JP2020011948A - Method of synthesizing n-carboxyanhydride using flow reactor - Google Patents

Method of synthesizing n-carboxyanhydride using flow reactor Download PDF

Info

Publication number
JP2020011948A
JP2020011948A JP2019094952A JP2019094952A JP2020011948A JP 2020011948 A JP2020011948 A JP 2020011948A JP 2019094952 A JP2019094952 A JP 2019094952A JP 2019094952 A JP2019094952 A JP 2019094952A JP 2020011948 A JP2020011948 A JP 2020011948A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
raw material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019094952A
Other languages
Japanese (ja)
Other versions
JP7362055B2 (en
Inventor
布施 新一郎
Shinichiro Fuse
新一郎 布施
中村 浩之
Hiroyuki Nakamura
浩之 中村
佑磨 小竹
Yuma Kotake
佑磨 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Hodogaya Chemical Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Tokyo Institute of Technology NUC filed Critical Hodogaya Chemical Co Ltd
Publication of JP2020011948A publication Critical patent/JP2020011948A/en
Application granted granted Critical
Publication of JP7362055B2 publication Critical patent/JP7362055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

To provide a synthesis method that allows high-yield continuous production of a compound of interest in synthesis and production of N-carboxyanhydride (NCA) and the like using a flow reactor.SOLUTION: In a synthesis method using a flow reactor 100, a basic solution adjusted in advance to a pH of 7-14 becomes acidic with a pH of 0-7, or an acidic solution adjusted in advance to a pH of 0-7 becomes basic with a pH of 7-14, within 60 seconds after the start of mixture of at least two ingredient solutions.SELECTED DRAWING: Figure 1

Description

本発明は、フローリアクターを用いるN−カルボキシ無水物などの化合物の合成方法に関する。   The present invention relates to a method for synthesizing a compound such as N-carboxy anhydride using a flow reactor.

N−カルボキシ無水物(NCA)はオリゴペプチドや非ペプチド化合物の合成におけるα−アミノ酸のビルディングブロックとして、またポリペプチド合成の原料として重要である。とりわけ、NCAの重合がポリペプチド合成の第一選択肢となっていることから、後者の用途は重要性が高い。タンパク質構成アミノ酸および非タンパク質構成アミノ酸から誘導される多様なNCAの重合により、得られるポリペプチドの特性は自在に変化させることができるため、ポリペプチドは生体適合性材料、生分解性ポリマー、薬剤および薬剤キャリアとして利用されている。原料のNCAの側鎖構造以外に、NCAの純度もポリペプチドの特性に大きく影響することがよく知られている。そのため、高純度のNCAを様々なアミノ酸から合成する手法が極めて重要である。   N-carboxy anhydride (NCA) is important as a building block for α-amino acids in the synthesis of oligopeptides and non-peptide compounds, and as a raw material for polypeptide synthesis. In particular, the latter use is of great importance, since NCA polymerization has become the first choice for polypeptide synthesis. The polymerization of various NCAs derived from protein-constituting amino acids and non-protein-constituting amino acids allows the properties of the resulting polypeptide to be freely changed, so that the polypeptide is a biocompatible material, a biodegradable polymer, a drug and It is used as a drug carrier. It is well known that, besides the side chain structure of the starting NCA, the purity of the NCA also greatly affects the properties of the polypeptide. Therefore, a technique for synthesizing high purity NCA from various amino acids is extremely important.

1922年に報告されたFuchs−Farthing法(非特許文献1、2)は現在でも工業的に利用されているNCAの唯一の実践的合成となっている(下記式(A)参照)。この方法では、アミノ酸をホスゲンおよびホスゲン等価体と反応させることで、塩化水素の生成を伴いつつ目的のNCA(式中、「NCA(desired)」と記載)を一工程で合成できる。この方法は工程数が少なく、二酸化炭素と塩化水素のみを副生し、また、NCAは酸性条件下では比較的安定であるため、望まない重合反応等を惹起しない点が特長である。一方で、酸性条件下ではアミノ酸のアミノ基とカルボキシル基の双方の求核性が低下し、また、固体のアミノ酸と液体のホスゲンおよびホスゲン等価体の溶液を反応させねばならないため、強酸中で長時間加熱する必要があるなど比較的厳しい反応条件を要する(例えば、約40−50℃、2−5時間、pH<1)。このため、酸性条件下で不安定な官能基をもつNCAの合成は不可能であり、また、塩化水素存在下での加熱はしばしばNCAの開環反応を惹起し、望まない酸塩化物(副生物)を与えて、目的物の純度を低下させてしまう。   The Fuchs-Farting method reported in 1922 (Non-Patent Documents 1 and 2) is still the only practical synthesis of NCA used industrially (see the following formula (A)). In this method, by reacting an amino acid with phosgene and a phosgene equivalent, the desired NCA (in the formula, described as “NCA (desired)”) can be synthesized in one step while producing hydrogen chloride. This method is characterized in that the number of steps is small, only carbon dioxide and hydrogen chloride are produced as by-products, and NCA is relatively stable under acidic conditions, so that it does not cause unwanted polymerization reactions and the like. On the other hand, under acidic conditions, the nucleophilicity of both amino and carboxyl groups of amino acids decreases, and a solution of solid amino acid and liquid phosgene and phosgene equivalent must be reacted. Relatively harsh reaction conditions are required, such as the need to heat for hours (eg, about 40-50 ° C., 2-5 hours, pH <1). For this reason, it is impossible to synthesize NCA having a functional group which is unstable under acidic conditions, and heating in the presence of hydrogen chloride often causes a ring-opening reaction of NCA, and undesired acid chlorides (by-products) are not allowed. Creatures) to reduce the purity of the target product.

過去に、これらの問題を解決するため、塩化水素のスカベンジャーを用いる方法、ウレタン保護されたアミノ酸を用いる方法、ジフェニルカルボナートを用いる手法、N−カルバモイルアミノ酸のニトロソ化を経る方法、減圧下で窒素気流を用いて塩化水素を除去する方法等が報告されてきた(特許文献1〜3など)。しかしながら、これらの方法は純度低下、工程数増加、プロセス煩雑化といった別の短所をもつため、Fuchs−Farthing法を置き換えるまでには至っていない。   In the past, to solve these problems, a method using a scavenger of hydrogen chloride, a method using an urethane-protected amino acid, a method using diphenyl carbonate, a method involving nitrosation of N-carbamoylamino acid, Methods for removing hydrogen chloride using an airflow have been reported (Patent Documents 1 to 3 and the like). However, these methods have other disadvantages such as a decrease in purity, an increase in the number of steps, and a complicated process. Therefore, they have not yet replaced the Fuchs-Farting method.

下記式(B)で表されるようなNCA合成を塩基性条件下で行えば、アミノ酸のアミノ基およびカルボキシラートは双方、低温下でも速やかに短時間でホスゲンおよびホスゲン等価体を攻撃して目的のNCAを与えると期待できるが、塩基性条件下では、NCAの窒素原子上のプロトンが速やかに引き抜かれて、ポリマー副生成物の生成などの望まない重合反応が惹起される。また、遊離のアミノ酸は通常水にしか溶けないことが多いが、塩基性条件下で水が存在する中で反応させると生成物のNCAが加水分解されることが想定される。これらの理由のため、NCAの塩基性条件下での反応は未報告となっている。   When the NCA synthesis represented by the following formula (B) is carried out under basic conditions, both the amino group and the carboxylate of the amino acid attack phosgene and phosgene equivalents quickly and in a short time even at a low temperature. However, under basic conditions, protons on the nitrogen atom of the NCA are rapidly extracted, and undesired polymerization reactions such as formation of polymer by-products are caused. In addition, free amino acids are usually only soluble in water in many cases, but it is assumed that NCA as a product is hydrolyzed when reacted under basic conditions in the presence of water. For these reasons, the reaction of NCA under basic conditions has not been reported.

Figure 2020011948
Figure 2020011948

一方、マイクロフローリアクターを用いる合成方法(マイクロフロー合成)は、内径が1mm以下のマイクロメーターオーダーの微小な流路を有する空間で化学反応を起こさせることを特徴とし、フローリアクターを用いる合成方法(フロー合成)の一種であることから、従来のバッチ合成法と比べて、混合時間が短く、熱伝導の高い空間であることから反応時間や反応温度を厳密に制御可能であり、また、合成の連続生産が容易、反応の安全性などの面で大きな利点が報告されている。マイクロフロー合成は、特に、タンパク質や複素環化合物などの合成など、高温高圧下で反応中に分解しやすい不安定な構造の分子の合成に適していることが近年報告されている(特許文献4〜6など)が、しかしながら、NCAなどのアミノ酸誘導体の合成において、副生成物の低減を可能にした例は少なく課題が多いのが現状である。   On the other hand, a synthesis method using a microflow reactor (microflow synthesis) is characterized in that a chemical reaction is caused in a space having a micrometer-order microchannel having an inner diameter of 1 mm or less, and a synthesis method using a flow reactor ( Flow synthesis), the reaction time and reaction temperature can be strictly controlled because the mixing time is shorter and the heat conduction space is higher than in the conventional batch synthesis method. Significant advantages have been reported in terms of ease of continuous production and safety of the reaction. In recent years, it has been reported that microflow synthesis is particularly suitable for synthesis of molecules having an unstable structure which is easily decomposed during the reaction under high temperature and high pressure, such as synthesis of proteins and heterocyclic compounds (Patent Document 4). However, in the synthesis of amino acid derivatives such as NCA, there are few examples in which the reduction of by-products is possible, and there are many problems at present.

特開2002−145871号公報JP-A-2002-145871 特開2002−371070号公報JP-A-2002-371070 特表2008−518032号公報Japanese Patent Publication No. 2008-518032 特開2005−185972号公報JP 2005-185972 A 特開2011−116731号公報JP 2011-116731 A 特開2017−137244号公報JP-A-2017-137244

F.Fuch, 「Ber. Dtsch. Chem. Ges.」(ドイツ),1922年,第55巻,p.2943.F. Fuch, "Ber. Dtsch. Chem. Ges." (Germany), 1922, vol. 55, p. 2943. A.C.Furthing, 「J. Chem. Soc.」(イギリス),1950年,p.3213−3217.A. C. Furthing, "J. Chem. Soc." (UK), 1950, p. 3213-3217.

本発明は、前記課題を解決するためになされたもので、フローリアクターを用いるN−カルボキシ無水物(NCA)などの合成や製造において、目的の化合物を高収率で連続生産することが可能な合成方法を提供することである。   The present invention has been made to solve the above-mentioned problem, and it is possible to continuously produce a target compound in high yield in the synthesis or production of N-carboxy anhydride (NCA) using a flow reactor. The purpose is to provide a synthesis method.

本発明者らは、マイクロフローリアクターなどのフローリアクターを用いるN−カルボキシ無水物(NCA)などの合成において、合成開始(原料溶液の混合)後の短時間に(瞬間的に)反応溶液を塩基性から酸性(または酸性から塩基性)へ切り替える合成方法を用いることにより、速やかな反応の進行と生成物の重合の抑制が両立することを見出した。また、フローリアクターを用いた、有機溶媒などの溶媒の注入による反応溶液の希釈により、塩化水素などの酸と生成物との接触確率を低減させて、酸性条件下で不安定な官能基の分解を回避できることを見出した。すなわち本発明は、以下の内容で構成されている。   In the synthesis of N-carboxy anhydride (NCA) or the like using a flow reactor such as a micro flow reactor, the present inventors use a reaction solution in a short time (instantaneously) after starting the synthesis (mixing of the raw material solutions). It has been found that by using a synthesis method for switching from acidic to acidic (or from acidic to basic), rapid progress of the reaction and suppression of polymerization of the product are compatible. In addition, by diluting the reaction solution by injecting a solvent such as an organic solvent using a flow reactor, the probability of contact between an acid such as hydrogen chloride and a product is reduced, and decomposition of a functional group that is unstable under acidic conditions is reduced. Can be avoided. That is, the present invention has the following contents.

1.フローリアクターを用いる合成方法であって、
少なくとも2種の原料溶液の混合開始から60秒以内に、
あらかじめpH7〜14に調整されている塩基性溶液がpH0〜7の酸性に変わること、または、あらかじめpH0〜7に調整されている酸性溶液がpH7〜14の塩基性に変わること、を特徴とする合成方法。
1. A synthesis method using a flow reactor,
Within 60 seconds from the start of mixing of at least two kinds of raw material solutions,
It is characterized in that a basic solution previously adjusted to pH 7-14 changes to an acidity of pH 0 to 7, or an acidic solution previously adjusted to pH 0 to 7 changes to a basicity of pH 7-14. Synthesis method.

2.前記原料溶液の混合開始後に、溶媒の注入により混合後の溶液を1.1倍以上に希釈することを特徴とする合成方法。 2. A synthesis method, characterized in that after starting the mixing of the raw material solution, the mixed solution is diluted 1.1 times or more by injecting a solvent.

3.前記合成方法において、温度範囲が−10〜40℃である合成方法。 3. The synthesis method, wherein the temperature range is -10 to 40C.

4.前記合成方法において、前記原料溶液が、ピリジン、N−メチルモルホリン、N−メチルピペリジン、N,N−ジメチルエチルアミン、N,N−ジエチルメチルアミン、ジエチルアミン、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸水素ナトリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、アンモニアから選ばれる少なくとも1種の塩基を含有する塩基性溶液である合成方法。 4. In the above synthesis method, the raw material solution may be pyridine, N-methylmorpholine, N-methylpiperidine, N, N-dimethylethylamine, N, N-diethylmethylamine, diethylamine, lithium hydroxide, sodium hydroxide, potassium hydroxide , A basic solution containing at least one base selected from calcium hydroxide, barium hydroxide, sodium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate and ammonia.

5.前記合成方法において、前記原料溶液が、塩酸、硫酸、硝酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸から選ばれる少なくとも1種の酸を含有する酸性溶液である合成方法。 5. In the above synthesis method, the raw material solution is an acidic solution containing at least one acid selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, trifluoroacetic acid, and formic acid.

6.前記合成方法において、前記原料溶液の溶媒が有機溶媒である合成方法。 6. The synthesis method, wherein the solvent of the raw material solution is an organic solvent.

7.前記合成方法において、前記原料溶液の溶媒がアセトニトリルまたはテトラヒドロフランである合成方法。 7. In the above synthesis method, the solvent of the raw material solution is acetonitrile or tetrahydrofuran.

8.前記原料溶液の混合後に、希釈に使用する溶媒が有機溶媒または水である合成方法。 8. A synthesis method, wherein the solvent used for dilution after mixing the raw material solutions is an organic solvent or water.

9.前記原料溶液の混合後に、希釈に使用する溶媒が酢酸エチルまたはジクロロメタンである合成方法。 9. A synthesis method wherein the solvent used for dilution after mixing the raw material solutions is ethyl acetate or dichloromethane.

10.前記合成方法において、前記原料溶液に含まれる物質が、
下記一般式(1−1)および(1−2)で表される化合物である合成方法。
10. In the synthesis method, the substance contained in the raw material solution may include:
A synthesis method which is a compound represented by the following general formulas (1-1) and (1-2).

Figure 2020011948
Figure 2020011948

[式中、R〜Rは、それぞれ独立に、―H、―OH、―COOH、―COO、―CN、
置換基を有していてもよい炭素原子数0〜20のチオ基、
置換基を有していてもよい炭素原子数0〜20のスルホ基、
置換基を有していてもよい炭素原子数0〜20のアミノ基、
置換基を有していてもよい炭素原子数1〜20のシリル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20のシクロアルキル基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数2〜20のアルキニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数5〜20のシクロアルコキシ基、
置換基を有していてもよい炭素原子数1〜20のアシル基、
置換基を有していてもよい炭素原子数6〜20の芳香族炭化水素基、
置換基を有していてもよい炭素原子数2〜20の複素環基、または
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表し、
〜Rは、隣り合う基同士で互いに結合して環を形成していてもよい。
mは1〜6の整数を表し、mが2以上の場合、複数存在するRおよびRは、それぞれ互いに同一でも異なっていてもよい。
Mは水素原子またはアルカリ金属原子を表す。]
[Wherein, R 1 to R 3 each independently represent —H, —OH, —COOH, —COO , —CN,
A thio group having 0 to 20 carbon atoms which may have a substituent,
A sulfo group having 0 to 20 carbon atoms which may have a substituent,
An amino group having 0 to 20 carbon atoms which may have a substituent,
A silyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
An alkynyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkoxy group having 5 to 20 carbon atoms which may have a substituent,
An acyl group having 1 to 20 carbon atoms which may have a substituent,
An aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
A heterocyclic group having 2 to 20 carbon atoms which may have a substituent, or an aryloxy group having 6 to 20 carbon atoms which may have a substituent;
R 1 to R 3 may be bonded to each other by adjacent groups to form a ring.
m represents an integer of 1 to 6, and when m is 2 or more, a plurality of R 2 and R 3 may be the same or different from each other.
M represents a hydrogen atom or an alkali metal atom. ]

Figure 2020011948
Figure 2020011948

[式中、XおよびYは、それぞれ独立に、―Cl、―OCCl
置換基を有していてもよい炭素原子数0〜20のチオ基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数3〜20の複素環基、または
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表す。]
Wherein X and Y are each independently —Cl, —OCCl 3 ,
A thio group having 0 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
It represents an optionally substituted heterocyclic group having 3 to 20 carbon atoms or an aryloxy group having 6 to 20 carbon atoms optionally having a substituent. ]

11.前記一般式(1−1)において、Rが―Hであり、mが1であり、Mがナトリウム原子である合成方法。 11. In the above general formula (1-1), a synthesis method wherein R 3 is —H, m is 1, and M is a sodium atom.

12.前記フローリアクターがマイクロフローリアクターである合成方法。 12. A synthesis method, wherein the flow reactor is a micro flow reactor.

本発明のフローリアクターを用いる合成方法によれば、目的の構造を有するN−カルボキシ無水物(NCA)などの化合物を、高収率で連続生産することが可能な合成方法を提供することができる。   According to the synthesis method using the flow reactor of the present invention, a synthesis method capable of continuously producing a compound having an intended structure such as N-carboxy anhydride (NCA) in high yield can be provided. .

本発明の「フローリアクターを用いる合成方法」で用いる装置の具体例を表す概略図である。FIG. 2 is a schematic diagram illustrating a specific example of an apparatus used in the “synthesis method using a flow reactor” of the present invention. 本発明の「フローリアクターを用いる合成方法」で用いる装置に、混合後の溶液を希釈する機構を加えた装置の具体例を表す概略図である。It is the schematic which represents the specific example of the apparatus which added the mechanism to dilute the solution after mixing to the apparatus used by the "synthesis method using a flow reactor" of this invention. 本発明の「フローリアクターを用いる合成方法」を用いた、合成の具体例を表す概略図である。FIG. 4 is a schematic diagram illustrating a specific example of synthesis using the “synthesis method using a flow reactor” of the present invention.

<フローリアクターを用いる合成方法(フロー合成)>
本発明の合成方法で用いる図1の装置の具体例の概略図を用いて、以下に詳細に説明する。図1は本発明の合成方法における最低限必要な装備を概略的に示したものであり、以下の例に限定されるものではない。本発明の趣旨を逸脱しない範囲で、省略、置換、数値などの変更、好ましい具体例の交換などが可能である。
<Synthesis method using flow reactor (flow synthesis)>
This will be described in detail below using a schematic diagram of a specific example of the apparatus of FIG. 1 used in the synthesis method of the present invention. FIG. 1 schematically shows the minimum necessary equipment in the synthesis method of the present invention, and is not limited to the following examples. Omissions, substitutions, changes in numerical values and the like, exchange of preferred examples, and the like can be made without departing from the spirit of the present invention.

本発明における「フローリアクター」とは、図1中のフローリアクター100で示される機構を有する。本発明のフローリアクターを用いる合成方法においては、化学反応前の原料物質を含む原料溶液(1−1)(図中の○記号)と、化学反応前の別の原料物質を含む原料溶液(1−2)(図中の△記号)とを、ミキサー20内で混合して化学反応させることによって、生成物2(または生成物を含有する混合後の溶液2)(図中の□記号)を合成し、混合後の溶液中に生成物2を含有し、ミキサー20の外部へ排出する機能を有する。
本発明の「フローリアクター」装置の細部を詳細に説明する。フローリアクター100は、原料溶液(1−1)を連続的に供給することのできる原料溶液供給装置11を有しており、原料溶液供給装置11は送液管110と接続しており、送液管110はミキサー20の1個の導入口と接続している。また、フローリアクター100は、原料溶液(1−2)を連続的に供給することができる原料溶液供給装置12を有しており、原料溶液供給装置12は送液管120と接続しており、送液管120はミキサー20の別の1個の導入口と接続している。ミキサー20は1個の排出口を有し、この排出口は反応管21と接続している。ミキサー20内部の空間内で、原料溶液(1−1)と原料溶液(1−2)の混合が開始し、ミキサー20内部から反応管21内部において反応が起こり、生成物2を含有する溶液が移動し、反応管21を通してフローリアクター100の外部に排出され、生成物2を得ることが出来る。また、反応管21において、ミキサー20の側と反対側の端部に別のミキサーを接続し、次の化学反応や化学処理を行うことができる。
The “flow reactor” in the present invention has a mechanism shown by the flow reactor 100 in FIG. In the synthesis method using the flow reactor of the present invention, the raw material solution (1-1) containing the raw material before the chemical reaction (the symbol ○ in the figure) and the raw material solution (1 -2) (symbol in the figure) is mixed with a chemical reaction in the mixer 20 to obtain the product 2 (or the mixed solution 2 containing the product) (symbol in the figure). The synthesized product contains the product 2 in the mixed solution, and has a function of discharging the solution to the outside of the mixer 20.
The details of the "flow reactor" apparatus of the present invention will be described in detail. The flow reactor 100 has a raw material solution supply device 11 that can continuously supply the raw material solution (1-1). The raw material solution supply device 11 is connected to a liquid sending pipe 110, Tube 110 is connected to one inlet of mixer 20. Further, the flow reactor 100 has a raw material solution supply device 12 capable of continuously supplying the raw material solution (1-2), and the raw material solution supply device 12 is connected to a liquid sending pipe 120, The liquid feeding pipe 120 is connected to another inlet of the mixer 20. The mixer 20 has one outlet, which is connected to the reaction tube 21. The mixing of the raw material solution (1-1) and the raw material solution (1-2) starts in the space inside the mixer 20, a reaction takes place inside the mixer 20 and inside the reaction tube 21, and the solution containing the product 2 is formed. It moves and is discharged out of the flow reactor 100 through the reaction tube 21 to obtain the product 2. In the reaction tube 21, another mixer can be connected to the end opposite to the mixer 20 to perform the next chemical reaction or chemical treatment.

本発明における「フローリアクター」は、バッチ式の反応容器に比べて小さいミキサーの空間内で反応が行われるため、伝熱性に優れており、温度分布の偏りの少ない反応を行うことができる。そのため、バッチ式の反応容器では困難な温度(高温、低温)を必要とする反応に適している。また、強酸や強塩基に対し不安定な有機化合物などを少量で短時間に連続的に取り扱えるため、不安定な中間体を経由する合成にも適している。また、混合を瞬時に行えるため、溶液中での不均一な分散状態を経ずに反応が行える利点がある。さらに、加圧も容易に行うことができ、反応速度を高めるのに有効である。   The “flow reactor” in the present invention performs the reaction in a space of the mixer that is smaller than that of the batch-type reaction vessel, and thus has excellent heat conductivity and can perform the reaction with less deviation in the temperature distribution. Therefore, it is suitable for a reaction requiring a temperature (high temperature, low temperature) which is difficult for a batch type reaction vessel. In addition, since organic compounds unstable to strong acids and strong bases can be continuously handled in a small amount in a short time, they are also suitable for synthesis via unstable intermediates. Further, since the mixing can be performed instantaneously, there is an advantage that the reaction can be performed without passing through a non-uniform dispersion state in the solution. Further, pressurization can be easily performed, which is effective for increasing the reaction rate.

本発明の合成方法は、前記したフローリアクターを用いる合成方法であって、フローリアクター内での少なくとも2種の原料溶液の混合開始から60秒以内に、あらかじめpH7〜14に調整されている塩基性溶液がpH0〜7の酸性に変わること、または、あらかじめpH0〜7に調整されている酸性溶液がpH7〜14の塩基性に変わること、を特徴とする合成方法である。ここで、「原料溶液」とは、「あらかじめpH7〜14に調整されている塩基性溶液」または「あらかじめpH0〜7に調整されている酸性溶液」を意味しており、「混合開始」とは、これらのいずれかの原料溶液が、もう1種の「原料溶液」と混合することによって化学反応が開始する時点を意味する。すなわち、図1中、原料供給装置11内の原料溶液(1−1)が送液管11を通してミキサー20に導入され、かつ、原料供給装置12内の原料溶液(1−2)が送液管12を通してミキサー20に導入された時点であって、これらの物質の混合が開始した時点を意味する。   The synthesis method of the present invention is a synthesis method using the above-mentioned flow reactor, wherein the basic pH is adjusted to pH 7-14 within 60 seconds from the start of mixing of at least two kinds of raw material solutions in the flow reactor. The synthesis method is characterized in that the solution is changed to an acidic solution of pH 0 to 7, or an acidic solution which has been adjusted to pH 0 to 7 is changed to a basic solution of pH 7-14. Here, the “raw material solution” means “a basic solution that has been previously adjusted to pH 7 to 14” or “an acidic solution that has been previously adjusted to pH 0 to 7”. Means the point at which a chemical reaction starts when any one of these raw material solutions is mixed with another “raw material solution”. That is, in FIG. 1, the raw material solution (1-1) in the raw material supply device 11 is introduced into the mixer 20 through the liquid supply pipe 11, and the raw material solution (1-2) in the raw material supply device 12 is supplied to the liquid supply pipe. It means the point in time when it is introduced into the mixer 20 through 12 and when the mixing of these substances starts.

