JP2020008582A - Chlorine concentration measurement device - Google Patents

Chlorine concentration measurement device Download PDF

Info

Publication number
JP2020008582A
JP2020008582A JP2019125256A JP2019125256A JP2020008582A JP 2020008582 A JP2020008582 A JP 2020008582A JP 2019125256 A JP2019125256 A JP 2019125256A JP 2019125256 A JP2019125256 A JP 2019125256A JP 2020008582 A JP2020008582 A JP 2020008582A
Authority
JP
Japan
Prior art keywords
concentration
chlorine
unit
output unit
calculation output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019125256A
Other languages
Japanese (ja)
Other versions
JP7288281B2 (en
Inventor
キム,シウォン
Si Won Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3h Co Ltd
Original Assignee
3h Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65277336&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020008582(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 3h Co Ltd filed Critical 3h Co Ltd
Publication of JP2020008582A publication Critical patent/JP2020008582A/en
Application granted granted Critical
Publication of JP7288281B2 publication Critical patent/JP7288281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Water specific anions in water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

To provide a chlorine concentration measurement device.SOLUTION: A chlorine concentration measurement device of the present invention comprises: a trunk part that houses at least one battery therein and includes a power source unit for controlling flow of a current from the battery; a measurement unit which is provided on one end of the trunk part with an anode electrode and a cathode electrode, causes the current to flow between the anode and cathode electrodes when clean water contacts between the anode and cathode electrodes, and measures a diluted concentration of chlorine diluted by the clean water; a calculation output unit in which a set concentration has been set, and which calculates the set concentration and a diluted concentration measured by the measurement unit and makes zero point correction, and then outputs calculated values; and an adjustment unit which is connected to the calculation output unit and is capable of adjusting the set concentration.SELECTED DRAWING: Figure 1

Description

本発明は、塩素濃度測定器に係り、塩素濃度を正確に測定することができる塩素濃度測定技術分野に関する。 The present invention relates to a chlorine concentration measuring instrument, and relates to a chlorine concentration measuring technical field capable of accurately measuring a chlorine concentration.

多くの人は、夏に食中毒や大腸菌などに容易に感染してしまう。これらの病気に対する予防のために、野菜、果物及びキッチン食器類を消毒して使用している。
消毒方法において、水に塩素を希釈して消毒する塩素消毒方法が、消毒剤の製造が簡単であること、及び簡便な方法で対象物を容易に消毒することができることから多用されている。
特に、このような塩素消毒方法は、塩素が水に残留して水中の微生物を持続的に死滅させるので、効用性が高い。
前述した塩素消毒方法に対する効用性を高めるためには、水に対する塩素の希釈濃度を合わせなければならない。
現在、塩素消毒の消毒剤の製造は、上水道処理過程で基本的に希釈された塩素、および地域によって上水に希釈された塩素量の差があるにも拘らず、このような状況を考慮せずに、標準化された量の水と塩素の混合比率で消毒剤を製造している。
このような製造は、希釈濃度を不正確にするだけでなく、適正な希釈濃度を合わせるために不必要な水及び塩素を消費しなければならない問題を発生させている。
併せて、大量の水と塩素を消費して適正な希釈濃度を合わせたとしても、現在では、塩素テストペーパーを用いて算出し、測定された塩素濃度の誤差が発生している。このような誤差は、不正な希釈濃度に合わせる要素となる。
また、不正確な希釈濃度は、消毒対象物が消毒されずに食中毒菌が残留するようにして、交差汚染(cross contamination)を発生させる問題を引き起こす。
Many people are easily infected by food poisoning and E. coli in summer. Vegetables, fruits and kitchen utensils are disinfected and used to prevent these diseases.
In the disinfecting method, a chlorine disinfecting method of disinfecting by diluting chlorine in water is widely used because the production of a disinfectant is simple and an object can be easily disinfected by a simple method.
In particular, such a chlorine disinfection method is highly effective because chlorine remains in water and continuously kills microorganisms in the water.
In order to enhance the effectiveness of the chlorination method described above, the dilution concentration of chlorine in water must be adjusted.
Currently, the production of disinfectants for chlorination does not take into account such circumstances, despite the fact that there is a difference between the amount of chlorine that is basically diluted in the water treatment process and the amount of chlorine that is diluted in the water supply depending on the region. Instead, it manufactures disinfectants with a standardized mix of water and chlorine.
Such production not only makes the dilution concentration inaccurate, but also causes the problem that unnecessary water and chlorine must be consumed in order to adjust a proper dilution concentration.
At the same time, even if a large amount of water and chlorine are consumed and the appropriate dilution concentration is adjusted, an error in the chlorine concentration measured and calculated using a chlorine test paper has now occurred. Such an error is a factor for adjusting to an incorrect dilution concentration.
In addition, the incorrect dilution concentration causes a problem that cross-contamination occurs due to the food poisoning bacteria remaining without disinfecting the object to be disinfected.

