JP2020010524A - Rotary machine drive system and vehicle - Google Patents

Rotary machine drive system and vehicle Download PDF

Info

Publication number
JP2020010524A
JP2020010524A JP2018130286A JP2018130286A JP2020010524A JP 2020010524 A JP2020010524 A JP 2020010524A JP 2018130286 A JP2018130286 A JP 2018130286A JP 2018130286 A JP2018130286 A JP 2018130286A JP 2020010524 A JP2020010524 A JP 2020010524A
Authority
JP
Japan
Prior art keywords
rotating machine
switching
drive system
contact
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018130286A
Other languages
Japanese (ja)
Other versions
JP7101065B2 (en
Inventor
暁史 高橋
Akifumi Takahashi
暁史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018130286A priority Critical patent/JP7101065B2/en
Priority to PCT/JP2019/007957 priority patent/WO2020012695A1/en
Publication of JP2020010524A publication Critical patent/JP2020010524A/en
Application granted granted Critical
Publication of JP7101065B2 publication Critical patent/JP7101065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/12Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • H02K19/32Synchronous generators characterised by the arrangement of exciting windings for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Synchronous Machinery (AREA)
  • Induction Machinery (AREA)

Abstract

To reduce the size of a coil switching device without generating current concentration, spark, arc, or the like at a specific place of a switching contact.SOLUTION: A rotary machine drive system includes: a rotary machine having a plurality of coils; an inverter device including an inverter circuit for converting direct current power from a direct current power source into alternating current power and a control device for controlling power conversion by the inverter circuit to perform variable speed operation by the inverter circuit; and a coil switching device for switching connection of the plurality of coils by a command from the control device. The control device commands the coil switching device to perform connection switching of the coils when the rotation of the rotary machine transits between a low-speed rotation area and a high-speed rotation area due to acceleration/deceleration. In the coil switching device, the switching contact for switching connection of the plurality of coils comprises a multi-surface contact having a spring characteristic.SELECTED DRAWING: Figure 1

Description

本発明は、巻線切替装置を用いた回転機駆動システム及び車両に関するものである。   The present invention relates to a rotating machine drive system using a winding switching device and a vehicle.

インバータ装置によって可変速運転される回転機の効率は、一般に一定負荷条件で回転数を推移させて得られる効率カーブで表され、要求される回転範囲のうち一部の回転域で効率がピークとなる。機器の省エネ化を実現するためには、幅広い回転範囲において効率カーブを向上させ、回転機の電力損失を低減することが重要である。   The efficiency of a rotating machine driven at variable speed by an inverter device is generally represented by an efficiency curve obtained by changing the rotation speed under a constant load condition, and the efficiency reaches a peak in a part of the required rotation range. Become. In order to achieve energy saving of the equipment, it is important to improve the efficiency curve over a wide rotation range and reduce the power loss of the rotating machine.

回転機では、低速回転域において効率が低くなるが、回転機を設計段階で高インダクタンス化することで、電流値そのものを低減できるとともに高調波成分を低減できることが知られている。これによって、低速回転域での効率向上を実現することが可能となるが、一方で高速回転域の効率が低下するなどの問題がある。   It is known that the efficiency of a rotating machine is reduced in a low-speed rotation range, but by increasing the inductance of the rotating machine at the design stage, the current value itself can be reduced and harmonic components can be reduced. This makes it possible to improve the efficiency in the low-speed rotation range, but has the problem that the efficiency in the high-speed rotation range decreases.

このような問題に対して、特許文献1のように低速回転域と高速回転域とで固定子巻線の接続を切り替える技術がある。回転機の駆動中に接続を切り替える場合、切替接点にアークが発生して接点寿命が低下する。特許文献1では、接点アークを回避する目的で圧縮コイル(バネ)と電極で構成する技術が開示されている。   To solve such a problem, there is a technique for switching the connection of the stator winding between a low-speed rotation region and a high-speed rotation region as disclosed in Patent Document 1. When the connection is switched while the rotating machine is being driven, an arc is generated at the switching contact, and the contact life is reduced. Patent Literature 1 discloses a technique in which a compression coil (spring) and an electrode are used to avoid a contact arc.

特開2017−070112号公報JP-A-2017-070112

自動車や鉄道車両等に搭載される回転機は、軽量化のために高出力密度が求められており、大電流を流して高トルクを発生させることによってこの要求に応えている。このような用途に巻線切替を適用する場合、常時大電流を流すために切替接点の押し付け力をバネ機構等で維持する必要があり、従来技術では切替装置が大型化する課題があった。   2. Description of the Related Art High output densities are required for rotating machines mounted on automobiles, railway vehicles, and the like, and the demand is met by generating a high torque by flowing a large current. When the winding switching is applied to such an application, it is necessary to maintain the pressing force of the switching contact by a spring mechanism or the like in order to always supply a large current, and there has been a problem in the prior art that the switching device becomes large.

また、大電流を流すために切替接点の接触面を大きくとる必要あるが、バネ機構では面圧の均一化が困難であるため、特定箇所に電流集中やスパーク、アーク等が発生し接点寿命の低下を招く課題があった。   Also, it is necessary to make the contact surface of the switching contact large in order to flow a large current.However, it is difficult to equalize the surface pressure with the spring mechanism, so current concentration, sparks, arcs, etc. occur in specific places, and the contact life is shortened. There was a problem that led to a decrease.

これらの課題を解決する一手段として、切替接点を半導体スイッチング素子で構成する方法が開示されている。しかしながら、この方法では回転機の駆動時において常にスイッチング素子に通電するため、導通損が発生する。すなわち、切替接点部で新たに電力損失が発生するため、回転機駆動システム全体のエネルギー効率向上という観点では得策とは言えない。   As one means for solving these problems, a method is disclosed in which the switching contact is configured by a semiconductor switching element. However, in this method, the switching element is always energized when the rotating machine is driven, so that conduction loss occurs. That is, since a new power loss occurs at the switching contact portion, it cannot be said that it is advantageous from the viewpoint of improving the energy efficiency of the entire rotating machine drive system.

本発明の目的は、切替接点の特定箇所に電流集中やスパーク、アーク等を発生させることなく、回転機駆動システムにおいて巻線切替装置を小型化することである。   An object of the present invention is to reduce the size of a winding switching device in a rotating machine drive system without causing current concentration, spark, arc, or the like at a specific portion of a switching contact.

上記目的を達成するために、本発明では、回転機駆動システムは、複数の巻線を有する回転機と、直流電源からの直流電力を交流電力に変換するインバータ回路と前記インバータ回路による電力変換を制御する制御装置を含み、前記回転機を可変速運転するインバータ装置と、前記制御装置からの指令により前記複数の巻線の接続を切り替える巻線切替装置と、を備える。前記制御装置は、加減速により前記回転機の回転が低速回転域と高速回転域との間を遷移する際、前記巻線切替装置に前記巻線の接続切替を指令し、前記巻線切替装置は、前記複数の巻線の接続を切り替える切替接点がスプリング特性を有する多面接触子で構成されている。   In order to achieve the above object, in the present invention, a rotating machine drive system includes a rotating machine having a plurality of windings, an inverter circuit that converts DC power from a DC power supply into AC power, and power conversion by the inverter circuit. An inverter for controlling the rotating machine at a variable speed; and a winding switching device for switching connection of the plurality of windings according to a command from the control device. The control device, when the rotation of the rotating machine transitions between a low-speed rotation region and a high-speed rotation region due to acceleration and deceleration, instructs the winding switching device to switch the connection of the winding, the winding switching device The switching contact for switching the connection of the plurality of windings is constituted by a multifaceted contact having a spring characteristic.