本発明の合成方法において、「少なくとも2種の原料溶液」のうち1種(原料溶液(1−1))は、具体的には、化学反応前の物質と、塩基または酸とを、水や有機溶媒などの溶媒を用いて、pH7〜14に調整されている塩基性容液であるか、または、pH0〜7に調整した酸性溶液である。この原料溶液のうち1種(原料溶液(1−1))は、塩基性溶液でも酸性溶液でもいずれでもよいが、あらかじめpH7〜14に調整されている塩基性溶液であることが好ましい。前記塩基性溶液の溶媒としては原料溶液(1−1)に含まれる原料物質を溶解するものであれば限定されないが、水、水溶液、有機溶媒、または水および有機溶媒が混合したものがあげられ、水または水溶液であることが好ましい。   In the synthesis method of the present invention, one of the “at least two types of raw material solutions” (raw material solution (1-1)) is specifically prepared by converting a substance before a chemical reaction and a base or acid into water or It is a basic solution adjusted to pH 7 to 14 using a solvent such as an organic solvent, or an acidic solution adjusted to pH 0 to 7. One of the raw material solutions (raw material solution (1-1)) may be either a basic solution or an acidic solution, but is preferably a basic solution that has been adjusted to pH 7-14 in advance. The solvent of the basic solution is not limited as long as it dissolves the raw material contained in the raw material solution (1-1), and examples thereof include water, an aqueous solution, an organic solvent, or a mixture of water and an organic solvent. , Water or an aqueous solution.

本発明の合成方法においては、少なくとも2種の原料溶液のうち、もう1種(原料溶液(1−2))は、ミキサー20内において、原料溶液(1−1)中の原料物質と化学反応する溶液である。前記原料溶液の溶媒としては、原料溶液(1−2)に含まれる原料物質を溶解するものであれば限定されないが、水、水溶液、有機溶媒、または水および有機溶媒が混合したものがあげられ、有機溶媒であることが好ましい。   In the synthesis method of the present invention, of the at least two types of raw material solutions, another type (raw material solution (1-2)) is chemically reacted with the raw material in the raw material solution (1-1) in the mixer 20. Solution. The solvent of the raw material solution is not limited as long as it can dissolve the raw material contained in the raw material solution (1-2), and examples thereof include water, an aqueous solution, an organic solvent, or a mixture of water and an organic solvent. And an organic solvent.

本発明の合成方法においては、混合開始後0秒から60秒の短時間内に、化学反応により、あらかじめ調製されている塩基性または酸性の溶液のpHが変化する。この化学反応の時間(反応時間)は、ミキサー内に溶液が導入(注入)されて混合開始の時点から、混合溶液がミキサーの排出口を出て反応管21内を移動し、管外に排出されるかまたは次のミキサー30(後述の図2で説明する)に導入されるまでの時点を意味する。この時間は、合成開始後0秒に限りなく近い短時間でもよく(例えば、0.01秒〜0.1秒以内、または、0.1秒〜1秒以内など)、また長時間であっても0〜60秒の間が好ましい。上述のように、本発明は、フローリアクターを利用した効率的な混合を行うことにより、塩基性から酸性へ、または、酸性から塩基性への短時間の変換(もしくは瞬間的スイッチ)を可能にしている。   In the synthesis method of the present invention, the pH of a previously prepared basic or acidic solution changes due to a chemical reaction within a short time of 0 to 60 seconds after the start of mixing. The time (reaction time) of this chemical reaction is such that the mixed solution exits the outlet of the mixer, moves inside the reaction tube 21 and is discharged out of the tube from the time when the solution is introduced (injected) into the mixer and mixing is started. Or until it is introduced into the next mixer 30 (described below in FIG. 2). This time may be as short as 0 seconds after the start of the synthesis (for example, within 0.01 seconds to 0.1 seconds, or within 0.1 seconds to 1 second, etc.) and may be long. Is also preferably between 0 and 60 seconds. As described above, the present invention enables a short-time conversion (or instantaneous switch) from basic to acidic or from acidic to basic by performing efficient mixing using a flow reactor. ing.

本発明の合成方法において、図1は、原料溶液(1−1)と原料溶液(1−2)の2種類の物質が反応する場合のフローリアクター100の例を示しているが、原料溶液(1−1)と反応する物質は、原料溶液(1−2)のみに限定されない。例えば、原料溶液(1−2)以外の原料溶液(1−3)〜原料溶液(1−9)のいずれか1種以上を、原料溶液(1−2)と同様に、それぞれ送液管130、140、150、160、170、180および190を通してすべてミキサー20に導入することができるように配管することによって、目的とする化学反応を行っても良い。原料溶液(1−1)と反応する物質の数としては、1種または2種であるのが好ましい。   In the synthesis method of the present invention, FIG. 1 shows an example of the flow reactor 100 in a case where two kinds of substances of a raw material solution (1-1) and a raw material solution (1-2) react. The substance that reacts with 1-1) is not limited to only the raw material solution (1-2). For example, as in the case of the raw material solution (1-2), one or more of any one of the raw material solutions (1-3) to the raw material solution (1-9) other than the raw material solution (1-2) is supplied to the liquid supply pipe 130. , 140, 150, 160, 170, 180, and 190, piping may be performed such that they can be introduced into the mixer 20, thereby performing a desired chemical reaction. The number of substances that react with the raw material solution (1-1) is preferably one or two.

本発明の合成方法において、図1における反応管21を通して移動した混合後の溶液(図中、生成物2と表す)は、続けて、ミキサー30に導入されてもよい。この場合について、図2のフローリアクター100を表す概略図を用いて説明する。本発明においては、混合後の溶液2(生成物2)の導入口とは別のミキサー30の導入口に、溶媒22(図中の22は溶媒供給装置を含む)が送液管220を通してミキサー30に注入(または導入)される。ミキサー30の内部において、生成物2を含む溶液と溶媒22との混合による状態変化が起こるが、本発明においては、この状態変化は、溶媒22の注入によって、生成物2を含有する混合後の溶液を1.1倍以上に希釈する工程であることが好ましく、すなわち、溶媒22は、生成物2を含有する混合後の溶液を希釈することのできる溶媒であることが好ましい。ミキサー30で混合されて希釈された容液は、反応管31を通して移動し、生成物2を含有する溶液の状態で、目的の分子構造などの状態を安定に保ったまま得ることができる。   In the synthesis method of the present invention, the solution after mixing (represented as product 2 in the figure) moved through the reaction tube 21 in FIG. 1 may be continuously introduced into the mixer 30. This case will be described with reference to a schematic diagram showing the flow reactor 100 of FIG. In the present invention, a solvent 22 (22 in the figure includes a solvent supply device) is passed through a liquid sending pipe 220 to an inlet of a mixer 30 different from the inlet of the solution 2 (product 2) after mixing. 30 is injected (or introduced). In the mixer 30, a state change occurs due to the mixing of the solution containing the product 2 and the solvent 22. In the present invention, this state change is caused by the injection of the solvent 22 after the mixing containing the product 2. Preferably, the step of diluting the solution is 1.1 times or more, that is, the solvent 22 is preferably a solvent capable of diluting the mixed solution containing the product 2. The solution mixed and diluted by the mixer 30 moves through the reaction tube 31 and can be obtained in the state of the solution containing the product 2 while maintaining the state of the target molecular structure and the like stably.

本発明の合成方法において、「溶媒の注入により混合後の溶液を1.1倍以上に希釈する」工程は、生成物2を含有する混合後の溶液と、溶媒22とがミキサー内部において初めて混合した時点から短時間に混合が行われることであり、混合開始0秒から0.1〜60秒以内に、均一な混合が行われて希釈されることが好ましく、均一な混合が行われるまでの時間は、短いほど好ましい。
また、生成物2がミキサー30内において希釈される場合、図2では、生成物2を含有する溶液と溶媒22の2種類の物質が混合する場合の例を示しているが、生成物2を含有する溶液を希釈する溶媒は溶媒22のみに限定されない。例えば、溶媒22以外の溶媒23〜溶媒29のいずれか1種以上を、溶媒22と同様に、それぞれ対応する送液管230、240、250、260、270、280および290を通してすべてミキサー30に導入することができるように配管することによって、目的とする希釈を行っても良い。よって、ミキサー20において混合後の溶液(生成物2)をミキサー30における溶媒の注入により希釈する溶媒の種類の数としては、1種または2種であるのが好ましい。
In the synthesis method of the present invention, the step of “diluting the mixed solution by 1.1 times or more by injecting a solvent” is a step in which the mixed solution containing the product 2 and the solvent 22 are first mixed in the mixer. It is that mixing is performed in a short time from the time when it is performed, and it is preferable that uniform mixing is performed and diluted within 0.1 to 60 seconds from the start of mixing, and until uniform mixing is performed. The shorter the time, the better.
Further, when the product 2 is diluted in the mixer 30, FIG. 2 shows an example in which a solution containing the product 2 and two kinds of substances of the solvent 22 are mixed. The solvent for diluting the contained solution is not limited to the solvent 22 alone. For example, any one or more of the solvents 23 to 29 other than the solvent 22 are all introduced into the mixer 30 through the corresponding liquid sending pipes 230, 240, 250, 260, 270, 280 and 290, similarly to the solvent 22. The desired dilution may be performed by piping so as to perform the dilution. Therefore, it is preferable that the number of types of the solvent to be used for diluting the solution (product 2) after mixing in the mixer 20 by injecting the solvent into the mixer 30 is one or two.

本発明の合成方法においては、前記原料溶液の混合開始後に、溶媒の注入により混合後の溶液を希釈することが好ましく、その場合の希釈の程度としては、少量でも溶媒が注入することが好ましく、希釈の倍率としては、1.1倍以上に希釈することが好ましく、希釈倍率は高いほど好ましい。   In the synthesis method of the present invention, after the mixing of the raw material solution is started, it is preferable to dilute the mixed solution by injecting a solvent. The dilution ratio is preferably 1.1 times or more, and the higher the dilution ratio, the better.

本発明のフローリアクターの各部について、図1または図2を用いて、以下に詳細に説明する。前記11で表される原料溶液供給装置は、液状の原料物質を含有するの原料溶液2を連続的に供給できる器具や装置であれば特に限定されず、市販のものを使用することが可能であり、具体的には、ガスタイトシリンジおよびシリンジポンプなどを用いた送液ポンプなどがあげられ、特に限定されない。前記12で表される原料溶液(1−2)を供給する原料溶液供給装置、または図2中の溶媒供給装置22についても、前記11と同様のものがあげられる。溶液の流量は適当な機器により変化させることができる。さらに、最終的に回収する生成物の量(収量)については、原料溶液を連続的に供給している限り、連続的に排出される反応後の溶液(反応液)の回収時間を長くすることにより、より多くの生成物を回収することができる。   Each part of the flow reactor of the present invention will be described below in detail with reference to FIG. 1 or FIG. The raw material solution supply device represented by 11 is not particularly limited as long as it can continuously supply the raw material solution 2 containing a liquid raw material, and a commercially available one can be used. Specific examples include, but are not particularly limited to, a gas-tight syringe and a liquid feed pump using a syringe pump. The raw material solution supply device for supplying the raw material solution (1-2) represented by 12 or the solvent supply device 22 in FIG. The flow rate of the solution can be changed by appropriate equipment. Furthermore, regarding the amount (yield) of the finally recovered product, as long as the raw material solution is continuously supplied, the recovery time of the continuously discharged solution (reaction solution) after the reaction should be extended. As a result, more products can be recovered.

本発明のフローリアクターにおいて、図1または図2中、送液管110および120または反応管21および31は、ポリテトラフルオロエチレン(PTFE)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂などの樹脂製、ステンレス鋼などの金属製などの材質のものがあげられ、水や有機溶媒、温度変化によって変質や腐食しないものが好ましい。これらの送液管や反応管は、温度を変えられるように、加熱機器(ヒーター)や冷却装置が付属することができる。具体的には、オイルバス、ウォーターバスなどの恒温槽や温風恒温槽による加熱、アルコール、エチレングリコール、液体窒素などの冷媒を入れたクライオスタットなどの恒温槽による冷却、送液管や反応管の周囲に線状の電熱ヒーターやリボンヒーターなどを巻くことによる通電加熱、などの方法により、送液管や反応管の周囲の温度を変化させることにより、反応温度や液体の輸送の温度を調整することができる。送液管および反応管の材質は、−200℃〜100℃の温度変化に耐久性のあるものが好ましい。送液管および反応管の形状は、特に限定されないが、後述する、ミキサー内部の流路と同程度の内径であることが好ましい。本発明のフローリアクターにおいて、送液管および反応管の内径は、様々な大きさのものが使用でき、数十〜数百μmオーダー、数mmオーダー、数cmオーダー、さらにそれ以上の内径のものが使用可能である。それぞれの内径は10μm〜5cmが好ましく、0.1mm〜1cmがより好ましく、0.1mm〜2mmが特に好ましい。具体的には、流路内径1mm以下のミキサー(マイクロミキサー)を用いる場合、送液管および反応管の内径は、内径が0.15mm〜1mmの範囲であることが好ましい。送液管および反応管の長さは、特に限定されないが、ミキサーでの混合後の反応管において混合や反応が十分行われる長さであればよく、例えば、流路内径1mm以下のミキサーを用いる場合、100mm〜1000mmの長さであるのが好ましく、200mm〜500mmの長さであるのがより好ましい。   In the flow reactor of the present invention, in FIG. 1 or FIG. 2, the liquid sending pipes 110 and 120 or the reaction pipes 21 and 31 are made of resin such as polytetrafluoroethylene (PTFE) resin and polyetheretherketone (PEEK) resin. Materials such as stainless steel and other metal materials are preferable, and those which do not deteriorate or corrode due to water, organic solvents, and temperature changes are preferable. A heating device (heater) and a cooling device can be attached to these liquid sending tubes and reaction tubes so that the temperature can be changed. Specifically, heating in a constant temperature bath such as an oil bath or a water bath or a hot air constant temperature bath, cooling in a constant temperature bath such as a cryostat containing a refrigerant such as alcohol, ethylene glycol, or liquid nitrogen, and supply of liquid and reaction tubes. Adjusting the reaction temperature and liquid transport temperature by changing the temperature around the liquid feed tube or reaction tube by a method such as energizing heating by winding a linear electric heater or ribbon heater around the periphery. be able to. It is preferable that the material of the liquid sending tube and the reaction tube be durable to a temperature change of −200 ° C. to 100 ° C. The shapes of the liquid sending tube and the reaction tube are not particularly limited, but preferably have the same inner diameter as the flow path inside the mixer described later. In the flow reactor of the present invention, the inside diameters of the liquid sending tube and the reaction tube can be of various sizes, several tens to several hundreds μm order, several mm order, several cm order, and even more. Can be used. Each inner diameter is preferably from 10 μm to 5 cm, more preferably from 0.1 mm to 1 cm, particularly preferably from 0.1 mm to 2 mm. Specifically, when a mixer (micromixer) having a flow path inner diameter of 1 mm or less is used, the inner diameter of the liquid sending tube and the reaction tube is preferably in the range of 0.15 mm to 1 mm. The lengths of the liquid sending tube and the reaction tube are not particularly limited, and may be any lengths that allow sufficient mixing and reaction in the reaction tube after mixing in the mixer. For example, a mixer having a channel inner diameter of 1 mm or less is used. In this case, the length is preferably from 100 mm to 1000 mm, and more preferably from 200 mm to 500 mm.

本発明の合成方法において、温度範囲は、溶媒が水または水溶液を含有する場合、溶媒が凍らない範囲であることが好ましく、−10〜+40℃の温度範囲が好ましい。   In the synthesis method of the present invention, when the solvent contains water or an aqueous solution, the temperature range is preferably such that the solvent does not freeze, and the temperature range is preferably -10 to + 40 ° C.

本発明の「フローリアクターを用いる合成方法」において、図1または図2中にミキサー20また30として記載されている部分は、一般に、「マイクロフローリアクター」(または「マイクロリアクター」、「マイクロミキサー」、「マイクロ熱交換器」、「フローマイクロ反応器))などと呼ばれている市販の装置に使用されているものを利用できる。これらの「マイクロフローリアクター」は、マイクロメーターオーダー〜1mm以下の内径の流路を有する空間において液状物質など流体の混合や化学反応を行うことを目的とした装置であるが、本発明の「フローリアクター」を用いる合成方法は、原料溶液の混合開始から短時間内にpHを変換することを特徴とした合成方法であることから、この合成の条件を満たす装置であれば、フローリアクター内の空間の大きさは、マイクロメーターオーダー〜1mm以下の流路に限定されない。したがって、ミキサー内部の流路は、数十〜数百μmオーダー、数mmオーダー、数cmオーダー、さらにそれ以上のものが使用可能である。なお、本発明においては、ミキサーの流路の内径としては、内径が10μm〜5cmのものが好ましく、0.1mm〜1cmのものがより好ましく、0.15mm〜1mmのものが特に好ましく、本発明のフローリアクターとしては、マイクロフローリアクターであることが好ましい。
また、本発明の「フローリアクター」は、用途に応じた独特の流路形状構造を有することにより、異なる効果を得ることができる。図1または図2におけるミキサーは導入口が2個、排出口が1個のものであり、このような形状であれば特に限定されないが、例えば、V字型、T字型などのものがあげられるが、本発明では、いずれの形状のものが使用できる。また、原料溶液が3種以上の場合、導入口が3流路〜9流路のものを使用することができる。ミキサーの材質としては、特に限定されないが、金属、ガラス、単結晶シリコン、樹脂などの材質があげられ、強度、温度の伝熱性、溶媒の耐腐食性の点から、ステンレス鋼の金属製であることが好ましい。
In the “synthesis method using a flow reactor” of the present invention, a portion described as a mixer 20 or 30 in FIG. 1 or FIG. 2 generally includes a “microflow reactor” (or “microreactor”, “micromixer”). , "Micro heat exchangers", "flow micro reactors"), etc. These "micro flow reactors" are available on the order of micrometers up to 1 mm. Although it is an apparatus aimed at mixing a fluid such as a liquid substance or performing a chemical reaction in a space having a flow path with an inner diameter, the synthesis method using the “flow reactor” of the present invention requires a short time from the start of mixing of the raw material solution. Since it is a synthesis method characterized by converting the pH into, if the apparatus satisfies the conditions of this synthesis, Size of the space in the row reactor is not limited to the following flow path micrometer order ~ 1 mm. Accordingly, the flow path inside the mixer can be on the order of tens to hundreds of μm, on the order of several mm, on the order of several cm, and even more. In the present invention, the inner diameter of the flow path of the mixer is preferably 10 μm to 5 cm, more preferably 0.1 mm to 1 cm, particularly preferably 0.15 mm to 1 mm. The flow reactor is preferably a micro flow reactor.
Further, the “flow reactor” of the present invention can obtain different effects by having a unique channel shape structure according to the application. The mixer in FIG. 1 or FIG. 2 has two inlets and one outlet, and is not particularly limited as long as it has such a shape, and examples thereof include V-shaped and T-shaped ones. However, in the present invention, any shape can be used. When three or more raw material solutions are used, those having 3 to 9 inlets can be used. The material of the mixer is not particularly limited, and examples thereof include materials such as metal, glass, single-crystal silicon, and resin, and are made of stainless steel metal from the viewpoint of strength, heat conductivity of temperature, and corrosion resistance of a solvent. Is preferred.

本発明の合成方法において、前記原料溶液が塩基性溶液である場合、塩基性溶液を調製するために用いる塩基としては、ピリジン、メチルピリジン、ジメチルピリジン、N,N−ジメチル−4−アミノピリジン、N−メチルモルホリン(NMM)、N,N−ジメチルエチルアミン、N−メチルピペリジン、N,N−ジエチルメチルアミン、メチルアミン、ジメチルアミン、エチルアミン、トリエチルアミン、アニリン、ジメチルアニリン、シクロヘキシルアミン、N,N−ジイソプロピルエチルアミン、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン、ピペラジン、1,4−エチレンピペラジン、イミダゾール、オキサゾール、1,8−ビス(ジメチルアミノ)ナフタレン、1,4−ジアザビシクロ[2.2.2]オクタン、トリエタノールアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミンなどの有機塩基;
水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化ベリリウム(Be(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化ストロンチウム(Sr(OH))、水酸化バリウム(Ba(OH))、水酸化アルミニウム(Al(OH))、水酸化鉄(II、III)(Fe(OH)、Fe(OH))、水酸化マンガン(Mn(OH))、水酸化亜鉛(Zn(OH))、水酸化銅(II)(Cu(OH))、水酸化ランタン(La(OH))、炭酸水素ナトリウム(NaHCO)、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸ルビジウム(RbCO)、炭酸セシウム(CsCO)、リン酸三ナトリウム(NaPO)、リン酸三カリウム(KPO)、リン酸水素二ナトリウム(NaHPO)、リン酸水素二カリウム(KHPO)、アンモニア(NH)、などの無機塩基;またはこれらの塩基と反応して得られる塩があげられる。これらの中でも有機塩基であることが好ましく、またこれらの塩基は置換基を有していてもよい。これらのうち、原料溶液としてあらかじめ塩基性に調整する場合の塩基としては、25℃の水溶液中における酸解離定数(pK)が5〜12のものが好ましい。
In the synthesis method of the present invention, when the raw material solution is a basic solution, the base used for preparing the basic solution includes pyridine, methylpyridine, dimethylpyridine, N, N-dimethyl-4-aminopyridine, N-methylmorpholine (NMM), N, N-dimethylethylamine, N-methylpiperidine, N, N-diethylmethylamine, methylamine, dimethylamine, ethylamine, triethylamine, aniline, dimethylaniline, cyclohexylamine, N, N- Diisopropylethylamine, diazabicyclononene (DBN), diazabicycloundecene, piperazine, 1,4-ethylenepiperazine, imidazole, oxazole, 1,8-bis (dimethylamino) naphthalene, 1,4-diazabicyclo [2.2 .2] octane, Triethanolamine, tetramethylethylenediamine, organic bases such as hexamethylenediamine;
Lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), beryllium hydroxide (Be (OH) 2 ), magnesium hydroxide ( Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), strontium hydroxide (Sr (OH) 2 ), barium hydroxide (Ba (OH) 2 ), aluminum hydroxide (Al (OH) 3 ) , Iron hydroxide (II, III) (Fe (OH) 2 , Fe (OH) 3 ), manganese hydroxide (Mn (OH) 2 ), zinc hydroxide (Zn (OH) 2 ), copper hydroxide (II ) (Cu (OH) 2 ), lanthanum hydroxide (La (OH) 3 ), sodium bicarbonate (NaHCO 3 ), lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), trisodium phosphate (Na 3 PO 4 ), tripotassium phosphate (K 3 PO 3) 4 ) inorganic bases such as disodium hydrogen phosphate (Na 2 HPO 4 ), dipotassium hydrogen phosphate (K 2 HPO 4 ), ammonia (NH 3 ); or salts obtained by reacting with these bases can give. Among them, organic bases are preferable, and these bases may have a substituent. Among these, as the base when the raw material solution is adjusted to be basic in advance, those having an acid dissociation constant (pK a ) of 5 to 12 in an aqueous solution at 25 ° C. are preferable.

本発明の合成方法において、前記原料溶液が酸性溶液である場合、酸性溶液を調製するために用いる酸としては、塩酸(HCl)、次亜塩素酸(HClO)、亜塩素酸(HClO)、塩素酸(HClO)、過塩素酸(HClO)、次過塩素酸(HClO)、臭化水素酸(HBr)、次亜臭素酸(HOBr)、臭素酸(HBrO)、フッ化水素酸(HF)、硝酸(HNO)、硫酸(HSO)、過硫酸(HSO)、リン酸(HPO)、過リン酸(HPO)、ヘキサフルオルロリン酸(HPF)、リン酸二水素カリウム(KHPO)、リン酸二水素ナトリウム(NaHPO)、ヘキサフルオロアンチモン酸(HFSb)、ヨウ素酸(HIO)、次亜ヨウ素酸(HIO)、過ヨウ素酸(HIO、HIO)、ホウ酸(B(OH))、テトラフルオロホウ酸(HBF)、炭酸(HCO)、過炭酸(HCO、H)、過マンガン酸(HMnO)、クロム酸(HCrO)、酢酸(CHCOOH)、過酢酸(CHCOOH)、トリフルオロ酢酸(CFCOOH)、クロロ酢酸(ClCHCOOH)、ジクロロ酢酸(ClCOOH)、トリクロロ酢酸(ClCCOOH)、安息香酸(CCOOH)、過安息香酸(CCOOH)、メタクロロ安息香酸(mClCCOOH)、メタンスルホン酸(CHSOH)、エタンスルホン酸(CSOH)、ベンゼンスルホン酸、p−トルエンスルホン酸(CHSOH)、トリフルオロメタンスルホン酸(CFSOH)、クエン酸(C(OH)(CHCOOH)COOH)、ギ酸(HCOOH)、グルコン酸(HOCHCH(OH)CH(OH)CH(OH)CH(OH)COOH)、乳酸(CHCH(OH)COOH)、シュウ酸((COOH))、酒石酸((CH(OH)COOH))、チオシアン酸(HSCN)、などの無機酸、有機酸またはそれらと反応して得られる塩があげられる。 In the synthesis method of the present invention, when the raw material solution is an acidic solution, the acid used for preparing the acidic solution includes hydrochloric acid (HCl), hypochlorous acid (HClO), chlorous acid (HClO 2 ), Chloric acid (HClO 3 ), perchloric acid (HClO 4 ), hypoperchloric acid (HClO 5 ), hydrobromic acid (HBr), hypobromous acid (HOBr), bromic acid (HBrO 3 ), hydrogen fluoride Acid (HF), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), persulfuric acid (H 2 SO 5 ), phosphoric acid (H 3 PO 4 ), perphosphoric acid (H 3 PO 5 ), hexafluoro Loric acid (HPF 6 ), potassium dihydrogen phosphate (KH 2 PO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), hexafluoroantimonic acid (HF 6 Sb), iodic acid (HIO 3 ), Iodic acid (HIO), Iodate iodide (HIO 4, H 5 IO 6 ), boric acid (B (OH) 3), tetrafluoroboric acid (HBF 4), carbonate (H 2 CO 3), percarbonate (H 2 CO 4, H 2 C 2 O 6 ), permanganic acid (HMnO 4 ), chromic acid (H 2 CrO 4 ), acetic acid (CH 3 COOH), peracetic acid (CH 3 COO 2 H), trifluoroacetic acid (CF 3 COOH), chloroacetic acid (ClCH 2 COOH), dichloroacetic acid (Cl 2 COOH), trichloroacetic acid (Cl 3 CCOOH), benzoic acid (C 6 H 5 COOH), perbenzoic acid (C 6 H 5 COO 2 H), metachlorobenzoic acid (mClC) 6 H 4 COO 2 H), methanesulfonic acid (CH 3 SO 3 H), ethanesulfonic acid (C 2 H 5 SO 3 H ), benzenesulfonic acid, p- toluenesulfonic acid (CH 3 C 6 H 4 SO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H), citric acid (C (OH) (CH 2 COOH) 2 COOH), formic acid (HCOOH), gluconic acid (HOCH 2) CH (OH) CH (OH) CH (OH) CH (OH) COOH), lactic acid (CH 3 CH (OH) COOH ), oxalic acid ((COOH) 2), tartaric acid ((CH (OH) COOH) 2) And inorganic acids such as thiocyanic acid (HSCN), organic acids or salts obtained by reacting with them.

