generator to prevent ice from forming in the moving pipe region adjacent to the drawing-in unit. obtain.

前記気化器は、前記海水が流入する海水引込み部と、前記海水が排出される海水引き出し部とを含む結氷防止気化装置が提供され得る。   The evaporator may be provided with an anti-icing vaporization device including a seawater drawing part into which the seawater flows, and a seawater drawing part from which the seawater is discharged.

前記熱電発電部は、前記引き出し部に比べて前記引込み部に近づくように配置される結氷防止気化装置が提供され得る。   An anti-icing vaporizer may be provided in which the thermoelectric generator is located closer to the draw-in section than to the draw-out section.

前記熱電発電部は、前記移動管をそれぞれ取り囲み、前記熱電発電部の一側が前記移動管と接触し、前記熱電発電部の他側が前記海水と接触する結氷防止気化装置が提供され得る。   The thermoelectric generator may surround the moving pipe, and an anti-icing vaporizer may be provided in which one side of the thermoelectric generator contacts the moving pipe and the other side of the thermoelectric generator contacts the seawater.

前記発熱部は、前記引込み部の表面があらかじめ設定された第1温度以上に維持されるように前記引込み部の表面を加熱させる結氷防止気化装置が提供され得る。   An anti-icing vaporizer may be provided in which the heating unit heats the surface of the drawing unit such that the surface of the drawing unit is maintained at a predetermined first temperature or higher.

前記引込み部の表面の温度が、前記第1温度と前記第1温度より高い第2温度との間で維持されるように、前記熱電発電部で生産された電力を前記発熱部に入力または遮断するスイッチ制御信号をスイッチに出力する制御部をさらに含む結氷防止気化装置が提供され得る。   Power generated by the thermoelectric generator is input to or cut off from the heat generator so that the temperature of the surface of the draw-in unit is maintained between the first temperature and a second temperature higher than the first temperature. The anti-icing vaporization device further includes a control unit that outputs a switch control signal to the switch.

気化燃料ガスを圧縮して液化燃料ガスを含む流体を形成する圧縮機と、前記圧縮機に駆動力を提供する駆動モーターと、前記圧縮機により上昇した前記流体の温度を冷却媒体を介して降下させる冷却部と、温度上昇した前記流体と前記冷却媒体との温度差により発電を行う熱電発電部と、前記熱電発電部から供給される電力を変換して前記駆動モーターに供給する変換部とを含む気化燃料ガス液化工程装置が提供され得る。   A compressor for compressing the vaporized fuel gas to form a fluid containing the liquefied fuel gas, a drive motor for providing a driving force to the compressor, and lowering the temperature of the fluid raised by the compressor via a cooling medium A cooling unit, a thermoelectric generator that generates electric power by a temperature difference between the fluid whose temperature has increased and the cooling medium, and a converter that converts electric power supplied from the thermoelectric generator and supplies the electric power to the drive motor. A vaporized fuel gas liquefaction process apparatus can be provided.

前記気化燃料ガス液化工程装置は、前記圧縮機と、前記駆動モーターと、前記冷却部と前記熱電発電部とを含む液化工程部を備え、複数の前記液化工程部のうち一つの前記冷却部から流出した前記流体は、他の一つの前記圧縮機に流入する気化燃料ガス液化工程装置が提供され得る。   The vaporized fuel gas liquefaction process device includes a liquefaction process unit including the compressor, the drive motor, the cooling unit and the thermoelectric power generation unit, and a liquefaction process unit including a plurality of liquefaction process units. The vaporized fuel gas liquefaction process apparatus in which the fluid that has flowed out flows into another one of the compressors may be provided.

前記熱電発電部は、前記流体が流れる第1パイプと前記冷却媒体が流れる第2パイプとの間に位置する気化燃料ガス液化工程装置が提供され得る。   The thermoelectric power generation unit may be provided with a vaporized fuel gas liquefaction process apparatus located between a first pipe through which the fluid flows and a second pipe through which the cooling medium flows.

気化燃料ガスを圧縮して液化燃料ガスを含む流体を形成する圧縮機と、前記圧縮機に駆動力を提供する駆動モーターと、前記圧縮機により上昇した前記流体の温度を冷却媒体を介して降下させる第1熱電発電部と、温度上昇した前記流体と前記冷却媒体との温度差により発電可能な第2熱電発電部と、前記第1熱電発電部および前記第2熱電発電部のうち少なくとも一つから供給される電力を変換して前記駆動モーターに供給する変換部とを含む気化燃料ガス液化工程装置が提供され得る。   A compressor for compressing the vaporized fuel gas to form a fluid containing the liquefied fuel gas, a drive motor for providing a driving force to the compressor, and lowering the temperature of the fluid raised by the compressor via a cooling medium A first thermoelectric generator, a second thermoelectric generator capable of generating power by a temperature difference between the fluid whose temperature has increased and the cooling medium, and at least one of the first thermoelectric generator and the second thermoelectric generator And a converter for converting the electric power supplied from the power supply and supplying the electric power to the drive motor.

本発明の実施形態による熱電発電モジュール並びにこれを含む熱電発電装置と結氷防止気化装置および気化燃料ガス液化工程装置は、配管を流れる極低温の流体と空気の温度差によって電力を生産して電力消耗を削減する効果を有する。   The thermoelectric power generation module according to the embodiment of the present invention, the thermoelectric power generation device including the same, the anti-icing vaporizer and the vaporized fuel gas liquefaction process device generate power by a temperature difference between cryogenic fluid flowing through piping and air, thereby consuming power. Has the effect of reducing

本発明の実施形態による熱電発電モジュール並びにこれを含む熱電発電装置と結氷防止気化装置および気化燃料ガス液化工程装置は、生産された電力を蒸発ガスまたは気化燃料ガスの圧縮および再液化、液化燃料ガスの加圧、気化器の海水結氷防止等に利用するので、効率的な設備運用が可能になる効果を有する。   A thermoelectric power generation module according to an embodiment of the present invention, a thermoelectric power generation device including the same, and an anti-icing vaporization device and a vaporized fuel gas liquefaction process device compress and reliquefy an evaporative gas or a vaporized fuel gas to produce a liquefied fuel gas. Since it is used to pressurize the water and to prevent seawater icing in the vaporizer, it has the effect of enabling efficient equipment operation.

本発明の実施形態による熱電発電装置、結氷防止気化装置および気化燃料ガス液化工程装置は、配管を二重で保護し、配管の破損時にも配管内の流体が外部に流出されるのを遅延させる効果を有する。   The thermoelectric generator, the anti-icing vaporizer and the vaporized fuel gas liquefaction process apparatus according to the embodiment of the present invention protects the pipes in a double manner and delays the fluid in the pipes from flowing out even when the pipes are damaged. Has an effect.

本発明の実施形態による熱電発電モジュールを示す斜視図である。It is a perspective view showing a thermoelectric generation module by an embodiment of the present invention. 図1の熱電発電モジュールの配管周りを示す断面図である。It is sectional drawing which shows the piping periphery of the thermoelectric power generation module of FIG. 図2の熱電発電モジュールの配管を長さ方向に切断した断面図である。FIG. 3 is a cross-sectional view of a pipe of the thermoelectric generation module of FIG. 2 cut in a length direction. 本発明の他の実施形態による熱電発電モジュールを示す斜視図である。It is a perspective view showing a thermoelectric generation module by other embodiments of the present invention. 本発明の実施形態による熱電発電装置を示す概念図である。It is a key map showing the thermoelectric generator by an embodiment of the present invention. 気化器の一例を示す断面図である。It is sectional drawing which shows an example of a vaporizer. 熱電素子の一例を示す斜視図である。It is a perspective view showing an example of a thermoelectric element. 本発明の実施形態による熱電発電装置の熱電発電部の多様な変形例を示す図である。It is a figure showing various modifications of a thermoelectric generation part of a thermoelectric generator by an embodiment of the present invention. 本発明の実施形態による熱電発電装置の熱電発電部の多様な変形例を示す図である。It is a figure showing various modifications of a thermoelectric generation part of a thermoelectric generator by an embodiment of the present invention. 本発明の実施形態による熱電発電装置の熱電発電部の多様な変形例を示す図である。It is a figure showing various modifications of a thermoelectric generation part of a thermoelectric generator by an embodiment of the present invention. 本発明の実施形態による結氷防止気化装置を示す断面図である。1 is a cross-sectional view illustrating an anti-icing vaporizer according to an embodiment of the present invention. 熱電半導体の一例を示す斜視図である。It is a perspective view showing an example of a thermoelectric semiconductor. 本発明の実施形態による結氷防止気化装置の熱電発電部の配置を示す斜視図である。It is a perspective view showing arrangement of a thermoelectric generation part of an anti-icing vaporization device by an embodiment of the present invention. 本発明の他の実施形態による結氷防止気化装置を示す断面図である。FIG. 4 is a cross-sectional view illustrating an anti-ice vaporizer according to another embodiment of the present invention. 本発明の他の実施形態による結氷防止気化装置を示す断面図である。FIG. 4 is a cross-sectional view illustrating an anti-ice vaporizer according to another embodiment of the present invention. 本発明の実施形態による気化燃料ガス液化工程装置を示す概念図である。FIG. 1 is a conceptual diagram illustrating a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention. 本発明の実施形態による気化燃料ガス液化工程装置の熱電発電部の多様な変形例を示す図である。FIG. 7 is a view illustrating various modifications of a thermoelectric power generation unit of a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention. 本発明の実施形態による気化燃料ガス液化工程装置の熱電発電部の多様な変形例を示す図である。FIG. 7 is a view illustrating various modifications of a thermoelectric power generation unit of a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention. 本発明の実施形態による気化燃料ガス液化工程装置の熱電発電部の多様な変形例を示す図である。FIG. 7 is a view illustrating various modifications of a thermoelectric power generation unit of a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention. 本発明の他の実施形態による気化燃料ガス液化工程装置を示す概念図である。FIG. 4 is a conceptual diagram illustrating a vaporized fuel gas liquefaction process apparatus according to another embodiment of the present invention.

以下、本発明の実施形態について添付の図面を参照して詳細に説明する。ただし、添付の図面は、本発明の内容をより容易に開示するために説明されるものに過ぎず、本発明の範囲が添付の図面の範囲に限定されるものではないことは、この技術分野における通常の知識を有する者なら容易に分かる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, it should be understood that the attached drawings are merely described for easier disclosure of the content of the present invention, and that the scope of the present invention is not limited to the scope of the attached drawings. Anyone with ordinary knowledge in can easily understand.

本出願において使用した用語は、単に特定の実施形態を説明するために使用されたものであって、本発明を限定しようとする意図ではない。単数の表現は、文脈上明白に異なって意味しない限り、複数の表現を含む。本出願において、「含む」または「有する」等の用語は、明細書上に記載された特徴、数字、段階、動作、構成要素、部品またはこれらを組み合わせたものが存在することを指定しようとするものであって、一つまたはそれ以上の他の特徴や数字、段階、動作、構成要素、部品またはこれらを組み合わせたもの等の存在または付加可能性をあらかじめ排除しないものと理解すべきである。   The terms used in the present application are merely used to describe a particular embodiment and are not intended to limit the invention. The singular forms include the plural unless the context clearly dictates otherwise. In this application, terms such as "comprises" or "having" are intended to specify the presence of features, numbers, steps, acts, components, parts, or combinations thereof described in the specification. It is to be understood that the invention does not exclude the existence or possible addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.

図1は、本発明の実施形態による熱電発電モジュールを示す斜視図であり、図2は、図1の熱電発電モジュールの配管周りを示す断面図であり、図3は、図2の熱電発電モジュールの配管を長さ方向に切断した断面図である。   FIG. 1 is a perspective view showing a thermoelectric generation module according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the periphery of a pipe of the thermoelectric generation module of FIG. 1, and FIG. 3 is a thermoelectric generation module of FIG. FIG. 3 is a cross-sectional view of the pipe of FIG.

図1〜図3を参照すると、本発明の実施形態による熱電発電モジュール100は、配管110および熱電発電部120を含んでいてもよい。   Referring to FIGS. 1 to 3, a thermoelectric generation module 100 according to an embodiment of the present invention may include a pipe 110 and a thermoelectric generation unit 120.