韓国特許第10−0768340号(2007年10月17日)Korean Patent No. 10-0768340 (October 17, 2007)

本発明は、かかる問題点を解決するためになされたもので、その目的は、水の状態に応じて塩素測定の基本値を補正し、塩素濃度を正確に測定することができる塩素濃度測定器を提供することにある。
より具体的には、本発明の目的は、水の状態に応じて設定値を補正し、電流で水に溶けた塩素イオンの濃度を正確に測定することができる塩素濃度測定器を提供することにある。
このような本発明の目的は上述した目的に制限されず、上述していない別の目的は以降の記載から当業者に明確に理解できるだろう。
The present invention has been made to solve such a problem, and an object of the present invention is to correct a basic value of chlorine measurement according to the state of water, and to measure a chlorine concentration accurately. Is to provide.
More specifically, an object of the present invention is to provide a chlorine concentration measuring instrument capable of correcting a set value according to the state of water and accurately measuring the concentration of chloride ions dissolved in water with an electric current. It is in.
Such objects of the present invention are not limited to the above objects, and other objects not described above will be clearly understood by those skilled in the art from the following description.

上記目的を達成するための本発明の塩素濃度測定器は、内部に少なくとも1つのバッテリーを収容し、前記バッテリーからの電流の流れを制御する電源部を含む胴体部;
前記胴体部の一端に設置されて陽電極と陰電極を含み、前記陽電極と前記陰電極との間に上水が接触したときに、前記陽電極と前記陰電極との間に電流が流れるようにし、前記上水に希釈された塩素の希釈濃度を測定する測定部;
設定濃度が設定されており、前記設定濃度と前記測定部で測定された希釈濃度とを演算してゼロ点補正した後、演算値を出力する演算出力部;及び
前記演算出力部に接続され、前記設定濃度を調整することができる調整部;を備える。
前記上水は、排水処理過程で希釈された塩素によって第1希釈濃度値を有し、
前記演算出力部は、前記第1希釈濃度値と前記設定濃度とを減算演算してゼロ点補正値を算出し、前記ゼロ点補正値に、塩素が一定の割合で希釈された洗浄液で測定される希釈濃度値を加算演算して、有効濃度を出力することができる。
前記測定部は、前記洗浄液の温度を測定する温度計をさらに含むことができる。
前記調整部は、内部に様々な温度に応じて設定濃度が設定された温度濃度データが保存され、前記測定部で測定された温度に応じて前記演算出力部の設定濃度を自動的に調整することができる。
前記胴体部は、前記演算出力部に接続され、前記演算出力部から出力される信号に対応して音を出力するスピーカーをさらに含むことができる。
In order to achieve the above object, the present invention provides a chlorine concentration measuring instrument, wherein at least one battery is housed therein, and a body includes a power supply for controlling a flow of current from the battery;
A positive electrode and a negative electrode are installed at one end of the body, and when water flows between the positive electrode and the negative electrode, a current flows between the positive electrode and the negative electrode. A measuring unit for measuring a dilution concentration of the chlorine diluted in the tap water;
A set concentration is set, and after calculating the set concentration and the dilution concentration measured by the measurement unit to correct the zero point, a calculation output unit that outputs a calculation value; and is connected to the calculation output unit; An adjusting unit that can adjust the set density.
The clean water has a first dilution concentration value due to chlorine diluted in a wastewater treatment process,
The calculation output unit calculates a zero-point correction value by subtracting the first dilution concentration value and the set concentration, and the zero-point correction value is measured with a cleaning solution in which chlorine is diluted at a constant rate. The effective concentration can be output by adding the diluted concentration values calculated.
The measuring unit may further include a thermometer for measuring a temperature of the cleaning liquid.
The adjustment unit stores therein temperature density data in which a set density is set according to various temperatures, and automatically adjusts the set density of the calculation output unit according to the temperature measured by the measurement unit. be able to.
The body may further include a speaker connected to the operation output unit and outputting a sound corresponding to a signal output from the operation output unit.