本発明の合成方法において、前記原料溶液の溶媒としては、水、水溶液、有機溶媒、は水と有機溶媒の混合溶媒、複数の有機溶媒(または有機化合物を溶解した有機溶液)の混合溶媒があげられ、水または有機溶媒が好ましく、有機溶媒がより好ましい。具体的に、アセトニトリル(AN)、アセトン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP);酢酸、ギ酸、酢酸エチル、酢酸ブチルなどのエステル類;ジクロロメタン(DCM)、クロロホルム;ペンタン、ヘキサン、シクロヘキサン、オクタンなどの直鎖状もしくは分岐状のアルカン;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、1−メトキシ−2−プロパノール(プロピレングリコール1−モノメチルエーテル)、プロピレングリコール1−モノメチルエーテル2−アセタート、ジエチルエーテルなどのアルコールやエーテル類;アセトン、2−ブタノン、2−ペンタノン、3−ペンタノンなどのケトン類;トルエン、キシレン、クロロベンゼン、トリクロロベンゼン、アニリン、フェノール、ジフェニルエーテルなどの芳香族炭化水素;ピリジン、ピロリジン、テトラヒドロフラン(THF)、テトラヒドロチオフェン、ピロール、フラン、チオフェン、ピペリジン、テトラヒドロピラン、オキサゾール、チアゾール、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン、エチレンオキシド、モルホリン、ピリダジン、ピラジン、ピリミジン、インドール、キノリン、イソキノリン、1−ベンゾフラン、などの複素環式化合物;などが有機溶媒または溶媒に含まれる有機化合物としてあげられる。   In the synthesis method of the present invention, examples of the solvent of the raw material solution include water, an aqueous solution, an organic solvent, a mixed solvent of water and an organic solvent, and a mixed solvent of a plurality of organic solvents (or an organic solution in which an organic compound is dissolved). And water or an organic solvent is preferred, and an organic solvent is more preferred. Specifically, acetonitrile (AN), acetone, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP); acetic acid, formic acid, ethyl acetate, butyl acetate and other esters; dichloromethane (DCM), chloroform; linear or branched alkanes such as pentane, hexane, cyclohexane, and octane; methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, 1-methoxy-2-propanol (propylene glycol 1 Alcohols and ethers such as propylene glycol 1-monomethyl ether 2-acetate and diethyl ether; keto such as acetone, 2-butanone, 2-pentanone and 3-pentanone. Aromatic hydrocarbons such as toluene, xylene, chlorobenzene, trichlorobenzene, aniline, phenol and diphenyl ether; pyridine, pyrrolidine, tetrahydrofuran (THF), tetrahydrothiophene, pyrrole, furan, thiophene, piperidine, tetrahydropyran, oxazole, thiazole, An organic solvent or a heterocyclic compound such as 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, ethylene oxide, morpholine, pyridazine, pyrazine, pyrimidine, indole, quinoline, isoquinoline, 1-benzofuran; Examples include organic compounds contained in the solvent.

本発明の合成方法における、前記原料溶液の混合後に希釈に使用する溶媒としては、有機溶媒、水、水溶液、有機溶媒と水の混合溶媒、複数の有機溶媒(または有機化合物を溶解した有機溶液)の混合溶媒があげられるが、前記した「原料溶液の溶媒」であげたものと同様のものが使用できる。希釈に使用する溶媒としては、有機溶媒または水が好ましく、有機溶媒がより好ましい。有機溶媒を使用する場合、酸または塩基の溶解性が比較的低い有機溶媒であれば特に限定されず、水との混和性が低く分液に適する溶媒が好ましい。前記有機溶媒のうち、例えば、酢酸エチル、ジクロロメタン、クロロホルム、ジエチルエーテル、ヘキサン、ペンタン、アセトニトリル、テトラヒドロフランなどがあげられ、酢酸エチルまたはジクロロメタンが好ましい。   In the synthesis method of the present invention, the solvent used for dilution after mixing the raw material solutions is an organic solvent, water, an aqueous solution, a mixed solvent of an organic solvent and water, a plurality of organic solvents (or an organic solution in which an organic compound is dissolved). And the same solvents as those described above in "Solvent for Raw Material Solution" can be used. As a solvent used for dilution, an organic solvent or water is preferable, and an organic solvent is more preferable. When an organic solvent is used, the solvent is not particularly limited as long as it is an organic solvent having a relatively low acid or base solubility, and a solvent having low miscibility with water and suitable for liquid separation is preferable. Among the organic solvents, for example, ethyl acetate, dichloromethane, chloroform, diethyl ether, hexane, pentane, acetonitrile, tetrahydrofuran and the like can be mentioned, and ethyl acetate or dichloromethane is preferable.

本発明における「フローリアクターを用いた合成方法」によって得られる物質としては、有機化合物、無機化合物のいずれでもよく、それらの複合体であってもよい。具体的な化合物としては、顔料、染料、食用色素、有機エレクトロルミネッセンス材料などの色素化合物材料や有機半導体材料;除草剤、殺虫剤、肥料など農薬の原体化合物;医薬中間体;N−カルボキシ無水物(NCA)などのアミノ酸などの生体高分子関連の化合物;ポリオール、イソシアネートなどの樹脂材料前駆体;エポキシ樹脂、ポリカーボネート樹脂、ウレタン樹脂など熱可塑性樹脂や熱硬化性、機能性樹脂などの高分子化合物;過酸化水素、過酢酸などのペルオキシド構造(―O―O―)を有する不安定基を有する化合物;ニトロ化などの高温反応、ホスゲンまたはホスゲン誘導体などの毒劇物反応の少量−連続合成が必要な化合物;フラーレン、カーボンナノチューブ、グラフェンまたはこれらに炭素材料に可溶性置換基を付与した化合物;などの合成に応用することができる。   The substance obtained by the “synthesis method using a flow reactor” in the present invention may be any of an organic compound and an inorganic compound, and may be a complex thereof. Specific compounds include pigment compound materials such as pigments, dyes, food colors, organic electroluminescent materials and organic semiconductor materials; herbicides, insecticides, fertilizers and other agricultural chemicals; pharmaceutical intermediates; Related to biopolymers such as amino acids such as products (NCA); precursors of resin materials such as polyols and isocyanates; polymers such as thermoplastic resins such as epoxy resins, polycarbonate resins and urethane resins, and thermosetting and functional resins Compounds; compounds having an unstable group having a peroxide structure (—O—O—), such as hydrogen peroxide and peracetic acid; small-continuous synthesis of high-temperature reactions such as nitration, and toxic reactions such as phosgene or phosgene derivatives Compounds that require: a fullerene, carbon nanotube, graphene, or any of these compounds having a soluble substituent on the carbon material Compounds given the; can be applied to the synthesis of such.

本発明の合成方法において好ましい例としては、前記原料溶液に含まれる物質が、下記一般式(1−1)および(1−2)で表される化合物であることがあげられる。具体的には、下記一般式(1−1)で表される化合物を含有する原料溶液と、下記一般式(1−2)で表される化合物を含有する原料溶液とを、フローリアクターを用いる合成方法により混合し反応させることによって、下記一般式(2)で表される化合物を合成する方法であることが好ましい。なお、下記一般式(1−1)は、アミノ酸の一般的な構造式を表しており、例えば、R=R=H、m=1、M=H、の場合、α−アミノ酸を表し、Rを置換することによって多種のアミノ酸を表すことができる。また、この場合、下記一般式(2)は、「α−アミノ酸−N−カルボキシ無水物(通称NCA)」を表している。 As a preferred example in the synthesis method of the present invention, the substance contained in the raw material solution is a compound represented by the following general formulas (1-1) and (1-2). Specifically, a raw material solution containing a compound represented by the following general formula (1-1) and a raw material solution containing a compound represented by the following general formula (1-2) are used in a flow reactor. It is preferable to use a method of synthesizing a compound represented by the following general formula (2) by mixing and reacting by a synthesis method. In addition, the following general formula (1-1) represents a general structural formula of an amino acid. For example, when R 1 = R 3 = H, m = 1, and M = H, it represents an α-amino acid. it can represent a variety of amino acids by replacing the R 2. In this case, the following general formula (2) represents “α-amino acid-N-carboxy anhydride (commonly called NCA)”.

Figure 2020011948
Figure 2020011948

[式中、R〜Rは、それぞれ独立に、―H、―OH、―COOH、―COO、―CN、
置換基を有していてもよい炭素原子数0〜20のチオール基、
置換基を有していてもよい炭素原子数0〜20のスルホ基、
置換基を有していてもよい炭素原子数0〜20のアミノ基、
置換基を有していてもよい炭素原子数1〜20のシリル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20のシクロアルキル基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数2〜20のアルキニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数5〜20のシクロアルコキシ基、
置換基を有していてもよい炭素原子数1〜20のアシル基、
置換基を有していてもよい炭素原子数6〜20の芳香族炭化水素基、
置換基を有していてもよい炭素原子数2〜20の複素環基、または
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表し、
〜Rは、隣り合う基同士で互いに結合して環を形成していてもよい。
mは1〜6の整数を表し、mが2以上の場合、複数存在するRおよびRは、それぞれ互いに同一でも異なっていてもよい。
Mは水素原子またはアルカリ金属原子を表す。]
[Wherein, R 1 to R 3 each independently represent —H, —OH, —COOH, —COO , —CN,
A thiol group having 0 to 20 carbon atoms which may have a substituent,
A sulfo group having 0 to 20 carbon atoms which may have a substituent,
An amino group having 0 to 20 carbon atoms which may have a substituent,
A silyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
An alkynyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkoxy group having 5 to 20 carbon atoms which may have a substituent,
An acyl group having 1 to 20 carbon atoms which may have a substituent,
An aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
A heterocyclic group having 2 to 20 carbon atoms which may have a substituent, or an aryloxy group having 6 to 20 carbon atoms which may have a substituent;
R 1 to R 3 may be bonded to each other by adjacent groups to form a ring.
m represents an integer of 1 to 6, and when m is 2 or more, a plurality of R 2 and R 3 may be the same or different from each other.
M represents a hydrogen atom or an alkali metal atom. ]

Figure 2020011948
Figure 2020011948

[式中、XおよびYは、それぞれ独立に、―Cl、―OCCl
置換基を有していてもよい炭素原子数0〜20のチオ基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数2〜20の複素環基、または、
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表す。]
Wherein X and Y are each independently —Cl, —OCCl 3 ,
A thio group having 0 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
A heterocyclic group having 2 to 20 carbon atoms which may have a substituent, or
And represents an aryloxy group having 6 to 20 carbon atoms which may have a substituent. ]

Figure 2020011948
Figure 2020011948

[式中、R〜Rおよびmは、前記一般式(1−1)と同じ意味を表す。] [Wherein, R 1 to R 3 and m represent the same meaning as in the general formula (1-1). ]

本発明の合成方法において、前記原料溶液に含まれる物質が、上記一般式(1−1)および(1−2)で表される化合物であって、上記一般式(2)で表される化合物を得ることができる反応式は、一部(Mなど)を省略して下記式(3)のように表される。   In the synthesis method of the present invention, the substance contained in the raw material solution is a compound represented by the general formulas (1-1) and (1-2), and a compound represented by the general formula (2). Is obtained as shown in the following formula (3) by omitting a part (such as M).

Figure 2020011948
Figure 2020011948

以下、上記の合成方法について詳細を説明する。最初に、前記一般式(1−1)について説明する。   Hereinafter, the above synthesis method will be described in detail. First, the general formula (1-1) will be described.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数0〜20のチオ基」における「チオ基」は、「―S―H」または「―S―」を有する基を意味し、「置換基を有していてもよい炭素原子数0〜20のチオ基」における「置換基」は、「―S―」の一方に結合する置換基または金属原子を意味する。 In the general formula (1-1), the “thio group” in the “optionally substituted thio group having 0 to 20 carbon atoms” represented by R 1 to R 3 is represented by “—SH”. "Or a group having" -S- ", and the" substituent "in the" optionally substituted thio group having 0 to 20 carbon atoms "is bonded to one of" -S- " Means a substituent or a metal atom.

一般式(1−1)において、R〜Rで表される「置換基を有してもよい炭素原子数1〜20のスルホ基」における「スルホ基」は、「―SO―H」または「―SO―」を意味し、「置換基を有してもよい炭素原子数0〜20のスルホ基」における「置換基」は、「―SO―」の一方に結合する置換基または金属原子を意味する。 In the general formula (1-1), the “sulfo group” in the “optionally substituted sulfo group having 1 to 20 carbon atoms” represented by R 1 to R 3 is represented by “—SO 3 —H "or" -SO 3 - means ",""substituent at sulfo group" good carbon atoms 0 to 20 which may have a substituent "," - SO 3 - while binding to substitutions " Means a group or a metal atom.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数0〜20のアミノ基」における「炭素原子数0〜20のアミノ基」としては、具体的に、無置換アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基などがあげられる。 In the general formula (1-1), “amino group having 0 to 20 carbon atoms” in “amino group having 0 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples include an unsubstituted amino group; a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a methylpropylamino group, a di-t-butylamino group, a diphenylamino group, and the like.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数0〜20のシリル基」における「炭素原子数0〜20のシリル基」としては、具体的に、―SH、トリメチルシリル基、t−ブチルジメチルシリル基などがあげられる。 In the general formula (1-1), “silyl group having 0 to 20 carbon atoms” in “silyl group having 0 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples include —SH 3 , a trimethylsilyl group, a t-butyldimethylsilyl group, and the like.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」としては、具体的に、メチル基(―Me)、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などの直鎖状のアルキル基;イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソオクチル基などの分岐状のアルキル基があげられる。 In the general formula (1-1), “the number of carbon atoms” in the “optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms” represented by R 1 to R 3 Specific examples of the “1-20 linear or branched alkyl group” include a methyl group (—Me), an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. And linear alkyl groups such as decyl group; and branched alkyl groups such as isopropyl group, isobutyl group, s-butyl group, t-butyl group and isooctyl group.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数3〜20のシクロアルキル基」における「炭素原子数3〜20のシクロアルキル基」としては、具体的に、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などがあげられる。 In the general formula (1-1), “cycloalkyl having 3 to 20 carbon atoms” in “cycloalkyl group having 3 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples of the "group" include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基」としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、1−ヘキセニル基、イソプロペニル基、イソブテニル基、またはこれらのアルケニル基が複数結合した直鎖状もしくは分岐状のアルケニル基、などをあげることができる。 In the general formula (1-1), the “number of carbon atoms” in the “optionally substituted linear or branched alkenyl group having 2 to 20 carbon atoms” represented by R 1 to R 3 Examples of the 2-20 linear or branched alkenyl groups "include vinyl, 1-propenyl, allyl, 1-butenyl, 2-butenyl, 1-pentenyl, 1-hexenyl, and isopropenyl. Group, an isobutenyl group, or a linear or branched alkenyl group in which a plurality of these alkenyl groups are bonded.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数2〜20のアルキニル基」における「炭素原子数2〜20のアルキニル基」としては、エチニル基、「―C≡C―」を有する基があげられ、「置換基を有していてもよい炭素原子数2〜20のアルキニル基」における「置換基」は、「―C≡C―」の一方に結合する置換基または金属原子を意味する。 In the general formula (1-1), the “alkynyl group having 2 to 20 carbon atoms” in the “optionally substituted alkynyl group having 2 to 20 carbon atoms” represented by R 1 to R 3 Examples thereof include an ethynyl group and a group having “—C≡C—”, and the “substituent” in the “optionally substituted alkynyl group having 2 to 20 carbon atoms” includes “—C "C-" means a substituent or metal atom bonded to one of the "C-".

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基」としては、具体的に、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などの直鎖状のアルコキシ基;イソプロポキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、イソオクチルオキシ基などの分岐状のアルコキシ基があげられる。 In the general formula (1-1), “the number of carbon atoms” in the “optionally substituted linear or branched alkoxy group having 1 to 20 carbon atoms” represented by R 1 to R 3 Examples of the “1-20 linear or branched alkoxy groups” include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, and nonyloxy. Linear alkoxy groups such as a group and decyloxy group; and branched alkoxy groups such as an isopropoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group and an isooctyloxy group.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数5〜20のシクロアルコキシ基」における「炭素原子数5〜20のシクロアルコキシ基」としては、具体的に、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などのシクロアルキル基;1−アダマンチル基、2−アダマンチル基、などがあげられる。 In the general formula (1-1), “cycloalkoxy having 5 to 20 carbon atoms” in “cycloalkoxy group having 5 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples of the "group" include cycloalkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, and cyclodecyl group; 1-adamantyl group, 2-adamantyl group, and the like.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数1〜20のアシル基」における「炭素原子数1〜20のアシル基」としては、具体的に、ホルミル基、アセチル基、プロピオニル基、アクリリル基、ベンゾイル基などがあげられる。 In formula (1-1), “acyl group having 1 to 20 carbon atoms” in “acyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples include a formyl group, an acetyl group, a propionyl group, an acrylyl group, and a benzoyl group.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数6〜30の芳香族炭化水素基」における「炭素原子数6〜30の芳香族炭化水素基」としては、具体的に、フェニル基、ベンゾイル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基、ピレニル基、トリフェニレニル基、インデニル基、フルオレニル基などの芳香族炭化水素基(本発明における「芳香族炭化水素基」とは、アリール基または縮合多環芳香族基も含む)があげられる。 In the general formula (1-1), the “aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent” represented by “R 6 to C 3 ” represented by R 1 to R 3 . Specific examples of the "aromatic hydrocarbon group" include aromatic hydrocarbon groups such as phenyl group, benzoyl group, naphthyl group, biphenyl group, anthryl group, phenanthryl group, pyrenyl group, triphenylenyl group, indenyl group, and fluorenyl group. The “aromatic hydrocarbon group” in the present invention includes an aryl group and a condensed polycyclic aromatic group.

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数2〜20の複素環基」における「炭素原子数2〜20の複素環基」としては、具体的に、ピリジル基、ピリミジニル基、トリアジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチリジニル基、インドリル基、ベンゾイミダゾリル基、カルバゾニル基、カルボリニル基、アクリジニル基、フェナントロリニル基、フラニル基、ベンゾフラニル基、ジベンゾフラニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基などがあげられる。 In the general formula (1-1), the “heterocyclic group having 2 to 20 carbon atoms” in the “optionally substituted heterocyclic group having 2 to 20 carbon atoms” represented by R 1 to R 3 Specific examples of the `` group '' include a pyridyl group, a pyrimidinyl group, a triazinyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyridinyl group, an indolyl group, a benzimidazolyl group, a carbazonyl group, and a carbolinyl group. , Acridinyl group, phenanthrolinyl group, furanyl group, benzofuranyl group, dibenzofuranyl group, thienyl group, benzothienyl group, dibenzothienyl group, oxazolyl group, benzooxazolyl group, thiazolyl group, benzothiazolyl group, etc. .

一般式(1−1)において、R〜Rで表される「置換基を有していてもよい炭素原子数6〜20のアリールオキシ基」における「炭素原子数6〜20のアリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基などがあげられる。 In the general formula (1-1), “aryloxy group having 6 to 20 carbon atoms” in “aryloxy group having 6 to 20 carbon atoms which may have a substituent” represented by R 1 to R 3 Specific examples of the "group" include a phenyloxy group, a biphenylyloxy group, a naphthyloxy group, an anthracenyloxy group, and a phenanthrenyloxy group.

一般式(1−1)においてR〜Rで表される、
「置換基を有する炭素原子数0〜20のチオ基」、
「置換基を有する炭素原子数0〜20のスルホ基」、
「置換基を有する炭素原子数0〜20のアミノ基」、
「置換基を有する炭素原子数0〜20のシリル基」、
「置換基を有する炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」、
「置換基を有する炭素原子数3〜20のシクロアルキル基」、
「置換基を有する炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基」、
「置換基を有する炭素原子数2〜20のアルキニル基」、
「置換基を有する炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基」、
「置換基を有する炭素原子数3〜20のシクロアルコキシ基」、
「置換基を有する炭素原子数1〜20のアシル基」、
「置換基を有する炭素原子数6〜20の芳香族炭化水素基」、
「置換基を有する炭素原子数2〜20の複素環基」、または
「置換基を有する炭素原子数6〜20のアリールオキシ基」における「置換基」としては、
具体的に、水酸基(―OH)、ニトロ基(―NO)、ニトロソ基(―NO)、シアノ基(―CN)、カルボキシル基(―COOH)、―COO
―SO 、チオール基(―SH)、置換基を有するチオ基(―S―)、スルホンアミド(―S(=O)―NH)基、メシル基、トシル基などのスルホニル基(―S(=O)―)を有する基;
無置換アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、または炭素原子数6〜20のアリール基を有する一置換もしくは二置換アミノ基;
無置換シリル基、―SH、トリメチルシリル基、t−ブチルジメチルシリル基などの炭素原子数0〜20のシリル基;
メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、ペンチル基、n−ヘキシル基、イソヘキシル基、ヘプチル基、n−オクチル基、t−オクチル基、イソオクチル基、ノニル基、デシル基などの炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基;
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基などの炭素原子数3〜20のシクロアルキル基;
ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、1−ヘキセニル基、イソプロペニル基、イソブテニル基、またはこれらのアルケニル基が複数結合した炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基;
エチニル基、または「―C≡C―」を複数結合した炭素原子数2〜20の基;
メトキシ基、エトキシ基、プロポキシ基、t−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基などの炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基;
シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数3〜20のシクロアルコキシ基;
ホルミル基、アセチル基、プロピオニル基、アクリリル基、ベンゾイル基などの炭素原子数1〜20のアシル基
フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、トリフェニレニル基、インデニル基、フルオレニル基などの炭素原子数6〜20の芳香族炭化水素基;
ピリジル基、ピリミジニル基、トリアジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、ピラジニル基、ピリダジニル基、ピペリジニル基、ピペラジニル基、キノリル基、イソキノリル基、ナフチリジニル基、インドリル基、ベンゾイミダゾリル基、カルバゾニル基、カルボリニル基、アクリジニル基、フェナントロリニル基、フェナントリジニル基、ヒダントイン基、フラニル基、ベンゾフラニル基、ジベンゾフラニル基、ピラニル基、クマリニル基、イソベンゾフラニル基、キサンテニル基、オキサントレニル基、ピラノニル基、チエニル基、チオピラニル基、ベンゾチエニル基、ジベンゾチエニル基、チオキサンテニル基、オキサゾリル基、ベンゾオキサゾリル基、モルホリニル基、チアゾリル基、ベンゾチアゾリル基などの炭素原子数2〜20の複素環基;
シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、(1,3−もしくは1,4−)シクロヘキサジエニル基、1,5−シクロオクタジエニル基などの炭素原子数3〜20の環状オレフィン基;などがあげられる。これらの「置換基」は、1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、これら「置換基」は前記例示した置換基を有していてもよく、さらに、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
Represented by R 1 to R 3 in the general formula (1-1),
"A thio group having 0 to 20 carbon atoms having a substituent",
"Substituted sulfo group having 0 to 20 carbon atoms",
"Substituted amino group having 0 to 20 carbon atoms",
"A silyl group having 0 to 20 carbon atoms having a substituent",
"A linear or branched alkyl group having 1 to 20 carbon atoms having a substituent",
"A cycloalkyl group having 3 to 20 carbon atoms having a substituent",
"A linear or branched alkenyl group having 2 to 20 carbon atoms having a substituent",
"Substituted alkynyl group having 2 to 20 carbon atoms",
"A linear or branched alkoxy group having 1 to 20 carbon atoms having a substituent",
"A cycloalkoxy group having 3 to 20 carbon atoms having a substituent",
"Substituted acyl group having 1 to 20 carbon atoms",
"Aromatic hydrocarbon group having 6 to 20 carbon atoms having a substituent",
As the “substituent” in the “heterocyclic group having 2 to 20 carbon atoms having a substituent” or the “aryloxy group having 6 to 20 carbon atoms having a substituent”,
Specifically, a hydroxyl group (—OH), a nitro group (—NO 2 ), a nitroso group (—NO), a cyano group (—CN), a carboxyl group (—COOH), —COO ,
—SO 3 , a thiol group (—SH), a thio group having a substituent (—S—), a sulfonamide group (—S (= O) 2 —NH 2 ), a mesyl group, a sulfonyl group such as a tosyl group ( A group having —S (= O) 2 —);
Unsubstituted amino group; linear group having 1 to 20 carbon atoms such as methylamino group, dimethylamino group, diethylamino group, ethylmethylamino group, methylpropylamino group, di-t-butylamino group, diphenylamino group and the like. Or a monovalent or disubstituted amino group having a branched alkyl group or an aryl group having 6 to 20 carbon atoms;
A silyl group having 0 to 20 carbon atoms such as an unsubstituted silyl group, —SH 3 , trimethylsilyl group, t-butyldimethylsilyl group;
Methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, n-hexyl, isohexyl, heptyl, n-octyl, t- An octyl group, an isooctyl group, a nonyl group, a linear or branched alkyl group having 1 to 20 carbon atoms such as a decyl group;
A cycloalkyl group having 3 to 20 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, a cyclododecyl group;
Vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 1-hexenyl group, isopropenyl group, isobutenyl group, or the number of carbon atoms to which a plurality of these alkenyl groups are bonded 2 to 20 linear or branched alkenyl groups;
An ethynyl group or a group having 2 to 20 carbon atoms to which a plurality of “—C≡C—” are bonded;
A linear or branched alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, an n-pentyloxy group, an n-hexyloxy group;
A cycloalkoxy group having 3 to 20 carbon atoms such as a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group;
Formyl group, acetyl group, propionyl group, acrylyl group, acyl group having 1 to 20 carbon atoms such as benzoyl group, phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, triphenylenyl group, indenyl group, fluorenyl group and the like An aromatic hydrocarbon group having 6 to 20 carbon atoms;
Pyridyl, pyrimidinyl, triazinyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, pyrazinyl, pyridazinyl, piperidinyl, piperazinyl, quinolyl, isoquinolyl, naphthyridinyl, indolyl, benzimidazolyl, carbazonyl , Carbolinyl, acridinyl, phenanthrolinyl, phenanthridinyl, hydantoin, furanyl, benzofuranyl, dibenzofuranyl, pyranyl, coumarinyl, isobenzofuranyl, xanthenyl, oxanthrenyl , Pyranonyl group, thienyl group, thiopyranyl group, benzothienyl group, dibenzothienyl group, thioxanthenyl group, oxazolyl group, benzoxazolyl group, morpholinyl group, thiazolyl group, benzothia A heterocyclic group having 2 to 20 carbon atoms, such as Lil group;
3 to 3 carbon atoms such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, (1,3- or 1,4-) cyclohexadienyl, 1,5-cyclooctadienyl, etc. 20 cyclic olefin groups; and the like. Only one of these “substituents” may be included, or a plurality thereof may be included, and when a plurality is included, they may be the same or different from each other. Further, these "substituents" may have the substituents exemplified above, and further, these substituents are mutually bonded via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. To form a ring.