本発明によれば、切替接点の特定箇所に電流集中やスパーク、アーク等を発生させることなく、巻線切替装置を小型化することができる。   According to the present invention, it is possible to reduce the size of the winding switching device without causing current concentration, sparks, arcs, or the like at specific locations of the switching contacts.

本発明の第1の実施例における回転機駆動システムの全体構成を表すブロック図。FIG. 1 is a block diagram illustrating an entire configuration of a rotating machine drive system according to a first embodiment of the present invention. 本発明の第1の実施例における巻線切替装置の説明図。FIG. 2 is an explanatory diagram of a winding switching device according to the first embodiment of the present invention. インバータ装置によって可変速運転される従来回転機の効率カーブを表す図。The figure showing the efficiency curve of the conventional rotary machine operated by variable speed by the inverter device. インバータ装置によって駆動される従来回転機の電流波形図。FIG. 4 is a current waveform diagram of a conventional rotating machine driven by an inverter device. 従来の切替接点の構成を表す説明図。Explanatory drawing showing the structure of the conventional switching contact. 本発明の第1の実施例における切替接点の構成を表す斜視図。FIG. 2 is a perspective view illustrating a configuration of a switching contact according to the first embodiment of the present invention. 本発明の第1の実施例における切替接点の構成を表す一側面図。FIG. 2 is a side view illustrating a configuration of a switching contact according to the first embodiment of the present invention. 本発明の第1の実施例における切替接点を用いた接続切替方法の説明図。FIG. 4 is an explanatory diagram of a connection switching method using a switching contact according to the first embodiment of the present invention. 本発明の第2の実施例における回転機駆動システムの全体構成を表すブロック図。FIG. 7 is a block diagram illustrating an entire configuration of a rotating machine drive system according to a second embodiment of the present invention. 本発明の第3の実施例における鉄道車両に用いた回転機駆動システムの構成図。FIG. 9 is a configuration diagram of a rotating machine drive system used for a railway vehicle according to a third embodiment of the present invention.

以下、本発明の実施例について図面を参照して説明する。以下の説明では、同一の構成要素には同一の記号を付してある。それらの名称および機能は同じであり、重複説明は避ける。また、以下の説明では1Y結線と2Y結線の接続切替を対象としているが、本発明の効果はこれに限定されるものではなく、上記とは異なる並列接続数のY結線を切り替える構成や、Δ結線の並列接続数を切り替える構成や、Y結線とΔ結線を切り替える構成にも適用可能である。また、回転機は誘導機でもよいし永久磁石同期機でもよいし巻線型同期機でもよいし、シンクロナスリラクタンス回転機でもよい。また、固定子の巻線方式は集中巻でもよいし分布巻でもよい。また、固定子巻線の相数も、実施例の構成に限定されるものではない。また、インバータ装置の半導体スイッチング素子はIGBT(Insulated Gate Bipolar Transistor)を対象としているが、本発明の効果はこれに限定されるものではなく、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)でもよいし、その他の電力用半導体素子でもよい。また、回転機の制御方式として、速度検出器や電圧検出器を使用しないベクトル制御を対象としているが、速度検出器や電圧検出器を使用した制御方式にも適用可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same components are denoted by the same symbols. Their names and functions are the same, and duplicate descriptions are avoided. In the following description, the connection switching between the 1Y connection and the 2Y connection is intended. However, the effect of the present invention is not limited to this. The present invention is also applicable to a configuration in which the number of parallel connections is switched or a configuration in which Y connection and Δ connection are switched. Further, the rotating machine may be an induction machine, a permanent magnet synchronous machine, a wound synchronous machine, or a synchronous reluctance rotating machine. Further, the winding method of the stator may be concentrated winding or distributed winding. Further, the number of phases of the stator winding is not limited to the configuration of the embodiment. Further, although the semiconductor switching element of the inverter device is intended for an IGBT (Insulated Gate Bipolar Transistor), the effect of the present invention is not limited to this, and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) may be used. Power semiconductor element. Further, as a control method of the rotating machine, a vector control without using a speed detector or a voltage detector is targeted, but the present invention is also applicable to a control method using a speed detector or a voltage detector.

以下、図1乃至図8を用いて、本発明の第1の実施例について説明する。図1は、本発明の第1の実施例における回転機駆動システムの全体構成を表すブロック図である。図2は、本発明の第1の実施例における巻線切替装置の説明図である。図3は、インバータ装置によって可変速運転される従来回転機の効率カーブを表す図である。図4は、インバータ装置によって駆動される従来回転機の電流波形図である。図5は、従来の切替接点の構成を表す説明図である。図6は、本発明の第1の実施例における切替接点の構成を表す斜視図である。図7は、本発明の第1の実施例における切替接点の構成を表す一側面図である。図8は、本発明の第1の実施例における切替接点を用いた接続切替方法の説明図である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing an entire configuration of a rotating machine drive system according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram of the winding switching device according to the first embodiment of the present invention. FIG. 3 is a diagram illustrating an efficiency curve of a conventional rotating machine that is operated at a variable speed by an inverter device. FIG. 4 is a current waveform diagram of a conventional rotating machine driven by an inverter device. FIG. 5 is an explanatory diagram illustrating a configuration of a conventional switching contact. FIG. 6 is a perspective view illustrating the configuration of the switching contact according to the first embodiment of the present invention. FIG. 7 is a side view showing the configuration of the switching contact according to the first embodiment of the present invention. FIG. 8 is an explanatory diagram of a connection switching method using the switching contacts according to the first embodiment of the present invention.

本実施例の回転機駆動システム1Sの全体構成について、図1を用いて説明する。図1において、インバータ装置101は、直流電源102の出力による直流電力を交流電力に変換し、交流電力を回転機103に出力するインバータ回路104と、インバータ回路104に接続された回転機103に流れる電流を検出する相電流検出回路106と、相電流検出回路106で検出された相電流情報106Aを基に印加電圧指令パルス信号108Aを用いて、インバータ回路104に対するインバータ制御(電力変換制御)を行って、回転機103を可変速運転する制御装置105で構成されている。   The overall configuration of the rotating machine drive system 1S of the present embodiment will be described with reference to FIG. In FIG. 1, an inverter device 101 converts DC power output from a DC power supply 102 into AC power, and outputs the AC power to a rotating machine 103 and an inverter circuit 104 connected to the inverter circuit 104. Inverter control (power conversion control) for the inverter circuit 104 is performed using the phase current detection circuit 106 for detecting current and the applied voltage command pulse signal 108A based on the phase current information 106A detected by the phase current detection circuit 106. And a control device 105 for operating the rotating machine 103 at a variable speed.