配管110には、流体が流れることができる。ここで、前記流体は、液化天然ガス(LNG)または液化石油ガス(LPG)等の液化燃料ガスであってもよい。また、前記流体は、液化二酸化炭素など常温より低い極低温の流体であってもよい。   A fluid can flow through the pipe 110. Here, the fluid may be a liquefied fuel gas such as liquefied natural gas (LNG) or liquefied petroleum gas (LPG). Further, the fluid may be a cryogenic fluid such as liquefied carbon dioxide which is lower than normal temperature.

前記配管110は、単一管からな得る。ただし、前記配管110は、単一管に限定されず、二重管または三重管など多重管からなり得る。また、前記配管110は、極低温の流体に耐えることができる材質からなり得る。前記配管110の材質は、ステンレス鋼またはアルミニウム(Al)であってもよい。   The pipe 110 may be a single pipe. However, the pipe 110 is not limited to a single pipe, and may be a multiple pipe such as a double pipe or a triple pipe. In addition, the pipe 110 may be made of a material that can withstand a cryogenic fluid. The material of the pipe 110 may be stainless steel or aluminum (Al).

熱電発電部120は、前記配管を取り囲み、前記流体と外側の空気との温度差により電力を生産することができる。例えば、前記流体が約−163℃の液化天然ガスであり、前記外側の空気が約0〜30℃である場合、前記流体と前記空気との温度差を電力に変換することができる。熱電発電部120は、第1シェル121、第2シェル122および複数個の熱電素子部123を含んでいてもよい。   The thermoelectric generator 120 surrounds the pipe and can generate electric power based on a temperature difference between the fluid and the outside air. For example, if the fluid is liquefied natural gas at about -163 [deg.] C and the outside air is about 0-30 [deg.] C, the temperature difference between the fluid and the air can be converted to electric power. The thermoelectric generator 120 may include a first shell 121, a second shell 122, and a plurality of thermoelectric elements 123.

前記第1シェル121は、前記配管110の外周面と接し得る。また、前記第1シェル121は、前記配管110の外側をすべて取り囲む形態からなり得る。また、前記第1シェル121は、前記配管110の外側と対応するように円筒形状からなり得る。前記第1シェル121の材質は、熱を伝達する金属であってもよい。また、前記第1シェル121は、前記配管と同様に、極低温の流体に耐えることができる材質からなり得る。前記第1シェル121の材質は、ステンレス鋼またはアルミニウム(Al)であってもよい。また、前記第1シェル121の材質は、前記配管121の内部圧力に耐えることができる金属であってもよい。   The first shell 121 may contact an outer peripheral surface of the pipe 110. In addition, the first shell 121 may be configured to completely surround the outside of the pipe 110. In addition, the first shell 121 may have a cylindrical shape corresponding to the outside of the pipe 110. The material of the first shell 121 may be a metal that transmits heat. In addition, the first shell 121 may be made of a material that can withstand a cryogenic fluid, similarly to the pipe. The material of the first shell 121 may be stainless steel or aluminum (Al). Further, the material of the first shell 121 may be a metal that can withstand the internal pressure of the pipe 121.

前記第2シェル122は、前記第1シェル121と一定間隔で離隔され得る。また、前記第1シェル121が円筒形状からなる場合、前記第2シェル122は、前記第1シェル121より外径が大きい円筒形状からなり得る。前記第2シェル121の材質は、前記第1シェル122と同様に、熱を伝達する金属であってもよい。また、前記第2シェル122の厚さは、前記第1シェル121の外部を保護するように前記第1シェル121の厚さより厚くてもよい。   The second shell 122 may be spaced apart from the first shell 121 at regular intervals. When the first shell 121 has a cylindrical shape, the second shell 122 may have a cylindrical shape having an outer diameter larger than that of the first shell 121. The material of the second shell 121 may be a metal that transfers heat, similarly to the first shell 122. In addition, the thickness of the second shell 122 may be greater than the thickness of the first shell 121 so as to protect the outside of the first shell 121.

前記複数個の熱電素子部123は、前記第1シェル121と前記第2シェル122との間に設けられていてもよい。前記熱電素子部123は、前記第1シェル121と接する低温部と、前記第2シェル122と接する高温部とを含んでいてもよい。   The plurality of thermoelectric elements 123 may be provided between the first shell 121 and the second shell 122. The thermoelectric element section 123 may include a low-temperature section in contact with the first shell 121 and a high-temperature section in contact with the second shell 122.

一般的に、熱電素子部(Thermoelectric Element)は、NPタイプの熱電半導体(Thermoelectric Semiconductor)を電気的に直列に連結し、熱的に並列に連結する構造であって、ゼーベック効果(Seebeck Effect)により熱エネルギーを利用して電力を生産する。より具体的に、熱電素子部においてNタイプの熱電半導体を使用する場合、高温部が陽極化し、低温部が陰極化して、高温部と低温部との間に電位差が発生する。   Generally, a thermoelectric element has a structure in which NP-type thermoelectric semiconductors are electrically connected in series and thermally connected in parallel, and is formed by a Seebeck effect due to a Seebeck effect. Produce electricity using thermal energy. More specifically, when an N-type thermoelectric semiconductor is used in the thermoelectric element portion, the high-temperature portion becomes anodized and the low-temperature portion becomes a cathode, and a potential difference is generated between the high-temperature portion and the low-temperature portion.

以下、本発明の実施形態による熱電発電モジュールが作動する原理を説明する。   Hereinafter, the principle of operation of the thermoelectric generation module according to the embodiment of the present invention will be described.

まず、前記配管110に接する第1シェル121の温度は、前記配管110に貯蔵された流体の温度と同一であってもよい。また、前記第1シェル121に接する熱電素子部123の低温部の温度は、前記第1シェル121の温度と同じになり得る。結果的に、前記配管110内の流体の温度と前記熱電素子部123の低温部の温度が同じになり得る。   First, the temperature of the first shell 121 in contact with the pipe 110 may be the same as the temperature of the fluid stored in the pipe 110. In addition, the temperature of the low temperature part of the thermoelectric element part 123 in contact with the first shell 121 may be the same as the temperature of the first shell 121. As a result, the temperature of the fluid in the pipe 110 and the temperature of the low temperature part of the thermoelectric element unit 123 may be the same.

なお、前記第2シェル122の温度は、前記第2シェル122の外側の空気の温度と同じになり得る。また、前記第2シェル122に接する熱電素子部123の高温部の温度は、前記第2シェル122と同じになり得る。   In addition, the temperature of the second shell 122 may be equal to the temperature of the air outside the second shell 122. In addition, the temperature of the high temperature part of the thermoelectric element part 123 in contact with the second shell 122 may be the same as that of the second shell 122.

これにより、前記熱電素子部123は、前記高温部と前記低温部との温度差により電力を生産する。   Accordingly, the thermoelectric element unit 123 generates electric power based on a temperature difference between the high temperature part and the low temperature part.

なお、前記複数個の熱電素子部123は、互いに離隔して配置され得る。これにより、前記第1シェル121と前記第2シェル122との間に空間124を形成することができる。   In addition, the plurality of thermoelectric elements 123 may be disposed apart from each other. Accordingly, a space 124 can be formed between the first shell 121 and the second shell 122.

また、前記第1シェル121と前記第2シェル122との間に形成された空間124に不活性ガスを含んでいてもよい。前記不活性ガスは、窒素、ヘリウム、ネオン等のような相対的に反応性が低いガスであってもよい。前記不活性ガスは、前記第1シェル121と前記第2シェル122との間の熱伝達を遮断する役割を行うことができる。   Further, the space 124 formed between the first shell 121 and the second shell 122 may contain an inert gas. The inert gas may be a gas having relatively low reactivity such as nitrogen, helium, neon, or the like. The inert gas may serve to block heat transfer between the first shell 121 and the second shell 122.

また、前記不活性ガスは、前記配管110が破損される場合、前記配管110の内部114の流体が外部に流出されるのを遅延させることができる。   In addition, the inert gas may delay the flow of the fluid in the interior 114 of the pipe 110 to the outside when the pipe 110 is damaged.

なお、前記第1シェル121と前記第2シェル122との間の圧力は、前記配管110の内部圧力と同一であってもよい。これにより、前記配管110が破損される場合にも、前記配管の内部114の流体が外部に流出されるのを遅延させることができる。   The pressure between the first shell 121 and the second shell 122 may be the same as the internal pressure of the pipe 110. Accordingly, even when the pipe 110 is damaged, it is possible to delay the flow of the fluid in the inside 114 of the pipe to the outside.

このように、本発明の実施形態による熱電発電モジュール100は、前記流体と前記外部の空気との温度差を利用して電力を生産することができる。また、前記熱電発電モジュール100が海上構造物に設置される場合、海上構造物のエネルギー効率を向上させることができる。また、化石エネルギーを使用せずに電力を生産するに伴って、環境汚染を防止することができる。   As described above, the thermoelectric generation module 100 according to the embodiment of the present invention can generate electric power using a temperature difference between the fluid and the outside air. Also, when the thermoelectric generation module 100 is installed on a marine structure, the energy efficiency of the marine structure can be improved. In addition, with the production of electric power without using fossil energy, environmental pollution can be prevented.

また、本発明の実施形態による熱電発電モジュール100は、前記配管110が単一管である場合、前記熱電発電部120が前記配管110を取り囲むようになって、前記配管100が破損されても、前記配管110内部の流体が流出するのを防止することができる。   In addition, in the thermoelectric generation module 100 according to the embodiment of the present invention, when the pipe 110 is a single pipe, even if the thermoelectric power generation unit 120 surrounds the pipe 110 and the pipe 100 is damaged, It is possible to prevent the fluid inside the pipe 110 from flowing out.

図4は、本発明の他の実施形態による熱電発電モジュールを示す斜視図である。以下で説明する本発明の他の実施形態による熱電発電モジュールにおいて追加に説明しない構成要素は、前述した熱電発電モジュール100の構成要素と同様なので、詳しい説明を省略することとする。   FIG. 4 is a perspective view showing a thermoelectric generation module according to another embodiment of the present invention. Components that are not additionally described in the thermoelectric generation module according to another embodiment of the present invention described below are the same as the components of the thermoelectric generation module 100 described above, and thus detailed description will be omitted.

本発明の他の実施形態による熱電発電部130は、前述した実施形態とは異なって、複数個からなり得る。すなわち、前記熱電発電部130は、前記配管110の外周面の一部を取り囲むことができる。熱電発電部130は、第1シェル131、第2シェル132および複数個の熱電素子部133を含んでいてもよい。   The thermoelectric generator 130 according to another embodiment of the present invention may include a plurality of thermoelectric generators, unlike the above-described embodiment. That is, the thermoelectric generator 130 may surround a part of the outer peripheral surface of the pipe 110. The thermoelectric generator 130 may include a first shell 131, a second shell 132, and a plurality of thermoelectric elements 133.

これにより、複数個の前記熱電発電部130それぞれが前記配管110の外側に設置されると、前記複数個の熱電発電部130は、前記配管110の外側を全部取り囲むことができる。   Accordingly, when each of the plurality of thermoelectric generators 130 is installed outside the pipe 110, the plurality of thermoelectric generators 130 can entirely surround the pipe 110.

このように、本発明の他の実施形態による熱電発電モジュール101に適用される熱電発電部130は、複数個からなるので、前記配管110に前記熱電発電部130を設置することが容易である。すなわち、本発明の他の実施形態による熱電発電モジュール101は、前述した実施形態とは異なって、既に設置された配管を交替することなく、既に設置された配管に追加に配管用熱電発電部130を設置することができる。   As described above, since the thermoelectric generation unit 130 applied to the thermoelectric generation module 101 according to another embodiment of the present invention includes a plurality, it is easy to install the thermoelectric generation unit 130 on the pipe 110. That is, the thermoelectric generation module 101 according to another embodiment of the present invention is different from the above-described embodiment in that the already installed pipes are not replaced and the thermoelectric generator for pipes 130 is added to the already installed pipes. Can be installed.

また、本発明の他の実施形態による熱電発電装置101は、配管が設置された場所が狭い場合、設置が容易な配管の一部のみ熱電発電部130を設置することができる。   Further, in the thermoelectric generator 101 according to another embodiment of the present invention, when the place where the pipe is installed is narrow, the thermoelectric generator 130 can be installed only in a part of the pipe that is easy to install.