一般式(1−1)において、Rは、―H、置換基を有していてもよい炭素原子数0〜20の直鎖状もしくは分岐状のアルキル基、または、置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基が好ましい。 In the general formula (1-1), R 1 represents —H, a linear or branched alkyl group having 0 to 20 carbon atoms which may have a substituent, or a substituent. A linear or branched alkenyl group having 2 to 20 carbon atoms which may be preferable.

一般式(1−1)において、RおよびRは、―H、置換基を有していてもよい炭素原子数0〜20のチオ基、置換基を有していてもよい炭素原子数0〜20の直鎖状もしくは分岐状のアルキル基、または、置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基が好ましい。 In the general formula (1-1), R 2 and R 3 each represent —H, a thio group having 0 to 20 carbon atoms which may have a substituent, or a carbon atom which may have a substituent. A linear or branched alkyl group having 0 to 20 or a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferable.

一般式(1−1)において、R〜Rは、隣り合う基同士で互いに結合して環を形成していてもよく、環を形成する場合、5員環または6員環であることが好ましい。 In the general formula (1-1), R 1 to R 3 may be bonded to each other by adjacent groups to form a ring, and when forming a ring, the group is a 5- or 6-membered ring Is preferred.

一般式(1−1)において、mはメチレン基、メチレン基に結合したRおよびRの数を表し、1〜6の整数を表し、1または2であることが好ましく、1であることがより好ましい。 In the general formula (1-1), m represents a methylene group, the number of R 2 and R 3 bonded to the methylene group, represents an integer of 1 to 6, preferably 1 or 2, and is preferably 1. Is more preferred.

一般式(1−1)において、「M」は、水素原子、または、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子などのアルカリ金属原子を表し、ナトリウム原子であることが好ましい。   In the general formula (1-1), “M” represents a hydrogen atom or an alkali metal atom such as a lithium atom, a sodium atom, a potassium atom, a rubidium atom, and a cesium atom, and is preferably a sodium atom.

続いて、前記一般式(1−2)で表される化合物について説明する。一般式(1−2)において、XおよびYで表される、
「置換基を有していてもよい炭素原子数0〜20のチオ基」、
「置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基」、
「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基」、
「置換基を有していてもよい炭素原子数2〜20の複素環基」または
「置換基を有していてもよい炭素原子数6〜20のアリールオキシ基」は、
前記一般式(1−1)においてR〜Rで表されるそれぞれの基と同じ意味を有する。
Next, the compound represented by Formula (1-2) will be described. In the general formula (1-2), represented by X and Y,
"Optionally substituted thio group having 0 to 20 carbon atoms",
"A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent",
"A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent",
The “optionally substituted heterocyclic group having 2 to 20 carbon atoms” or the “optionally substituted aryloxy group having 6 to 20 carbon atoms” is
In the general formula (1-1), it has the same meaning as each of the groups represented by R 1 to R 3 .

前記一般式(1−2)で表される化合物の具体例としては、ホスゲン、ジホスゲン、炭酸ビス(トリクロロメチル)(またはトリホスゲン)、カルボニルジイミダゾール、クロロギ酸4−ニトロフェニルなどがあげられるが、これらに限定されない。具体的な構造としては、下記式のような化合物があげられるがこれらに限定されない。   Specific examples of the compound represented by the general formula (1-2) include phosgene, diphosgene, bis (trichloromethyl) carbonate (or triphosgene), carbonyldiimidazole, 4-nitrophenyl chloroformate, and the like. It is not limited to these. Specific structures include, but are not limited to, compounds represented by the following formulas.

Figure 2020011948
Figure 2020011948

一般式(1−2)において、XおよびYは、―OCClであるのが好ましい。また、一般式(1−2)で表される化合物は、炭酸ビス(トリクロロメチル)またはトリホスゲンであることが好ましい。 In the general formula (1-2), X and Y are preferably —OCCl 3 . Further, the compound represented by the general formula (1-2) is preferably bis (trichloromethyl) carbonate or triphosgene.

本発明のフローリアクターを用いる合成方法において、前記原料溶液に含まれる物質が、前記一般式(1−1)および(1−2)で表される化合物である合成方法について、図3を用いて以下に詳細に説明する。図3は、本発明のフローリアクター100を説明する図1または図2に基づいて、具体的な化合物の合成例を示した概略図である。   In the synthesis method using the flow reactor of the present invention, a synthesis method in which the substance contained in the raw material solution is a compound represented by the general formulas (1-1) and (1-2) will be described with reference to FIG. This will be described in detail below. FIG. 3 is a schematic diagram showing a synthesis example of a specific compound based on FIG. 1 or FIG. 2 illustrating the flow reactor 100 of the present invention.

図3において、原料溶液(1−1)として、前記一般式(1−1)で表される化合物(アミノ酸のナトリウム塩など)(1当量)と塩基(1当量以上)を溶媒1(例えば、水)に溶解した原料溶液(1−1)を、「あらかじめpH7〜14に調整されている塩基性溶液」とする。この「塩基性溶液」を原料溶液供給装置11を用いて、反応に適した流速で注入する。同時に、原料溶液(1−2)として、前記一般式(1−2)で表される化合物(例えば、ホスゲンおよびホスゲン等価体など)(ホスゲン換算で1当量以上)を溶媒2(例えば、有機溶媒)に溶解した原料溶液(1−2)を、原料溶液供給装置12を用いて、反応に適した流速で注入している。このとき、両者の原料溶液の流速は、溶液中の原料物質どうしの反応に化学量論的に適した流速に調整されている。本発明における原料溶液または原料溶液の混合開始後に希釈する溶媒の流速としては、フローリアクターの流路の形状により異なるが、例えばマイクロフローリアクターのような1mm以下の流路を有するフローリアクターの場合、0.1〜50mL/minの間であればよく、0.3〜10mL/minであるの好ましい。こうして、原料溶液(1−1)と原料溶液(1−2)がミキサー20に導入されると、2種の溶液が混合し、合成開始となる。   In FIG. 3, as a raw material solution (1-1), a compound (such as a sodium salt of an amino acid) (1 equivalent) and a base (1 equivalent or more) represented by the general formula (1-1) are mixed with a solvent 1 (for example, The raw material solution (1-1) dissolved in water) is referred to as a “basic solution that has been previously adjusted to pH 7-14”. This “basic solution” is injected at a flow rate suitable for the reaction using the raw material solution supply device 11. At the same time, as a raw material solution (1-2), a compound represented by the general formula (1-2) (for example, phosgene and a phosgene equivalent) (1 equivalent or more in terms of phosgene) is added to a solvent 2 (for example, an organic solvent). The raw material solution (1-2) dissolved in (1) is injected using the raw material solution supply device 12 at a flow rate suitable for the reaction. At this time, the flow rates of both raw material solutions are adjusted to flow rates that are stoichiometrically suitable for the reaction between the raw materials in the solutions. The flow rate of the raw material solution or the solvent to be diluted after the start of the mixing of the raw material solution in the present invention is different depending on the shape of the flow path of the flow reactor. The pressure may be between 0.1 and 50 mL / min, preferably 0.3 to 10 mL / min. Thus, when the raw material solution (1-1) and the raw material solution (1-2) are introduced into the mixer 20, the two kinds of solutions are mixed and the synthesis is started.

続いて、ミキサー20内部での混合開始からミキサー20の排出口を経て送液管21の内部における反応としては、3段階(図3中のステップ1〜3)の反応に分けられる。以下、各ステップについての簡便な説明のために、図3に示すように、一般式(1−1)においてはR=R=HおよびM=Naとし、一般式(1−2)においてはX=Y=Clのホスゲン(またはホスゲン等価体)の例について説明する。
混合直後のステップ1(s1)においては、最も求核性の高いカルボキシ基(―COO)がホスゲンおよびホスゲン等価体をまず攻撃し、続いてアミノ基(―NH)がホスゲンおよびホスゲン等価体を攻撃して所望のNCAと、1当量の塩基の塩酸塩を生じる。
次にステップ2(s2)においては、過剰に添加したホスゲンおよびホスゲン等価体はここで水と反応して分解し、塩化水素を生じる。残存した塩基は塩化水素と反応してやがてすべての塩基が消費される。
その後のステップ3(s3)においては、生じた塩化水素は反応溶液中で遊離のまま存在するため、反応溶液が酸性となる。これにより塩基性条件下でのNCAの望まない重合および加水分解が抑制される。このようにして、目的の構造を有するNCAなどの前記一般式(2)で表される化合物を得ることができる。
Subsequently, the reaction in the liquid feed pipe 21 through the outlet of the mixer 20 from the start of mixing in the mixer 20 is divided into three stages (steps 1 to 3 in FIG. 3). Hereinafter, for a simple explanation of each step, as shown in FIG. 3, in the general formula (1-1), R 1 = R 3 = H and M = Na, and in the general formula (1-2), Describes an example of phosgene (or phosgene equivalent) where X = Y = Cl.
In step 1 (s1) immediately after mixing, the most nucleophilic carboxy group (—COO ) attacks phosgene and phosgene equivalent first, followed by the amino group (—NH 2 ) with phosgene and phosgene equivalent. To give the desired NCA and one equivalent of the hydrochloride salt of the base.
Next, in step 2 (s2), the phosgene and the phosgene equivalent added in excess will now react with water and decompose to produce hydrogen chloride. The remaining base reacts with hydrogen chloride and eventually all the base is consumed.
In the subsequent step 3 (s3), the generated hydrogen chloride remains free in the reaction solution, so that the reaction solution becomes acidic. This suppresses unwanted polymerization and hydrolysis of NCA under basic conditions. In this way, a compound represented by the general formula (2) such as NCA having the desired structure can be obtained.

また、合成されたNCAを含有する液体(上記の3ステップ後の液体を反応溶液とする)は水と有機溶媒、塩化水素を含んでいるが、もし有機溶媒が塩化水素をよく溶かすものであって、なおかつNCAが酸性条件下で不安定な官能基をもつ場合には、これが損なわれるおそれがある。これを防ぐためには、図2のフローリアクターの図で示すように、送液管21の先にミキサー30を接続し、ミキサー30に送液管220を通して原料供給源22から、反応溶液と酸の溶解性が低い有機溶媒などの適した溶媒を導入して、ミキサー30内部で瞬時に希釈し、有機層中の酸濃度を低下させることが好ましく、このような方法によって、目的の構造を有するNCAなどの前記一般式(2)で表される化合物をより高収率で得ることができる。   Also, the synthesized liquid containing NCA (the liquid after the above three steps is referred to as a reaction solution) contains water, an organic solvent, and hydrogen chloride, but if the organic solvent dissolves hydrogen chloride well. If the NCA has a functional group that is unstable under acidic conditions, this may be impaired. To prevent this, as shown in the flow reactor diagram of FIG. 2, the mixer 30 is connected to the end of the liquid feed pipe 21, and the reaction solution and the acid are supplied from the raw material supply source 22 through the liquid feed pipe 220 to the mixer 30. It is preferable to introduce a suitable solvent such as an organic solvent having low solubility and dilute it instantaneously in the mixer 30 to reduce the acid concentration in the organic layer. The compound represented by the general formula (2) can be obtained in higher yield.

本発明の合成方法で得られる、前記一般式(2)で表される化合物の具体例を下記に示すが、これらに限定されない。これらは、生じ得るすべての構造異性体、立体異性体を包含するものとし、下記構造式では、水素原子を一部省略している。   Specific examples of the compound represented by the general formula (2) obtained by the synthesis method of the present invention are shown below, but are not limited thereto. These include all possible structural isomers and stereoisomers, and some hydrogen atoms are omitted in the following structural formulas.

Figure 2020011948
Figure 2020011948

Figure 2020011948
Figure 2020011948

以下実施例および比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例1]
<マイクロフローリアクターの組み立て>
図2に示すようなフローリアクター100の実施例として、下記のようにマイクロフローリアクターを組み立てた。原料溶液(1−1)供給装置としてガスタイトシリンジ11と、ミキサー20の導入口とを、PTFE樹脂製送液管110およびステンレス鋼製送液管110(溶液の温度制御用)で接続した。同様に、原料溶液(1−2)供給源としてガスタイトシリンジ12と、ミキサー20のもう一方の導入口とを、PTFE樹脂製送液管120およびステンレス鋼製送液管120(溶液の温度制御用)で接続した。ミキサー20の排出口とミキサー30の導入口とを反応管21(PTFE樹脂製)で接続し、ミキサー30の排出口と背圧弁を反応管31で接続した。各ミキサーと反応管は、温度制御用のウォーターバスに浸漬した。
フローリアクターの各部の詳細は下記の通りである。
ミキサー:マイクロミキサー(三幸精機株式会社製、ステンレス鋼製、内径:0.25mm)
送液管または反応管:PTFE製チューブ(センシュー化学株式会社製(内径:0.25mmもしくは0.80mm);PEEKユニオン、ステンレス鋼製チューブ、ステンレス鋼製フィッティング、ステンレス鋼製ユニオン(内径:0.80mm)および背圧弁(40psi(GLサイエンス株式会社製)
原料溶液供給装置(溶液導入用):シリンジポンプ(Harvard社製、PHD ULTRA and PHD2000)、ガスタイトシリンジ(SGE社製、10mL)、ガスタイトシリンジ−PTFEチューブ接続コネクター(フロン工業株式会社製)
[Example 1]
<Assembly of micro flow reactor>
As an example of the flow reactor 100 as shown in FIG. 2, a micro flow reactor was assembled as follows. The gas tight syringe 11 as the raw material solution (1-1) supply device and the inlet of the mixer 20 were connected by a PTFE resin liquid supply pipe 110 and a stainless steel liquid supply pipe 110 (for controlling the temperature of the solution). Similarly, the gas tight syringe 12 as the supply source of the raw material solution (1-2) and the other inlet of the mixer 20 are connected to the PTFE resin liquid supply pipe 120 and the stainless steel liquid supply pipe 120 (temperature control of the solution). Connection). The outlet of the mixer 20 and the inlet of the mixer 30 were connected by a reaction tube 21 (made of PTFE resin), and the outlet of the mixer 30 and the back pressure valve were connected by a reaction tube 31. Each mixer and reaction tube were immersed in a water bath for temperature control.
Details of each part of the flow reactor are as follows.
Mixer: Micro mixer (Made by Sanko Seiki Co., Ltd., stainless steel, inner diameter: 0.25 mm)
Liquid sending tube or reaction tube: PTFE tube (manufactured by Senshu Chemical Co., Ltd. (inner diameter: 0.25 mm or 0.80 mm); PEEK union, stainless steel tube, stainless steel fitting, stainless steel union (inner diameter: 0.1 mm) 80 mm) and back pressure valve (40 psi (GL Science Co., Ltd.)
Raw material solution supply device (for solution introduction): syringe pump (manufactured by Harvard, PHD ULTRA and PHD2000), gas tight syringe (manufactured by SGE, 10 mL), gas tight syringe-PTFE tube connection connector (manufactured by Flon Industrial Co., Ltd.)

<NCAのフロー合成>
<L−フェニルアラニン−NCA(式(2a))の合成>
原料溶液(1−1)として、遊離アミノ酸(L−フェニルアラニン)のナトリウム塩(0.50M,1.00当量)とN−メチルモルホリン(2.25M,4.50当量)の水溶液(流速:2.40mL/min)と、原料溶液(1−2)としてトリホスゲン(0.25M,1.00当量)溶液(溶媒:アセトニトリル)(4.80mL/min)を20℃に制御された水浴中に浸けたミキサー20にシリンジポンプで導入し、混合した。この混合後の溶液は20℃に制御された水浴中に浸けた反応管21(内径:0.25mm,長さ:244mm,体積:12.0μL,反応時間:0.10秒)を通過中に反応する。この混合後の溶液と、酢酸エチル(流速:2.40mL/min)を20℃に制御された水浴中に浸けたミキサー30にシリンジポンプで導入し、前記混合後の溶液に酢酸エチル溶媒を注入することにより希釈した。希釈した溶液は20℃に制御された水浴中に浸けた反応管31(内径:0.80mm,長さ:298mm,体積:150μL,反応時間:0.94秒)を通過させた後、背圧弁も通過させて、40mLの酢酸エチルを入れて0℃に冷却したフラスコ中に反応液として回収した。なお、反応液の回収はシリンジポンプの運転開始から20秒後、定常状態に達した後に始め、100秒間回収した。
得られた二層混合物の有機層のみを分液回収し、さらに水層から酢酸エチルで抽出して回収した有機層を混合した。この有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後に10℃で濃縮することにより、生成物のL−フェニルアラニン−NCA(式(2a))を得た。
<Flow synthesis of NCA>
<Synthesis of L-phenylalanine-NCA (Formula (2a))>
As a raw material solution (1-1), an aqueous solution of a sodium salt of a free amino acid (L-phenylalanine) (0.50 M, 1.00 equivalent) and N-methylmorpholine (2.25 M, 4.50 equivalent) (flow rate: 2 .40 mL / min) and a triphosgene (0.25 M, 1.00 equivalent) solution (solvent: acetonitrile) (4.80 mL / min) as a raw material solution (1-2) in a water bath controlled at 20 ° C. Was introduced into the mixer 20 by a syringe pump and mixed. The mixed solution is passed through a reaction tube 21 (inner diameter: 0.25 mm, length: 244 mm, volume: 12.0 μL, reaction time: 0.10 sec) immersed in a water bath controlled at 20 ° C. react. The mixed solution and ethyl acetate (flow rate: 2.40 mL / min) are introduced by a syringe pump into a mixer 30 immersed in a water bath controlled at 20 ° C., and an ethyl acetate solvent is injected into the mixed solution. And diluted. The diluted solution was passed through a reaction tube 31 (inner diameter: 0.80 mm, length: 298 mm, volume: 150 μL, reaction time: 0.94 seconds) immersed in a water bath controlled at 20 ° C. And collected as a reaction solution in a flask containing 40 mL of ethyl acetate and cooled to 0 ° C. The reaction solution was collected 20 seconds after the start of the operation of the syringe pump and after the steady state was reached, and was collected for 100 seconds.
Only the organic layer of the obtained two-layer mixture was separated and collected, and the organic layer extracted from the aqueous layer with ethyl acetate was further mixed. The organic layer was washed with water and saturated saline, dried over magnesium sulfate, and then concentrated at 10 ° C. to obtain a product, L-phenylalanine-NCA (formula (2a)).

なお、本発明の実施例で合成された生成物の構造解析、純度評価は、下記の測定により行った。融点測定、核磁気共鳴分析(H−NMR、13C−NMR、型番:ブルカー社製 AVANCE III HD 500)、赤外分光分析(IR、型番:日本分光株式会社製フーリエ変換赤外分光光度計(FT−IR)FT/IR−4100、赤外−全反射測定(ATR、型番:ATR PRO ONE))、旋光分析(型番:ルドルフ・リサーチ・アナリティカル社製旋光計 Autopol IV)、質量分析(MS、型番:ブルカー株式会社製 エレクトロスプレーイオン化高分解能質量分析(HRMS)装置(ESI−TOF−MS)、型番:micrOTOF II)、高速液体クロマトグラフィー分析(HPLC、型番:株式会社島津製作所製 LC−10AT VP、SPD−10A VP、CTO−20A、SCL−10A VP)。NMR測定により目的物以外の不純物が観察された場合、適切な溶媒を用いた再結晶操作により精製した。 In addition, the structural analysis and the purity evaluation of the product synthesized in the examples of the present invention were performed by the following measurements. Melting point measurement, nuclear magnetic resonance analysis ( 1 H-NMR, 13 C-NMR, model number: AVANCE III HD 500 manufactured by Bruker), infrared spectroscopy (IR, model number: Fourier transform infrared spectrophotometer manufactured by JASCO Corporation) (FT-IR) FT / IR-4100, infrared-total reflection measurement (ATR, model number: ATR PRO ONE)), optical rotation analysis (model number: Polarimeter Autopol IV manufactured by Rudolf Research Analytical), mass spectrometry ( MS, model number: Bruker Co., Ltd. Electrospray ionization high-resolution mass spectrometry (HRMS) apparatus (ESI-TOF-MS), model number: micrOTOF II), high performance liquid chromatography analysis (HPLC, model number: Shimadzu Corporation LC-) 10AT VP, SPD-10A VP, CTO-20A, SCL-10A VP). When impurities other than the target substance were observed by NMR measurement, purification was performed by a recrystallization operation using an appropriate solvent.

回収したL−フェニルアラニン−NCA(下記式(2a))について、精製方法および同定のための分析結果を下記に示す。また、表1に実施例1で得られたL−フェニルアラニン−NCAの収率を示す。
精製方法:分液操作;収量:400mg,2.09mmol,quant.,白色固体;
融点:88−89℃;
IR(ATR法):(cm−1)3258,1833,1769,1364,1295,1116,917,755.
[α]31 =−97.5(c 1.05,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.34−7.27(m,3H),7.17−7.16(m,2H),6.62(brs,1H),4.52(dd,J=4.4,7.5Hz,1H),3.22(dd,J=4.4,14.2Hz,1H),3.01(dd,J=7.5,14.2Hz,1H).
13C NMR(125MHz,CDCl):δ(ppm)169.1,152.4,133.9,129.4,129.2,128.0,59.0,37.7.
About the collected L-phenylalanine-NCA (the following formula (2a)), a purification method and an analysis result for identification are shown below. Table 1 shows the yield of L-phenylalanine-NCA obtained in Example 1.
Purification method: liquid separation operation; yield: 400 mg, 2.09 mmol, quant. , White solid;
Melting point: 88-89 ° C;
IR (ATR method): (cm -1 ) 3258, 1833, 1769, 1364, 1295, 1116, 917, 755.
[Α] 31 D = -97.5 (c 1.05, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.34-7.27 (m, 3H), 7.17-7.16 (m, 2H), 6.62 (brs, 1H), 4 .52 (dd, J = 4.4, 7.5 Hz, 1H), 3.22 (dd, J = 4.4, 14.2 Hz, 1H), 3.01 (dd, J = 7.5, 14) .2Hz, 1H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 169.1, 152.4, 133.9, 129.4, 129.2, 128.0, 59.0, 37.7.

Figure 2020011948
Figure 2020011948

Figure 2020011948
Figure 2020011948

[実施例2および実施例3]
遊離アミノ酸のナトリウム塩/N−メチルモルホリン水溶液の流速を1.8mL/minおよび1.2mL/minに変えた以外は、実施例1と同様の方法で、L−フェニルアラニン−NCAを合成した。表1に収率を合わせて示す。
[Examples 2 and 3]
L-phenylalanine-NCA was synthesized in the same manner as in Example 1, except that the flow rate of the sodium salt of free amino acid / aqueous solution of N-methylmorpholine was changed to 1.8 mL / min and 1.2 mL / min. Table 1 also shows the yield.