本発明に係る塩素濃度測定器は、水の状態に応じて塩素測定の基本値を補正し、測定のゼロ点状態を合わせて塩素濃度を正確に測定することができる。また、本発明の塩素濃度測定器は、水の温度に応じて設定値が自動補正され、温度変化による希釈濃度を正確に測定することができる。 ADVANTAGE OF THE INVENTION The chlorine concentration measuring device which concerns on this invention can correct a basic value of chlorine measurement according to the state of water, and can measure a chlorine concentration correctly by adjusting the zero point state of measurement. In the chlorine concentration measuring device of the present invention, the set value is automatically corrected according to the temperature of water, and the concentration of dilution due to a change in temperature can be accurately measured.

本発明の一実施形態に係る塩素濃度測定器の斜視図である。It is a perspective view of the chlorine concentration measuring instrument concerning one embodiment of the present invention. 本発明の一実施形態に係る塩素濃度測定器を構成する構成要素のブロック図である。It is a block diagram of the component which constitutes the chlorine concentration measuring instrument concerning one embodiment of the present invention. 本発明の一実施形態に係る塩素濃度測定器の分解斜視図である。It is an exploded perspective view of a chlorine concentration measuring instrument concerning one embodiment of the present invention. 図2の測定部の拡大図である。FIG. 3 is an enlarged view of a measurement unit in FIG. 2. 本発明の一実施形態に係る塩素濃度測定器の使用状態を示す図である。It is a figure showing the use condition of the chlorine concentration measuring instrument concerning one embodiment of the present invention. 図5による塩素濃度測定器の作動状態を示す図である。FIG. 6 is a diagram showing an operation state of the chlorine concentration measuring device according to FIG. 5. 図5による塩素濃度測定器の作動状態を示す図である。FIG. 6 is a diagram showing an operation state of the chlorine concentration measuring device according to FIG. 5. 本発明の塩素濃度測定器がシリコーンスプーンに嵌め込まれて使用される状態を示す図である。It is a figure showing the state where the chlorine concentration measuring instrument of the present invention is used by being inserted into a silicone spoon. 本発明の一実施形態に係る塩素濃度測定器から出力される電流と塩素濃度測定器で測定される濃度との関係を示すグラフである。It is a graph which shows the relationship between the electric current outputted from the chlorine concentration measuring instrument concerning one embodiment of the present invention, and the concentration measured with the chlorine concentration measuring instrument. 本発明の一実施形態に係る塩素濃度測定器の作動順序を示すフローチャートである。It is a flowchart which shows the operation | movement order of the chlorine concentration measuring device which concerns on one Embodiment of this invention.