相電流検出回路106は,ホールCT(Current Transformer)等から成り、U相、V相、W相の3相の電流波形Iu、Iv、Iwを検出している。ただし、相電流検出回路106によって必ずしも3相全ての電流を検出する必要はなく、いずれかの2相を検出し、3相電流が平衡状態であると仮定して他の1相を演算により求める構成でも良い。インバータ回路104は、IGBTQ1〜Q6とダイオード(還流ダイオード)D1〜D6などの複数の半導体スイッチング素子から構成されたインバータ主回路141と、インバータ制御部108からの印加電圧指令パルス信号108Aに基づいてインバータ主回路141のIGBTQ1〜Q6へのゲート信号を発生するゲート・ドライバ142から構成されている。   The phase current detection circuit 106 includes a Hall CT (Current Transformer) and the like, and detects three-phase current waveforms Iu, Iv, and Iw of U-phase, V-phase, and W-phase. However, it is not always necessary to detect all three phases of current by the phase current detection circuit 106, and any two phases are detected, and the other one phase is obtained by calculation assuming that the three-phase current is in a balanced state. A configuration may be used. Inverter circuit 104 includes an inverter main circuit 141 including a plurality of semiconductor switching elements such as IGBTs Q1 to Q6 and diodes (return diodes) D1 to D6, and an inverter based on an applied voltage command pulse signal 108A from inverter control unit 108. The main circuit 141 includes a gate driver 142 that generates a gate signal to the IGBTs Q1 to Q6.

回転機103は、例えば、複数の巻線を有する誘導機で構成され、各巻線の結線を切り替えられるように一部の巻線の始端と終端が引き出され、巻線切替装置120に格納されている。巻線切替装置120は、回転機103の巻線の結線を切り替え可能な回路構成を有し、回転機103の回転が低速回転域と高速回転域の間を遷移する際に巻線切替指令部110から出力される信号に基づいて巻線接続を切り替える。   The rotating machine 103 is constituted by, for example, an induction machine having a plurality of windings, and the starting and ending ends of some of the windings are drawn out so that the connections of the windings can be switched, and stored in the winding switching device 120. I have. The winding switching device 120 has a circuit configuration capable of switching the connection of the windings of the rotating machine 103. When the rotation of the rotating machine 103 transitions between the low-speed rotation range and the high-speed rotation range, the winding switching command unit The winding connection is switched based on a signal output from 110.

制御装置105は、相電流検出回路106で検出された相電流情報106Aを用いて印加電圧指令パルス信号108Aを生成するインバータ制御部108と、巻線切替装置120に接続切替の信号を与える巻線切替指令部110から構成されている。   The control device 105 includes an inverter control unit 108 that generates an applied voltage command pulse signal 108A using the phase current information 106A detected by the phase current detection circuit 106, and a winding that supplies a connection switching signal to the winding switching device 120. It is composed of a switching command unit 110.

なお、回転機駆動システム1Sは、少なくともインバータ装置101、回転機103、巻線切替装置120を含む構成である。   The rotating machine drive system 1S is configured to include at least the inverter device 101, the rotating machine 103, and the winding switching device 120.

続いて図2を用いて切替装置の構成を説明するとともに、図3から図8を用いて、従来技術の課題と解決手段、および本発明の目的である巻線切替装置の小型化が実現できる原理について説明する。   Next, the configuration of the switching device will be described with reference to FIG. 2, and the problems and solutions of the related art, and the downsizing of the winding switching device, which is the object of the present invention, can be realized with reference to FIGS. 3 to 8. The principle will be described.

図2(a)は回転機103の固定子のU相巻線150uに関して、2つのU相巻線150u1、150u2の始端(端子)U1、U2と終端(端子)U3、U4を引き出し、直列・並列を切り替える構成を模式的に示した図である。V相、W相については同様のため記載を省略した。図2(a)のU相巻線150uの始端U1と始端U2、終端U3と終端U4をそれぞれ短絡線130u2で並列接続し、V相、W相も同様に並列接続し、3相の中性点151をY字状に結線した構成を2Y結線と呼ぶ。他方で、図2(a)のU相巻線150u1の終端U3とU相巻線150u2の始端U2を短絡線130u1で直列接続し、V相、W相も同様に直列接続し、3相の中性点151をY字状に結線した構成を1Y結線と呼ぶ。以下、短絡線130u1および短絡線130u2を、短絡線130と総称する。   FIG. 2A shows the U-phase winding 150u of the stator of the rotating machine 103, in which the starting ends (terminals) U1 and U2 and the ending ends (terminals) U3 and U4 of the two U-phase windings 150u1 and 150u2 are pulled out and connected in series. FIG. 3 is a diagram schematically showing a configuration for switching between parallels. The description of the V phase and the W phase is omitted because it is the same. The start end U1 and start end U2, and the end U3 and end U4 of the U-phase winding 150u in FIG. 2A are connected in parallel by short-circuit lines 130u2, respectively. A configuration in which the points 151 are connected in a Y-shape is called a 2Y connection. On the other hand, the terminal U3 of the U-phase winding 150u1 and the starting end U2 of the U-phase winding 150u2 in FIG. 2A are connected in series by a short-circuit line 130u1, and the V-phase and W-phase are connected in series in the same manner. A configuration in which the neutral points 151 are connected in a Y-shape is called 1Y connection. Hereinafter, the short-circuit line 130u1 and the short-circuit line 130u2 are collectively referred to as the short-circuit line 130.

ここで、短絡線130は可とう性のあるケーブルで構成してもよいし金属板からなるブスバーなどで構成してもよいが、後述するように、巻線の始端U1、U2、終端U3、U4との接触部は剛性を有する金属体で構成されることが望ましい。図2(a)に示すように、並列接続(3相で見ると2Y結線)の合成インダクタンスがL/2であるのに対して直列接続(3相で見ると1Y結線)の合成インダクタンスが2Lであり、インダクタンスが4倍となる。したがって、直列接続とすることで、インバータ装置101から回転機103へ供給される電流の高調波成分は大幅に低減される。   Here, the short-circuit line 130 may be formed of a flexible cable or a bus bar made of a metal plate, but as will be described later, the starting ends U1, U2, the ending U3, It is desirable that the contact portion with U4 be made of a rigid metal body. As shown in FIG. 2A, the combined inductance of the parallel connection (2Y connection when viewed in three phases) is L / 2, whereas the combined inductance of series connection (1Y connection when viewed in three phases) is 2L. And the inductance is quadrupled. Therefore, the harmonic components of the current supplied from the inverter device 101 to the rotating machine 103 are greatly reduced by the series connection.

従来回転機では回転範囲を拡大するためにインダクタンスが小さくなるように設計されるため、電流の高調波成分が大きくなり、図2(b)および図3の曲線(a)−1で示すように特に回転数Nについての低速回転域において効率ηが低くなる課題があった。この要因の一つとして、従来回転機では回転範囲を拡大するためにインダクタンスが小さくなるように設計されていることが挙げられる。インダクタンスが小さい従来回転機においては、電気角ωeを横軸とし電流Iを縦軸とする図4のグラフ(b)−1で示すように、回転機に供給される略正弦波状の電流波形に対して、インバータ装置のスイッチング周波数に応じた高調波成分が重畳される。このため、回転機のコアに発生する鉄損の高調波成分や、固定子巻線の表皮効果および近接効果によって発生する交流銅損などが大きくなり、結果として回転機の効率低下を招く。   In the conventional rotating machine, since the inductance is designed to be small in order to enlarge the rotation range, the harmonic component of the current becomes large, and as shown by the curve (a) -1 in FIG. 2 (b) and FIG. In particular, there is a problem that the efficiency η is reduced in a low-speed rotation range of the rotation speed N. One of the factors is that a conventional rotary machine is designed to have a small inductance in order to expand a rotation range. In a conventional rotating machine having a small inductance, a substantially sinusoidal current waveform supplied to the rotating machine is obtained as shown in a graph (b) -1 of FIG. On the other hand, a harmonic component corresponding to the switching frequency of the inverter device is superimposed. For this reason, harmonic components of iron loss generated in the core of the rotating machine, AC copper loss generated by the skin effect and proximity effect of the stator winding, and the like become large, and as a result, the efficiency of the rotating machine is reduced.