[実施例4]
トリホスゲンを溶解した溶液の溶媒をアセトニトリルからテトラヒドロフランに変え、遊離アミノ酸のナトリウム塩/N−メチルモルホリン水溶液の流速を1.2mL/minにした以外は、実施例1と同様の方法で、L−フェニルアラニン−NCAを合成した。表1に収率を合わせて示す。
[Example 4]
L-phenylalanine was prepared in the same manner as in Example 1 except that the solvent of the solution in which triphosgene was dissolved was changed from acetonitrile to tetrahydrofuran, and the flow rate of the sodium salt of free amino acid / aqueous N-methylmorpholine solution was set to 1.2 mL / min. -NCA was synthesized. Table 1 also shows the yield.

表1から明らかなように、アセトニトリルやテトラヒドロフランなどの溶媒を用いた結果は、高い収率でL−フェニルアラニン−NCAを合成することができ、特に、アセトニトリル溶媒の場合は、より高い収率を得た。   As is clear from Table 1, the result using a solvent such as acetonitrile or tetrahydrofuran can synthesize L-phenylalanine-NCA in a high yield. In particular, in the case of an acetonitrile solvent, a higher yield is obtained. Was.

[実施例5〜実施例10]
トリホスゲンの当量をXとし、塩基の当量をYとし、酸解離定数(pK)(水、25℃)の異なる様々な塩基について、比較を行った。表2に結果を示す。
[Examples 5 to 10]
X was the equivalent of triphosgene, Y was the equivalent of the base, and a comparison was made of various bases having different acid dissociation constants (pK a ) (water, 25 ° C.). Table 2 shows the results.

Figure 2020011948
Figure 2020011948

[比較例1]
<バッチ合成方法によるL−フェニルアラニン−NCA(式(2a))の合成>
下記式(4)で表されるバッチ式の合成方法で、下記式(2a)で表されるNCAを合成した。以下に方法を示す。強撹拌(磁気撹拌機、1000rpm)したL−フェニルアラニン ナトリウム塩(下記式(1a))(0.50M、1.00当量(eq.))、N−メチルモルホリン(NMM)(2.25M、4.50当量(eq.))(1.00mL)の水溶液に対してトリホスゲン(triphosgene)の(0.250M,1.0当量)のアセトニトリル(MeCN)(2.00mL)溶液をアルゴン雰囲気下、20℃で一気に加えた。20℃で10秒間撹拌後(対応するフロー合成では反応時間が0.1秒だが、この操作をバッチ式の反応で実現することは不可能であるため、10秒に設定した)イソプロピルアミン(5.00M,10.0当量)のジクロロメタン(DCM)(1.00mL)溶液を20℃で一気に加えた。その後、飽和重曹水と飽和食塩水を加え、分液後、水層からDCMで2回抽出した。得られた有機層を硫酸ナトリウムで乾燥後、ろ過して下記式(3a)で表される化合物を得た。
[Comparative Example 1]
<Synthesis of L-phenylalanine-NCA (formula (2a)) by a batch synthesis method>
An NCA represented by the following formula (2a) was synthesized by a batch-type synthesis method represented by the following formula (4). The method is described below. L-Phenylalanine sodium salt (the following formula (1a)) (0.50 M, 1.00 equivalent (eq.)) Under strong stirring (magnetic stirrer, 1000 rpm), N-methylmorpholine (NMM) (2.25 M, A solution of triphosgene (0.250 M, 1.0 eq.) In acetonitrile (MeCN) (2.00 mL) was added to an aqueous solution of .50 eq. (Eq.) (1.00 mL) under an argon atmosphere. C. at once. After stirring at 20 ° C. for 10 seconds (the reaction time is 0.1 second in the corresponding flow synthesis, but it is impossible to realize this operation in a batch-type reaction, so that it was set to 10 seconds). (0.00M, 10.0 equiv) in dichloromethane (DCM) (1.00 mL) at 20 ° C. Thereafter, a saturated aqueous solution of sodium bicarbonate and a saturated aqueous solution of sodium chloride were added, and after liquid separation, the aqueous layer was extracted twice with DCM. The obtained organic layer was dried over sodium sulfate and filtered to obtain a compound represented by the following formula (3a).

Figure 2020011948
Figure 2020011948

上記のバッチ式の合成方法により回収したL−フェニルアラニン−NCA(式(2a))の同定分析結果を下記に示す。また、収率の結果を表2に合わせて示す。
IR(neat):(cm−1)3299,2972,1651,1524,1455,1366,1173,745,702.
[α]31 =−48.9(c 1.10,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.33−7.28(m,2H),7.24−7.20(m,3H),7.08(brd,J=7.0Hz,1H),4.08−4.01(m,1H),3.54(dd,J=4.0,9.0Hz,1H),3.20(dd,J=4.0,13.5Hz,1H),2.71(dd,J=9.0,13.5Hz,1H),1.39(brs,2H),1.11(d,J=6.5Hz,6H).
13C NMR(125MHz,CDCl):δ(ppm)173.1,137.8,129.2,128.4,126.6,56.2,41.0,40.6,22.6,22.5.
HRMS(ESI−TOF−MS):calcd.for [C1218O+H] 207.1492, found 207.1487.
The identification analysis results of L-phenylalanine-NCA (formula (2a)) recovered by the above-mentioned batch-type synthesis method are shown below. The results of the yield are also shown in Table 2.
IR (neat): (cm < -1 >) 3299, 2972, 1651, 1524, 1455, 1366, 1173, 745, 702.
[Α] 31 D = −48.9 (c 1.10, CH 2 Cl 2 ).
1 H NMR (500MHz, CDCl 3 ): δ (ppm) 7.33-7.28 (m, 2H), 7.24-7.20 (m, 3H), 7.08 (brd, J = 7. 0 Hz, 1H), 4.08-4.01 (m, 1H), 3.54 (dd, J = 4.0, 9.0 Hz, 1H), 3.20 (dd, J = 4.0, 13 0.5 Hz, 1H), 2.71 (dd, J = 9.0, 13.5 Hz, 1H), 1.39 (brs, 2H), 1.11 (d, J = 6.5 Hz, 6H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 173.1, 137.8, 129.2, 128.4, 126.6, 56.2, 41.0, 40.6, 22.6, 22.6 22.5.
HRMS (ESI-TOF-MS): calcd. for [C 12 H 18 N 2 O + H] + 207.1492, found 207.1487.

表2の結果から、本発明のフローリアクターを用いた場合、各種塩基で60%以上の再現性のある収率が得られた。特に、L−フェニルアラニン−NCAが、トリホスゲン1.0、N−メチルモルホリン4.5当量の場合に高収率で得られることがわかった。
一方、バッチ合成法で行った場合、本合成を3回行ったところ収率は76−94%とばらつき、再現性の高い結果を得ることはできなかった。これは二層系反応において僅かな混合操作の違いも反応成績に影響を与えるためであり、本反応をバッチ反応で再現性良く実施することは著しく困難である。
From the results in Table 2, when the flow reactor of the present invention was used, reproducible yields of 60% or more were obtained with various bases. In particular, it was found that L-phenylalanine-NCA was obtained in high yield when triphosgene was 1.0 and N-methylmorpholine was 4.5 equivalents.
On the other hand, when the synthesis was performed by the batch synthesis method, when the synthesis was performed three times, the yield varied from 76 to 94%, and a highly reproducible result could not be obtained. This is because a slight difference in the mixing operation in the two-layer reaction also affects the reaction performance, and it is extremely difficult to carry out this reaction in a batch reaction with good reproducibility.

[実施例11]
<O−ベンジル−L−セリン−NCA(式(2b))の合成>
実施例1の遊離アミノ酸をO−ベンジル−L−セリンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2b)で表されるO−ベンジル−L−セリン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:370mg(1.67mmol)、収率84%、白色固体;融点69−70℃.
IR(ATR法):(cm−1)3178,2859,1845,1747,1357,1292,1098,921,740.
[α]32 =−32.1(c 1.11,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.39−7.28(m,5H),5.89(brs,1H),4.60−4.54(m,2H),4.44(dd,J=3.0,5.5Hz,1H),3.79−3.73(m,2H).
13C NMR(125MHz,CDCl):δ(ppm)167.7,152.6,136.7,128.8,128.4,128.0,73.8,67.9,58.5.
[Example 11]
<Synthesis of O-benzyl-L-serine-NCA (Formula (2b))>
A flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to O-benzyl-L-serine, to obtain O-benzyl-L-serine-NCA represented by the following formula (2b). Obtained. The purification method and the results of the identification analysis are shown below.
Purification method: liquid separation operation and recrystallization yield: 370 mg (1.67 mmol), yield 84%, white solid; melting point 69-70 ° C.
IR (ATR method): (cm < -1 >) 3178, 2859, 1845, 1747, 1357, 1292, 1098, 921, 740.
[Α] 32 D = -32.1 (c 1.11, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.39-7.28 (m, 5H), 5.89 (brs, 1H), 4.60-4.54 (m, 2H), 4 .44 (dd, J = 3.0, 5.5 Hz, 1H), 3.79-3.73 (m, 2H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 167.7, 152.6, 136.7, 128.8, 128.4, 128.0, 73.8, 67.9, 58.5.

Figure 2020011948
Figure 2020011948

[実施例12]
<O−ベンジル−L−スレオニン−NCA(式(2c))の合成>
実施例1の遊離アミノ酸をO−ベンジル−L−スレオニンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2c)で表されるO−ベンジル−L−スレオニン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製法:分液操作
収量:473mg,2.01mmol,quant.,白色固体;融点120−121℃.
IR(ATR法):(cm−1)3260,1852,1744,1252,1090,923,660.
[α]26 =−68.5(c 1.04,CHCl).
H NMR(500MHz、CDCl):δ(ppm)7.36−7.26(m,5H),6.73(brs,1H),4.61(d,J=11.5Hz,1H),4.43(d,J=11.5Hz,1H),4.18(d,J=4.5Hz,1H),3.94−3.89(m,1H),1.33(d,J=6.0Hz,3H).
13C NMR(125MHz,CDCl):δ(ppm)167.8,152.9,137.0,128.7,128.3,128.0,73.2,71.4,63.0,16.1.
[Example 12]
<Synthesis of O-benzyl-L-threonine-NCA (Formula (2c))>
A flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to O-benzyl-L-threonine, to obtain O-benzyl-L-threonine-NCA represented by the following formula (2c). Obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation yield: 473 mg, 2.01 mmol, quant. , White solid; mp 120-121 ° C.
IR (ATR method): (cm < -1 >) 3260,1852,1744,1252,1090,923,660.
[Α] 26 D = −68.5 (c 1.04, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.36-7.26 (m, 5H), 6.73 (brs, 1H), 4.61 (d, J = 11.5 Hz, 1H). , 4.43 (d, J = 11.5 Hz, 1H), 4.18 (d, J = 4.5 Hz, 1H), 3.94-3.89 (m, 1H), 1.33 (d, J = 6.0 Hz, 3H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 167.8, 152.9, 137.0, 128.7, 128.3, 128.0, 73.2, 71.4, 63.0, 16.1.

Figure 2020011948
Figure 2020011948

[実施例13]
<S−ベンジル−L−システイン−NCA(式(2d))の合成>
実施例1の遊離アミノ酸をS−ベンジル−L−システインに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2d)で表されるS−ベンジル−L−システイン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製法:分液操作
収量:491mg,2.07mmol,quant.;白色固体;融点100−101℃.
IR(ATR法):(cm−1)3299,1793,1291,1122,1077,928,753,713.
[α]23 =−63.0(c 1.28,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.36−7.26(m,5H),6.42(brs,1H),4.31(dd,J=3.6,7.1Hz,1H),3.76(s,2H),2.95(dd,J=3.6,14.5Hz,1H),2.77(dd,J=7.1,14.5Hz,1H).
13C NMR(125MHz,CDCl):δ(ppm)168.2,152.2,137.2,129.1,129.0,127.9,57.8,37.2,32.8.
Example 13
<Synthesis of S-benzyl-L-cysteine-NCA (Formula (2d))>
A flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to S-benzyl-L-cysteine, to give S-benzyl-L-cysteine-NCA represented by the following formula (2d). Obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 491 mg, 2.07 mmol, quant. White solid; mp 100-101 ° C.
IR (ATR method): (cm < -1 >) 3299,1793,1291,1122,1077,928,753,713.
[Α] 23 D = -63.0 (c 1.28, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.36-7.26 (m, 5H), 6.42 (brs, 1H), 4.31 (dd, J = 3.6,7. 1 Hz, 1 H), 3.76 (s, 2 H), 2.95 (dd, J = 3.6, 14.5 Hz, 1 H), 2.77 (dd, J = 7.1, 14.5 Hz, 1 H ).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.2, 152.2, 137.2, 129.1, 129.0, 127.9, 57.8, 37.2, 32.8.

Figure 2020011948
Figure 2020011948

[実施例14]
<サルコシン−NCA(式(2e))の合成>
実施例1の遊離アミノ酸をサルコシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2e)で表されるサルコシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製法:分液操作と再結晶
収量:186mg,1.62mmol,収率81%,白色固体;融点95−96℃(分解).
IR(ATR法):(cm−1)2968,1847,1757,1444,1401,1274,1218,984,902,748.
H NMR(500MHz,CDCl):δ(ppm)4.13(s,2H),3.06(s,3H).
13C NMR(125MHz,CDCl):δ(ppm)165.3,152.4,51.1,30.5.
[Example 14]
<Synthesis of Sarcosine-NCA (Formula (2e))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to sarcosine to obtain sarcosine-NCA represented by the following formula (2e). The purification method and the results of the identification analysis are shown below.
Purification method: separation operation and recrystallization yield: 186 mg, 1.62 mmol, yield 81%, white solid; melting point 95-96 ° C (decomposition).
IR (ATR method): (cm -1 ) 2968, 1847, 1557, 1444, 1401, 1274, 1218, 984, 902, 748.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 4.13 (s, 2H), 3.06 (s, 3H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 165.3, 152.4, 51.1, 30.5.

Figure 2020011948
Figure 2020011948

[実施例15]
<L−プロリン−NCA(式(2f))の合成>
実施例1の遊離アミノ酸をL−プロリンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2f)で表されるL−プロリン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:240mg,1.70mmol,収率85%,白色固体;融点44−46℃.
IR(ATR法):(cm−1)2912,1822,1765,1363,1326,950,919,760.
[α]33 =−100.9(c 1.11,CHCl).
H NMR(500MHz,CDCl):δ(ppm)4.35(dd,J=7.8,9.0Hz,1H),3.82−3.76(m,1H),3.36−3.31(m,1H),2.36−2.30(m,1H),2.26−2.19(m,1H),2.18−2.09(m,1H),2.00−1.92(m,1H).
13C NMR(125MHz,CDCl):δ(ppm)168.9,155.0,63.2,46.7,27.8,27.0.
[Example 15]
<Synthesis of L-proline-NCA (Formula (2f))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-proline, to obtain L-proline-NCA represented by the following formula (2f). The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 240 mg, 1.70 mmol, 85% yield, white solid; melting point 44-46 ° C.
IR (ATR method): (cm -1 ) 2912, 1822, 1765, 1363, 1326, 950, 919, 760.
[Α] 33 D = −100.9 (c 1.11, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 4.35 (dd, J = 7.8, 9.0 Hz, 1H), 3.82-3.76 (m, 1H), 3.36 − 3.31 (m, 1H), 2.36-2.30 (m, 1H), 2.26-2.19 (m, 1H), 2.18-2.09 (m, 1H), 2. 00-1.92 (m, 1H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.9, 155.0, 63.2, 46.7, 27.8, 27.0.

Figure 2020011948
Figure 2020011948

[実施例16]
<グリシン−NCA(式(2g))の合成>
実施例1の遊離アミノ酸をグリシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2g)で表されるグリシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:132mg,1.31mmol,収率65%;黄白色固体;融点>200℃.
IR(ATR法):(cm−1)3256,1856,1732,1644,1275,1071,930,720,637.
H NMR(500MHz,DMSO−d):δ(ppm)8.83(brs,1H),4.19(s,2H).
13C NMR(125MHz,DMSO−d):δ(ppm)169.4,153.0,46.3.
[Example 16]
<Synthesis of Glycine-NCA (Formula (2g))>
Glycine-NCA represented by the following formula (2g) was obtained in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to glycine. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 132 mg, 1.31 mmol, yield 65%; yellow-white solid; melting point> 200 ° C.
IR (ATR method): (cm < -1 >) 3256, 1856, 1732, 1644, 1275, 1071, 930, 720, 637.
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.83 (brs, 1H), 4.19 (s, 2H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 169.4, 153.0, 46.3.

Figure 2020011948
Figure 2020011948

[実施例17]
<L−アラニン−NCA(式(2h))の合成>
実施例1の遊離アミノ酸をL−アラニンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2h)で表されるL−アラニン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:190mg,1.65mmol,収率83%,白色固体;融点85−86℃.
IR(ATR法):(cm−1)3324,1832,1763,1359,1281,1142,926,742.
[α]23 =+3.8(c 1.05,CHCl).
H NMR(500MHz,DMSO−d):δ(ppm)9.00(brs,1H),4.50−4.45(m,1H),1.33(d,J=7.0Hz,3H).
13C NMR(125MHz,DMSO−d):δ(ppm)172.5,151.8,52.9,16.8.
[Example 17]
<Synthesis of L-alanine-NCA (Formula (2h))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-alanine, to obtain L-alanine-NCA represented by the following formula (2h). The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 190 mg, 1.65 mmol, yield 83%, white solid; melting point 85-86 ° C.
IR (ATR method): (cm -1 ) 3324, 1832, 1763, 1359, 1281, 1142, 926, 742.
[Α] 23 D = +3.8 (c 1.05, CH 2 Cl 2 ).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 9.00 (brs, 1H), 4.50-4.45 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 172.5, 151.8, 52.9, 16.8.

Figure 2020011948
Figure 2020011948

[実施例18]
<L−バリン−NCA(式(2i))の合成>
実施例1の遊離アミノ酸をL−バリンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2i)で表されるL−バリン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:244mg,1.71mmol,収率86%,白色固体;融点62−63℃(分解).
IR(ATR法):(cm−1)3288,2974,1838,1748,1368,1255,1112,1084,938,753.
[α]31 =−45.5(c 1.07,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.48(brs,1H),4.22−4.21(m,1H),2.29−2.21(m,1H),1.09(d,J=6.5Hz,3H),1.04(d,J=6.5Hz,3H).
13C NMR(125MHz,CDCl):δ(ppm)168.8,153.0,63.2,30.9,18.4,16.7.
[Example 18]
<Synthesis of L-valine-NCA (Formula (2i))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-valine to obtain L-valine-NCA represented by the following formula (2i). The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 244 mg, 1.71 mmol, 86% yield, white solid; melting point 62-63 ° C (decomposition).
IR (ATR method): (cm < -1 >) 3288, 2974, 1838, 1748, 1368, 1255, 1112, 1084, 938, 753.
[Α] 31 D = −45.5 (c 1.07, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.48 (brs, 1H), 4.22 to 4.21 (m, 1H), 2.29 to 2.21 (m, 1H), 1 0.09 (d, J = 6.5 Hz, 3H), 1.04 (d, J = 6.5 Hz, 3H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.8, 153.0, 63.2, 30.9, 18.4, 16.7.

Figure 2020011948
Figure 2020011948

[実施例19]
<L−ロイシン−NCA(式(2j))の合成>
実施例1の遊離アミノ酸をL−ロイシンに変え、反応液回収時間を1335秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2j)で表されるL−ロイシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:3.81g,24.2mmol,収率91%,白色固体;融点69−71℃.
IR(ATR法):(cm−1)3288,2965,1814,1749,1474,1369,1291,935,616.
[α]33 =−45.6(c 1.00,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.59(brs,1H),4.34(dd,J=3.7,8.8Hz,1H),1.87−1.78(m,2H),1.72−1.65(m,1H),1.01(d,J=6.4Hz,3H),0.99(d,J=6.4Hz,3H).
13C NMR(125MHz,CDCl):δ(ppm)170.0,152.7,56.3,41.0,25.2,22.8,21.7.
[Example 19]
<Synthesis of L-leucine-NCA (Formula (2j))>
The flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-leucine, and the reaction solution recovery time was changed to 1335 seconds. I got The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 3.81 g, 24.2 mmol, 91% yield, white solid; melting point 69-71 ° C.
IR (ATR method): (cm < -1 >) 3288, 2965, 1814, 1749, 1474, 1369, 1291, 935, 616.
[Α] 33 D = −45.6 (c 1.00, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.59 (brs, 1H), 4.34 (dd, J = 3.7, 8.8 Hz, 1H), 1.87-1.78 ( m, 2H), 1.72-1.65 (m, 1H), 1.01 (d, J = 6.4 Hz, 3H), 0.99 (d, J = 6.4 Hz, 3H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 170.0, 152.7, 56.3, 41.0, 25.2, 22.8, 21.7.

Figure 2020011948
Figure 2020011948

[実施例20]
<L−イソロイシン−NCA(式(2k))の合成>
実施例1の遊離アミノ酸をL−イソロイシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2k)で表されるL−イソロイシン−NCAを得た。同定分析結果を下記に示す。
収量:322mg,2.05mmol,quant.,白色固体;融点67−68℃.
IR(ATR法):(cm−1)3276,2969,1847,1761,1355,1311,1230,915,759.
[α]23 =−29.7(c 1.15,CHCl).
H NMR(500MHz,DMSO−d):δ(ppm)9.08(s,1H),4.39(d,J=4.0Hz,1H),1.82−1.78(m,1H),1.39−1.31(m,1H),1.26−1.17(m,1H),0.92(d,J=6.9Hz,3H),0.86(t,J=7.4Hz,3H).
13C NMR(125MHz,DMSO−d):δ(ppm)170.9,152.2,61.8,36.5,23.9,14.8,11.3.
[Example 20]
<Synthesis of L-isoleucine-NCA (Formula (2k))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-isoleucine, to obtain L-isoleucine-NCA represented by the following formula (2k). The results of the identification analysis are shown below.
Yield: 322 mg, 2.05 mmol, quant. , White solid; mp 67-68 ° C.
IR (ATR method): (cm < -1 >) 3276, 2969, 1847, 1761, 1355, 1311, 1230, 915, 759.
[Α] 23 D = -29.7 ( c 1.15, CH 2 Cl 2).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 9.08 (s, 1H), 4.39 (d, J = 4.0 Hz, 1H), 1.82-1.78 (m, 1H), 1.39-1.31 (m, 1H), 1.26-1.17 (m, 1H), 0.92 (d, J = 6.9 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 170.9, 152.2, 61.8, 36.5, 23.9, 14.8, 11.3.

Figure 2020011948
Figure 2020011948

[実施例21]
<L−メチオニン−NCA(式(2l))の合成>
実施例1の遊離アミノ酸をL−メチオニンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2l)で表されるL−メチオニン−NCAを得た。同定分析結果を下記に示す。
精製方法:分液操作
収量:379mg,2.16mmol,quant.,黄色油状.
IR(neat):(cm−1)3319,1853,1781,1271,1099,919,758.
[α]24 =−2.4(c 0.83,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.12(brs,1H),4.54−4.52(m,1H),2.69(t,J=7.0Hz,2H),2.30−2.24(m,1H),2.16−2.10(m,4H).
13C NMR(125MHz,CDCl):δ(ppm)169.9,152.9,56.7,30.2,29.9,15.2.
[Example 21]
<Synthesis of L-methionine-NCA (Formula (2l))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-methionine, to obtain L-methionine-NCA represented by the following formula (21). The results of the identification analysis are shown below.
Purification method: Separation operation Yield: 379 mg, 2.16 mmol, quant. , Yellow oil.
IR (neat): (cm < -1 >) 3319, 1853, 1781, 1271, 1099, 919, 758.
[Α] 24 D = -2.4 (c 0.83, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.12 (brs, 1H), 4.54-4.52 (m, 1H), 2.69 (t, J = 7.0 Hz, 2H). , 2.30-2.24 (m, 1H), 2.16-2.10 (m, 4H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 169.9, 152.9, 56.7, 30.2, 29.9, 15.2.

Figure 2020011948
Figure 2020011948

[実施例22]
<O−t−ブチルジメチルシリル−L−セリン−NCA(式(2o))の合成>
実施例1の遊離アミノ酸をO−t−ブチルジメチルシリル−L−セリンに変え、反応液回収時間を50秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2o)で表されるO−t−ブチルジメチルシリル−L−セリン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:233mg,0.951mmol,収率95%,白色固体;融点80−81℃.
IR(ATR法):(cm−1)3284,2928,2856,1859,1750,1258,1098,895.
[α]25 =−42.5(c 1.13,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.42(brs,1H),4.38(t,J=3.0Hz,1H),4.01(dd,J=3.0,11.0Hz,1H),3.89(dd,J=3.0,11.0Hz,1H),0.88(s,9H),0.08(s,6H).
13C NMR(125MHz,CDCl):δ(ppm)168.1,153.2,61.9,60.4,25.7,18.2,−5.4,−5.6.
HRMS(ESI−TOF−MS):calcd.for [C1019NOSi+Na] 268.0976,found 268.0994.
[Example 22]
<Synthesis of Ot-butyldimethylsilyl-L-serine-NCA (Formula (2o))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to Ot-butyldimethylsilyl-L-serine, and the reaction liquid recovery time was changed to 50 seconds. The indicated Ot-butyldimethylsilyl-L-serine-NCA was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 233 mg, 0.951 mmol, 95% yield, white solid; melting point 80-81 ° C.
IR (ATR method): (cm < -1 >) 3284, 2928, 2856, 1859, 1750, 1258, 1098, 895.
[Α] 25 D = -42.5 (c 1.13, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.42 (brs, 1H), 4.38 (t, J = 3.0 Hz, 1H), 4.01 (dd, J = 3.0, 11.0 Hz, 1H), 3.89 (dd, J = 3.0, 11.0 Hz, 1H), 0.88 (s, 9H), 0.08 (s, 6H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.1, 153.2, 61.9, 60.4, 25.7, 18.2, -5.4, -5.6.
HRMS (ESI-TOF-MS): calcd. for [C 10 H 19 NO 4 Si + Na] + 268.0976, found 268.0994.