以下では、本発明の実施形態による熱電発電装置について説明する。   Hereinafter, a thermoelectric generator according to an embodiment of the present invention will be described.

図5は、本発明の実施形態による熱電発電装置を示す概念図である。図5を参照すると、本発明の実施形態による熱電発電装置は、圧縮機210、熱電発電部230および気化器240を含む。   FIG. 5 is a conceptual diagram showing a thermoelectric generator according to an embodiment of the present invention. Referring to FIG. 5, a thermoelectric generator according to an embodiment of the present invention includes a compressor 210, a thermoelectric generator 230, and a vaporizer 240.

図5に示されたように、圧縮機210は、貯蔵タンク200に貯蔵された液化燃料ガスの蒸発ガスを圧縮し、圧縮により形成された圧縮された蒸発ガスを供給することができる。   As shown in FIG. 5, the compressor 210 can compress the vaporized gas of the liquefied fuel gas stored in the storage tank 200 and supply the compressed vaporized gas formed by the compression.

貯蔵タンク200に貯蔵された蒸発ガスは、温度が非常に低いため、貯蔵タンク200から流出して圧縮機210に移動する速度が遅いことがある。   Since the temperature of the evaporative gas stored in the storage tank 200 is very low, the speed of flowing out of the storage tank 200 and moving to the compressor 210 may be low.

したがって、貯蔵タンク200と圧縮機210との間に発熱部285を配置して蒸発ガスを加熱させることができる。例えば、ヒーターまたはハードワイヤー(hardwire)を含んでいてもよく、このような発熱部285は、一例に過ぎず、これに限定されるものではない。   Therefore, the heat generating portion 285 can be disposed between the storage tank 200 and the compressor 210 to heat the evaporated gas. For example, the heating unit 285 may include a heater or a hard wire, and the heating unit 285 is merely an example and is not limited thereto.

また、本発明の実施形態による熱電発電装置は、冷却器220をさらに含んでいてもよく、冷却器220は、圧縮機210と連結されていて、圧縮された蒸発ガスの温度を下げることができる。   In addition, the thermoelectric generator according to the embodiment of the present invention may further include a cooler 220. The cooler 220 is connected to the compressor 210 to reduce the temperature of the compressed evaporative gas. .

蒸発ガスは、複数の圧縮機210および複数の冷却器220を通過して気化器240に流入し得る。   The evaporative gas may flow into the vaporizer 240 through the plurality of compressors 210 and the plurality of coolers 220.

複数の圧縮機210を使用するものに比べて、単一圧縮機210を使用すると、圧縮機210の圧縮比が大きくなり、圧縮後に温度が高くなるので、圧縮効率が低いことがある。また、圧縮による圧縮された蒸発ガスの温度が過度に増加して圧縮機210が過熱され得、そのため、圧縮機210で消耗する電力が増加し得る。   When a single compressor 210 is used as compared with a compressor using a plurality of compressors 210, the compression ratio of the compressor 210 increases and the temperature increases after compression, so that the compression efficiency may be low. In addition, the temperature of the evaporative gas compressed by the compression may be excessively increased, and the compressor 210 may be overheated, so that the power consumed by the compressor 210 may increase.

したがって、複数の圧縮機210を使用して圧縮効率を増加させ、また、複数の冷却器220を使用して圧縮された蒸発ガスの温度を下げて、圧縮機210で使用する電力を減少させることができる。   Therefore, using a plurality of compressors 210 to increase the compression efficiency and using a plurality of coolers 220 to lower the temperature of the compressed evaporative gas to reduce the power used by the compressors 210. Can be.

この際、複数の冷却器220を通過した圧縮された蒸発ガスの温度は、液化燃料ガスの温度より高くてもよい。   At this time, the temperature of the compressed evaporative gas that has passed through the plurality of coolers 220 may be higher than the temperature of the liquefied fuel gas.

圧縮された蒸発ガスは、冷却器220と気化器240を連結させる第1配管281を介して移動することができ、液化燃料ガスは、貯蔵タンク200と気化器240を連結させる第2配管282を介して移動し得る。   The compressed evaporative gas can move through a first pipe 281 connecting the cooler 220 and the vaporizer 240, and the liquefied fuel gas flows through a second pipe 282 connecting the storage tank 200 and the vaporizer 240. You can move through.

すなわち、第1配管281は、圧縮された蒸発ガスが気化器240に移動する通路を提供し、熱電発電部230の一面と接触し得る。また、第2配管282は、液化燃料ガスが気化器240に移動する通路を提供し、熱電発電部230の他面と接触し得る。   That is, the first pipe 281 may provide a passage for the compressed evaporative gas to move to the vaporizer 240, and may contact one surface of the thermoelectric generator 230. In addition, the second pipe 282 provides a passage for the liquefied fuel gas to move to the vaporizer 240, and may contact the other surface of the thermoelectric generator 230.

したがって、熱電発電部230は、圧縮機210を通った圧縮された蒸発ガスと貯蔵タンク200から供給された液化燃料ガスとの温度差を用いて発電を行うことができる。すなわち、圧縮により圧縮された蒸発ガスの温度は、液化燃料ガスより高くなるので、熱電発電部230は、圧縮された蒸発ガスと液化燃料ガスとの温度差を用いて発電を行うことができる。   Therefore, the thermoelectric generator 230 can generate power using the temperature difference between the compressed evaporative gas that has passed through the compressor 210 and the liquefied fuel gas supplied from the storage tank 200. That is, the temperature of the evaporative gas compressed by the compression becomes higher than that of the liquefied fuel gas, so that the thermoelectric generator 230 can generate electric power using the temperature difference between the compressed evaporative gas and the liquefied fuel gas.

また、図5に示されたように、液化燃料ガスが貯蔵タンク200から気化器240に移動する過程で第1ポンプ250および第2ポンプ260を通過する。   In addition, as shown in FIG. 5, the liquefied fuel gas passes through the first pump 250 and the second pump 260 while moving from the storage tank 200 to the vaporizer 240.

第1ポンプ250は、第2配管282に設置されて、液化燃料ガスを昇圧させて移送でき、第2ポンプ260は、第1ポンプ250と気化器240との間に設置されて、第1ポンプ250から流出した液化燃料ガスを昇圧させることができる。   The first pump 250 is installed in the second pipe 282 and can pressurize and transfer the liquefied fuel gas, and the second pump 260 is installed between the first pump 250 and the vaporizer 240 and The pressure of the liquefied fuel gas flowing out of 250 can be increased.

すなわち、液化燃料ガスは、第1ポンプ250により貯蔵タンク200から流出して第2配管282を流れるようになり、第2ポンプ260で昇圧されて気化器240に流入し得る。   That is, the liquefied fuel gas flows out of the storage tank 200 by the first pump 250 and flows through the second pipe 282, and can be pressurized by the second pump 260 and flow into the vaporizer 240.

船舶のME−GIエンジンの場合、150〜400bar(絶対圧力)程度の高圧のガス供給が要求される。   In the case of a ship ME-GI engine, a high-pressure gas supply of about 150 to 400 bar (absolute pressure) is required.

したがって、液化燃料ガスがME−GIエンジンに供給される場合、例えば、第1ポンプ250は、ブースターポンプであってもよく、第2ポンプ260は、高圧ポンプであってもよい。   Therefore, when the liquefied fuel gas is supplied to the ME-GI engine, for example, the first pump 250 may be a booster pump, and the second pump 260 may be a high-pressure pump.

すなわち、第1ポンプ250を介して貯蔵タンク200に貯蔵された液化燃料ガスの圧力が第2ポンプ260の流入圧力で昇圧されて移送され、圧力が上昇した液化燃料ガスは、第2ポンプ260を介してME−GIエンジンの供給に要求される圧力で昇圧され得る。   That is, the pressure of the liquefied fuel gas stored in the storage tank 200 via the first pump 250 is increased by the inflow pressure of the second pump 260 and transferred, and the liquefied fuel gas having the increased pressure is supplied to the second pump 260. The pressure can be increased at a pressure required for supply of the ME-GI engine via the control unit.

このような第1ポンプ250および第2ポンプ260は、一例に過ぎず、これに限定されるものではなく、エンジンにより多様なポンプが使用され得る。   The first pump 250 and the second pump 260 are merely examples, and the present invention is not limited thereto. Various pumps may be used depending on the engine.

なお、圧縮された蒸発ガスと液化燃料ガスは、熱電発電部230を通過した後に統合され得る。熱電発電部230を通過した圧縮された蒸発ガスおよび液化燃料ガスが統合されるように、第1配管281および第2配管282が連結され得る。   The compressed evaporative gas and the liquefied fuel gas may be integrated after passing through the thermoelectric generator 230. The first pipe 281 and the second pipe 282 may be connected so that the compressed evaporative gas and the liquefied fuel gas that have passed through the thermoelectric generator 230 are integrated.

したがって、圧縮された蒸発ガスの温度により液化燃料ガスの温度が上がり得るので、低温の液化燃料ガスを気化させることに比べて気化器240の気化効率が上昇し得る。   Therefore, the temperature of the liquefied fuel gas can be increased by the temperature of the compressed evaporative gas, so that the vaporization efficiency of the carburetor 240 can be increased as compared with the case of vaporizing the low-temperature liquefied fuel gas.

気化器240は、熱電発電部230を通過した圧縮された蒸発ガスおよび液化燃料ガスを気化させてエンジンに供給することができる。   The vaporizer 240 vaporizes the compressed evaporative gas and the liquefied fuel gas that have passed through the thermoelectric generator 230 and supplies the vaporized gas and the liquefied fuel gas to the engine.

このような気化器240は、図6を参照して詳細に説明する。   Such a vaporizer 240 will be described in detail with reference to FIG.

本発明の実施形態による熱電発電装置は、変換部270をさらに含んでいてもよい。   The thermoelectric generator according to the embodiment of the present invention may further include a conversion unit 270.

変換部270は、熱電発電部230が生成した電気を変換させて圧縮機210、第1ポンプ250および第2ポンプ260に供給することができる。   The converter 270 can convert the electricity generated by the thermoelectric generator 230 and supply the converted electricity to the compressor 210, the first pump 250, and the second pump 260.

例えば、熱電発電部230で生成された電気の電圧が圧縮機210、第1ポンプ250および第2ポンプ260の定格電圧に合わせるための変圧器等を含んでいてもよく、圧縮機210、第1ポンプ250および第2ポンプ260に供給される電気の周波数を変換させることができる。このような電気の変換は、これに限定されず、多様な変換方法があり得る。   For example, a transformer for adjusting the voltage of the electricity generated by the thermoelectric generator 230 to the rated voltage of the compressor 210, the first pump 250, and the second pump 260 may be included. The frequency of electricity supplied to the pump 250 and the second pump 260 can be converted. Such conversion of electricity is not limited to this, and there may be various conversion methods.

したがって、図5に示されたように、本発明の実施形態による熱電発電装置は、蒸発ガスを気化させてエンジンの燃料として使用するので、蒸発ガスを再液化させる過程が不要であるため、構造が簡単になり得る。   Therefore, as shown in FIG. 5, the thermoelectric generator according to the embodiment of the present invention evaporates the evaporative gas and uses it as fuel for the engine. Can be easier.

また、熱電発電部230で生成された電気を圧縮機210、第1ポンプ250および第2ポンプ260に供給して電力を節減できる。   Further, electricity generated by the thermoelectric generator 230 may be supplied to the compressor 210, the first pump 250, and the second pump 260 to reduce power.

図6は、本発明の実施形態による熱電発電装置の気化器を示す。図6に示されたように、気化器240は、圧縮された蒸発ガスおよび液化燃料ガスが流入する引込み部241と気化燃料が引き出される引き出し部242とを連結させる移動管245を含み、移動管245と熱交換する海水が流れる空間を提供することができる。   FIG. 6 shows a vaporizer of a thermoelectric generator according to an embodiment of the present invention. As shown in FIG. 6, the vaporizer 240 includes a moving pipe 245 for connecting a drawing section 241 into which the compressed evaporative gas and the liquefied fuel gas flow and a drawing section 242 from which the vaporized fuel is drawn. A space through which seawater that exchanges heat with the H.245 flows can be provided.