これに対して、回転機を設計段階で高インダクタンス化することで、図4のグラフ(b)−2で示すように、電流値そのものを低減できるとともに高調波成分を低減できることが知られている。これによって、図3の曲線(a)−2に示すように、低速回転域での効率向上を実現することが可能となるが、一方で高速回転域の効率が低下するほか、高速回転域まで駆動できず回転子が脱調してしまう問題がある。   On the other hand, it is known that by increasing the inductance of the rotating machine at the design stage, the current value itself can be reduced and the harmonic component can be reduced, as shown by the graph (b) -2 in FIG. . As a result, as shown by the curve (a) -2 in FIG. 3, it is possible to improve the efficiency in the low-speed rotation range, but on the other hand, the efficiency in the high-speed rotation range is reduced, and up to the high-speed rotation range. There is a problem that the rotor cannot be driven and loses synchronism.

このような問題に対して、巻線切替装置120を用いて低速回転域では直列接続(3相で見ると1Y結線)とし、高速回転域では並列接続(3相で見ると2Y結線)とすることで、要求される幅広い回転範囲での駆動を可能としつつ、幅広い回転範囲で効率カーブを向上でき、回転機103の電力損失を低減することが可能となる。また、低速回転域においては直列接続により回転機103が高インダクタンス化されるので、インバータ装置101から供給する電流値そのものを低減でき、インバータ装置101の電力損失を大幅に低減することが可能となる。ただし、従来技術においては、大電流を流すために切替接点の押し付け力をバネ機構等で維持する必要があり、巻線切替装置120が大型化する課題があった。また、切替接点の特定箇所に電流集中やスパーク、アーク等が発生し接点寿命の低下を招く課題があった。この課題について、図5を用いて以下に詳しく説明する。   With respect to such a problem, the winding switching device 120 is used to connect in series in a low-speed rotation region (1Y connection when viewed in three phases) and in parallel connection (2Y connection in three phases). As a result, it is possible to improve the efficiency curve over a wide rotation range while enabling driving in a required wide rotation range, and to reduce the power loss of the rotating machine 103. In the low-speed rotation range, the rotating machine 103 has a high inductance due to the series connection, so that the current value supplied from the inverter device 101 itself can be reduced, and the power loss of the inverter device 101 can be greatly reduced. . However, in the related art, it is necessary to maintain the pressing force of the switching contact by a spring mechanism or the like in order to flow a large current, and there is a problem that the winding switching device 120 becomes large. In addition, there is a problem that current concentration, sparks, arcs, and the like are generated in a specific portion of the switching contact, and the contact life is reduced. This problem will be described in detail below with reference to FIG.

図5は、従来の切替接点の構成を表す説明図である。図2に示した固定子のU相巻線150uの始端U1は、端子接続部1206を介して切替接点1201に接続される。この構成により、切替接点1201と図2に示した始端U1は一体となるので、図5ではこの構成全体を始端U1として定義している。切替接点1201の導通面1201aは短絡線130によって他の巻線の端子と接続される。導通面1201aと短絡線130との接触面には接触抵抗が生じるため、大電流を流し続けると接触抵抗による発熱が問題となる。したがって、接触抵抗は極力小さくすることが望ましく、これを実現するためにバネ1202によって導通面1201aを短絡線130に押し付ける力を発生させる。先の説明で短絡線130の接触部に剛性を持たせた方が良いと述べた理由は、この押し付け力を確保するためである。切替接点1201は導通面1201aの面に対して逆向きに凸形状部を有しており、バネ1202を挟むようにして、凹形状部を有する筐体1204に格納される。切替接点1201と筐体1204の間には、バネ1202の伸縮動作に対応した可動代1203が設けられている。従来の切替接点は以上のような構成であるが、この構成には次のような課題がある。   FIG. 5 is an explanatory diagram illustrating a configuration of a conventional switching contact. The starting end U1 of the U-phase winding 150u of the stator shown in FIG. 2 is connected to the switching contact 1201 via the terminal connecting portion 1206. With this configuration, the switching contact 1201 and the start end U1 shown in FIG. 2 are integrated, and therefore, the entire configuration is defined as the start end U1 in FIG. The conduction surface 1201a of the switching contact 1201 is connected to a terminal of another winding by a short-circuit line 130. Since contact resistance is generated at the contact surface between the conduction surface 1201a and the short-circuit line 130, heat generation due to the contact resistance poses a problem when a large current continues to flow. Therefore, it is desirable to reduce the contact resistance as much as possible. In order to realize this, the spring 1202 generates a force for pressing the conductive surface 1201a against the short-circuit line 130. The reason that it is better to provide the contact portion of the short-circuit line 130 with rigidity in the above description is to secure this pressing force. The switching contact 1201 has a convex portion in a direction opposite to the surface of the conduction surface 1201a, and is stored in a housing 1204 having a concave portion so as to sandwich the spring 1202. A movable margin 1203 is provided between the switching contact 1201 and the housing 1204 so as to correspond to the expansion and contraction operation of the spring 1202. The conventional switching contact has the above configuration, but this configuration has the following problems.

(課題1)切替接点1201、筐体1204、バネ1202が各々の端子で必要となるため、部品点数の増加、および組立コストの増加を招く。
(課題2)また、巻線切替装置120が大型化する。
(課題3)大電流を流すために接触面積を大きくする必要あるが、バネ1202は切替接点1201の外周部にしか当っていないため、導通面1201a全体に渡って面圧を均一化することが困難である。このため、導通面1201aの特定箇所に電流集中やスパーク、アーク等が発生し切替接点1201の寿命低下を招く。
(課題4)切替接点1201の凸形状部と筐体1204の凹形状部の嵌め合い部におけるクリアランス公差の大小によって、上記(3)の問題がさらに発生しやすくなる。具体的に、クリアランスが大きいと切替接点1201の姿勢維持ができず、導通面1201a全体に渡って面圧を均一化することが一層困難となる。一方で、クリアランスが小さいと、バネ1202の繰り返し伸縮に伴い嵌め合い部で擦れやカジリを起こしやすく、導通面1201aの面圧を確保できなくなる。このため、クリアランス公差を高精度に管理する必要があり、加工コストの増加を招く。
(課題5)端子接続部1206はバネ1202の伸縮動作に伴い動くので、長期使用時に端子接続部1206の固定ネジの緩み等が発生するリスクがあり、信頼性の低下を招く。
(Problem 1) Since the switching contact 1201, the housing 1204, and the spring 1202 are required for each terminal, the number of parts and the assembly cost are increased.
(Problem 2) Further, the size of the winding switching device 120 increases.
(Problem 3) It is necessary to increase the contact area in order to allow a large current to flow, but since the spring 1202 only contacts the outer peripheral portion of the switching contact 1201, it is possible to equalize the surface pressure over the entire conductive surface 1201a. Have difficulty. For this reason, current concentration, sparks, arcs, and the like are generated at a specific portion of the conduction surface 1201a, and the life of the switching contact 1201 is shortened.
(Problem 4) The problem (3) is more likely to occur due to the magnitude of the clearance tolerance in the fitting portion between the convex portion of the switching contact 1201 and the concave portion of the housing 1204. Specifically, if the clearance is large, the posture of the switching contact 1201 cannot be maintained, and it becomes more difficult to equalize the surface pressure over the entire conductive surface 1201a. On the other hand, if the clearance is small, rubbing or galling is likely to occur at the fitting portion due to the repeated expansion and contraction of the spring 1202, and it becomes impossible to secure the surface pressure of the conduction surface 1201a. For this reason, it is necessary to manage the clearance tolerance with high accuracy, which causes an increase in processing cost.
(Problem 5) Since the terminal connecting portion 1206 moves in accordance with the expansion and contraction operation of the spring 1202, there is a risk that the fixing screw of the terminal connecting portion 1206 may be loosened during long-term use, which may cause a decrease in reliability.