Figure 2020011948
Figure 2020011948

[実施例22]
<O−t−ブチル−L−チロシン−NCA(式(2p))の合成>
実施例1の遊離アミノ酸をO−t−ブチル−L−チロシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2p)で表されるO−t−ブチル−L−チロシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:544mg,2.06mmol,quant.,白色固体;融点110−111℃.
IR(ATR法):(cm−1)3272,2975,1853,1742,1506,1366,1159,898,753.
[α]23 =−90.3(c 1.21,CHCl).
H NMR(500MHz,DMSO−d):δ(ppm)9.05(s,1H),7.08(d,J=8.5Hz,2H),6.91(d,J=8.5Hz,2H),4.74(t,J=4.5Hz,1H),2.98(d,J=4.5Hz,2H),1.27(s,9H).
13C NMR(125MHz,DMSO−d):δ(ppm)170.9,154.1,151.6,130.2,129.3,123.5,77.8,58.3,35.6,28.5.
[Example 22]
<Synthesis of Ot-butyl-L-tyrosine-NCA (Formula (2p))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid of Example 1 was changed to Ot-butyl-L-tyrosine, and Ot-butyl-L- represented by the following formula (2p) was obtained. Tyrosine-NCA was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 544 mg, 2.06 mmol, quant. , White solid; mp 110-111 ° C.
IR (ATR method): (cm < -1 >) 3272, 2975, 1853, 1742, 1506, 1366, 1159, 898, 753.
[Α] 23 D = -90.3 (c 1.21, CH 2 Cl 2 ).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 9.05 (s, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8. 5 Hz, 2H), 4.74 (t, J = 4.5 Hz, 1H), 2.98 (d, J = 4.5 Hz, 2H), 1.27 (s, 9H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 170.9, 154.1, 151.6, 130.2, 129.3, 123.5, 77.8, 58.3, 35. 6,28.5.

Figure 2020011948
Figure 2020011948

[実施例23]
<L−アスパラギン酸−4−t−ブチルエステル−NCA(式(2q))の合成>
実施例1の遊離アミノ酸をL−アスパラギン酸−4−t−ブチルエステルに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2q)で表されるL−アスパラギン酸−4−t−ブチルエステル−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:506mg,2.35mmol,quant.,白色固体;融点137−139℃.
IR(ATR法):(cm−1)3277,1750,1717,1368,1234,1157,1100,947,903,751.
[α]23 =−59.7(c 1.07,CHCl).
H NMR(500MHz,DMSO−d):δ(ppm)8.98(s,1H),4.61(t,J=4.0Hz,1H),2.91(dd,J=4.0,17.5Hz,1H),2.67(dd,J=4.0,17.5Hz,1H),1.38(s,9H).
13C NMR(125MHz,DMSO−d):δ(ppm)171.1,168.2,152.2,81.5,53.8,35.9,27.5.
[Example 23]
<Synthesis of L-aspartic acid-4-t-butyl ester-NCA (Formula (2q))>
A flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-aspartic acid-4-t-butyl ester, and L-aspartic acid-4 represented by the following formula (2q) was obtained. -T-Butyl ester-NCA was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 506 mg, 2.35 mmol, quant. , White solid; mp 137-139 ° C.
IR (ATR method): (cm -1 ) 3277,1750,1717,1368,1234,1157,1100,947,903,751.
[Α] 23 D = -59.7 ( c 1.07, CH 2 Cl 2).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.98 (s, 1H), 4.61 (t, J = 4.0 Hz, 1H), 2.91 (dd, J = 4. 0, 17.5 Hz, 1H), 2.67 (dd, J = 4.0, 17.5 Hz, 1H), 1.38 (s, 9H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 171.1, 168.2, 152.2, 81.5, 53.8, 35.9, 27.5.

Figure 2020011948
Figure 2020011948

[実施例24]
<L−グルタミン酸−5−t−ブチルエステル−NCA(式(2r))の合成>
実施例1の遊離アミノ酸をL−グルタミン酸−5−t−ブチルエステルに変え、反応液回収時間を95秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2r)で表されるL−グルタミン酸−5−t−ブチルエステル−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:348mg,1.52mmol,収率80%,白色固体;融点96−97℃.
IR(ATR法):(cm−1)3313,2981,1859,1789,1696,1284,1156,1098,924,587.
[α]31 =−26.9(c 1.04,CHCl).
H NMR(500MHz, CDCl):δ(ppm)6.38(brs,1H),4.37−4.35(m,1H),2.47(t,J=6.5Hz,2H),2.29−2.23(m,1H),2.09−2.02(m,1H),1.46(s,9H).
13C NMR(125MHz,CDCl):δ(ppm)172.3,169.7,151.5,82.2,57.5,31.5,28.2,27.2.
[Example 24]
<Synthesis of L-glutamic acid-5-t-butyl ester-NCA (Formula (2r))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-glutamic acid-5-t-butyl ester, and the reaction liquid recovery time was set to 95 seconds. L-glutamic acid-5-t-butyl ester-NCA was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 348 mg, 1.52 mmol, 80% yield, white solid; melting point 96-97 ° C.
IR (ATR method): (cm < -1 >) 3313, 2981, 1859, 1789, 1696, 1284, 1156, 1098, 924, 587.
[Α] 31 D = −26.9 (c 1.04, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.38 (brs, 1H), 4.37-4.35 (m, 1H), 2.47 (t, J = 6.5 Hz, 2H). , 2.29-2.23 (m, 1H), 2.09-2.02 (m, 1H), 1.46 (s, 9H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 172.3, 169.7, 151.5, 82.2, 57.5, 31.5, 28.2, 27.2.

Figure 2020011948
Figure 2020011948

[実施例25]
<Nε−(t−ブトキシカルボニル)−L−リシン−NCA(式(2u))の合成>
実施例1の遊離アミノ酸をNε−(t−ブトキシカルボニル)−L−リシンに変え、反応液回収時間を80秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2u)で表されるNε−(t−ブトキシカルボニル)−L−リシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:440mg,1.61mmol,quant.,白色固体;融点135−136℃.
IR(ATR法):(cm−1)3374,3284,2949,1815,1760,1687,1523,1245,943,747.
[α]30 =−34.7(c 1.17,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.85(brs,1H),4.67(brs,1H),4.32(dd,J=4.5,6.5Hz,1H),3.18−3.10(m,2H),2.05−2.00(m,1H),1.88−1.81(m,1H),1.57−1.45(m,13H).
13C NMR(125MHz,CDCl):δ(ppm)170.1,156.8,152.2,80.0,57.6,39.5,30.8,29.4,28.6,21.2.
[Example 25]
<Synthesis of Nε- (t-butoxycarbonyl) -L-lysine-NCA (Formula (2u))>
The flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to Nε- (t-butoxycarbonyl) -L-lysine, and the reaction solution recovery time was changed to 80 seconds. Nε- (t-butoxycarbonyl) -L-lysine-NCA represented by the following formula: was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 440 mg, 1.61 mmol, quant. , White solid; mp 135-136 ° C.
IR (ATR method): (cm < -1 >) 3374, 3284, 2949, 1815, 1760, 1687, 1523, 1245, 943, 747.
[Α] 30 D = −34.7 (c 1.17, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.85 (brs, 1H), 4.67 (brs, 1H), 4.32 (dd, J = 4.5, 6.5 Hz, 1H). , 3.18-3.10 (m, 2H), 2.05-2.00 (m, 1H), 1.88-1.81 (m, 1H), 1.57-1.45 (m, 2H) 13H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 170.1, 156.8, 152.2, 80.0, 57.6, 39.5, 30.8, 29.4, 28.6. 21.2.

Figure 2020011948
Figure 2020011948

[実施例26]
<1−t−ブトキシカルボニル−L−トリプトファン−NCA(式(2v))の合成>
実施例1の遊離アミノ酸を1−t−ブトキシカルボニル−L−トリプトファンに変え、反応液回収時間を23秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2v)で表される1−t−ブトキシカルボニル−L−トリプトファン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:159mg,0.482mmol,quant.,白色固体;融点155−156℃.
IR(ATR法):(cm−1)3260,1854,1768,1739,1362,1251,1096,913,761.
[α]26 =−52.2(c 0.89,CHCl).
H NMR(500MHz,CDCl):δ(ppm)8.13(brd,J=7.5Hz,1H),7.49−7.48(m,2H),7.36−7.33(m,1H),7.27−7.24(m,1H),6.24(brs,1H),4.57(dd,J=3.5,8.5Hz,1H),3.39(dd,J=3.5,14.5Hz,1H),3.06(dd,J=8.5,14.5Hz,1H),1.66(s,9H).
13C NMR(125MHz,CDCl):δ(ppm)168.9,152.0,149.5,135.7,129.4,125.2,124.9,123.1,118.5,115.8,113.2,84.5,57.7,28.3,28.0.
[Example 26]
<Synthesis of 1-t-butoxycarbonyl-L-tryptophan-NCA (Formula (2v))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to 1-t-butoxycarbonyl-L-tryptophan, and the reaction solution recovery time was set to 23 seconds. 1-t-butoxycarbonyl-L-tryptophan-NCA was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation yield: 159 mg, 0.482 mmol, quant. , White solid; mp 155-156 ° C.
IR (ATR method): (cm < -1 >) 3260, 1854, 1768, 1739, 1362, 1251, 1096, 913, 761.
[Α] 26 D = −52.2 (c 0.89, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.13 (brd, J = 7.5 Hz, 1H), 7.49-7.48 (m, 2H), 7.36-7.33 ( m, 1H), 7.27-7.24 (m, 1H), 6.24 (brs, 1H), 4.57 (dd, J = 3.5, 8.5 Hz, 1H), 3.39 ( dd, J = 3.5, 14.5 Hz, 1H), 3.06 (dd, J = 8.5, 14.5 Hz, 1H), 1.66 (s, 9H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.9, 152.0, 149.5, 135.7, 129.4, 125.2, 124.9, 123.1, 118.5. 115.8, 113.2, 84.5, 57.7, 28.3, 28.0.

Figure 2020011948
Figure 2020011948

[実施例27]
<L−アリルグリシン−NCA(式(2w))の合成>
実施例1の遊離アミノ酸をL−アリルグリシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2w)で表されるL−アリルグリシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:264mg,1.87mmol,収率94%,白色固体;融点45−46℃.
IR(ATR法):(cm−1)3288,1826,1761,1363,1292,929,742,573.
[α]23 =−57.9(c 1.19,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.77(brs,1H),5.80−5.71(m,1H),5.30−5.25(m,2H),4.42(dd,J=4.5,7.0Hz,1H),2.74−2.69(m,1H),2.57−2.51(m,1H);
13C NMR(125MHz,CDCl):δ(ppm)169.1,152.8,129.9,121.6,57.3,35.9.
[Example 27]
<Synthesis of L-allylglycine-NCA (Formula (2w))>
Flow synthesis was carried out in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L-allylglycine, to obtain L-allylglycine-NCA represented by the following formula (2w). The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation Yield: 264 mg, 1.87 mmol, 94% yield, white solid; melting point 45-46 ° C.
IR (ATR method): (cm -1 ) 3288, 1826, 1761, 1363, 1292, 929, 742, 573.
[Α] 23 D = -57.9 (c 1.19, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.77 (brs, 1H), 5.80-5.71 (m, 1H), 5.30-5.25 (m, 2H), 4 .42 (dd, J = 4.5, 7.0 Hz, 1H), 2.74-2.69 (m, 1H), 2.57-2.51 (m, 1H);
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 169.1, 152.8, 129.9, 121.6, 57.3, 35.9.

Figure 2020011948
Figure 2020011948

[実施例28]
<DL−プロパルギルグリシン−NCA(式(2x))の合成>
実施例1の遊離アミノ酸をDL−プロパルギルグリシンに変えた以外は、実施例1と同様にフロー合成を行い、下記式(2x)で表されるDL−プロパルギルグリシン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作
収量:266mg,1.91mmol,収率96%,白色固体;融点113−115℃.
IR(ATR法):(cm−1)3342,3289,1831,1749,1286,929,758.
H NMR(500MHz,アセトン−d):δ(ppm)8.01(brs,1H),4.75−4.73(m,1H),2.84(dd,J=3.0,4.5Hz,2H),2.60(t,J=3.0Hz,1H).
13C NMR(125MHz,アセトン−d):δ(ppm)170.5,152.7,78.2,73.6,57.3,22.2.
[Example 28]
<Synthesis of DL-propargylglycine-NCA (Formula (2x))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to DL-propargylglycine, to obtain DL-propargylglycine-NCA represented by the following formula (2x). The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation yield: 266 mg, 1.91 mmol, 96% yield, white solid; mp 113-115 ° C.
IR (ATR method): (cm -1 ) 3342,3289,1831,1749,1286,929,758.
1 H NMR (500 MHz, acetone-d 6 ): δ (ppm) 8.01 (brs, 1H), 4.75-4.73 (m, 1H), 2.84 (dd, J = 3.0, 4.5 Hz, 2H), 2.60 (t, J = 3.0 Hz, 1H).
13 C NMR (125 MHz, acetone-d 6 ): δ (ppm) 170.5, 152.7, 78.2, 73.6, 57.3, 22.2.

Figure 2020011948
Figure 2020011948

[実施例29]
<L−(3,4−アセトニド−ジヒドロキシ)フェニルアラニン−NCA(式(2y))の合成>
実施例1の遊離アミノ酸をL−(3,4−アセトニド−ジヒドロキシ)フェニルアラニンに変え、反応液回収時間を25秒とした以外は、実施例1と同様にフロー合成を行い、下記式(2y)で表されるL−(3,4−アセトニド−ジヒドロキシ)フェニルアラニン−NCAを得た。精製方法および同定分析結果を下記に示す。
精製方法:分液操作と再結晶
収量:106mg,0.402mmol,収率80%,白色固体;融点130−132℃.
IR(ATR法):(cm−1)3358,1850,1766,1493,1259,928,758,574.
[α]31 =−97.7(c 0.894,CHCl).
H NMR(500MHz,CDCl):δ(ppm)6.69−6.57(m,3H),6.02(brs,1H),4.48−4.47(m,1H),3.20(dd,J=3.0,14.0Hz,1H),2.89(dd,J=9.0,14.0Hz,1H),1.67(s,6H).
13C NMR(125MHz,CDCl):δ(ppm)168.8,151.8,148.3,147.4,126.9,121.9,118.7,109.1,108.8,59.1,37.8,26.0.
HRMS(ESI−TOF−MS):calcd.for[C1313NO+Na] 286.0686, found 286.0689.
[Example 29]
<Synthesis of L- (3,4-acetonide-dihydroxy) phenylalanine-NCA (Formula (2y))>
Flow synthesis was performed in the same manner as in Example 1 except that the free amino acid in Example 1 was changed to L- (3,4-acetonide-dihydroxy) phenylalanine, and the reaction solution recovery time was changed to 25 seconds. L- (3,4-acetonide-dihydroxy) phenylalanine-NCA represented by the following formula was obtained. The purification method and the results of the identification analysis are shown below.
Purification method: Separation operation and recrystallization yield: 106 mg, 0.402 mmol, 80% yield, white solid; melting point 130-132 ° C.
IR (ATR method): (cm < -1 >) 3358, 1850, 1766, 1493, 1259, 928, 758, 574.
[Α] 31 D = -97.7 (c 0.894, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.69-6.57 (m, 3H), 6.02 (brs, 1H), 4.48-4.47 (m, 1H), 3 .20 (dd, J = 3.0, 14.0 Hz, 1H), 2.89 (dd, J = 9.0, 14.0 Hz, 1H), 1.67 (s, 6H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 168.8, 151.8, 148.3, 147.4, 126.9, 121.9, 118.7, 109.1, 108.8, 59.1, 37.8, 26.0.
HRMS (ESI-TOF-MS): calcd. for [C 13 H 13 NO 5 + Na] + 286.0686, found 286.0689.

Figure 2020011948
Figure 2020011948

[実施例30]
<N−τ−トリチル−L−ヒスチジン−NCA(式(2m))の合成>
原料溶液(1−1)として、N−τ−トリチル−L−ヒスチジンのナトリウム塩(0.20M,1.00当量)とN−メチルモルホリン(0.90M,4.50当量)の水溶液(流速:2.40mL/min)と、原料溶液(1−2)としてトリホスゲン(0.10M,1.00当量)のアセトニトリル溶液(流速:4.80mL/min)を40℃に制御された水浴中に浸けたミキサー20にシリンジポンプで導入し、混合した。混合後の溶液は40℃に制御された水浴中に浸けた反応管21(内径:0.25mm,長さ:244mm,体積:12.0μL,反応時間:0.10秒)を通過中に反応する。この混合後の溶液と、酢酸エチル(流速:2.40mL/min)を40℃に制御された水浴中に浸けたミキサー30にシリンジポンプで導入し、前記混合後の溶液に酢酸エチル溶媒を注入することにより希釈した。希釈した溶液は40℃に制御された水浴中に浸けた反応管31(内径:0.80mm,長さ:298mm,体積:150μL,反応時間:0.94秒)を通過させた後、背圧弁も通過させて、40mLの酢酸エチルを入れて0℃に冷却したフラスコ中に反応液として回収した。なお、反応液の回収はシリンジポンプの運転開始から20秒後、定常状態に達した後に始め、70秒間回収した。
回収した反応液にN−メチルモルホリン(44.0μL,0.400mmol,0.714当量)を0℃で入れ、分液操作により有機層のみを得た。この有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後に10℃で濃縮することにより、生成物のN−τ−トリチル−L−ヒスチジン−NCA(式(2m))(収量:188mg,0.444mmol,収率79%)を白色固体として得た。
[Example 30]
<Synthesis of N-τ-trityl-L-histidine-NCA (Formula (2m))>
As a raw material solution (1-1), an aqueous solution of sodium salt of N-τ-trityl-L-histidine (0.20 M, 1.00 equivalent) and N-methylmorpholine (0.90 M, 4.50 equivalent) (flow rate) : 2.40 mL / min) and a solution of triphosgene (0.10 M, 1.00 equivalent) in acetonitrile (flow rate: 4.80 mL / min) as a raw material solution (1-2) in a water bath controlled at 40 ° C. It was introduced into the dipped mixer 20 with a syringe pump and mixed. The mixed solution reacts while passing through a reaction tube 21 (inner diameter: 0.25 mm, length: 244 mm, volume: 12.0 μL, reaction time: 0.10 sec) immersed in a water bath controlled at 40 ° C. I do. The mixed solution and ethyl acetate (flow rate: 2.40 mL / min) are introduced by a syringe pump into a mixer 30 immersed in a water bath controlled at 40 ° C., and an ethyl acetate solvent is injected into the mixed solution. And diluted. The diluted solution is passed through a reaction tube 31 (inner diameter: 0.80 mm, length: 298 mm, volume: 150 μL, reaction time: 0.94 seconds) immersed in a water bath controlled at 40 ° C. And collected as a reaction solution in a flask containing 40 mL of ethyl acetate and cooled to 0 ° C. The reaction solution was collected 20 seconds after the start of the operation of the syringe pump and after a steady state was reached, and then collected for 70 seconds.
N-methylmorpholine (44.0 μL, 0.400 mmol, 0.714 equivalent) was added to the recovered reaction solution at 0 ° C., and only an organic layer was obtained by liquid separation. The organic layer was washed with water and a saturated saline solution, dried over magnesium sulfate, and then concentrated at 10 ° C. to obtain a product N-τ-trityl-L-histidine-NCA (formula (2m)) (yield: 188 mg, 0.444 mmol, 79% yield) as a white solid.

回収したL−ヒスチジン−NCA(下記式(2m))の同定分析結果を下記に示す。
融点:>200℃.
IR(ATR法):(cm−1)3059,1848,1781,1444,1288,923,747,699.
[α]25 =−34.6(c 1.04,CHCl).
H NMR(500MHz,CDCl):δ(ppm)7.59(brs,1H),7.38−7.08(m,16H),6.66(s,1H),4.55(dd,J=3.5,8.0Hz,1H),3.15(dd,J=3.5,15.0Hz,1H),2.97(dd,J=8.0,15.0Hz,1H).
13C NMR(125MHz,CDCl):δ(ppm)170.1,151.8,142.2,139.0,134.8,129.8,128.4,128.3,119.8,75.7,58.1,30.1.
The identification analysis results of the collected L-histidine-NCA (formula (2m) below) are shown below.
Melting point:> 200 ° C.
IR (ATR method): (cm -1 ) 3059, 1848, 1781, 1444, 1288, 923, 747, 699.
[Α] 25 D = −34.6 (c 1.04, CH 2 Cl 2 ).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.59 (brs, 1H), 7.38-7.08 (m, 16H), 6.66 (s, 1H), 4.55 (dd) , J = 3.5, 8.0 Hz, 1H), 3.15 (dd, J = 3.5, 15.0 Hz, 1H), 2.97 (dd, J = 8.0, 15.0 Hz, 1H) ).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 170.1, 151.8, 142.2, 139.0, 134.8, 129.8, 128.4, 128.3, 119.8, 75.7, 58.1, 30.1.

Figure 2020011948
Figure 2020011948

[実施例31]
<N−ω−ニトロ−L−アルギニン−NCA(式(2n))の合成>
原料溶液(1−1)として、N−ω−ニトロ−L−アルギニンのナトリウム塩(0.50M,1.00当量)とN−メチルモルホリン(2.25M,4.50当量)の水溶液(流速:2.40mL/min)と、原料溶液(1−2)としてトリホスゲン(0.25M,1.00当量)のアセトニトリル溶液(流速:4.80mL/min)を20℃に制御された水浴中に浸けたミキサー20にシリンジポンプで導入し、混合した。この混合後の溶液は20℃に制御された水浴中に浸けた反応管21(内径:0.25mm,長さ:244mm,体積:12.0μL,反応時間:0.10秒)を通過中に反応する。この混合後の溶液と、酢酸エチル(流速:2.40mL/min)を20℃に制御された水浴中に浸けたミキサー30にシリンジポンプで導入し、前記混合後の溶液に酢酸エチルを注入することにより希釈した。希釈した溶液は20℃に制御された水浴中に浸けた反応管31(内径:0.80mm,長さ:298mm,体積:150μL,反応時間:0.94秒)を通過させた後、背圧弁も通過させて、40mLの酢酸エチルを入れて0℃に冷却したフラスコ中に回収した。なお、反応液の回収はシリンジポンプの運転開始から20秒後、定常状態に達した後に始め、90秒間回収した。
回収液にN−メチルモルホリン(110μL,1.00mmol,0.556当量)を0℃で入れ、分液操作により有機層のみを得た。この有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後に10℃で濃縮することにより生成物のN−ω−ニトロ−L−アルギニン−NCA(式(2n))(収量:163mg,0.665mmol,収率37%)を白色固体として得た。
[Example 31]
<Synthesis of N-ω-nitro-L-arginine-NCA (Formula (2n))>
As a raw material solution (1-1), an aqueous solution of sodium salt of N-ω-nitro-L-arginine (0.50 M, 1.00 equivalent) and N-methylmorpholine (2.25 M, 4.50 equivalent) (flow rate) : 2.40 mL / min) and a solution of triphosgene (0.25 M, 1.00 equivalent) in acetonitrile (flow rate: 4.80 mL / min) as a raw material solution (1-2) in a water bath controlled at 20 ° C. It was introduced into the dipped mixer 20 with a syringe pump and mixed. The mixed solution is passed through a reaction tube 21 (inner diameter: 0.25 mm, length: 244 mm, volume: 12.0 μL, reaction time: 0.10 sec) immersed in a water bath controlled at 20 ° C. react. The mixed solution and ethyl acetate (flow rate: 2.40 mL / min) are introduced by a syringe pump into a mixer 30 immersed in a water bath controlled at 20 ° C., and ethyl acetate is injected into the mixed solution. Dilution. The diluted solution was passed through a reaction tube 31 (inner diameter: 0.80 mm, length: 298 mm, volume: 150 μL, reaction time: 0.94 seconds) immersed in a water bath controlled at 20 ° C. And collected in a flask containing 40 mL of ethyl acetate and cooled to 0 ° C. The reaction solution was collected for 90 seconds, 20 seconds after the start of the operation of the syringe pump, and after the steady state was reached.
N-methylmorpholine (110 μL, 1.00 mmol, 0.556 equivalent) was added to the recovered solution at 0 ° C., and only an organic layer was obtained by liquid separation. The organic layer was washed with water and a saturated saline solution, dried over magnesium sulfate, and then concentrated at 10 ° C. to obtain N-ω-nitro-L-arginine-NCA (formula (2n)) (yield: 163 mg) , 0.665 mmol, 37% yield) as a white solid.