本発明の利点、特徴およびそれらを達成するための方法は、添付図面と共に詳細に後述されている実施形態を参照すると明確になる。
しかし、本発明は、以下で開示される実施形態に限定されるものではなく、互いに異なる多様な形態で実現でき、単に、本実施形態は、本発明の開示を完全たるものにし、本発明の属する技術分野における通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものである。明細書全体にわたって、同一の参照符号は同一の構成要素を示す。
以下、図1を参照して、本発明の一実施形態による塩素濃度測定器について概括的に説明する。
図1は本発明の一実施形態に係る塩素濃度測定器の斜視図である。
本発明の一実施形態による塩素濃度測定器1は、測定部20で電流によって上水に溶けている塩素イオンの濃度を測定し、調整部40で塩素測定の基本値を補正してゼロ点状態を合わせた後、塩素が希釈された上水から塩素の有効濃度を正確に出力することができる。
特に、本発明の塩素濃度測定器1は、水に溶けている塩素イオンの濃度による電流の大きさを相対比較して、特定の比例値を基準に有効濃度を出力することができる。
言い換えれば、本発明の塩素濃度測定器1は、上水内の電気伝導度を用いて、上水内に溶けている鉱物、すなわち、塩が結果値に影響を与える濃度を基準点としてゼロ点補正し、上水内に希釈される塩素の濃度を正確に測定する。
次に、図2乃至図4を参照して、本発明の一実施形態に係る塩素濃度測定器の構成要素について具体的に説明する。
図2は本発明の一実施形態に係る塩素濃度測定器を構成する構成要素のブロック図であり、図3は本発明の一実施形態に係る塩素濃度測定器の分解斜視図である。そして、図4は図2の測定部の拡大図である。
このような塩素濃度測定器1は、胴体部10、測定部20、演算出力部30及び調整部40を構成要素として含む。
胴体部10は、塩素濃度測定器1の胴体となる。このような胴体部10は、ユーザーが指で簡単に取ることができる形状を呈することができる。例えば、縦断面逆三角形の形状を呈してもよい。
このような胴体部10は、内部に少なくとも1つのバッテリーFを収容することができるように形成され、外部にはバッテリーFから出力される電流の流れを制御する電源部11、およびバッテリーFを覆うカバー60を含む構造である。
すなわち、胴体部10は、内部に少なくとも1つのバッテリーFを収容することができ、バッテリーFからの電流の流れを制御する電源部11、及びバッテリーFを内部に収容した後、バッテリーFを覆う構造で形成される。
電源部11は、バッテリーFと測定部20との間の電流の流れを断続するスイッチであってもよい。一例として、ユーザーが電源部11をターンオンさせると、バッテリーFから測定部20へ電流が流れるようにし、バッテリーFと測定部20を短絡(short)させ、電源部11をターンオフさせると、バッテリーFから測定部20へ電流が流れないようにバッテリーFと測定部20をオープン(open)させることができる。
測定部20は胴体部の一端に設置される。測定部20は陽電極21と陰電極22を含む。さらに、温度計23を含むことができる。
このような測定部20は、陽電極21と陰電極22を介して、陽電極21と陰電極22との間に流れる洗浄液B(図5参照)に電流を印加し、洗浄液Bに希釈された塩素を抵抗としてみなし、塩素の希釈濃度を測定することができる。より具体的には、測定部20は、陽電極21と陰電極22との間に、塩素の希釈濃度が低い場合、すなわち抵抗が高い場合には相対的に小さい電流が流れるようにし、塩素の希釈濃度が高い場合、すなわち抵抗が低い場合には相対的に大きい電流が流れるようにして、塩素の希釈濃度を測定することができる。言い換えれば、測定部20は、希釈濃度とは反比例の関係で電流を出力して塩素の希釈濃度を測定することができる。
この時、測定部20は、陽電極21と陰電極22が白金で形成され、洗浄液Bに希釈された塩素の希釈濃度を微細な差まで測定することができる。例えば、測定部20は、希釈濃度を分解能1ppmの差まで正確に測定することができる。そして、温度計23を介して上水の温度を測定することができる。このような温度計23は、1℃〜100℃までの広い範囲の温度を測定し、1℃の差まで正確に測定することができる。
測定部20は、測定された希釈濃度データと温度データを演算出力部30へ伝送することができる。演算出力部30は、マイクロコントローラユニット(Micro Control Unit)、すなわちデータを演算処理する機器となる。このような演算出力部30は、胴体部の一面に露出される出力モジュールと、出力モジュールに接続され、胴体部の内部に設置されて測定部20からの信号を演算する演算モジュールとから構成できる。