これらの課題は、図6および図7に示すような切替接点の構成を採用することで解決することができる。具体的な解決方法と、本発明の目的である巻線切替装置の小型化が実現できる原理について以下に詳しく説明する。   These problems can be solved by adopting the configuration of the switching contact as shown in FIGS. The specific solution and the principle by which the size of the winding switching device which is the object of the present invention can be realized will be described in detail below.

図6は、本発明の第1の実施例における切替接点の構成を表す斜視図である。図7は、本発明の第1の実施例における切替接点の構成を表す一側面図である。以下では、図6および図7に示すように、切替接点201の幅手方向をX軸とし、長手方向をY軸として正負の方向を定義した正系のXYZ座標系のX軸、Y軸、Z軸を用いて、本発明の第1の実施例における切替接点の構成を説明する。図7は、本発明の第1の実施例における切替接点を図6に示すY軸の正方向に見た一つの側面を表す。なお、幅手方向及び長手方向、ならびにXYZ座標系によって、切替接点201の形状や向きが限定されるものではない。   FIG. 6 is a perspective view illustrating the configuration of the switching contact according to the first embodiment of the present invention. FIG. 7 is a side view showing the configuration of the switching contact according to the first embodiment of the present invention. In the following, as shown in FIGS. 6 and 7, the X-axis and the Y-axis of a positive XYZ coordinate system in which the width direction of the switching contact 201 is defined as the X axis and the longitudinal direction is defined as the Y axis to define the positive and negative directions. The configuration of the switching contact according to the first embodiment of the present invention will be described using the Z axis. FIG. 7 shows one side surface of the switching contact according to the first embodiment of the present invention as viewed in the positive direction of the Y axis shown in FIG. The shape and direction of the switching contact 201 are not limited by the width direction, the longitudinal direction, and the XYZ coordinate system.

固定子のU相巻線150uの始端U1(図2参照)は、端子接続部206を介して筐体204に接続される。筐体204は、導電性を有する素材(例えば金属等)で形成されているとするが、これに限られるものではない。筐体204のX軸方向の両端には切替接点201を格納する格納溝207が設けられている。後述するように、格納溝207のX軸方向の幅W(図7参照)のクリアランスは、切替接点201を格納できるX軸方向の幅が確保できていれば、切替接点201の幅以上に大きくしてもよい。   The starting end U1 (see FIG. 2) of the U-phase winding 150u of the stator is connected to the housing 204 via the terminal connection part 206. It is assumed that the housing 204 is formed of a conductive material (for example, metal or the like), but is not limited thereto. Storage grooves 207 for storing the switching contacts 201 are provided at both ends in the X-axis direction of the housing 204. As will be described later, the clearance of the width W (see FIG. 7) of the storage groove 207 in the X-axis direction is larger than the width of the switching contact 201 as long as the width in the X-axis direction in which the switching contact 201 can be stored can be secured. May be.

切替接点201は、筐体204に対してZ軸の正方向に凸形状で、かつ複数列から成る多面接触子205を有しており、多面接触子205の導通面205aは短絡線130(図2参照)によって他の巻線の端子と接続される。多面接触子は、電流集電子ともいう。多面接触子205は、図6および図7に示すような凸形状で構成されることにより、各々の列がZ軸方向のスプリング特性を有する。このため、従来技術で必要だったバネ1202が不要となり、部品点数の削減および組立てコストの低減が可能となる(上記(課題1)を解決)。   The switching contact 201 has a polyhedral contact 205 in a convex shape in the positive direction of the Z-axis with respect to the housing 204, and has a plurality of rows of polyhedral contacts 205. 2) is connected to the terminal of another winding. Polyhedral contacts are also called current collectors. The polyhedral contact 205 is formed in a convex shape as shown in FIGS. 6 and 7, so that each row has a spring characteristic in the Z-axis direction. For this reason, the spring 1202 required in the prior art becomes unnecessary, and the number of parts and the assembly cost can be reduced (the above (Problem 1) is solved).

なお、図7では、多面接触子205の導通面205aは、筐体204のZ軸の正方向の上面204Sに対して突出する高さとしているが、これに限られず、短絡線130の接触部と接触が確保できればどのような高さであってもよい。   In FIG. 7, the conductive surface 205 a of the multi-surface contact 205 has a height protruding from the upper surface 204 S in the positive direction of the Z-axis of the housing 204, but is not limited thereto. Any height may be used as long as contact can be secured.

また、バネ1202がなくなることで可動代1203が不要となり、構成がシンプルになるため、巻線切替装置120の小型化が可能となる(上記(課題2)を解決)。   Further, since the spring 1202 is eliminated, the movable margin 1203 becomes unnecessary, and the configuration is simplified, so that the winding switching device 120 can be reduced in size (the above (Problem 2) is solved).

また、導通面205aを複数列に分割することで、各々の導通面205aの接触面積が小さくなるので、接触面圧の均一化が可能となる。加えて、導通面205aの数を増やすことで、大電流を流すために必要な接触面積を確保することが可能となる。これによって、導通面205aの特定箇所に電流集中やスパーク、アーク等が発生しなくなり、切替接点201の長寿命化が可能となる(上記(課題3)を解決)。   Further, by dividing the conductive surface 205a into a plurality of rows, the contact area of each conductive surface 205a is reduced, so that the contact surface pressure can be made uniform. In addition, by increasing the number of conductive surfaces 205a, it is possible to secure a contact area necessary for flowing a large current. As a result, current concentration, sparks, arcs, and the like do not occur at specific locations on the conduction surface 205a, and the life of the switching contact 201 can be extended (the above (Problem 3) is solved).

また、切替接点201の導通面205aが短絡線130の接触部に押し付けられた状態において、切替接点201のもう一方の導通面205bは、多面接触子205のスプリング特性が生み出す反力によって、筐体204に押し付けられる。したがって、導通面205bと筐体204の間の接触面圧が均一かつ十分に確保されるため、導通面205bと筐体204の間の接触抵抗を極めて小さくすることができる。先の説明で格納溝207のクリアランスが大きくてもよいと述べた理由は、上述した構成原理に従って導通面205bと筐体204の面圧を常に確保できるためである。これによって、筐体204の格納溝207のクリアランスを高精度に管理する必要がなくなり、加工コストの低減が可能となる(上記(課題4)を解決)。   In a state in which the conductive surface 205a of the switching contact 201 is pressed against the contact portion of the short-circuit line 130, the other conductive surface 205b of the switching contact 201 has a housing 204. Therefore, since the contact surface pressure between the conductive surface 205b and the housing 204 is uniformly and sufficiently ensured, the contact resistance between the conductive surface 205b and the housing 204 can be extremely reduced. The reason that the clearance of the storage groove 207 may be large in the above description is that the surface pressure of the conductive surface 205b and the housing 204 can always be secured according to the above-described configuration principle. As a result, it is not necessary to control the clearance of the storage groove 207 of the housing 204 with high accuracy, and the processing cost can be reduced (the above (Problem 4) is solved).