回収したL−アルギニン−NCA(下記式(2n))の同定分析結果を下記に示す。
融点:>200℃.
IR(ATR法):(cm−1)3376,3309,3213,1832,1770,1608,1252,1108,926.
[α]25 =−11.9(c 0.60,DMF).
H NMR(500MHz,DMSO−d):δ(ppm)9.12(s,1H),8.56(brs,1H),7.88(brs,2H),4.45(dd,J=5.0,5.5Hz,1H),3.18−3.17(m,2H),1.81−1.58(m,4H).
13C NMR(125MHz,DMSO−d):δ(ppm)171.6,159.3,152.0,63.4,56.9,52.5,28.5.
HRMS(ESI−TOF−MS):calcd.for[C11+Na] 268.0652, found 268.0660.
The identification analysis results of the recovered L-arginine-NCA (Formula (2n) below) are shown below.
Melting point:> 200 ° C.
IR (ATR method): (cm < -1 >) 3376, 3309, 3213, 1832, 1770, 1608, 1252, 1108, 926.
[[Alpha]] D < 25 > = -11.9 (c 0.60, DMF).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 9.12 (s, 1H), 8.56 (brs, 1H), 7.88 (brs, 2H), 4.45 (dd, J) = 5.0, 5.5 Hz, 1H), 3.18-3.17 (m, 2H), 1.81-1.58 (m, 4H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 171.6, 159.3, 152.0, 63.4, 56.9, 52.5, 28.5.
HRMS (ESI-TOF-MS): calcd. for [C 7 H 11 N 5 O 5 + Na] + 268.0652, found 268.0660.

Figure 2020011948
Figure 2020011948

[実施例32]
<N−β−トリチル−L−アスパラギン−NCA(式(2s))の合成>
原料溶液(1−1)として、遊離アミノ酸(N−β−トリチル−L−アスパラギン)のナトリウム塩(0.40M,1.00当量)とN−メチルモルホリン(1.80M,4.50当量)の水溶液(流速: 2.40 mL/min)と、原料溶液(1−2)としてトリホスゲン(0.25M,1.00当量)のアセトニトリル溶液(流速:4.80mL/min)を20℃に制御された水浴中に浸けたミキサー20にシリンジポンプで導入し、混合した。混合物は20℃に制御された水浴中に浸けた反応管21(内径:0.25mm,長さ:244mm,体積:12.0μL,反応時間:0.10秒)を通過中に反応する。この混合後の溶液と、酢酸エチル(流速:2.40mL/min)を20℃に制御された水浴中に浸けたミキサー30にシリンジポンプで導入し、前記混合後の溶液に酢酸エチルを注入することにより希釈した。希釈した混合液は20℃に制御された水浴中に浸けた反応管31(内径:0.80mm,長さ:298mm,体積:150μL,反応時間:0.94秒)を通過させた後、背圧弁も通過させて、40mLの酢酸エチルを入れて0℃に冷却したフラスコ中に反応液として回収した。なお、反応液の回収はシリンジポンプの運転開始から20秒後、定常状態に達した後に始め、50秒間回収した。
続いて分液操作により有機層のみを回収した。この有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後に10℃で濃縮することにより、生成物のN−β−トリチル−L−アスパラギン−NCA(式(2s))を得た。
[Example 32]
<Synthesis of N-β-trityl-L-asparagine-NCA (Formula (2s))>
As a raw material solution (1-1), a sodium salt of a free amino acid (N-β-trityl-L-asparagine) (0.40 M, 1.00 equivalent) and N-methylmorpholine (1.80 M, 4.50 equivalent) And an acetonitrile solution (flow rate: 4.80 mL / min) of triphosgene (0.25 M, 1.00 equivalent) as a raw material solution (1-2) was controlled at 20 ° C. The mixture was introduced into the mixer 20 immersed in the immersed water bath with a syringe pump and mixed. The mixture reacts while passing through a reaction tube 21 (inner diameter: 0.25 mm, length: 244 mm, volume: 12.0 μL, reaction time: 0.10 sec) immersed in a water bath controlled at 20 ° C. The mixed solution and ethyl acetate (flow rate: 2.40 mL / min) are introduced by a syringe pump into a mixer 30 immersed in a water bath controlled at 20 ° C., and ethyl acetate is injected into the mixed solution. Dilution. The diluted mixture is passed through a reaction tube 31 (inner diameter: 0.80 mm, length: 298 mm, volume: 150 μL, reaction time: 0.94 seconds) immersed in a water bath controlled at 20 ° C. The mixture was passed through a pressure valve and collected as a reaction solution in a flask containing 40 mL of ethyl acetate and cooled to 0 ° C. The reaction solution was collected 20 seconds after the start of the operation of the syringe pump and after a steady state was reached, and then collected for 50 seconds.
Subsequently, only the organic layer was recovered by a liquid separation operation. The organic layer was washed with water and saturated saline, dried over magnesium sulfate, and then concentrated at 10 ° C. to obtain a product N-β-trityl-L-asparagine-NCA (formula (2s)). .

回収したN−β−トリチル−L−アスパラギン−NCA(下記式(2s))の同定分析結果を下記に示す。
収量:310mg,0.774mmol,収率97%,白色固体;融点>200℃.
IR(ATR法):(cm−1)3356,1858,1787,1665,1507,1267,907.
[α]25 =−4.6(c 0.62,DMF).
H NMR(500MHz,DMSO−d):δ(ppm)8.99(s,1H),8.89(s,1H),7.28−7.14(m,15H),4.55(t,J=4.0Hz,1H),3.06(dd,J=4.0,16.5Hz,1H),2.75(dd,J=4.0,16.5Hz,1H).
13C NMR(125MHz,DMSO−d):δ(ppm)171.5,167.8,152.3,144.4,128.5,127.6,126.5,69.6,53.9,36.8.
The identification analysis result of the recovered N-β-trityl-L-asparagine-NCA (formula (2s) below) is shown below.
Yield: 310 mg, 0.774 mmol, 97%, white solid; mp> 200 ° C.
IR (ATR method): (cm -1 ) 3356, 1858, 1787, 1665, 1507, 1267, 907.
[[Alpha]] D < 25 > = -4.6 (c 0.62, DMF).
1 H NMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.99 (s, 1 H), 8.89 (s, 1 H), 7.28-7.14 (m, 15 H), 4.55 (T, J = 4.0 Hz, 1H), 3.06 (dd, J = 4.0, 16.5 Hz, 1H), 2.75 (dd, J = 4.0, 16.5 Hz, 1H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 171.5, 167.8, 152.3, 144.4, 128.5, 127.6, 126.5, 69.6, 53. 9, 36.8.

Figure 2020011948
Figure 2020011948

[実施例33]
<N−ω−トリチル−L−グルタミン−NCA(式(2t))の合成>
実施例32の遊離アミノ酸をN−ω−トリチル−L−グルタミンに変え、反応液回収時間を80秒とした以外は、実施例32と同様にフロー合成を行い、分液操作の後さらに再結晶を行うことにより精製し、下記式(2t)で表されるN−ω−トリチル−L−グルタミン−NCAを得た。同定分析結果を下記に示す。
収量:434mg,1.05mmol,収率82%,白色固体;融点>200℃.
IR(ATR法):(cm−1)3384,3199,1850,1778,1669,1489,915,754,700.
[α]26 =−21.5(c 1.01,CHCl).
H NMR(500MHz,DMSO−d):δ(ppm)9.06(s,1H),8.68(s,1H),7.29−7.17(m,15H),4.34(t,J=6.5Hz,1H),2.48−2.34(m,2H),1.94−1.83(m,2H).
13C NMR(125MHz,DMSO−d):δ(ppm)171.4,170.6,151.9,144.8,128.5,127.5,126.4,69.3,56.4,30.8,26.9.
[Example 33]
<Synthesis of N-ω-trityl-L-glutamine-NCA (Formula (2t))>
Flow synthesis was performed in the same manner as in Example 32, except that the free amino acid in Example 32 was changed to N-ω-trityl-L-glutamine, and the reaction liquid recovery time was changed to 80 seconds. To obtain N-ω-trityl-L-glutamine-NCA represented by the following formula (2t). The results of the identification analysis are shown below.
Yield: 434 mg, 1.05 mmol, 82% yield, white solid;
IR (ATR method): (cm -1 ) 3384, 3199, 1850, 1778, 1669, 1489, 915, 754, 700.
[Α] 26 D = −21.5 (c 1.01, CH 2 Cl 2 ).
1 H NMR (500MHz, DMSO- d 6): δ (ppm) 9.06 (s, 1H), 8.68 (s, 1H), 7.29-7.17 (m, 15H), 4.34 (T, J = 6.5 Hz, 1H), 2.48-2.34 (m, 2H), 1.94-1.83 (m, 2H).
13 C NMR (125 MHz, DMSO-d 6 ): δ (ppm) 171.4, 170.6, 151.9, 144.8, 128.5, 127.5, 126.4, 69.4, 69.3, 56. 4,30.8,26.9.

Figure 2020011948
Figure 2020011948

[実施例34]
<β−NCAのフロー合成>
<β−フェニルアラニン−NCA(式(2−8i))の合成>
原料溶液(1−1)として、遊離アミノ酸(β−フェニルアラニン)のナトリウム塩(0.25M,1.00当量)とN−メチルモルホリン(0.63M,2.52当量)の水溶液(流速:2.40mL/min)と、原料溶液(1−2)としてトリホスゲン(0.084M,0.67当量)溶液(溶媒:アセトニトリル)(流速:4.80mL/min)を20℃の水浴中に浸けたミキサー20にシリンジポンプで導入し混合し、20℃の水浴中の反応管21(内径:0.25mm,長さ:244mm,体積:12.0μL,反応時間:0.10秒)を通過中に反応する。この混合後の溶液と、酢酸エチル(流速:2.40mL/min)を20℃に制御された水浴中に浸けたミキサー30にシリンジポンプで導入し、前記混合後の溶液に酢酸エチル溶媒を注入することにより希釈した。希釈した溶液は20℃の水浴中の反応管31(内径:0.80mm,長さ:298mm,体積:150μL,反応時間:0.94秒)を通過させた後、背圧弁も通過させて、40mLの酢酸エチルに入れて0℃に冷却したフラスコ中に反応液として回収した。なお、反応液の回収はシリンジポンプの運転開始から20秒後、定常状態に達した後に始め、100秒間回収した。
得られた二層混合物の有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後に20℃以下で濃縮することにより、下記式(2−8i)で表される生成物β−フェニルアラニン−NCAを得た。精製方法および同定分析結果を下記に示す。
[Example 34]
<Flow synthesis of β-NCA>
<Synthesis of β-phenylalanine-NCA (Formula (2-8i))>
As a raw material solution (1-1), an aqueous solution of sodium salt of free amino acid (β-phenylalanine) (0.25 M, 1.00 equivalent) and N-methylmorpholine (0.63 M, 2.52 equivalent) (flow rate: 2 .40 mL / min) and a triphosgene (0.084 M, 0.67 equivalent) solution (solvent: acetonitrile) (flow rate: 4.80 mL / min) as a raw material solution (1-2) were immersed in a water bath at 20 ° C. The mixture was introduced into the mixer 20 with a syringe pump and mixed. react. The mixed solution and ethyl acetate (flow rate: 2.40 mL / min) are introduced by a syringe pump into a mixer 30 immersed in a water bath controlled at 20 ° C., and an ethyl acetate solvent is injected into the mixed solution. And diluted. The diluted solution was passed through a reaction tube 31 (inner diameter: 0.80 mm, length: 298 mm, volume: 150 μL, reaction time: 0.94 sec) in a water bath at 20 ° C, and then passed through a back pressure valve. The reaction solution was collected in a flask cooled to 0 ° C. in 40 mL of ethyl acetate. The reaction solution was collected 20 seconds after the start of the operation of the syringe pump and after the steady state was reached, and was collected for 100 seconds.
The product β-phenylalanine represented by the following formula (2-8i) is obtained by washing the organic layer of the obtained two-layer mixture with water and saturated saline, drying over magnesium sulfate, and concentrating at 20 ° C. or lower. -NCA was obtained. The purification method and the results of the identification analysis are shown below.

精製方法:分液操作
収量:127.5mg,0.74mmol,収率93%,白色固体;融点:97−99℃.
IR(ATR法):(cm−1)3230,3148,1791,1734,1383,1332,1115,1023,977.
H NMR(500MHz,CDCN):δ(ppm)7.42−7.39(m,2H),7.37−7.33(m,3H),6.94(brs,1H),4.79−4.76(m,1H),3.04(dd,J=5.5,16.5Hz,1H),2.88(dd,J=8.0,16.5Hz,1H).
13C NMR(125MHz,CDCN):δ(ppm)163.9,150.2,137.6,129.6,129.4,125.9,51.0,37.0.
HRMS (ESI−TOF−MS):calcd.for [CNO+Na] 214.0475,found 214.0476.
Purification method: Separation operation yield: 127.5 mg, 0.74 mmol, yield 93%, white solid; melting point: 97-99 ° C.
IR (ATR method): (cm < -1 >) 3230,3148,1791,1734,1383,1332,1115,1023,977.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 7.42 to 7.39 (m, 2H), 7.37 to 7.33 (m, 3H), 6.94 (brs, 1H), 4.79-4.76 (m, 1H), 3.04 (dd, J = 5.5, 16.5 Hz, 1H), 2.88 (dd, J = 8.0, 16.5 Hz, 1H) .
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 163.9, 150.2, 137.6, 129.6, 129.4, 125.9, 51.0, 37.0.
HRMS (ESI-TOF-MS): calcd. for [C 6 H 9 NO 3 + Na] + 214.0475, found 214.0476.

Figure 2020011948
Figure 2020011948

以下の実施例における他のβ−アミノ酸についても、実施例34の遊離アミノ酸を対応する置換基を有するβ−アラニン誘導体に変えた以外は、実施例34と同様に合成した。結果を精製方法および同定分析結果と合わせて下記に示す。   Other β-amino acids in the following Examples were synthesized in the same manner as in Example 34, except that the free amino acids in Example 34 were changed to β-alanine derivatives having a corresponding substituent. The results are shown below together with the purification method and the results of the identification analysis.

[実施例35]
<β−アラニン−NCA(式(2−8a))の合成>
精製方法:分液操作
収量:65.9mg,0.57mmol,収率57%,白色固体,84−86℃ decomp.;
IR(ATR法):(cm−1)3254,3150,2929,1798,1705,1344,1060,749.
H NMR(500MHz,CDCN):δ(ppm)6.49(brs,1H),3.33−3.30(m,2H),2.71(t,J=7.0Hz,2H).
13C NMR(125MHz,CDCN):δ(ppm)167.3,150.8,35.6,29.1.
HRMS(ESI−TOF−MS):calcd.for [CNO+Na] 138.0162,found 138.0161.
[Example 35]
<Synthesis of β-alanine-NCA (Formula (2-8a))>
Purification method: Separation operation Yield: 65.9 mg, 0.57 mmol, yield 57%, white solid, 84-86 ° C decomp. ;
IR (ATR method): (cm < -1 >) 3254, 3150, 2929, 1798, 1705, 1344, 1060, 749.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 6.49 (brs, 1H), 3.33-3.30 (m, 2H), 2.71 (t, J = 7.0 Hz, 2H) ).
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 167.3, 150.8, 35.6, 29.1.
HRMS (ESI-TOF-MS): calcd. for [C 5 H 7 NO 3 + Na] + 138.0162, found 138.0161.

Figure 2020011948
Figure 2020011948

[実施例36]
<β−ホモアラニン−NCA((2−8b))の合成>
精製方法:分液操作
収量:56.4mg,0.44mmol,収率69%,白色固体,92−95℃ deconp.
IR(ATR法):(cm−1)3154,2975,1807,1714,1386,1331,1106,995,595.
H NMR(500MHz,CDCl):δ(ppm)6.95(brs,1H),3.79−3.78(m,1H),2.87(dd,J=4.0,16.0Hz,1H),2.53(dd,J=9.5,16.0Hz,1H),1.35−1.34(d,J=6.5Hz,3H).
13C NMR(125MHz,CDCl):δ(ppm)164.5,150.4,42.9,36.2,20.7.
[Example 36]
<Synthesis of β-homoalanine-NCA ((2-8b))>
Purification method: Separation operation Yield: 56.4 mg, 0.44 mmol, 69% yield, white solid, 92-95 ° C deconp.
IR (ATR method): (cm -1 ) 3154, 2975, 1807, 1714, 1386, 1331, 1106, 995, 595.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 6.95 (brs, 1H), 3.79-3.78 (m, 1H), 2.87 (dd, J = 4.0, 16. 0 Hz, 1H), 2.53 (dd, J = 9.5, 16.0 Hz, 1H), 1.35-1.34 (d, J = 6.5 Hz, 3H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 164.5, 150.4, 42.9, 36.2, 20.7.

Figure 2020011948
Figure 2020011948

[実施例37]
<α−メチル−β−アラニン−NCA(式(2−8c))の合成>
精製方法:分液操作
収量:86.1mg,0.67mmol,収率67%,白色固体;融点112−114℃.
IR(ATR法):(cm−1)3280,2338,1792,1734,1642,1354,1077,973,598.
H NMR(500MHz,CDCN):δ(ppm)6.58(brs,1H),3.34−3.29(m,1H),3.06(t,J=12.0Hz,1H),2.87−2.79(m,1H),1.16(d,J=4.3Hz,3H).
13C NMR(125MHz,CDCD):δ(ppm)169.5,150.0,41.0,33.6,11.5.
HRMS(ESI−TOF−MS):calcd.for [CNO+Na] 152.0318,found 152.0317.
[Example 37]
<Synthesis of α-methyl-β-alanine-NCA (Formula (2-8c))>
Purification method: Separation operation Yield: 86.1 mg, 0.67 mmol, 67% yield, white solid; mp 112-114 ° C.
IR (ATR method): (cm < -1 >) 3280, 2338, 1792, 1734, 1642, 1354, 1077, 973, 598.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 6.58 (brs, 1H), 3.34-3.29 (m, 1H), 3.06 (t, J = 12.0 Hz, 1H). ), 2.87-2.79 (m, 1H), 1.16 (d, J = 4.3 Hz, 3H).
13 C NMR (125 MHz, CD 3 CD): δ (ppm) 169.5, 150.0, 41.0, 33.6, 11.5.
HRMS (ESI-TOF-MS): calcd. for [C 5 H 7 NO 3 + Na] + 152.0318, found 152.0317.

Figure 2020011948
Figure 2020011948

[実施例38]
<N−メチル−β−アラニン−NCA(式(2−8d))の合成>
精製方法:分液操作
収量:62.5mg,0.48mmol,収率48%,無色油状.
IR(neat):(cm−1)3500,2935,1796,1731,1356,1152,1097,710.
H NMR(500MHz,CDCl):δ(ppm)3.47(t,J=6.5Hz,2H),3.12(s,3H),2.87(t,J=6.5Hz,2H).
13C NMR(125MHz,CDCl):δ(ppm)164.9,149.5,42.9,36.6,29.4.
HRMS (ESI−TOF−MS):calcd.for [CNO+Na] 152.0318,found 152.0318.
[Example 38]
<Synthesis of N-methyl-β-alanine-NCA (Formula (2-8d))>
Purification method: Separation operation Yield: 62.5 mg, 0.48 mmol, 48% yield, colorless oil.
IR (neat): (cm < -1 >) 3500, 2935, 1796, 1731, 1356, 1152, 1097, 710.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 3.47 (t, J = 6.5 Hz, 2H), 3.12 (s, 3H), 2.87 (t, J = 6.5 Hz, 2H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 164.9, 149.5, 42.9, 36.6, 29.4.
HRMS (ESI-TOF-MS): calcd. for [C 5 H 7 NO 3 + Na] + 152.0318, found 152.0318.

Figure 2020011948
Figure 2020011948

[実施例39]
<α−ジメチル−β−アラニン−NCA(式(2−8e))の合成>
精製方法:分液操作
収量:106.2mg,0.74mmol,収率74%,白色固体;融点:110−112℃.
IR(ATR法):(cm−1)3258,3162,2987,1794,1733,1338,1051,961,697.
H NMR(500MHz,CDCl):δ(ppm)7.06(brs,1H),3.22(d,J=2.0Hz,2H),1.36(s,6H).
13C NMR(125MHz,CDCl):δ(ppm)170.5,151.0,47.7,37.0,22.6.
HRMS (ESI−TOF−MS):calcd.for [CNO+Na] 166.0475,found 166.0474.
[Example 39]
<Synthesis of α-dimethyl-β-alanine-NCA (Formula (2-8e))>
Purification method: Separation operation yield: 106.2 mg, 0.74 mmol, 74% yield, white solid; melting point: 110-112 ° C.
IR (ATR method): (cm < -1 >) 3258, 3162, 2987, 1794, 1733, 1338, 1051, 961, 697.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.06 (brs, 1H), 3.22 (d, J = 2.0 Hz, 2H), 1.36 (s, 6H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 170.5, 151.0, 47.7, 37.0, 22.6.
HRMS (ESI-TOF-MS): calcd. for [C 6 H 9 NO 3 + Na] + 166.0475, found 166.0474.

Figure 2020011948
Figure 2020011948

[実施例40]
<β−ホモバリン−NCA(式(2−8f))の合成>
精製方法:分液操作
収量:86.2mg,0.67mmol,収率85%,白色固体;融点:69−72℃.
IR(ATR法):(cm−1)3224,2972,2941,1791,1723,1396,1336,1069,966.
H NMR(500MHz,CDCl):δ(ppm)7.19(brs,1H),3.45−3.41(m,1H),2.82(dd,J=5.0,16.0Hz,1H),2.64(dd,J=8.0,16.0Hz,1H),1.87−1.82(m,1H),1.00(t,J=7.5Hz,6H).
13C NMR(125MHz,CDCl):δ(ppm)165.1,150.9,52.4,32.1,31.6,17.9,17.8.
[Example 40]
<Synthesis of β-homovaline-NCA (Formula (2-8f))>
Purification method: Separation operation yield: 86.2 mg, 0.67 mmol, 85% yield, white solid; melting point: 69-72 ° C.
IR (ATR method): (cm < -1 >) 3224, 2972, 2941, 1791, 1723, 1396, 1336, 1069, 966.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.19 (brs, 1H), 3.45-3.41 (m, 1H), 2.82 (dd, J = 5.0, 16. 0 Hz, 1H), 2.64 (dd, J = 8.0, 16.0 Hz, 1H), 1.87-1.82 (m, 1H), 1.00 (t, J = 7.5 Hz, 6H) ).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 165.1, 150.9, 52.4, 32.1, 31.6, 17.9, 17.8.

Figure 2020011948
Figure 2020011948

[実施例41]
<β−ホモロイシン−NCA(式(2−8g))の合成>
精製方法:分液操作
収量:127.5mg,0.74mmol,収率98%,白色固体;融点:63−65℃.
IR(ATR法):(cm−1)3270,2959,1797,1721,1389,1329,1120,1012,977.
H NMR(500MHz,CDCl):δ(ppm)7.29(s,1H),3.69(brs,1H),2.88(dd,J=4.5,16.0Hz,1H),2.55(dd,J=8.0,16.0Hz,1H),1.78−1.70(m,1H),1.57−1.52(m,1H),1.39−1.35(m,1H),0.95(d,J=4.5Hz,6H).
13C NMR(125MHz,CDCl):δ(ppm)164.8,150.7,45.7,43.8,34.7,24.2,22.5,22.0.
[Example 41]
<Synthesis of β-homoleucine-NCA (Formula (2-8g))>
Purification method: Separation operation yield: 127.5 mg, 0.74 mmol, 98%, white solid; melting point: 63-65 ° C.
IR (ATR method): (cm -1 ) 3270, 2959, 1797, 1721, 1389, 1329, 1120, 1012, 977.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.29 (s, 1 H), 3.69 (brs, 1 H), 2.88 (dd, J = 4.5, 16.0 Hz, 1 H). , 2.55 (dd, J = 8.0, 16.0 Hz, 1H), 1.78-1.70 (m, 1H), 1.57-1.52 (m, 1H), 1.39- 1.35 (m, 1H), 0.95 (d, J = 4.5 Hz, 6H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 164.8, 150.7, 45.7, 43.8, 34.7, 24.2, 22.5, 22.0.

Figure 2020011948
Figure 2020011948

[実施例42]
<β−ホモフェニルアラニン−NCA(式(2−8h))の合成>
精製方法:分液操作
収量:208.6mg,1.02mmol,quant.,白色固体;融点:97−99℃.
IR(ATR法):(cm−1)3306,1794,1721,1387,1341,1087,982,745,695.
H NMR(500MHz,CDCl):δ(ppm)7.35−7.17(m,5H),6.77(brs,1H),3.86−3.83(m,1H),2.91−2.80(m,3H),2.61(dd,J=8.0,16.5Hz,1H).
13C NMR(125MHz,CDCl):δ(ppm)164.4,150.1,134.8,129.3,129.2,127.7,48.1,41.2,33.7.
[Example 42]
<Synthesis of β-homophenylalanine-NCA (Formula (2-8h))>
Purification method: Separation operation Yield: 208.6 mg, 1.02 mmol, quant. , White solid; melting point: 97-99 [deg.] C.
IR (ATR method): (cm -1 ) 3306, 1794, 1721, 1387, 1341, 1087, 982, 745, 695.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.35-7.17 (m, 5H), 6.77 (brs, 1H), 3.86-3.83 (m, 1H), 2 .91-2.80 (m, 3H), 2.61 (dd, J = 8.0, 16.5 Hz, 1H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 164.4, 150.1, 134.8, 129.3, 129.2, 127.7, 48.1, 41.2, 33.7.