ここで、出力モジュールは、暗い室内空間でも出力数値を確認することができるように、バックライトが搭載されたディスプレイで形成できる。
このような演算出力部30には設定濃度が設定されており、設定された設定濃度と測定部20で測定された希釈濃度とを演算してゼロ点補正した後、演算値を出力する。演算出力部30は、調整部40に接続され、調整部40から伝送する信号によって設定濃度を変更することができる。
調整部40は、胴体部10の内側および外側に形成され、設定濃度を変更することができる。例えば、調整部40は、胴体部10の外側に形成され、ユーザーの操作によって作動して設定濃度を変更することができるか、或いは、胴体部10の内側に測定部20と接続されるように形成され、測定部20で測定されたデータに対応して作動して設定濃度を変更することができる。また、調整部40は、内部に様々な温度に応じて設定濃度が設定された温度濃度データを含み、測定部20で測定された温度に応じて設定濃度を自動的に調整することができる。
以下、図5を参照して、本発明の一実施形態に係る塩素濃度測定器の使用状態を説明する。その後、これと図6乃至図8を参照して、使用状態に応じた塩素濃度測定器の作動状態について具体的に説明する。
図5は本発明の一実施形態に係る塩素濃度測定器の使用状態を示す図である。図6及び図7は図5による塩素濃度測定器の作動状態を示す図である。そして、図8は本発明の塩素濃度測定器がシリコーンスプーンに嵌め込まれて使用される状態を示す図である。
塩素濃度測定器1は、図5に示すように、容器A内に入った洗浄液Bの塩素濃度、すなわち、塩素が一定量含有された上水の塩素濃度を測定する。このとき、洗浄液Bは、上水にユーザーDによって一定量の塩素が希釈された液体であってもよく、上水は、排水処理過程で基本的に希釈された塩素及び自体的に持つ塩によって第1希釈濃度値を有する液体であってもよい。
塩素濃度測定器1は、図5に示すように、果物Cを消毒する洗浄液Bだけでなく、食器材を消毒する洗浄液の希釈濃度も測定することができる。例えば、塩素濃度測定器1は、50ppm〜300ppmまでの広い範囲の有効濃度を測定した後、図6の(a)に示すように演算出力部30を介して出力することができる。
このとき、演算出力部30は、第1希釈濃度値と設定濃度とを減算(Subtraction)演算、すなわち引き算演算してゼロ点補正値を算出し、算出されたゼロ点補正値に、塩素が一定の割合で希釈された洗浄液で測定される希釈濃度値を加算(summing)演算、すなわち足し算演算して有効濃度を出力することができる。塩素濃度測定器1は、50ppm〜300ppmの塩素濃度を測定することができる。
したがって、塩素濃度測定器1は、野菜及び果物を洗浄するための洗浄液の有効濃度となる100ppmの濃度、及び包丁やまな板などの厨房用器具類を洗浄するための有効濃度となる200ppmの濃度を無理なく測定した後、出力することができる。
また、塩素濃度測定器1は、洗浄液の温度を測定し、図6の(b)に示すように演算出力部30を介して出力することができる。
演算出力部30は、測定部20で塩素濃度の測定が完了した状態で、電源部11がターンオフ状態になると、温度を出力することができる。
併せて、塩素濃度測定器1は、図7に示すように、胴体部10の一側に設置されたスピーカー50を介して、有効濃度の測定が完了して測定部20から出力される信号に対応して音を出力することができる。例えば、塩素濃度測定器1は、スピーカー50を介して測定開始に対応する音、及び測定完了に対応する音を出力し、ユーザーが直観的に洗浄液の塩素濃度を測定することについて認知することができるようにする。また、塩素濃度測定器1は、図8に示すように、シリコーンスプーンEを1つの構成要素として含むことができる。
塩素濃度測定器1は、シリコーンスプーンEの一側に挿入され、シリコーンスプーンEの内部に収容された洗浄液の塩素濃度をより安定かつ正確に測定することができる。
以下、図9を参照して、本発明の塩素濃度測定器がゼロ点補正して出力する有効濃度について説明する。
図9は本発明の一実施形態に係る塩素濃度測定器から出力される電流と塩素濃度測定器で測定される濃度との関係を示すグラフである。
上水源から供給される上水は、塩素消毒過程で希釈された塩素によって残留塩素を含んでいる。すなわち、上水は第1希釈濃度値を持っている。言い換えれば、このような上水は蒸留水ではない。
上水は、蒸留水ではないので、電流滴定法による有効塩素と電流滴定の比例値は、上水に残っている有機物及び無機物の化合程度に従って3次曲線を形成する。