また、端子接続部206は筐体204に設けられており、筐体204は、従来の切替接点1201がバネ1202の伸縮動作に伴い動くこととは異なり、このような動きがなく固定されているので、長期使用時に端子接続部206の固定ネジの緩み等が発生するリスクがなくなり、信頼性を向上できる(上記(課題5)を解決)。   Further, the terminal connection portion 206 is provided on the housing 204, and the housing 204 is fixed without such a movement unlike the conventional switching contact 1201 that moves with the expansion and contraction of the spring 1202. Therefore, there is no risk of loosening of the fixing screw of the terminal connection portion 206 during long-term use, and the reliability can be improved (the above (Problem 5) can be solved).

なお、通電電流が小さい場合、導通面205aは必ずしも複数列とする必要は無く、1列でも良い。また、導通面205aは、図6のように複数列のうち少なくとも1つの列の横幅を広くして構成しても良いし、いずれも同程度の幅としても良い。また、切替接点201と筐体204は電気的に導通するように構成されていればよく、格納溝207によって固定する方法以外にも、溶接や接着等で固定しても良いし、一体で成形しても良い。   When the current is small, the conductive surfaces 205a do not necessarily have to be in a plurality of rows, but may be in a single row. In addition, the conductive surface 205a may be configured such that at least one of the plurality of rows has a wide width as shown in FIG. 6, or may have substantially the same width. Further, the switching contact 201 and the housing 204 may be configured to be electrically conductive, and may be fixed by welding, bonding, or the like, or may be integrally formed, in addition to the method of fixing by the storage groove 207. You may.

以上にて、従来技術の課題と解決手段、および本発明の目的である巻線切替装置の小型化が実現できる原理について説明した。図6および図7では始端U1を対象として説明したが、始端U2、終端U3、U4に対しても同様の構成とする。   The problems and solutions of the related art and the principle of achieving the miniaturization of the winding switching device according to the present invention have been described above. In FIGS. 6 and 7, the description has been made with respect to the start end U1, but the same configuration is applied to the start end U2 and the end ends U3, U4.

図6および図7の構成を始端U1、U2、終端U3、U4それぞれに採用したときの回路構成を改めて図8に示す。図8(a)は並列接続(3相で見ると2Y結線)、図8(b)は直列接続(3相で見ると1Y結線)である。図8において、多面接触子205は短絡線130と接触している。短絡線130u1との接触と、短絡線130u2との接触とを切り替えるため、多面接触子205は短絡線格納部140の面上をX軸方向に摺動する。短絡線130は導体で構成され、短絡線格納部140は複数の短絡線130の絶縁が確保できるのであればどのような材質でもよい。短絡線130と短絡線格納部140とをプリント基板を用いて一体で構成してもよい。始端U1、U2、終端U3、U4は互いに絶縁が確保できるのであればどのように保持してもよいが、巻線切替装置120を小型化する点では、端子のうち少なくとも2つは絶縁物で機械的に連結されて互いに固定されていることが望ましいが、機械的固定に限られるものではない。図8の並列接続と直列接続の切替は、短絡線格納部140を固定して始端U1、U2、終端U3、U4を移動させても良いし、逆に始端U1、U2および終端U3、U4を固定して短絡線格納部140を移動させても良い。端子接続部206の固定ネジの緩みを回避する点では、短絡線格納部140を移動させることが望ましい。   FIG. 8 shows a circuit configuration when the configurations of FIGS. 6 and 7 are employed for the start ends U1, U2 and the end ends U3, U4, respectively. FIG. 8A shows a parallel connection (2Y connection when viewed in three phases), and FIG. 8B shows a series connection (1Y connection when viewed in three phases). In FIG. 8, the multi-face contact 205 is in contact with the short-circuit line 130. In order to switch between contact with the short-circuit line 130u1 and contact with the short-circuit line 130u2, the multifaceted contact 205 slides on the surface of the short-circuit line storage section 140 in the X-axis direction. The short-circuit line 130 is formed of a conductor, and the short-circuit line storage section 140 may be made of any material as long as insulation of the plurality of short-circuit lines 130 can be ensured. The short-circuit line 130 and the short-circuit line storage section 140 may be integrally formed using a printed circuit board. The start ends U1, U2 and the end ends U3, U4 may be held in any manner as long as insulation can be ensured from each other. However, in order to reduce the size of the winding switching device 120, at least two of the terminals are made of an insulator. It is desirable that they are mechanically connected and fixed to each other, but are not limited to mechanical fixing. Switching between the parallel connection and the series connection in FIG. 8 may be performed by moving the start ends U1, U2 and the end points U3, U4 while fixing the short-circuit line storage section 140, or on the contrary, by changing the start ends U1, U2 and the end points U3, U4. The short-circuit line storage section 140 may be moved while being fixed. In order to avoid loosening of the fixing screw of the terminal connection part 206, it is desirable to move the short-circuit wire storage part 140.

図9は、本発明の第2の実施例における回転機駆動システム2Sの全体構成を表すブロック図である。図1との違いは、制御装置105bが、インバータ制御部108と巻線切替指令部110に加えて、異常アラート出力部109から構成されている点である。異常アラート出力部109は、相電流検出回路106で検出された相電流情報106Aを基に回転機3の駆動電流をモニタし、切替接点201および多面接触子205の異常アラートを出力する検知回路である。具体的に、多面接触子205のうち少なくとも1つの面が損傷・破損した場合や、切替動作の不具合等により接触面積が十分に確保できていない場合は、切替接点201の接触抵抗が変化するため、モータの電流波形Iu、Iv、Iwが正常時とは異なる挙動を示す。この電流変化情報を基にして、異常アラート出力部109は異常アラートを出力する。   FIG. 9 is a block diagram illustrating an entire configuration of a rotating machine drive system 2S according to a second embodiment of the present invention. The difference from FIG. 1 is that the control device 105b includes an abnormality alert output unit 109 in addition to the inverter control unit 108 and the winding switching command unit 110. The abnormality alert output unit 109 is a detection circuit that monitors the drive current of the rotating machine 3 based on the phase current information 106A detected by the phase current detection circuit 106 and outputs an abnormality alert for the switching contact 201 and the multi-face contact 205. is there. Specifically, the contact resistance of the switching contact 201 changes when at least one surface of the multi-surface contact 205 is damaged or broken, or when the contact area is not sufficiently ensured due to a malfunction of the switching operation or the like. , The current waveforms Iu, Iv, Iw of the motor behave differently from those in the normal state. The abnormality alert output unit 109 outputs an abnormality alert based on the current change information.