図5に説明したように、圧縮された蒸発ガスと液化燃料ガスが統合されると、圧縮された蒸発ガスの温度によって液化燃料ガスの温度が上昇する。   As described in FIG. 5, when the compressed evaporative gas and the liquefied fuel gas are integrated, the temperature of the liquefied fuel gas increases due to the temperature of the compressed evaporative gas.

圧縮された蒸発ガスおよび液化燃料ガスは移動管245を通過する過程で気化器240の内部に流れる海水により加熱されて、気化燃料に変わり得る。   The compressed evaporative gas and liquefied fuel gas are heated by the seawater flowing inside the vaporizer 240 while passing through the moving pipe 245, and may be converted into vaporized fuel.

図5を参照して説明したように、液化燃料ガスの温度が上昇するので、気化器240の気化効率が上昇し得る。   As described with reference to FIG. 5, since the temperature of the liquefied fuel gas increases, the vaporization efficiency of the vaporizer 240 may increase.

図7は、熱電素子の一例を示す。図7に示されたように、熱電素子231は、N型素子とP型素子からなる半導体であって、温度差がある第1媒体と第2媒体の熱が熱電素子231の一面および他面と接触する時、熱電素子231は、ゼーベック効果を用いて発電を行うことができる。   FIG. 7 shows an example of a thermoelectric element. As shown in FIG. 7, the thermoelectric element 231 is a semiconductor including an N-type element and a P-type element, and heat of the first medium and the second medium having a temperature difference is applied to one surface and the other surface of the thermoelectric element 231. When the thermoelectric element 231 contacts the thermoelectric element, the thermoelectric element 231 can generate power using the Seebeck effect.

ゼーベック効果は、二つの金属または半導体の間に温度差が発生すると、二つの金属または半導体を連結する閉回路に電流が流れる熱電現象である。   The Seebeck effect is a thermoelectric phenomenon in which when a temperature difference occurs between two metals or semiconductors, a current flows through a closed circuit connecting the two metals or semiconductors.

したがって、熱電発電部230は、直列に連結されたり並列に連結された熱電素子231からなり、熱電発電部230の一面と他面の温度差を用いて発電を行うことができる。すなわち、図5に示されたように、圧縮された蒸発ガスと液化燃料ガスとの温度差を用いて発電を行うことができる。   Therefore, the thermoelectric generator 230 includes the thermoelectric elements 231 connected in series or in parallel, and can generate electric power using the temperature difference between one surface and the other surface of the thermoelectric generator 230. That is, as shown in FIG. 5, power generation can be performed using the temperature difference between the compressed evaporative gas and the liquefied fuel gas.

図8〜図10は、本発明の実施形態による熱電発電装置の熱電発電部を示す。   8 to 10 show a thermoelectric generator of a thermoelectric generator according to an embodiment of the present invention.

図8に示されたように、熱電発電部230は、圧縮された蒸発ガスが流れる第1配管281と液化燃料ガスが流れる第2配管282との間に配置され得る。   As shown in FIG. 8, the thermoelectric generator 230 may be disposed between a first pipe 281 through which the compressed evaporative gas flows and a second pipe 282 through which the liquefied fuel gas flows.

この際、熱電発電部230の一面は、第1配管281と接触し、熱電発電部230の他面は、第2配管282と接触し、熱電発電部230は、圧縮された蒸発ガスと液化燃料ガスとの温度差を用いて発電を行うことができる。   At this time, one surface of the thermoelectric generator 230 contacts the first pipe 281, the other surface of the thermoelectric generator 230 contacts the second pipe 282, and the thermoelectric generator 230 compresses the evaporative gas and the liquefied fuel. Electric power can be generated using the temperature difference with the gas.

または、図9に示されたように、熱電発電部230は、第1配管281と第2配管282との間に位置し、第1配管281および第2配管282のうち一方は、他方の少なくとも一部を取り囲むことができる。   Alternatively, as shown in FIG. 9, the thermoelectric generator 230 is located between the first pipe 281 and the second pipe 282, and one of the first pipe 281 and the second pipe 282 is at least the other of the other. Part can be surrounded.

例えば、熱電発電部230の一面が第2配管282と接触すると、熱電発電部230の他面は、圧縮された蒸発ガスが流れる第1配管281と接触し得る。または、これとは反対に、熱電発電部230の一面が第1配管281と接触すると、熱電発電部230の他面は、液化燃料ガスが流れる第2配管281と接触し得る。   For example, when one surface of the thermoelectric generator 230 contacts the second pipe 282, the other surface of the thermoelectric generator 230 can contact the first pipe 281 through which the compressed evaporative gas flows. Alternatively, conversely, when one surface of the thermoelectric generator 230 contacts the first pipe 281, the other surface of the thermoelectric generator 230 may contact the second pipe 281 through which the liquefied fuel gas flows.

図10に示されたように、熱電発電部230は、第1配管281と液化燃料ガスが接触しないように第1配管281と液化燃料ガスとの間に隔壁として使用されてもよい。   As shown in FIG. 10, the thermoelectric generator 230 may be used as a partition between the first pipe 281 and the liquefied fuel gas so that the first pipe 281 does not contact the liquefied fuel gas.

図10に示されたように、熱電発電部230が第1配管281を取り囲むので、第1配管281と液化燃料ガスが直接接触することができない。   As shown in FIG. 10, since the thermoelectric generator 230 surrounds the first pipe 281, the first pipe 281 cannot directly contact the liquefied fuel gas.

これとは異なって、第1配管281と液化燃料ガスが直接接触すると、第1配管281と液化燃料ガスとの間の熱交換が行われて、第1配管281を流れる圧縮された蒸発ガスと液化燃料ガスとの温度差が小さくなり得る。   In contrast to this, when the first pipe 281 and the liquefied fuel gas come into direct contact, heat exchange between the first pipe 281 and the liquefied fuel gas is performed, and the compressed evaporative gas flowing through the first pipe 281 The temperature difference with the liquefied fuel gas can be small.

したがって、熱電発電部230で生成される電気量が減少できるので、第1配管281と液化燃料ガスは分離されなければならない。   Therefore, since the amount of electricity generated in the thermoelectric generator 230 can be reduced, the first pipe 281 and the liquefied fuel gas must be separated.

図8〜図10に示された熱電発電部230で生成された電気は、上記で図5と関連して説明した変換部270を介して変換され得る。   The electricity generated by the thermoelectric generator 230 shown in FIGS. 8 to 10 may be converted via the converter 270 described above with reference to FIG.

変換部270で変換させた電気は、圧縮機210、第1ポンプ250および第2ポンプ260に供給されて、圧縮機210、第1ポンプ250および第2ポンプ260で消耗する電力を節減できる。   The electricity converted by the conversion unit 270 is supplied to the compressor 210, the first pump 250, and the second pump 260, and the power consumed by the compressor 210, the first pump 250, and the second pump 260 can be reduced.

本発明の実施形態による熱電発電装置は、液化燃料貯蔵タンク200で発生する蒸発ガスを圧縮および冷却させた後、気化器240に流入させて、エンジンの燃料として使用でき、蒸発ガスを液化燃料ガス炉変換させる過程が省略されるので、構造が簡単になり得る。   The thermoelectric generator according to the embodiment of the present invention compresses and cools the evaporative gas generated in the liquefied fuel storage tank 200, and then flows into the carburetor 240 to be used as fuel for the engine. Since the process of converting the furnace is omitted, the structure can be simplified.

また、圧縮された蒸発ガスと液化燃料ガスとの温度差を用いて電気を生成し、生成された電気を圧縮機210、第1ポンプ250および第2ポンプ260に供給することにより、電力を節減できる。   Further, electricity is generated by using the temperature difference between the compressed evaporative gas and the liquefied fuel gas, and the generated electricity is supplied to the compressor 210, the first pump 250, and the second pump 260, thereby saving power. it can.

以下では、本発明の実施形態による結氷防止気化装置について説明する。   Hereinafter, an anti-icing vaporizer according to an embodiment of the present invention will be described.

図6を参照すると、一般的な気化器240は、引込み部241に引き込まれた液化燃料ガスは、熱交換媒体である海水と熱交換した後、気体状態の気化燃料ガスに変わり、気体状態の気化燃料ガスは、気化器240の引き出し部242から排出され得る。   Referring to FIG. 6, a general vaporizer 240 converts a liquefied fuel gas drawn into a drawing unit 241 into a gaseous vaporized fuel gas after exchanging heat with seawater as a heat exchange medium. The vaporized fuel gas may be exhausted from the outlet 242 of the vaporizer 240.

液化燃料ガスが気化器240を介して気化する過程で、引込み部241と隣接した移動管245の領域が液化燃料ガスと海水により結氷が発生し得る。引込み部241と隣接した移動管245の領域に結氷が発生すると、移動管245を通過する液化燃料ガスと海水との間の熱交換が円滑に行われないため、気化器240の性能が低下し得る。   During the process of vaporizing the liquefied fuel gas through the vaporizer 240, ice may be generated in the region of the moving pipe 245 adjacent to the inlet 241 by the liquefied fuel gas and seawater. If icing occurs in the region of the moving pipe 245 adjacent to the drawing section 241, heat exchange between the liquefied fuel gas passing through the moving pipe 245 and seawater is not performed smoothly, so that the performance of the vaporizer 240 deteriorates. obtain.

図11は、本発明の実施形態による結氷防止気化装置を示す。図11に示されたように、本発明の実施形態による結氷防止気化装置は、気化器300、熱電発電部310および発熱部320を含む。   FIG. 11 shows an anti-icing vaporizer according to an embodiment of the present invention. As shown in FIG. 11, the anti-ice vaporizer according to the embodiment of the present invention includes a vaporizer 300, a thermoelectric generator 310 and a heat generator 320.

気化器300は、液化燃料ガスを気化燃料ガスに気化させる機器であって、液化燃料ガスが引入される引込み部301と気化燃料ガスが引き出される引き出し部302とを連結させる移動管303を含み、移動管303と熱交換する海水が流れる空間を提供することができる。   The vaporizer 300 is a device that vaporizes the liquefied fuel gas into the vaporized fuel gas, and includes a moving pipe 303 that connects a drawing part 301 into which the liquefied fuel gas is drawn and a drawing part 302 from which the vaporized fuel gas is drawn, It is possible to provide a space in which seawater that exchanges heat with the moving pipe 303 flows.

熱電発電部310は、移動管303を介して移動する液化燃料ガスおよび気化燃料ガスのうち少なくとも一つを含む流体と海水との温度差により発電が可能である。   The thermoelectric generator 310 can generate electric power by a temperature difference between a fluid containing at least one of the liquefied fuel gas and the vaporized fuel gas that moves through the moving pipe 303 and seawater.

移動管303を通過する過程で、液化燃料ガスは、液体状態から気体状態の気化燃料ガスに変わることができる。これにより、引込み部301に近いほど、流体中に液状である液化燃料ガスが、気相である気化燃料ガスに比べて多く、引き出し部302に近いほど流体中に気化燃料ガスが液化燃料ガスに比べて多いことがある。   During the passage through the moving pipe 303, the liquefied fuel gas can change from a liquid state to a gaseous fuel gas. As a result, the closer to the draw-in section 301, the more liquefied fuel gas in the fluid is in the liquid phase than the vaporized fuel gas, and the closer to the draw-out section 302, the more the liquefied fuel gas is in the fluid to the liquefied fuel gas. There are many more.

発熱部320は、引込み部301の表面に配置されて、熱電発電部310により生成された電力を利用して引込み部301と隣接した移動管303の領域が結氷するのを防止することができる。   The heat generating unit 320 is disposed on the surface of the retracting unit 301, and can prevent the area of the moving pipe 303 adjacent to the retracting unit 301 from freezing using the electric power generated by the thermoelectric generator 310.

発熱部320は、ヒーターまたはハードワイヤーを含んでいてもよいが、このような発熱部320は、一例に過ぎず、これに限定されるものではない。   The heat generating unit 320 may include a heater or a hard wire, but such a heat generating unit 320 is only an example and is not limited thereto.

本発明の実施形態による結氷防止気化装置の気化器300は、熱交換媒体である海水が流入する海水引込み部305と、海水が排出される海水引き出し部304とを含んでいてもよい。   The vaporizer 300 of the anti-icing vaporizer according to the embodiment of the present invention may include a seawater inlet 305 into which seawater as a heat exchange medium flows, and a seawater outlet 304 from which seawater is discharged.