Figure 2020011948
Figure 2020011948

[実施例43]
<β−トルニルアラニン−NCA(式(2−8j))の合成>
精製方法:分液操作
収量:202.6mg,0.99mmol,収率99%,白色固体;融点:119−120℃.
IR(ATR法):(cm−1)3253,3165,2933,1792,1741,1340,1079.
H NMR(500MHz,CDCN):δ(ppm)7.21(s,4H),6.92(brs,1H),4.74−4.70(m,1H),3.00(dd,J=5.5,16.5Hz,1H),2.85(dd,J=8.5,16.5Hz,1H),2.31(s,3H).
13C NMR(125MHz,CDCN):δ(ppm)166.3,150.5,139.4,136.7,130.5,126.9,50.8,37.3,21.0.
HRMS(ESI−TOF−MS):calcd.for [CNO+Na] 228.0631,found 228.0632.
[Example 43]
<Synthesis of β-Torunylalanine-NCA (Formula (2-8j))>
Purification method: Separation operation Yield: 202.6 mg, 0.99 mmol, 99% yield, white solid; melting point: 119-120 ° C.
IR (ATR method): (cm < -1 >) 3253, 3165, 2933, 1792, 1741, 1340, 1079.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 7.21 (s, 4H), 6.92 (brs, 1H), 4.74-4.70 (m, 1H), 3.00 ( dd, J = 5.5, 16.5 Hz, 1H), 2.85 (dd, J = 8.5, 16.5 Hz, 1H), 2.31 (s, 3H).
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 166.3, 150.5, 139.4, 136.7, 130.5, 126.9, 50.8, 37.3, 21.0 .
HRMS (ESI-TOF-MS): calcd. for [C 6 H 9 NO 3 + Na] + 228.0631, found 228.0632.

Figure 2020011948
Figure 2020011948

[実施例44]
<β−(4−メトキシフェニル)アラニン−NCA(式(2−8k))の合成>
精製方法:分液操作
収量:193.6mg,0.99mmol,収率88%,白色固体;融点:117−119℃.
IR(ATR法):(cm−1)3221,3146,1799,1739,1614,1378,1174,823,598.
H NMR(500MHz,CDCN):δ(ppm)7.26−7.23(m,2H),6.94−6.91(m,2H),6.87(brs,1H),4.72−4.69(m,1H),3.75(s,3H),2.98(dd,J=5.0,16.0Hz,1H),2.86(dd,J=8.5,16.0Hz,1H).
13C NMR(125MHz,CDCN):δ(ppm)166.4,160.7,150.4,131.5,128.4,115.1,55.8,50.6,37.3.
HRMS(ESI−TOF−MS):calcd.for [C1111NO+Na] 244.0580,found 244.0579.
[Example 44]
<Synthesis of β- (4-methoxyphenyl) alanine-NCA (Formula (2-8k))>
Purification method: Separation operation Yield: 193.6 mg, 0.99 mmol, 88% yield, white solid; melting point: 117-119 ° C.
IR (ATR method): (cm < -1 >) 3221,3146,1799,1739,1614,1378,1174,823,598.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 7.26-7.23 (m, 2H), 6.94-6.91 (m, 2H), 6.87 (brs, 1H), 4.72-4.69 (m, 1H), 3.75 (s, 3H), 2.98 (dd, J = 5.0, 16.0 Hz, 1H), 2.86 (dd, J = 8) .5,16.0 Hz, 1H).
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 166.4, 160.7, 150.4, 131.5, 128.4, 115.1, 55.8, 50.6, 37.3 .
HRMS (ESI-TOF-MS): calcd. for [C 11 H 11 NO 4 + Na] + 244.0580, found 244.0579.

Figure 2020011948
Figure 2020011948

[実施例45]
<β−(4−フルオロフェニル)アラニン−NCA(式(2−8l))の合成>
精製方法:分液操作
収量:199.3mg,0.95mmol,収率95%,白色固体;融点:85−87℃.
IR(ATR法):(cm−1)3243,3155,1792,1737,1511,1323,1121,834,517.
H NMR(500MHz,CDCN):δ(ppm)7.37−7.34(m,2H),7.15−7.11(m,2H),6.96(brs,1H),4.79−4.76(m,1H),3.05−3.00(m,1H),2.87(dd,J=8.5,16.5Hz,1H).
13C NMR(125 MHz,CDCN):δ(ppm)165.3,163.583(d,JC−F=244.0Hz),149.5,135.009(d,JC−F=2.7Hz),128.409(d,JC−F=8.5Hz),115.800(d,JC−F=21.9Hz),49.7,36.4.
19F NMR(471MHz,CDCN):δ(ppm)−115.0.
HRMS(ESI−TOF−MS):calcd.for [C10FNO+Na] 232.0380,found 232.0382.
[Example 45]
<Synthesis of β- (4-fluorophenyl) alanine-NCA (Formula (2-8l))>
Purification method: Separation operation Yield: 199.3 mg, 0.95 mmol, yield 95%, white solid; melting point: 85-87 ° C.
IR (ATR method): (cm -1 ) 3243,3155,1792,1737,1511,1323,1121,834,517.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 7.37-7.34 (m, 2H), 7.15-7.11 (m, 2H), 6.96 (brs, 1H), 4.79-4.76 (m, 1H), 3.05-3.00 (m, 1H), 2.87 (dd, J = 8.5, 16.5 Hz, 1H).
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 165.3,163.583 (d, J C-F = 244.0Hz), 149.5,135.009 (d, J C-F = 2.7Hz), 128.409 (d, J C-F = 8.5Hz), 115.800 (d, J C-F = 21.9Hz), 49.7,36.4.
19 F NMR (471 MHz, CD 3 CN): δ (ppm) -115.0.
HRMS (ESI-TOF-MS): calcd. for [C 10 H 8 FNO 3 + Na] + 232.0380, found 232.0382.

Figure 2020011948
Figure 2020011948

[実施例46]
<β−(4−クロロフェニル)アラニン−NCA(式(2−8m))の合成>
精製方法:分液操作
収量:231.1mg,1.02mmol,quant.,白色固体;融点:117−120℃.
IR(ATR法):(cm−1)3240,3150,2258,1793,1739,1371,1326,1119,972.
H NMR(500MHz,CDCl):δ(ppm)7.39(d,J=8.5Hz,2H),7.32(d,J=8.5Hz,2H),6.96(brs,1H),4.79−4.76(m,1H),3.04(dd,J=5.5,16.5Hz,1H),2.86(dd,J=8.5,16.5Hz,1H).
13C NMR(125MHz,CDCl):δ(ppm)165.9,150.3,138.6,134.7,129.9,128.9,50.5,37.0.
HRMS(ESI−TOF−MS):calcd.for [C10ClNO+Na] 248.0085,found 248.0087.
[Example 46]
<Synthesis of β- (4-chlorophenyl) alanine-NCA (Formula (2-8m))>
Purification method: Separation operation yield: 231.1 mg, 1.02 mmol, quant. , White solid; melting point: 117-120 ° C.
IR (ATR method): (cm < -1 >) 3240, 3150, 2258, 1793, 1739, 1371, 1326, 1119, 972.
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.39 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 6.96 (brs, 1H), 4.79-4.76 (m, 1H), 3.04 (dd, J = 5.5, 16.5 Hz, 1H), 2.86 (dd, J = 8.5, 16.5 Hz) , 1H).
13 C NMR (125 MHz, CDCl 3 ): δ (ppm) 165.9, 150.3, 138.6, 134.7, 129.9, 128.9, 50.5, 37.0.
HRMS (ESI-TOF-MS): calcd. for [C 10 H 8 ClNO 3 + Na] + 248.0085, found 248.0087.

Figure 2020011948
Figure 2020011948

[実施例47]
<β−(4−ニトロフェニル)アラニン−NCA(式(2−8n))の合成>
精製方法:分液操作
収量:261.0mg,1.11mmol,quant.,黄色油状.
IR(neat):(cm−1)3300,2264,1801,1748,1520,1350,1079,977.
H NMR(500MHz,CDCN):δ(ppm)8.19(d,J=8.5Hz,2H),7.57(d,J=8.5Hz,2H),7.04(brs,1H),4.95−4.91(m,1H),3.12(dd,J=5.5,16.5Hz,1H),2.91(dd,J=8.0,16.5Hz,1H).
13C NMR(125MHz,CDCN):δ(ppm)165.5,150.1,148.8,146.9,128.3,124.9,50.6,36.6.
HRMS(ESI−TOF−MS):calcd.for [C1111NO+Na] 259.0325,found 259.0328.
[Example 47]
<Synthesis of β- (4-nitrophenyl) alanine-NCA (Formula (2-8n))>
Purification method: Separation operation yield: 261.0 mg, 1.11 mmol, quant. , Yellow oil.
IR (neat): (cm < -1 >) 3300, 2264, 1801, 1748, 1520, 1350, 1079, 977.
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 8.19 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 7.04 (brs) , 1H), 4.95-4.91 (m, 1H), 3.12 (dd, J = 5.5, 16.5 Hz, 1H), 2.91 (dd, J = 8.0, 16. 5Hz, 1H).
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 165.5, 150.1, 148.8, 146.9, 128.3, 124.9, 50.6, 36.6.
HRMS (ESI-TOF-MS): calcd. for [C 11 H 11 NO 4 + Na] + 259.0325, found 259.0328.

Figure 2020011948
Figure 2020011948

[実施例48]
<イサト酸無水物(式(2−1))の合成>
精製方法:分液操作と再結晶
収量:81.2mg,0.50mmol,収率50%,白色固体;融点:235−238℃.
IR(ATR法):(cm−1)3069,2937,1760,1722,1615,1362,1008,748.
H NMR(500MHz,DMSO):δ(ppm)11.7(brs,1H),7.91(dd,J=2.5,7.5Hz,1H),7.75−7.72(m,1H),7.26−7.23(m,1H),7.15(d,J=8.5Hz,1H).
13C NMR(125MHz,DMSO):δ(ppm)159.9,147.1,141.4,137.0,129.0,123.5,115.4,110.3.
[Example 48]
<Synthesis of Isatoic Anhydride (Formula (2-1))>
Purification method: Separation operation and recrystallization yield: 81.2 mg, 0.50 mmol, yield 50%, white solid; melting point: 235-238 ° C.
IR (ATR method): (cm < -1 >) 3069, 2937, 1760, 1722, 1615, 1362, 1008, 748.
1 H NMR (500 MHz, DMSO): δ (ppm) 11.7 (brs, 1 H), 7.91 (dd, J = 2.5, 7.5 Hz, 1 H), 7.75-7.72 (m , 1H), 7.26-7.23 (m, 1H), 7.15 (d, J = 8.5 Hz, 1H).
13 C NMR (125 MHz, DMSO): δ (ppm) 159.9, 147.1, 141.4, 137.0, 129.0, 123.5, 115.4, 110.3.

Figure 2020011948
Figure 2020011948

[実施例49]
<α−O−t−ブチル−β−アスパラギン酸−NCA(式(2−8p))の合成>
精製方法:分液操作
収量:225.1mg,1.05mmol,quant.,白色固体;融点:84−86℃.
IR(ATR法):(cm−1)3231,3167,2985,1801,1759,1720,1366,1090.
[α]29 =+40.12(c 1.00,CHCN)
H NMR(500MHz,CDCN):δ(ppm)6.82(brs,1H),4.10−4.07(m,1H),3.02(dd,J=6.5,16.5Hz,1H),2.86(dd,J=4.5,16.5Hz,1H),1.42(s,9H)
13C NMR(125MHz,CDCN):δ(ppm)169.7,165.4,149.8,84.2,50.3,31.8,27.9.
HRMS(ESI−TOF−MS):calcd.for [C13NO+Na] 238.0686,found 238.0683.
[Example 49]
<Synthesis of α-Ot-butyl-β-aspartic acid-NCA (Formula (2-8p))>
Purification method: Separation operation Yield: 225.1 mg, 1.05 mmol, quant. , White solid; melting point: 84-86 ° C.
IR (ATR method): (cm -1 ) 3231, 3167, 2985, 1801, 1759, 1720, 1366, 1090.
[Α] 29 D = + 40.12 (c 1.00, CH 3 CN)
1 H NMR (500 MHz, CD 3 CN): δ (ppm) 6.82 (brs, 1H), 4.10-4.07 (m, 1H), 3.02 (dd, J = 6.5, 16) 0.5Hz, 1H), 2.86 (dd, J = 4.5, 16.5Hz, 1H), 1.42 (s, 9H)
13 C NMR (125 MHz, CD 3 CN): δ (ppm) 169.7, 165.4, 149.8, 84.2, 50.3, 31.8, 27.9.
HRMS (ESI-TOF-MS): calcd. for [C 9 H 13 NO 5 + Na] + 238.0686, found 238.0683.

Figure 2020011948
Figure 2020011948

上記実施例の通り、本発明の合成方法により、有機層・水層の二層系の反応原料溶液を用いた場合であっても、フローリアクターにおけるミキサーの利用により高効率な混合を実現しており、これによりバッチ合成法では原理的に不可能な、短持間での塩基性から酸性、または酸性から塩基性への変換により、様々な構造のNCAなどの化合物を合成することが可能である。また、本発明のマイクロフローリアクターを用いる合成方法により、上記合成がさらに効果的に行えることがわかった。   According to the synthesis method of the present invention, even when a two-layer reaction raw material solution of an organic layer and an aqueous layer is used as in the above-described embodiment, highly efficient mixing is realized by using a mixer in a flow reactor. Therefore, it is possible to synthesize compounds such as NCA of various structures by conversion from basic to acidic or from acidic to basic in a short period of time, which is impossible in principle by batch synthesis. is there. In addition, it was found that the above synthesis can be performed more effectively by the synthesis method using the microflow reactor of the present invention.

本発明のフローリアクターを用いる合成方法によれば、高収率で目的の構造の化合物を製造することが可能であり、すなわち、原料溶液混合後の短時間でのpH変換および希釈により、穏和な温度条件かつ短時間でN−カルボキシ無水物(NCA)などの不安定な官能基を有する化合物を連続的に製造できる。   According to the synthesis method using the flow reactor of the present invention, it is possible to produce a compound having a target structure in high yield, that is, a mild pH conversion and dilution in a short time after mixing the raw material solution. A compound having an unstable functional group such as N-carboxy anhydride (NCA) can be continuously produced in a short time under a temperature condition.

100 フローリアクター
1−1および1−2 原料溶液
11および12 原料溶液供給装置
110,120および220 送液管
20および30 ミキサー
21および31 反応管
22 溶媒または溶媒供給装置
2 生成物(または生成物を含有する混合後の溶液)
REFERENCE SIGNS LIST 100 Flow reactor 1-1 and 1-2 Raw material solution 11 and 12 Raw material solution supply device 110, 120 and 220 Liquid feed tube 20 and 30 Mixer 21 and 31 Reaction tube 22 Solvent or solvent supply device 2 Solution after mixing)

Claims (12)

フローリアクターを用いる合成方法であって、
少なくとも2種の原料溶液の混合開始から60秒以内に、
あらかじめpH7〜14に調整されている塩基性溶液がpH0〜7の酸性に変わること、
または、あらかじめpH0〜7に調整されている酸性溶液がpH7〜14の塩基性に変わること、を特徴とする合成方法。
A synthesis method using a flow reactor,
Within 60 seconds from the start of mixing of at least two kinds of raw material solutions,
A basic solution which has been adjusted to pH 7-14 in advance is changed to an acidic solution of pH 0-7,
Alternatively, a synthesis method characterized in that an acidic solution previously adjusted to pH 0 to 7 is changed to basic pH 7 to 14.
前記原料溶液の混合開始後に、溶媒の注入により混合後の溶液を1.1倍以上に希釈することを特徴とする、請求項1に記載の合成方法。   The method according to claim 1, wherein after starting the mixing of the raw material solution, the mixed solution is diluted 1.1 times or more by injecting a solvent. 前記合成方法において、温度範囲が−10〜40℃である、
請求項1または請求項2に記載の合成方法。
In the above synthesis method, the temperature range is -10 to 40 ° C.
The method according to claim 1.
前記合成方法において、前記原料溶液が、ピリジン、N−メチルモルホリン、N−メチルピペリジン、N,N−ジメチルエチルアミン、N,N−ジエチルメチルアミン、ジエチルアミン、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸水素ナトリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、アンモニアから選ばれる少なくとも1種の塩基を含有する塩基性溶液である、請求項1〜請求項3のいずれか一項に記載の合成方法。   In the above synthesis method, the raw material solution may be pyridine, N-methylmorpholine, N-methylpiperidine, N, N-dimethylethylamine, N, N-diethylmethylamine, diethylamine, sodium hydroxide, potassium hydroxide, calcium hydroxide A basic solution containing at least one base selected from barium hydroxide, sodium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and ammonia. 4. The synthesis method according to any one of 3. 前記合成方法において、前記原料溶液が、塩酸、硫酸、硝酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸から選ばれる少なくとも1種の酸を含有する酸性溶液である、請求項1〜請求項3に記載の合成方法。   In the synthesis method, the raw material solution is an acidic solution containing at least one acid selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, trifluoroacetic acid, and formic acid. The described synthesis method. 前記合成方法において、前記原料溶液の溶媒が有機溶媒である、請求項1〜請求項5のいずれか一項に記載の合成方法。   The synthesis method according to any one of claims 1 to 5, wherein in the synthesis method, a solvent of the raw material solution is an organic solvent. 前記合成方法において、前記原料溶液の溶媒がアセトニトリルまたはテトラヒドロフランである、請求項6に記載の合成方法。   The synthesis method according to claim 6, wherein in the synthesis method, the solvent of the raw material solution is acetonitrile or tetrahydrofuran. 前記原料溶液の混合後に、希釈に使用する溶媒が有機溶媒または水である、請求項1〜請求項7のいずれか一項に記載の合成方法。   The method according to any one of claims 1 to 7, wherein a solvent used for dilution after mixing the raw material solutions is an organic solvent or water. 前記原料溶液の混合後に、希釈に使用する溶媒が酢酸エチルまたはジクロロメタンである、請求項8に記載の合成方法。   The method according to claim 8, wherein the solvent used for dilution after mixing the raw material solutions is ethyl acetate or dichloromethane. 前記合成方法において、前記原料溶液に含まれる物質が、
下記一般式(1−1)および(1−2)で表される化合物である、請求項1〜請求項9のいずれか一項に記載の合成方法。
Figure 2020011948
[式中、R〜Rは、それぞれ独立に、―H、―OH、―COOH、―COO、―CN、
置換基を有していてもよい炭素原子数0〜20のチオ基、
置換基を有していてもよい炭素原子数0〜20のスルホ基、
置換基を有していてもよい炭素原子数0〜20のアミノ基、
置換基を有していてもよい炭素原子数1〜20のシリル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20のシクロアルキル基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数2〜20のアルキニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数5〜20のシクロアルコキシ基、
置換基を有していてもよい炭素原子数1〜20のアシル基、
置換基を有していてもよい炭素原子数6〜20の芳香族炭化水素基、
置換基を有していてもよい炭素原子数2〜20の複素環基、または
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表し、
〜Rは、隣り合う基同士で互いに結合して環を形成していてもよい。
mは1〜6の整数を表し、mが2以上の場合、複数存在するRおよびRは、それぞれ互いに同一でも異なっていてもよい。
Mは水素原子またはアルカリ金属原子を表す。]
Figure 2020011948
[式中、XおよびYは、それぞれ独立に、―Cl、―OCCl
置換基を有していてもよい炭素原子数0〜20のチオ基、
置換基を有していてもよい炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数2〜20の複素環基、または
置換基を有していてもよい炭素原子数6〜20のアリールオキシ基を表す。]
In the synthesis method, the substance contained in the raw material solution may include:
The synthesis method according to any one of claims 1 to 9, which is a compound represented by the following general formulas (1-1) and (1-2).
Figure 2020011948
[Wherein, R 1 to R 3 each independently represent —H, —OH, —COOH, —COO , —CN,
A thio group having 0 to 20 carbon atoms which may have a substituent,
A sulfo group having 0 to 20 carbon atoms which may have a substituent,
An amino group having 0 to 20 carbon atoms which may have a substituent,
A silyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkyl group having 1 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
An alkynyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
A cycloalkoxy group having 5 to 20 carbon atoms which may have a substituent,
An acyl group having 1 to 20 carbon atoms which may have a substituent,
An aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
A heterocyclic group having 2 to 20 carbon atoms which may have a substituent, or an aryloxy group having 6 to 20 carbon atoms which may have a substituent;
R 1 to R 3 may be bonded to each other by adjacent groups to form a ring.
m represents an integer of 1 to 6, and when m is 2 or more, a plurality of R 2 and R 3 may be the same or different from each other.
M represents a hydrogen atom or an alkali metal atom. ]
Figure 2020011948
Wherein X and Y are each independently —Cl, —OCCl 3 ,
A thio group having 0 to 20 carbon atoms which may have a substituent,
A linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent,
A linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent,
It represents an optionally substituted heterocyclic group having 2 to 20 carbon atoms or an aryloxy group having 6 to 20 carbon atoms optionally having a substituent. ]
前記一般式(1−1)において、Rが―Hであり、mが1であり、Mがナトリウム原子である、請求項10に記載の合成方法。 11. The method according to claim 10, wherein, in the general formula (1-1), R 3 is —H, m is 1, and M is a sodium atom. 前記フローリアクターがマイクロフローリアクターである、請求項1〜請求項11のいずれか一項に記載の合成方法。   The method according to any one of claims 1 to 11, wherein the flow reactor is a microflow reactor.
JP2019094952A 2018-07-09 2019-05-21 Synthesis method of N-carboxy anhydride using flow reactor Active JP7362055B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129847 2018-07-09
JP2018129847 2018-07-09

Publications (2)

Publication Number Publication Date
JP2020011948A true JP2020011948A (en) 2020-01-23
JP7362055B2 JP7362055B2 (en) 2023-10-17

Family

ID=69170348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094952A Active JP7362055B2 (en) 2018-07-09 2019-05-21 Synthesis method of N-carboxy anhydride using flow reactor

Country Status (1)

Country Link
JP (1) JP7362055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889593A1 (en) 2020-03-31 2021-10-06 Yokogawa Electric Corporation Reaction analysis device, reaction analysis system, and reaction analysis method
CN114634460A (en) * 2020-12-16 2022-06-17 北京大学 Process for preparing carboxyanhydrides
WO2023223714A1 (en) * 2022-05-16 2023-11-23 国立大学法人東海国立大学機構 Two-residue-extended peptide and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016376A1 (en) * 2016-07-21 2018-01-25 株式会社カネカ Method for producing organic compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016376A1 (en) * 2016-07-21 2018-01-25 株式会社カネカ Method for producing organic compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 57, JPN6023011984, 12 July 2018 (2018-07-12), pages 11389 - 11393, ISSN: 0005038233 *
ORG. PROCESS. RES. DEV., vol. 22, JPN6023011983, 22 January 2018 (2018-01-22), pages 247 - 251, ISSN: 0005038232 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889593A1 (en) 2020-03-31 2021-10-06 Yokogawa Electric Corporation Reaction analysis device, reaction analysis system, and reaction analysis method
US11420173B2 (en) 2020-03-31 2022-08-23 Yokogawa Electric Corporation Reaction analysis device, reaction analysis system, and reaction analysis method
CN114634460A (en) * 2020-12-16 2022-06-17 北京大学 Process for preparing carboxyanhydrides
WO2022127704A1 (en) * 2020-12-16 2022-06-23 北京大学 Process for preparing carboxyl cyclic acid anhydride
WO2023223714A1 (en) * 2022-05-16 2023-11-23 国立大学法人東海国立大学機構 Two-residue-extended peptide and method for producing same

Also Published As

Publication number Publication date
JP7362055B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7362055B2 (en) Synthesis method of N-carboxy anhydride using flow reactor
KR102106763B1 (en) Novel Initiator for Preparing Alkanesulfonic Acids from Alkane and Oleum
JP2013522213A (en) Production of methionine or selenomethionine from homoserine via lactone intermediate
BR122021004312B1 (en) PROCESS FOR THE PREPARATION OF SUBSTITUTED CYCLOSERINS AND THEIR COMPOUNDS
JP4528123B2 (en) Process for the production of nitrooxy derivatives of naproxen
CN110790689B (en) Synthetic method of 1, 1-difluoro-2-isonitrile-ethyl phenyl sulfone compound
US10087126B2 (en) Process for the preparation of halo-substituted benzenes
CN108707057B (en) Aliphatic trifluoroethyl ester compound and preparation method thereof
JPH04210953A (en) Process for producing beta-substituted sulfonic acid and/or sulfonate
JP6781030B2 (en) L-carnosine derivative or salt thereof, and method for producing L-carnosine or salt thereof
CN109320441B (en) Method for efficiently preparing alkynylamide compound
CN110016029B (en) Preparation method of 3-fluoro-1H-pyrrolo [2,3-b ] pyridine-2-carboxylic acid
CN110218168B (en) Preparation method of sodium salt of N- (all-trans-retinoyl) -L-methyl cysteic acid
KR101418776B1 (en) Selenophene-fused aromatic compounds, and preparing method of the same
KR101329242B1 (en) Method for preparing p-aminobenzoic acid
EP3567027B1 (en) Method for producing n-benzyl-2-bromo-3-methoxypropionamide and intermediates thereof
EP2855422B1 (en) Synthesis of diamido gellants by using dane salts of amino acids
CN112041310B (en) Method for producing N-acylated amino acid esters comprising ketone protecting groups with acid-instability
CN104860897A (en) Intermediate for preparing N-cyclopropyl-(2S, 3S)-3-amino-2-hydroxy caproamide, preparation method and applications thereof
RU2577545C1 (en) Method for obtaining 4-(3-amino-4-nitrophenoxy)benzoic acid under impact of ultrasound
JP2017222582A (en) Method for producing carboxylic thioester
KR101399916B1 (en) Process for production of carboxylic acid chloride compound
US20240132443A1 (en) Method for chlorinating benzaldehyde oximes
TWI693213B (en) Method for preparing 4-cyanopiperidine hydrochloride
RU2577544C1 (en) Method for obtaining 2,2-bis[4-(4-nitrophenoxy]phenyl]hexafluoropropane under influence of ultrasound

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7362055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150