従来技術では、構成原理的に切替接点の接触面圧を一定に維持することが困難であった。このため、接触抵抗を一定に維持することが難しく、正常時と異常時の抵抗変化を明確に切り分けることができなかった。これに対して本発明では、多面接触子205それぞれの接触面圧を一定に維持することが可能となるため、接触面積の大きさを用いて正常時の接触抵抗を定量化できる。これによって、多面接触子205のうち少なくとも1つが破損・損傷した場合や、切替動作の不具合等により接触面積が十分に確保できていない場合は、正常時と比較して接触抵抗に明確な差異が生じるため、電流変化情報を基にした異常検知が可能となる。   In the prior art, it was difficult to keep the contact surface pressure of the switching contact constant from the viewpoint of the configuration principle. For this reason, it is difficult to maintain a constant contact resistance, and it has not been possible to clearly distinguish between a normal state and an abnormal state. On the other hand, in the present invention, since the contact surface pressure of each of the multifaceted contacts 205 can be kept constant, the contact resistance in a normal state can be quantified using the size of the contact area. As a result, when at least one of the multifaceted contacts 205 is damaged or damaged, or when the contact area is not sufficiently ensured due to a malfunction of the switching operation or the like, a clear difference in the contact resistance as compared with the normal state is obtained. Therefore, an abnormality can be detected based on the current change information.

なお、異常検知後は、破損・損傷していない多面接触子205を少なくとも1つ用いて、回転機103を駆動することが可能である。鉄道や自動車、建機などの車両においては、フェール時においても自走可能であることが望ましく、本発明の構成とすることでこの要求を満足することが可能となる。   After the abnormality is detected, the rotating machine 103 can be driven using at least one of the multifaceted contacts 205 that has not been damaged or damaged. It is desirable that a vehicle such as a railway, a car, and a construction machine be capable of self-propelled even in the event of a failure, and the configuration of the present invention can satisfy this requirement.

図10を用いて本発明の第3の実施例について説明する。図10は、本発明の第3の実施例における鉄道車両500に用いた回転機駆動システムの構成図である。   A third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a configuration diagram of a rotating machine drive system used for a railway vehicle 500 according to the third embodiment of the present invention.

鉄道車両500の駆動装置は、架線2から集電装置5を介して電力が供給され、電力変換装置1を経由して交流電力が回転機103に供給されることで回転機103を駆動する。回転機103は鉄道車両500の車軸4と連結されており、回転機103により鉄道車両の走行が制御される。電気的なグランドはレール3を介して接続されている。ここで、架線2の電圧は直流および交流のどちらでもよい。   The driving device of the railway vehicle 500 drives the rotating machine 103 by supplying power from the overhead line 2 via the current collector 5 and supplying AC power to the rotating machine 103 via the power converter 1. The rotating machine 103 is connected to the axle 4 of the railway vehicle 500, and the running of the railway vehicle is controlled by the rotating machine 103. The electric ground is connected via the rail 3. Here, the voltage of the overhead wire 2 may be either DC or AC.

本実施例によれば、第1または第2の実施例の回転機駆動システムを鉄道車両システムに搭載することで、鉄道車両の回転機駆動システムを高効率に運転することが可能となる。また、同様の効果は、自動車や建機などの車両においても得ることができる。   According to this embodiment, by mounting the rotating machine drive system of the first or second embodiment on a railway vehicle system, it becomes possible to operate the rotating machine drive system of a railway vehicle with high efficiency. Similar effects can be obtained in vehicles such as automobiles and construction machines.

鉄道や自動車、建機などの車両が備える回転機駆動システム1Sまたは2Sは、1つのインバータ装置101と1つの回転機103とを組合せて駆動される1C1Mの構成である。あるいは鉄道や自動車、建機などの車両が備える回転機駆動システム1Sまたは2Sは、1つのインバータ装置101と少なくとも2つの回転機103とを組合せて駆動される1CnM(n=2、3、4・・・)の構成である。そして、鉄道や自動車、建機などの車両が備える回転機駆動システム1Sまたは2Sは、少なくとも2群以上のインバータ装置101と回転機103との組合せで構成される。   A rotating machine drive system 1S or 2S provided in a vehicle such as a railway, an automobile, or a construction machine has a configuration of 1C1M driven by combining one inverter device 101 and one rotating machine 103. Alternatively, a rotating machine drive system 1S or 2S provided in a vehicle such as a railroad, an automobile, or a construction machine is configured as 1CnM (n = 2, 3, 4,...) Driven by combining one inverter device 101 and at least two rotating machines 103. ..). The rotating machine drive system 1S or 2S included in a vehicle such as a railway, an automobile, or a construction machine is configured by a combination of at least two or more groups of the inverter devices 101 and the rotating machine 103.

本発明は、上述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。例えば、上述の実施例で例示した構成および処理は、実装形態や処理効率に応じて適宜統合または分離させてもよい。また、例えば、上述の実施例および変形例は、矛盾しない範囲で、その一部または全部を組合せてもよい。   The present invention is not limited to the above-described embodiments, and other forms that can be considered within the technical idea of the present invention are also included in the scope of the present invention unless departing from the spirit of the present invention. . For example, the configurations and processes exemplified in the above-described embodiments may be integrated or separated as appropriate according to the implementation form and the processing efficiency. In addition, for example, the above-described embodiments and modified examples may be partially or entirely combined without departing from the scope of the present invention.

1S、2S:回転機駆動システム
1:電力変換装置
2:架線
3:レール
4:車軸
101:インバータ装置
102:直流電源
103:回転機
104:インバータ回路
105、105b:制御装置
106:相電流検出回路
108:インバータ制御部
109:異常アラート出力部
110:巻線切替指令部
120:巻線切替装置
130、130u1、130u2:短絡線
140:短絡線格納部
141:インバータ主回路
142:ゲート・ドライバ
201:切替接点
204:筐体
205:多面接触子
205a、205b:導通面
206:端子接続部
207:格納溝
1S, 2S: rotating machine drive system 1: power converter 2: overhead wire 3: rail 4: axle 101: inverter 102: DC power supply 103: rotating machine 104: inverter circuits 105 and 105b: controller 106: phase current detection circuit 108: Inverter control unit 109: Abnormal alert output unit 110: Winding switching command unit 120: Winding switching devices 130, 130u1, 130u2: Short circuit line 140: Short circuit storage unit 141: Inverter main circuit 142: Gate driver 201: Switching contact 204: Housing 205: Multifaceted contacts 205a, 205b: Conductive surface 206: Terminal connection part 207: Storage groove

Claims (9)