海水は、気化器300の内部で移動管303と熱交換後に排出されるので、海水移動ライン306は、海水の移動のためのポンプ307と海水の流量を調節する弁308とを含んでいてもよい。   Since seawater is discharged after heat exchange with the moving pipe 303 inside the vaporizer 300, the seawater moving line 306 may include a pump 307 for moving seawater and a valve 308 for adjusting the flow rate of seawater. Good.

図11に示されたように、熱電発電部310は、移動管303を取り囲み、熱電発電部310の一側は、移動管303と接触し、熱電発電部310の他側は、海水と接触し得る。   As shown in FIG. 11, the thermoelectric generator 310 surrounds the moving pipe 303, one side of the thermoelectric generator 310 contacts the moving pipe 303, and the other side of the thermoelectric generator 310 contacts the seawater. obtain.

熱電発電部310は、引き出し部302に比べて引込み部301に近づくよう配置され得る。これは、移動管303を通過する流体が海水と熱交換する過程で引込み部301から引き出し部302の方向に行くほど、流体の温度が高くなるためである。   The thermoelectric generator 310 may be arranged closer to the draw-in unit 301 than to the drawer 302. This is because the temperature of the fluid becomes higher as the fluid passing through the moving pipe 303 goes from the inlet 301 to the outlet 302 during heat exchange with seawater.

すなわち引き出し部302の方向に行くほど、移動管303と海水の温度差が小さくなるため、熱電発電部310で生産される電力が小さくなり得る。   That is, the temperature difference between the moving pipe 303 and the seawater becomes smaller toward the drawer 302, so that the power generated by the thermoelectric generator 310 can be smaller.

これに対し、熱電発電部310が引き出し部302に比べて引込み部301に近づくように配置されると、相対的に多くの電力が生産され得る。   On the other hand, if the thermoelectric generator 310 is arranged closer to the draw-in section 301 than to the draw-out section 302, relatively more electric power can be produced.

発熱部320は、熱電発電部310から入力された電力により引込み部301の表面があらかじめ設定された第1温度以上に維持されるように、引込み部301の表面を加熱させることができる。このように、引込み部301の表面が加熱されると、熱が引込み部301と隣接した移動管303の領域に伝達されることにより、引込み部301と隣接した移動管303の領域が結氷するのが防止され得る。   The heat generating unit 320 can heat the surface of the draw-in unit 301 so that the surface of the draw-in unit 301 is maintained at a preset first temperature or higher by the electric power input from the thermoelectric generator 310. As described above, when the surface of the retracting portion 301 is heated, the heat is transferred to the region of the moving tube 303 adjacent to the retracting portion 301, and the area of the moving tube 303 adjacent to the retracting portion 301 freezes. Can be prevented.

すなわち、移動管303を流れる流体と海水間の熱交換を阻害する結氷が防止されることにより、流体と海水の熱交換が円滑に行われて、気化器300の性能が向上し得る。   That is, by preventing icing that hinders heat exchange between the fluid flowing through the moving pipe 303 and seawater, heat exchange between the fluid and seawater can be performed smoothly, and the performance of the vaporizer 300 can be improved.

本発明の実施形態による結氷防止気化装置は、制御部340をさらに含んでいてもよい。   The anti-ice vaporizing device according to the embodiment of the present invention may further include a controller 340.

制御部340は、引込み部301の表面の温度が、第1温度と該第1温度より高い第2温度との間で維持されるように熱電発電部310で生産された電力を発熱部320に入力または遮断するスイッチ制御信号をスイッチ330に出力することができる。   The control unit 340 transmits the electric power generated by the thermoelectric power generation unit 310 to the heat generation unit 320 such that the temperature of the surface of the drawing unit 301 is maintained between the first temperature and the second temperature higher than the first temperature. A switch control signal to be input or cut off can be output to the switch 330.

なお、引込み部301の表面に温度センサー350を設置することができる。温度センサー350により測定された引込み部301の表面の温度を示す温度センサー信号は、制御部340に入力され得る。   Note that a temperature sensor 350 can be installed on the surface of the retracting section 301. A temperature sensor signal indicating the temperature of the surface of the pull-in unit 301 measured by the temperature sensor 350 may be input to the control unit 340.

制御部340は、引込み部301の表面があらかじめ設定された第1温度より低い時、熱電発電部310で生産された電力が発熱部320に入力され得るようにスイッチ330に熱電発電部310と発熱部320を電気的に連結させるスイッチ制御信号を出力することができる。   The control unit 340 controls the switch 330 so that the electric power generated by the thermoelectric generator 310 can be input to the heat generator 320 when the surface of the pull-in unit 301 is lower than a preset first temperature. A switch control signal for electrically connecting the unit 320 may be output.

また、制御部340は、引込み部301の表面が第2温度より高い時、熱電発電部310で生産された電力が発熱部320に入力されないように、スイッチ330に熱電発電部310と発熱部320を電気的に遮断させるスイッチ制御信号を出力することができる。   In addition, the control unit 340 controls the switch 330 to switch the thermoelectric power generation unit 310 and the heat generation unit 320 so that the power generated by the thermoelectric generation unit 310 is not input to the heat generation unit 320 when the surface of the retracting unit 301 is higher than the second temperature. Can be output.

引込み部301の表面の温度が第2温度より高いというのは、発熱部320に入力される電力が過多であることを示し、そのため、発熱部320が破損される可能性がある。   The fact that the temperature of the surface of the retracting unit 301 is higher than the second temperature indicates that the electric power input to the heat generating unit 320 is excessive, and therefore, the heat generating unit 320 may be damaged.

すなわち、制御部340は、引込み部301の表面の温度が、第1温度と第2温度との間で維持されるようにして、引込み部301と隣接した移動管303の領域が結氷するのを防止することができ、また、発熱部320が過熱に起因して破損されるのを防止することができる。   That is, the control unit 340 controls the temperature of the surface of the retracting unit 301 to be maintained between the first temperature and the second temperature to prevent the area of the moving pipe 303 adjacent to the retracting unit 301 from freezing. This can prevent the heat generating portion 320 from being damaged due to overheating.

図12は、熱電半導体の一例を示す。図12に示されたように、温度差がある第1媒体と第2媒体の熱が熱電半導体311の一側および他側を介して移動する時、熱電半導体311は、ゼーベック効果を用いて電力を生産することができる。   FIG. 12 shows an example of a thermoelectric semiconductor. As shown in FIG. 12, when heat of the first medium and the second medium having a temperature difference moves through one side and the other side of the thermoelectric semiconductor 311, the thermoelectric semiconductor 311 uses the Seebeck effect to generate electric power. Can be produced.

図13は、本発明の実施形態による結氷防止気化装置の熱電発電部の斜視図を示す。図13に示されたように、熱電半導体311が直列または並列に連結されて熱電発電部310が構成され得る。   FIG. 13 is a perspective view of a thermoelectric generator of the anti-icing vaporizer according to the embodiment of the present invention. As shown in FIG. 13, the thermoelectric semiconductors 311 may be connected in series or in parallel to form the thermoelectric generator 310.

熱電発電部310は、移動管303を取り囲んでいるが、この際、熱電発電部310の一側は、移動管303と接触し、熱電発電部310の他側は、海水と接触し得る。   The thermoelectric generator 310 surrounds the moving pipe 303. At this time, one side of the thermoelectric generator 310 can be in contact with the moving pipe 303, and the other side of the thermoelectric generator 310 can be in contact with seawater.

図14および図15は、本発明の他の実施形態による結氷防止気化装置を示す図であり、スイッチ330、熱電発電部310および変換部360の間の配置の多様な変形実施形態を示す。図14および図15に示されたように、熱電発電部310で生産された電力が発熱部320の使用に適していない時、変換部360が使用できる。   FIGS. 14 and 15 are views showing an anti-icing vaporizer according to another embodiment of the present invention, showing various modified embodiments of the arrangement between the switch 330, the thermoelectric generator 310 and the converter 360. FIG. As shown in FIGS. 14 and 15, when the electric power generated by the thermoelectric generator 310 is not suitable for using the heat generator 320, the converter 360 can be used.

変換部360は、熱電発電部310で生産された電力を発熱部320に供給するのに適した電力に変換させることができる。このような変換部360は、本発明の実施形態による結氷防止気化装置の設置環境に応じて多様に変更され得る。   The converter 360 can convert the electric power generated by the thermoelectric generator 310 into electric power suitable for supplying to the heat generator 320. The conversion unit 360 may be variously changed according to the installation environment of the anti-ice vaporizer according to the embodiment of the present invention.

例えば、熱電発電部310が生成した電気の電圧が発熱部320の正格電圧に合わない場合、変換部360は、熱電発電部310の電圧を発熱部320の定格電圧に合わせるための変圧器等を含んでいてもよい。   For example, when the voltage of the electricity generated by the thermoelectric generator 310 does not match the rated voltage of the heat generator 320, the converter 360 uses a transformer or the like for adjusting the voltage of the thermoelectric generator 310 to the rated voltage of the heat generator 320. May be included.

図14および図15のように、スイッチ330は、熱電発電部310と変換部360との間に配置されたり、変換部360と発熱部320との間に配置されてもよく、また、制御部340で出力するスイッチ制御信号により熱電発電部310で生産した電力を発熱部360に入力または遮断させることができる。   As shown in FIGS. 14 and 15, the switch 330 may be disposed between the thermoelectric generator 310 and the converter 360, or between the converter 360 and the heat generator 320. The power generated by the thermoelectric generator 310 can be input to or cut off from the heat generator 360 according to the switch control signal output at 340.

以上で参照された図面において本発明の実施形態による結氷防止気化装置は、気化器300の引込み部301と隣接した移動管303の領域が結氷するのを防止し、気化器300の性能を向上させることができる。   In the drawings referred to above, the icing prevention and vaporization apparatus according to the embodiment of the present invention prevents the area of the moving pipe 303 adjacent to the drawing part 301 of the carburetor 300 from icing and improves the performance of the carburetor 300. be able to.

また、本発明の結氷防止気化装置は、海水と液化燃料ガスとの温度差を用いて生産された電力で結氷を防止することにより、別途の電力消耗なしに結氷を防止することができ、海水の使用なしに結氷を防止することができ、気化器300の腐食問題を解決することができる。   In addition, the anti-icing vaporization device of the present invention can prevent icing by electric power generated using the temperature difference between seawater and liquefied fuel gas, thereby preventing icing without additional power consumption, It is possible to prevent icing without using the gas, and to solve the problem of corrosion of the vaporizer 300.

以下では、本発明の実施形態による気化燃料ガス液化工程装置について説明する。   Hereinafter, a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention will be described.

図16は、本発明の実施形態による気化燃料ガス液化工程装置を示す図である。図16を参照すると、本発明の実施形態による気化燃料ガス液化工程装置は、圧縮機400、駆動モーター410、冷却部420、熱電発電部430および変換部440を含む。   FIG. 16 is a diagram illustrating a vaporized fuel gas liquefaction process apparatus according to an embodiment of the present invention. Referring to FIG. 16, the apparatus for liquefying vaporized fuel gas according to an embodiment of the present invention includes a compressor 400, a driving motor 410, a cooling unit 420, a thermoelectric generator 430, and a converter 440.

圧縮機400は、気化燃料ガスを圧縮して液化燃料ガスを含む流体を形成することができる。圧縮により、流体は、気化燃料ガスに比べて圧力と温度が全部上昇し得る。   The compressor 400 can compress the vaporized fuel gas to form a fluid containing the liquefied fuel gas. The compression may cause the fluid to all increase in pressure and temperature as compared to the vaporized fuel gas.

冷却部420は、冷却媒体を介して圧縮機400により上昇した流体の温度を降下させることができる。流体は、温度が降下して、最終的に液化燃料ガスに変わり得る。   The cooling unit 420 can lower the temperature of the fluid raised by the compressor 400 via the cooling medium. The fluid may drop in temperature and eventually turn into a liquefied fuel gas.

熱電発電部430は、温度が上昇した流体と冷却媒体との温度差により発電を行うことができる。すなわち、熱電発電部430は、流体と気化燃料ガス液化工程で使用される冷却媒体との温度差を利用して発電を行うことができる。冷却媒体は、冷却部420と熱電発電部430に別途に供給され得る。   The thermoelectric power generation unit 430 can generate power by the temperature difference between the fluid whose temperature has increased and the cooling medium. That is, the thermoelectric generator 430 can generate electric power by using the temperature difference between the fluid and the cooling medium used in the vaporized fuel gas liquefaction process. The cooling medium may be separately supplied to the cooling unit 420 and the thermoelectric generator 430.

変換部440は、熱電発電部430から供給される電力を変換して駆動モーター410に供給することができる。このような変換部440は、本発明の実施形態による気化燃料ガス液化工程装置の設置環境に応じて多様に変更され得る。   The conversion unit 440 can convert the power supplied from the thermoelectric generator 430 and supply the converted power to the drive motor 410. The conversion unit 440 may be variously changed according to an installation environment of the apparatus for liquefying a gaseous fuel gas according to an embodiment of the present invention.

例えば、熱電発電部430で生産された電気の電圧が駆動モーター410の定格電圧に合わない場合、変換部440は、熱電発電部430の電圧を駆動モーター410の定格電圧に合わせるための変圧器等を含んでいてもよい。   For example, if the voltage of the electricity generated by the thermoelectric generator 430 does not match the rated voltage of the drive motor 410, the converter 440 may use a transformer or the like to adjust the voltage of the thermoelectric generator 430 to the rated voltage of the drive motor 410. May be included.

駆動モーター410は、圧縮機400に駆動力を提供することができる。駆動モーター410は、液化工程装置の供給電力の他に、熱電発電部430で生産された電力を使用できるので、気化燃料ガス液化工程装置の全体電力が節減され得る。   The driving motor 410 may provide a driving force to the compressor 400. Since the driving motor 410 can use the electric power generated by the thermoelectric generator 430 in addition to the electric power supplied to the liquefaction process apparatus, the overall power of the vaporized fuel gas liquefaction process apparatus can be reduced.

本発明の実施形態による気化燃料ガス液化工程装置は、圧縮機400と、駆動モーター410と、冷却部420と熱電発電部430とを含む液化工程部450を備え、複数の液化工程部450のうち一つの冷却部420から流出した流体は、他の一つの圧縮機400に流入し得る。   The vaporized fuel gas liquefaction process apparatus according to the embodiment of the present invention includes a compressor 400, a drive motor 410, a liquefaction process unit 450 including a cooling unit 420 and a thermoelectric power generation unit 430, and includes a plurality of liquefaction process units 450. The fluid flowing out of one cooling unit 420 may flow into another compressor 400.

複数の液化工程部450を使用すると、一つの液化工程部450を使用する時より、気化燃料ガスを圧縮させるのに必要とされる動力が減少し、圧縮効率をも高めることができ、冷却効率も増加し得る。   When a plurality of liquefaction units 450 are used, the power required for compressing the vaporized fuel gas is reduced, the compression efficiency can be increased, and the cooling efficiency can be improved as compared with the case where one liquefaction unit 450 is used. Can also increase.

また、複数の液化工程部450に含まれる熱電発電部430が電力を生産して駆動モーター410に供給することにより、複数の液化工程部450で消耗する電力を削減させることができる。   In addition, since the thermoelectric generator 430 included in the plurality of liquefaction units 450 generates electric power and supplies it to the drive motor 410, the power consumed in the plurality of liquefaction units 450 can be reduced.

図17〜図19は、本発明の実施形態による気化燃料ガス液化工程装置の熱電発電部の多様な変形例を示す斜視図および断面図である。   17 to 19 are a perspective view and a cross-sectional view showing various modified examples of the thermoelectric generator of the vaporized fuel gas liquefaction process apparatus according to the embodiment of the present invention.

図17および図18に示されたように、熱電発電部430は、流体が流れる第1パイプ460と冷却媒体が流れる第2パイプ465との間に位置し得る。第1パイプ460および第2パイプ465ののうち一方は、他方の少なくとも一部を取り囲むことができる。   As shown in FIGS. 17 and 18, the thermoelectric generator 430 may be located between the first pipe 460 through which the fluid flows and the second pipe 465 through which the cooling medium flows. One of the first pipe 460 and the second pipe 465 can surround at least a part of the other.

例えば、図17に示されたように、第1パイプ460が第2パイプ465を取り囲むと、熱電発電部430の一側が流体と接触し、熱電発電部430の他側が第2パイプ465と接触し得る。   For example, as shown in FIG. 17, when the first pipe 460 surrounds the second pipe 465, one side of the thermoelectric generator 430 contacts the fluid, and the other side of the thermoelectric generator 430 contacts the second pipe 465. obtain.

これに対し、図18に示されたように、第2パイプ465が第1パイプ460を取り囲むと、熱電発電部430の一側が冷却媒体と接触して熱電発電部430の他側が第1パイプ460と接触し得る。   On the other hand, as shown in FIG. 18, when the second pipe 465 surrounds the first pipe 460, one side of the thermoelectric generator 430 contacts the cooling medium and the other side of the thermoelectric generator 430 connects to the first pipe 460. May come into contact with.

図19は、図17および図18と異なる熱電発電部を示す。図19に示されたように、熱電発電部430の一側は、圧縮機400を通過した流体と接触し、熱電発電部430の他側は、冷却媒体が流れる媒体パイプ470と接触し得る。   FIG. 19 shows a thermoelectric generator different from FIGS. 17 and 18. As shown in FIG. 19, one side of the thermoelectric generator 430 may contact the fluid that has passed through the compressor 400, and the other side of the thermoelectric generator 430 may contact a medium pipe 470 through which a cooling medium flows.

熱電発電部430は、媒体パイプ470と流体が接触しないように媒体パイプ470と流体との間に隔壁として使用され得る。これとは異なって、媒体パイプ470が流体と接触する場合、発電量が減少したり、発電が行われないことがある。したがって、媒体パイプ470と流体が分離されなければならないが、本発明の実施形態の場合、熱電発電部430が隔壁の役割をするので、別途の構成なく媒体パイプ470と流体を分離することができる。   The thermoelectric generator 430 may be used as a partition between the medium pipe 470 and the fluid such that the fluid does not contact the medium pipe 470. On the other hand, when the medium pipe 470 comes into contact with a fluid, the amount of power generation may decrease or power generation may not be performed. Therefore, the fluid must be separated from the medium pipe 470. In the embodiment of the present invention, since the thermoelectric generator 430 functions as a partition, the fluid can be separated from the medium pipe 470 without a separate configuration. .

媒体パイプ470は、流体が流れる方向と交差するように設置され得る。   The media pipe 470 may be installed to intersect the direction in which the fluid flows.

図17〜図19に示されたように、熱電発電部430は、熱電発電部430の一側と熱電発電部430の他側との温度差を利用して発電を行うことができる。   As shown in FIGS. 17 to 19, the thermoelectric generator 430 can generate electric power by using a temperature difference between one side of the thermoelectric generator 430 and the other side of the thermoelectric generator 430.

熱電発電部430で生産された電力は、駆動モーター410に供給されて圧縮機400を駆動することができ、気化燃料ガス液化工程装置の電力が削減され得る。   The electric power generated by the thermoelectric generator 430 can be supplied to the driving motor 410 to drive the compressor 400, and the electric power of the vaporized fuel gas liquefaction process apparatus can be reduced.

図20は、本発明の他の実施形態による気化燃料ガス液化工程装置を示す。図20に示されたように、本発明の他の実施形態による気化燃料ガス液化工程装置は、圧縮機400、駆動モーター410、第1熱電発電部500、第2熱電発電部510および変換部440を含む。   FIG. 20 shows a vaporized fuel gas liquefaction process apparatus according to another embodiment of the present invention. As shown in FIG. 20, the apparatus for liquefying vaporized fuel gas according to another embodiment of the present invention includes a compressor 400, a driving motor 410, a first thermoelectric generator 500, a second thermoelectric generator 510, and a converter 440. including.

圧縮機400は、気化燃料ガスを圧縮して液化天然ガスを含む流体を形成でき、駆動モーター410は、圧縮機400に駆動力を提供することができる。   The compressor 400 may compress the vaporized fuel gas to form a fluid including liquefied natural gas, and the driving motor 410 may provide a driving force to the compressor 400.

第1熱電発電部500は、圧縮機400により上昇した流体の温度を冷却媒体を介して降下させることができ、第2熱電発電部510は、温度が上昇した流体と冷却媒体との温度差により発電を行うことができる。   The first thermoelectric generator 500 can lower the temperature of the fluid raised by the compressor 400 through the cooling medium, and the second thermoelectric generator 510 can reduce the temperature of the fluid and the cooling medium whose temperature has increased. Power generation can be performed.

第1熱電発電部500および第2熱電発電部510は、複数の熱電素子を含んでいてもよい。熱電素子は、一側面と他側面の温度差による熱交換を通じて電力を生産するので、流体の熱が冷却媒体に伝達されるため、流体が冷却され得る。   The first thermoelectric generator 500 and the second thermoelectric generator 510 may include a plurality of thermoelectric elements. The thermoelectric element generates electric power through heat exchange based on a temperature difference between one side and the other side, so that heat of the fluid is transmitted to the cooling medium, so that the fluid can be cooled.

したがって、第1熱電発電部500は、本発明の実施形態による気化燃料ガス液化工程装置に含まれる冷却部420のように圧縮機400により上昇した流体の温度を冷却媒体を介して降下させることができる。   Therefore, the first thermoelectric generator 500 may lower the temperature of the fluid raised by the compressor 400 via the cooling medium, as in the cooling unit 420 included in the vaporized fuel gas liquefaction process apparatus according to the embodiment of the present invention. it can.

第1熱電発電部500と第2熱電発電部510は、いずれも、流体と冷却媒体との温度差を利用して発電可能であるが、流体と冷却媒体との温度差により第1熱電発電部500と第2熱電発電部510で生産される電力が同じでも異なっていてもよい。   Both the first thermoelectric generator 500 and the second thermoelectric generator 510 can generate power using the temperature difference between the fluid and the cooling medium. The power produced by the second thermoelectric generator 500 and the power produced by the second thermoelectric generator 510 may be the same or different.

変換部440は、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つから供給される電力を変換して駆動モーター410に供給することができる。このような変換部440は、本発明の他の実施形態による気化燃料ガス液化工程装置の設置環境に応じて多様に変更され得る。   The converter 440 may convert power supplied from at least one of the first thermoelectric generator 500 and the second thermoelectric generator 510 and supply the converted power to the drive motor 410. The conversion unit 440 may be variously changed according to an installation environment of the apparatus for liquefying a vaporized fuel gas according to another embodiment of the present invention.

例えば、第1熱電発電部500および第2熱電発電部510で生産された電気の電圧が駆動モーター410の定格電圧に合わない場合、変換部440は、第1熱電発電部500および第2熱電発電部510の電圧を駆動モーター410の定格電圧に合わせるための変圧器等を含んでいてもよい。   For example, when the voltage of the electricity produced by the first thermoelectric generator 500 and the second thermoelectric generator 510 does not match the rated voltage of the drive motor 410, the converter 440 converts the voltage of the first thermoelectric generator 500 and the second thermoelectric generator. A transformer or the like for adjusting the voltage of the unit 510 to the rated voltage of the drive motor 410 may be included.

本発明の他の実施形態による気化燃料ガス液化工程装置は、第1熱電発電部500および第2熱電発電部510で生産された電力を駆動モーター410に供給して、気化燃料ガス液化工程装置の電力を削減させることができる。   The vaporized fuel gas liquefaction process apparatus according to another embodiment of the present invention supplies the electric power generated by the first thermoelectric power generation unit 500 and the second thermoelectric power generation unit 510 to the drive motor 410 to provide the vaporized fuel gas liquefaction process device. Electric power can be reduced.

本発明の他の実施形態による気化燃料ガス液化工程装置は、圧縮機400と、駆動モーター410と、第1熱電発電部500と第2熱電発電部510とを含む液化工程部450を備え、複数の液化工程部450のうち一つの第1熱電発電部500から流出した流体は、他の一つの圧縮機400に流入し得る。   A vaporized fuel gas liquefaction process apparatus according to another embodiment of the present invention includes a compressor 400, a drive motor 410, and a liquefaction process unit 450 including a first thermoelectric power generation unit 500 and a second thermoelectric power generation unit 510. The fluid flowing out of one first thermoelectric generator 500 of the liquefaction process units 450 may flow into another compressor 400.