複数の巻線を有する回転機と、
直流電源からの直流電力を交流電力に変換するインバータ回路と前記インバータ回路による電力変換を制御する制御装置を含み、前記回転機を可変速運転するインバータ装置と、
前記制御装置からの指令により前記複数の巻線の接続を切り替える巻線切替装置と、
を備え、
前記制御装置は、
加減速により前記回転機の回転が低速回転域と高速回転域との間を遷移する際、前記巻線切替装置に前記巻線の接続切替を指令し、
前記巻線切替装置は、
前記複数の巻線の接続を切り替える切替接点がスプリング特性を有する多面接触子で構成されていることを特徴とする回転機駆動システム。
A rotating machine having a plurality of windings,
An inverter device for converting DC power from a DC power supply to AC power and a control device for controlling power conversion by the inverter circuit, an inverter device for operating the rotating machine at a variable speed,
A winding switching device that switches connection of the plurality of windings according to a command from the control device,
With
The control device includes:
When the rotation of the rotating machine transitions between a low-speed rotation region and a high-speed rotation region due to acceleration / deceleration, instructs the winding switching device to switch connection of the winding,
The winding switching device,
A rotating machine drive system, wherein the switching contact for switching the connection of the plurality of windings is constituted by a polyhedral contact having spring characteristics.
前記切替接点は、前記多面接触子と、該多面接触子を格納する筐体で構成され、
前記筐体は、前記巻線の始端または終端を結線するための接続部を有する
ことを特徴とする請求項1に記載の回転機駆動システム。
The switching contact is configured by a housing that stores the multi-face contact and the multi-face contact,
The rotating machine drive system according to claim 1, wherein the housing has a connection portion for connecting a start end or an end of the winding.
前記巻線切替装置は、
前記回転機の複数相の複数巻線の始端または終端に結線するための複数の前記切替接点で構成され、
複数の前記切替接点の隣接する前記筐体のうち少なくとも2つが絶縁物で連結されて固定されている
ことを特徴とする請求項2に記載の回転機駆動システム。
The winding switching device,
It is configured with a plurality of the switching contacts for connecting to a starting end or an end of a plurality of windings of a plurality of phases of the rotating machine,
The rotating machine drive system according to claim 2, wherein at least two of the housings adjacent to the plurality of switching contacts are connected and fixed by an insulator.
前記回転機の駆動電流は、前記多面接触子のうち少なくとも1つの面に通電されることを特徴とする請求項3に記載の回転機駆動システム。   4. The rotating machine drive system according to claim 3, wherein the drive current of the rotating machine is supplied to at least one surface of the multi-face contactor. 5. 前記回転機の駆動電流をモニタする検知回路を有し、
前記検知回路は、
前記多面接触子のうち少なくとも1つの面が損傷・破損したときに発生する電流変化情報を基にして、前記多面接触子の異常アラートを出力する
ことを特徴とする請求項4に記載の回転機駆動システム。
A detection circuit that monitors a drive current of the rotating machine,
The detection circuit,
The rotating machine according to claim 4, wherein an abnormality alert for the multi-face contact is output based on current change information generated when at least one face of the multi-face contact is damaged or broken. Drive system.
1つの前記インバータ装置と1つの前記回転機とを組合せて駆動される1C1Mの構成であることを特徴とする請求項1〜5のいずれか1項に記載の回転機駆動システム。   The rotating machine drive system according to any one of claims 1 to 5, wherein the rotating machine drive system has a 1C1M configuration driven by combining one of the inverter devices and one of the rotating machines. 1つの前記インバータ装置と少なくとも2つの前記回転機とを組合せて駆動される1CnM(n=2、3、4・・・)の構成であることを特徴とする請求項1〜5のいずれか1項に記載の回転機駆動システム。   6. A configuration of 1 CnM (n = 2, 3, 4,...) Driven by combining one inverter device and at least two rotating machines. The rotating machine drive system according to the paragraph. 少なくとも2群以上の前記インバータ装置と前記回転機との組合せで構成されることを特徴とする請求項6または7に記載の回転機駆動システム。   The rotating machine drive system according to claim 6 or 7, wherein the rotating machine drive system is configured by a combination of at least two or more groups of the inverter devices and the rotating machine. 請求項1〜8のいずれか1項に記載の回転機駆動システムを備えた車両。   A vehicle comprising the rotating machine drive system according to claim 1.
JP2018130286A 2018-07-09 2018-07-09 Rotating machine drive system and vehicle Active JP7101065B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018130286A JP7101065B2 (en) 2018-07-09 2018-07-09 Rotating machine drive system and vehicle
PCT/JP2019/007957 WO2020012695A1 (en) 2018-07-09 2019-02-28 Rotating machine drive system and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130286A JP7101065B2 (en) 2018-07-09 2018-07-09 Rotating machine drive system and vehicle

Publications (2)

Publication Number Publication Date
JP2020010524A true JP2020010524A (en) 2020-01-16
JP7101065B2 JP7101065B2 (en) 2022-07-14

Family

ID=69142545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130286A Active JP7101065B2 (en) 2018-07-09 2018-07-09 Rotating machine drive system and vehicle

Country Status (2)

Country Link
JP (1) JP7101065B2 (en)
WO (1) WO2020012695A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105064A1 (en) * 2003-05-20 2004-12-02 Fujitsu Limited Electric contact device
JP2008140784A (en) * 2008-01-24 2008-06-19 Fujitsu Ltd Electric contact device, and its manufacturing method
JP2012067722A (en) * 2010-09-27 2012-04-05 Hitachi Appliances Inc Compressor and sealed rotary electric machine
JP2012110169A (en) * 2010-11-19 2012-06-07 Hitachi Industrial Equipment Systems Co Ltd Coil switching device and rotary electric machine using the same
JP2014120246A (en) * 2012-12-14 2014-06-30 Fuji Electric Fa Components & Systems Co Ltd Electromagnetic contactor
JP2017070112A (en) * 2015-09-30 2017-04-06 マツダ株式会社 Coil switching device and driving device for motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105064A1 (en) * 2003-05-20 2004-12-02 Fujitsu Limited Electric contact device
JP2008140784A (en) * 2008-01-24 2008-06-19 Fujitsu Ltd Electric contact device, and its manufacturing method
JP2012067722A (en) * 2010-09-27 2012-04-05 Hitachi Appliances Inc Compressor and sealed rotary electric machine
JP2012110169A (en) * 2010-11-19 2012-06-07 Hitachi Industrial Equipment Systems Co Ltd Coil switching device and rotary electric machine using the same
JP2014120246A (en) * 2012-12-14 2014-06-30 Fuji Electric Fa Components & Systems Co Ltd Electromagnetic contactor
JP2017070112A (en) * 2015-09-30 2017-04-06 マツダ株式会社 Coil switching device and driving device for motor

Also Published As

Publication number Publication date
JP7101065B2 (en) 2022-07-14
WO2020012695A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US8519561B2 (en) Power module and vehicle-mounted inverter using the same
JP6711412B2 (en) Inverter control device
JP4127550B2 (en) Power unit
WO2015152002A1 (en) Inverter control device
JP2008179285A (en) Motor drive system for railway vehicle
JP5639978B2 (en) Automotive power conversion control device
WO2018180897A1 (en) Inverter unit
JP2017200315A (en) Semiconductor device
CN111801887A (en) Rotary machine drive system
US11716039B2 (en) Winding switching device and rotating electrical machine drive system using the same
JP5972775B2 (en) Power converter
JP6902121B2 (en) Electric railroad vehicle equipped with a power converter and a power converter
JP7101065B2 (en) Rotating machine drive system and vehicle
US11855568B2 (en) Motor driving device and method for controlling same
JP7048469B2 (en) Rotating machine drive system and vehicle
WO2018229929A1 (en) Power conversion device
WO2020196365A1 (en) Winding switching device of rotating electric machine, rotating electric machine drive system, and electric device
WO2021065369A1 (en) Rotating machine drive system and vehicle
JP2018023176A (en) Power module
JP2010246281A (en) Control device of rotating electric machine
JP7391130B2 (en) Inverter drive method
WO2023210091A1 (en) Wound-field rotating electric machine and power feeding device
JP2012191682A (en) Electrically-driven inverter device
JP2022128662A (en) Inverter unit, motor unit, and vehicle
JP2021197829A (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7101065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150