複数の液化工程部450を使用することについては、先立って本発明の実施形態を介して説明されたので、これに関する説明は省略される。   The use of the plurality of liquefaction process units 450 has been described above according to the embodiment of the present invention, and a description thereof will be omitted.

図17および図18に示されたように、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つは、流体が流れる第1パイプ460と冷却媒体が流れる第2パイプ465との間に位置し得る。   As shown in FIGS. 17 and 18, at least one of the first thermoelectric generator 500 and the second thermoelectric generator 510 includes a first pipe 460 through which a fluid flows and a second pipe 465 through which a cooling medium flows. Can be located in between.

第1パイプ460および第2パイプ465のうち一方は、他方の少なくとも一部を取り囲むことができる。   One of the first pipe 460 and the second pipe 465 can surround at least a part of the other.

例えば、図17に示されたように、第1パイプ460が第2パイプ465を取り囲むと、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの一側が流体と接触し、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの他側が第2パイプ465と接触し得る。   For example, as shown in FIG. 17, when the first pipe 460 surrounds the second pipe 465, at least one side of the first thermoelectric generator 500 and the second thermoelectric generator 510 comes into contact with the fluid, At least one other side of the first thermoelectric generator 500 and the second thermoelectric generator 510 may contact the second pipe 465.

これに対し、図18に示されたように、第2パイプ465が第1パイプ460を取り囲むと、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの一側が冷却媒体と接触し、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの他側が第1パイプ460と接触し得る。   On the other hand, as shown in FIG. 18, when the second pipe 465 surrounds the first pipe 460, at least one side of the first thermoelectric generator 500 and the second thermoelectric generator 510 contacts the cooling medium. In addition, at least one other side of the first thermoelectric generator 500 and the second thermoelectric generator 510 may contact the first pipe 460.

図19に示されたように、前記第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの一側は、流体と接触し、第1熱電発電部500および第2熱電発電部510のうち少なくとも一つの他側は、冷却媒体が流れる媒体パイプ470と接触し得る。   As shown in FIG. 19, at least one side of the first thermoelectric power generation unit 500 and the second thermoelectric power generation unit 510 is in contact with a fluid, and the first thermoelectric power generation unit 500 and the second thermoelectric power generation unit 510 are provided. At least one other side may contact the medium pipe 470 through which the cooling medium flows.

第1熱電発電部500および前記第2熱電発電部510のうち少なくとも一つは、媒体パイプ470と流体が接触しないように媒体パイプ470と流体との間に隔壁として使用され得る。隔壁の機能については、上記で本発明の実施形態により説明されたので、これに対する説明は省略される。   At least one of the first thermoelectric generator 500 and the second thermoelectric generator 510 may be used as a partition between the medium pipe 470 and the fluid so that the medium pipe 470 does not contact the fluid. The function of the partition has been described above according to the embodiment of the present invention, and a description thereof will be omitted.

以上で参照された図面において本発明の実施形態による気化燃料ガス液化工程装置は、圧縮機400と冷却器420を多段で連結して気化燃料ガスを段階別に圧縮し、冷却させて、液化燃料ガスに炉変化させることができる。   Referring to the drawings referred to above, the vaporized fuel gas liquefaction process apparatus according to the embodiment of the present invention connects the compressor 400 and the cooler 420 in multiple stages to compress and vaporize the vaporized fuel gas step by step, thereby cooling the vaporized fuel gas. The furnace can be changed.

また、本発明の気化燃料ガス液化工程装置は、流体と冷却媒体との温度差を用いて生産された電力を気化燃料ガス圧縮機400の駆動モーター410に供給することにより、液化工程に使用される電力を削減させることができる。   Further, the vaporized fuel gas liquefaction process apparatus of the present invention is used in the liquefaction process by supplying electric power produced using the temperature difference between the fluid and the cooling medium to the drive motor 410 of the vaporized fuel gas compressor 400. Power consumption can be reduced.

以上のように、本発明による実施形態を説明したが、先立って説明された実施形態以外にも、本発明がその趣旨や範疇から外れることなく、他の特定形態で具体化され得るという事実は、当該技術における通常の知識を有する者には自明である。したがって、前述した実施形態は、制限的なものでなく、例示的なものと見なされなければならず、これにより、本発明は、前述した説明に限定されず、添付の請求項の範疇およびその同等範囲内で変更されることもできる。   As described above, the embodiment according to the present invention has been described, but in addition to the embodiment described earlier, the fact that the present invention can be embodied in other specific forms without departing from the spirit and scope thereof is It is self-evident to those of ordinary skill in the art. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, so that the present invention is not limited to the foregoing description, but rather by the scope of the appended claims and their claims It can be changed within an equivalent range.

(付記1)
流体が流れる配管と、
前記配管を取り囲み、前記流体と外側の空気との温度差により電力を生産する熱電発電部と、を含む熱電発電モジュール。
(付記2)
前記熱電発電部は、
前記配管の外周面と接する第1シェルと、
前記第1シェルと一定間隔で離隔する第2シェルと、
前記第1シェルと前記第2シェルとの間に設けられる複数個の熱電素子部と、を含むことを特徴とする付記1に記載の熱電発電モジュール。
(付記3)
前記第1シェルと前記第2シェルとの間に不活性ガスが含まれることを特徴とする付記2に記載の熱電発電モジュール。
(付記4)
前記第1シェルと前記第2シェルとの間の圧力は、前記配管の内部圧力と同一であることを特徴とする付記3に記載の熱電発電モジュール。
(付記5)
貯蔵タンクに貯蔵された液化燃料ガスの蒸発ガスを圧縮する圧縮機と、
前記圧縮機を通った流体と前記貯蔵タンクから供給された液化燃料ガスとの温度差を用いて発電を行う熱電発電部と、
前記熱電発電部を通過した前記流体および前記液化燃料ガスを気化させてエンジンに供給する気化器と、を含む熱電発電装置。
(付記6)
前記流体が前記気化器に移動する通路を提供し、前記熱電発電部の一面と接触する第1配管と、
前記液化燃料ガスが前記気化器に移動する通路を提供し、前記熱電発電部の他面と接触する第2配管と、をさらに含むことを特徴とする付記5に記載の熱電発電装置。
(付記7)
前記第2配管に設置されて、前記液化燃料ガスを昇圧させて移送する第1ポンプと、
前記第1ポンプと前記気化器との間に設置されて、前記第1ポンプから流出した前記液化燃料ガスを昇圧させる第2ポンプと、
前記熱電発電部が生成した電気を変換させて前記圧縮機、前記第1ポンプおよび前記第2ポンプに供給する変換部と、をさらに含むことを特徴とする付記6に記載の熱電発電装置。
(付記8)
前記第1配管および前記第2配管のうち一つは、他の一つの少なくとも一部を取り囲むことを特徴とする付記6に記載の熱電発電装置。
(付記9)
前記熱電発電部は、前記第1配管と前記液化燃料ガスが接触しないように前記第1配管と前記液化燃料ガスとの間に隔壁として使用されることを特徴とする付記6に記載の熱電発電装置。
(付記10)
前記気化器は、前記流体および前記液化燃料ガスが流入する引込み部と気化燃料が引き出される引き出し部とを連結させる移動管を含み、前記移動管と熱交換する海水が流れる空間を提供することを特徴とする付記5に記載の熱電発電装置。
(付記11)
液化燃料ガスが引入される引込み部と気化燃料ガスが引き出される引き出し部とを連結させる移動管を含み、前記移動管と熱交換する海水が流れる空間を提供して液化燃料ガスを気化燃料ガスに気化させる気化器と、
前記移動管を介して移動する前記液化燃料ガスおよび前記気化燃料ガスのうち少なくとも一つを含む流体と前記海水との温度差により発電可能な熱電発電部と、
前記引込み部の表面に配置されて、前記熱電発電部により生成された電力を利用して前記引込み部と隣接した前記移動管領域が結氷するのを防止する発熱部と、を含む結氷防止気化装置。
(付記12)
前記気化器は、前記海水が流入する海水引込み部と、前記海水が排出される海水引き出し部とを含むことを特徴とする付記11に記載の結氷防止気化装置。
(付記13)
前記熱電発電部は、前記引き出し部に比べて前記引込み部に近づくように配置されることを特徴とする付記11に記載の結氷防止気化装置。
(付記14)
前記熱電発電部は、前記移動管をそれぞれ取り囲み、前記熱電発電部の一側が前記移動管と接触し、前記熱電発電部の他側が前記海水と接触することを特徴とする付記11に記載の結氷防止気化装置。
(付記15)
前記発熱部は、前記引込み部の表面があらかじめ設定された第1温度以上に維持されるように前記引込み部の表面を加熱させることを特徴とする付記11に記載の結氷防止気化装置。
(付記16)
前記引込み部の表面の温度が、前記第1温度と該第1温度より高い第2温度との間で維持されるように、前記熱電発電部で生産された電力を前記発熱部に入力または遮断するスイッチ制御信号をスイッチに出力する制御部をさらに含むことを特徴とする付記11に記載の結氷防止気化装置。
(付記17)
気化燃料ガスを圧縮して液化燃料ガスを含む流体を形成する圧縮機と、
前記圧縮機に駆動力を提供する駆動モーターと、
前記圧縮機により上昇した前記流体の温度を冷却媒体を介して降下させる冷却部と、
温度上昇した前記流体と前記冷却媒体との温度差により発電を行う熱電発電部と、
前記熱電発電部から供給される電力を変換して前記駆動モーターに供給する変換部と、を含む気化燃料ガス液化工程装置。
(付記18)
前記気化燃料ガス液化工程装置は、前記圧縮機と、前記駆動モーターと、前記冷却部と前記熱電発電部とを含む液化工程部を備え、
複数の前記液化工程部のうち一つの前記冷却部から流出した前記流体は、他の一つの前記圧縮機に流入することを特徴とする付記17に記載の気化燃料ガス液化工程装置。
(付記19)
前記熱電発電部は、前記流体が流れる第1パイプと前記冷却媒体が流れる第2パイプとの間に位置することを特徴とする付記17に記載の気化燃料ガス液化工程装置。
(付記20)
気化燃料ガスを圧縮して液化燃料ガスを含む流体を形成する圧縮機と、
前記圧縮機に駆動力を提供する駆動モーターと、
前記圧縮機により上昇した前記流体の温度を冷却媒体を介して降下させる第1熱電発電部と、
温度上昇した前記流体と前記冷却媒体との温度差により発電可能な第2熱電発電部と、
前記第1熱電発電部および前記第2熱電発電部のうち少なくとも一つから供給される電力を変換して前記駆動モーターに供給する変換部と、を含む気化燃料ガス液化工程装置。
(Appendix 1)
A pipe through which the fluid flows,
A thermoelectric power generation unit that surrounds the pipe and generates electric power by a temperature difference between the fluid and the outside air.
(Appendix 2)
The thermoelectric generator,
A first shell in contact with an outer peripheral surface of the pipe;
A second shell spaced apart from the first shell at regular intervals;
The thermoelectric generation module according to claim 1, further comprising: a plurality of thermoelectric elements provided between the first shell and the second shell.
(Appendix 3)
The thermoelectric generation module according to claim 2, wherein an inert gas is contained between the first shell and the second shell.
(Appendix 4)
The thermoelectric power generation module according to claim 3, wherein a pressure between the first shell and the second shell is the same as an internal pressure of the pipe.
(Appendix 5)
A compressor for compressing the vaporized gas of the liquefied fuel gas stored in the storage tank;
A thermoelectric generator that generates power using a temperature difference between the fluid that has passed through the compressor and the liquefied fuel gas supplied from the storage tank,
A vaporizer that vaporizes the fluid and the liquefied fuel gas that have passed through the thermoelectric generator and supplies the vaporized gas to the engine.
(Appendix 6)
A first pipe that provides a passage for the fluid to move to the vaporizer and contacts one surface of the thermoelectric generator;
The thermoelectric generator according to claim 5, further comprising: a second pipe that provides a passage for the liquefied fuel gas to move to the vaporizer, and that contacts a second surface of the thermoelectric generator.
(Appendix 7)
A first pump installed in the second pipe to transfer the liquefied fuel gas by increasing its pressure;
A second pump installed between the first pump and the vaporizer for increasing the pressure of the liquefied fuel gas flowing out of the first pump;
The thermoelectric generator according to claim 6, further comprising: a converter that converts the electricity generated by the thermoelectric generator to supply the electric power to the compressor, the first pump, and the second pump.
(Appendix 8)
The thermoelectric generator according to claim 6, wherein one of the first pipe and the second pipe surrounds at least a part of another one.
(Appendix 9)
7. The thermoelectric generator according to claim 6, wherein the thermoelectric generator is used as a partition between the first pipe and the liquefied fuel gas so that the first pipe does not contact the liquefied fuel gas. apparatus.
(Appendix 10)
The vaporizer includes a moving pipe that connects a drawing part into which the fluid and the liquefied fuel gas flow and a drawing part from which the vaporized fuel is drawn, and provides a space through which seawater that exchanges heat with the moving pipe flows. The thermoelectric generator according to attachment 5, characterized in that:
(Appendix 11)
A moving pipe that connects a drawing section into which the liquefied fuel gas is drawn and a drawing section from which the vaporized fuel gas is drawn, and provides a space through which seawater that exchanges heat with the moving pipe flows to convert the liquefied fuel gas into the vaporized fuel gas; A vaporizer to vaporize,
A thermoelectric generator capable of generating power by a temperature difference between the fluid containing at least one of the liquefied fuel gas and the vaporized fuel gas moving through the moving pipe and the seawater,
A heat generating unit disposed on a surface of the retracting unit and configured to prevent the moving pipe region adjacent to the retracting unit from icing using electric power generated by the thermoelectric power generating unit; .
(Appendix 12)
12. The anti-icing vaporization device according to claim 11, wherein the vaporizer includes a seawater drawing part into which the seawater flows, and a seawater drawing part from which the seawater is discharged.
(Appendix 13)
12. The anti-icing vaporizer according to claim 11, wherein the thermoelectric generator is arranged closer to the draw-in part than to the draw-out part.
(Appendix 14)
The icing described in Supplementary Note 11, wherein the thermoelectric generator surrounds each of the moving pipes, and one side of the thermoelectric generator contacts the moving pipe, and the other side of the thermoelectric generator contacts the seawater. Prevention vaporizer.
(Appendix 15)
12. The anti-icing vaporizer according to claim 11, wherein the heat generating unit heats the surface of the drawing unit such that the surface of the drawing unit is maintained at a first temperature or higher set in advance.
(Appendix 16)
Inputting or shutting off the power generated by the thermoelectric generator to the heat generating unit such that the temperature of the surface of the drawing unit is maintained between the first temperature and the second temperature higher than the first temperature. 12. The anti-icing vaporizer according to claim 11, further comprising a control unit that outputs a switch control signal to the switch.
(Appendix 17)
A compressor for compressing the vaporized fuel gas to form a fluid containing the liquefied fuel gas;
A drive motor that provides drive power to the compressor;
A cooling unit that lowers the temperature of the fluid raised by the compressor through a cooling medium,
A thermoelectric generator for generating electric power by a temperature difference between the fluid whose temperature has increased and the cooling medium,
A converter for converting the electric power supplied from the thermoelectric generator and supplying the electric power to the drive motor.
(Appendix 18)
The vaporized fuel gas liquefaction process device includes a liquefaction process unit including the compressor, the drive motor, the cooling unit and the thermoelectric power generation unit,
18. The vaporized fuel gas liquefaction process apparatus according to claim 17, wherein the fluid flowing out of one of the plurality of liquefaction process units from the cooling unit flows into the other one of the compressors.
(Appendix 19)
18. The vaporized fuel gas liquefaction apparatus according to claim 17, wherein the thermoelectric generator is located between a first pipe through which the fluid flows and a second pipe through which the cooling medium flows.
(Appendix 20)
A compressor for compressing the vaporized fuel gas to form a fluid containing the liquefied fuel gas;
A drive motor that provides drive power to the compressor;
A first thermoelectric generator for lowering the temperature of the fluid raised by the compressor through a cooling medium;
A second thermoelectric generator capable of generating power by a temperature difference between the fluid whose temperature has increased and the cooling medium,
A converter for converting electric power supplied from at least one of the first thermoelectric generator and the second thermoelectric generator and supplying the electric power to the drive motor.

特開2008−305991号公報JP 2008-305991 A 特開2010−136507号公報JP 2010-136507 A 韓国公開特許第10−2011−0129159号公報Korean Laid-Open Patent No. 10-2011-0129159 特開2006−303320号公報JP 2006-303320 A

Claims (6)

液化燃料ガスが引入される引込み部と気化燃料ガスが引き出される引き出し部とを連結させる移動管を含み、前記移動管と熱交換する海水が流れる空間を提供して液化燃料ガスを気化燃料ガスに気化させる気化器と、
前記移動管を介して移動する前記液化燃料ガスおよび前記気化燃料ガスのうち少なくとも一つを含む流体と前記海水との温度差により発電可能な熱電発電部と、
前記引込み部の表面に配置されて、前記熱電発電部により生成された電力を利用して前記引込み部と隣接した前記移動管領域が結氷するのを防止する発熱部と、を含む結氷防止気化装置。
A moving pipe that connects a drawing section into which the liquefied fuel gas is drawn and a drawing section from which the vaporized fuel gas is drawn, and provides a space through which seawater that exchanges heat with the moving pipe flows to convert the liquefied fuel gas into the vaporized fuel gas; A vaporizer to vaporize,
A thermoelectric generator capable of generating power by a temperature difference between the fluid containing at least one of the liquefied fuel gas and the vaporized fuel gas moving through the moving pipe and the seawater,
A heat generating unit disposed on a surface of the retracting unit and configured to prevent the moving pipe region adjacent to the retracting unit from icing using electric power generated by the thermoelectric power generating unit; .
前記気化器は、前記海水が流入する海水引込み部と、前記海水が排出される海水引き出し部とを含むことを特徴とする請求項1に記載の結氷防止気化装置。   2. The anti-icing vaporizer according to claim 1, wherein the vaporizer includes a seawater inlet into which the seawater flows, and a seawater outlet through which the seawater is discharged. 3. 前記熱電発電部は、前記引き出し部に比べて前記引込み部に近づくように配置されることを特徴とする請求項1に記載の結氷防止気化装置。   2. The anti-icing vaporizer according to claim 1, wherein the thermoelectric power generation unit is disposed closer to the drawing unit than the drawing unit. 3. 前記熱電発電部は、前記移動管をそれぞれ取り囲み、前記熱電発電部の一側が前記移動管と接触し、前記熱電発電部の他側が前記海水と接触することを特徴とする請求項1に記載の結氷防止気化装置。   2. The thermoelectric generator according to claim 1, wherein each of the thermoelectric generators surrounds the moving pipe, one side of the thermoelectric generator contacts the moving pipe, and the other side of the thermoelectric generator contacts the seawater. 3. Anti-ice vaporizer. 前記発熱部は、前記引込み部の表面があらかじめ設定された第1温度以上に維持されるように前記引込み部の表面を加熱させることを特徴とする請求項1に記載の結氷防止気化装置。   The anti-icing vaporizer according to claim 1, wherein the heating unit heats the surface of the draw-in unit such that the surface of the draw-in unit is maintained at a predetermined first temperature or higher. 前記引込み部の表面の温度が、前記第1温度と該第1温度より高い第2温度との間で維持されるように、前記熱電発電部で生産された電力を前記発熱部に入力または遮断するスイッチ制御信号をスイッチに出力する制御部をさらに含むことを特徴とする請求項1に記載の結氷防止気化装置。   Inputting or shutting off the power generated by the thermoelectric generator to the heat generating unit such that the temperature of the surface of the drawing unit is maintained between the first temperature and the second temperature higher than the first temperature. The apparatus according to claim 1, further comprising a control unit that outputs a switch control signal to the switch.
JP2019126154A 2019-07-05 2019-07-05 Anti-icing vaporization device Pending JP2020012629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126154A JP2020012629A (en) 2019-07-05 2019-07-05 Anti-icing vaporization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126154A JP2020012629A (en) 2019-07-05 2019-07-05 Anti-icing vaporization device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018509534A Division JP2018535628A (en) 2015-08-20 2015-08-20 Thermoelectric power generation module, thermoelectric power generation apparatus including the same, icing prevention vaporization apparatus, and vaporized fuel gas liquefaction process apparatus

Publications (1)

Publication Number Publication Date
JP2020012629A true JP2020012629A (en) 2020-01-23

Family

ID=69169819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126154A Pending JP2020012629A (en) 2019-07-05 2019-07-05 Anti-icing vaporization device

Country Status (1)

Country Link
JP (1) JP2020012629A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046694A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Refrigerating device
JP2006303320A (en) * 2005-04-22 2006-11-02 Toshiba Corp Direct heat-electricity converter
JP2008305991A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module and thermoelectric converter, and manufacturing method thereof
JP2010136507A (en) * 2008-12-03 2010-06-17 Ihi Plant Construction Co Ltd Heat exchanger incorporating cold thermal power generation element
JP2011012694A (en) * 2009-06-30 2011-01-20 Central Res Inst Of Electric Power Ind Liquefied gas vaporizer
KR20110129159A (en) * 2010-05-25 2011-12-01 삼성중공업 주식회사 Apparatus for regasification of liquefied natural gas
JP2015008569A (en) * 2013-06-25 2015-01-15 中国電力株式会社 Power generator using cold lng
CN204514152U (en) * 2014-12-26 2015-07-29 中国海洋石油总公司 A kind ofly can reclaim the open-frame type gasifier heat exchanger tube of LNG cold energy by thermoelectricity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046694A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Refrigerating device
JP2006303320A (en) * 2005-04-22 2006-11-02 Toshiba Corp Direct heat-electricity converter
JP2008305991A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module and thermoelectric converter, and manufacturing method thereof
JP2010136507A (en) * 2008-12-03 2010-06-17 Ihi Plant Construction Co Ltd Heat exchanger incorporating cold thermal power generation element
JP2011012694A (en) * 2009-06-30 2011-01-20 Central Res Inst Of Electric Power Ind Liquefied gas vaporizer
KR20110129159A (en) * 2010-05-25 2011-12-01 삼성중공업 주식회사 Apparatus for regasification of liquefied natural gas
JP2015008569A (en) * 2013-06-25 2015-01-15 中国電力株式会社 Power generator using cold lng
CN204514152U (en) * 2014-12-26 2015-07-29 中国海洋石油总公司 A kind ofly can reclaim the open-frame type gasifier heat exchanger tube of LNG cold energy by thermoelectricity

Similar Documents

Publication Publication Date Title
US20180363852A1 (en) Thermoelectric power generating module, and thermoelectric power generating device, anti-freezing vaporizer, and vaporized fuel gas liquefaction process device including same
JP5890748B2 (en) Liquid hydrogen production equipment
US7143598B2 (en) Energy system making use of a thermoelectric power unit and natural gas stored in liquid form
US20140352331A1 (en) Liquefied gas treatment system
JP2006349084A (en) Evaporative gas supply system of liquefied natural gas carrier
US20090249799A1 (en) Apparatus and method for increasing efficiency of a gas turbine and a marine structure having the same
KR20150115126A (en) A Treatment System of Liquefied Gas
KR20060049344A (en) An energy system making use of a thermoelectric power unit and natural gas stored in liquid form
KR20150107247A (en) Anti-icing vaporization device
KR102053927B1 (en) A Treatment System of Liquefied Natural Gas
US11585597B2 (en) Hydrocarbon distillation
JP2010043708A (en) Regional energy supply system
JP2020012629A (en) Anti-icing vaporization device
KR20150101824A (en) Apparatus for thermoelectric generation
KR20150098797A (en) Thermoelectric Generation Module for Pipe
KR20110130050A (en) Eco regasification apparatus and method
KR20150062382A (en) System for supplying fuel gas in ships
KR101563856B1 (en) System for supplying fuel gas in ships
KR101929606B1 (en) Treatment system of liquefied gas
US7296413B2 (en) Power generating system and method
KR101535759B1 (en) A Fuel Gas Supply System of Liquefied Natural Gas
CN110925595A (en) Ship liquefied natural gas supply system with cold energy utilization function
KR20160034518A (en) Treatment system of liquefied gas
KR20160034522A (en) Treatment system of liquefied gas
KR20150115127A (en) A Treatment System of Liquefied Gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413