本発明の塩素濃度測定器1は、上水に含まれる残留塩素に対応した電流値に変換される変換値と水質特性を考慮し、基準点を50ppmとして有効濃度を示している。ここで、50ppmは一例に過ぎず、基準点は50ppmに限定されるものではない。
塩素濃度測定器1は、電流滴定法で洗浄液Bの塩素希釈濃度を測定する場合、図9の(a)に示すように、電流I1で50ppmが測定され、電流I2で150ppmが測定される場合、自体的に基準点をゼロ点補正した後、電流I1で0ppmが出力されるようにし、電流I2で100ppmが出力されるようにすることができる。
この際、塩素濃度測定器1は、測定された洗浄液Bの温度に応じて基準点を一定の大きさ加減して調整し、ゼロ点補正することができる。これにより、ユーザーが蒸留水と塩素を正確に配合して洗浄液の有効濃度を精密に合わせることができる。
塩素濃度測定器1は、洗浄液の有効濃度を正確に合わせることにより、洗浄対象の適正塩素濃度以上または未満の洗浄液による副作用の発生を防止することができる。
以下、図10を参照して、塩素濃度測定器の作動順序について説明する。
図10は本発明の一実施形態に係る塩素濃度測定器の作動順序を示すフローチャートである。
本発明の塩素濃度測定器1は、演算出力部30に設定濃度が設定された状態で作動が開始することができる(S110)。塩素濃度測定器1は、ターンオフされた状態で電源部11によってターンオンされ、ターンオン信号音を出力して塩素濃度を測定することができる状態に転換される(S120)。
塩素濃度測定器1は、測定部20によって洗浄液Bの塩素濃度を測定し、基準点を介してゼロ点補正した後(S130)、洗浄液Bの希釈濃度を出力することができる(S140)。この際、塩素濃度測定器1は、スピーカー50を介して測定完了信号音を出力することができる。そして、塩素濃度測定器1は、電源部11によって再びターンオン状態からターンオフに切り替えられ、演算出力部30を介して洗浄液の温度を出力することができる。
塩素濃度測定器1は、塩素濃度の測定を終えた後、測定部を中性洗剤などで洗浄し(S150)、しかる後に、他の洗浄液の塩素濃度を測定するか或いはケースに保管することができる。
以上、添付図面を参照して本発明の実施形態を説明したが、本発明の属する技術分野における通常の知識を有する者は、本発明がその技術的思想や必須の特徴を変更することなく他の具体的な形態で実施できるということを理解することができるだろう。よって、以上で記述した実施形態は、あらゆる面で例示的なもので、限定的なものではないと理解すべきである。
Advantages, features and methods for achieving the present invention will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings.
However, the present invention is not limited to the embodiments disclosed below, but can be realized in various forms different from each other, and the present embodiments merely complete the disclosure of the present invention, and It is provided so that those of ordinary skill in the art to which they belong will be fully informed of the scope of the invention. Throughout the specification, the same reference numerals indicate the same components.
Hereinafter, a chlorine concentration measuring device according to an embodiment of the present invention will be generally described with reference to FIG.
FIG. 1 is a perspective view of a chlorine concentration measuring device according to one embodiment of the present invention.
In the chlorine concentration measuring instrument 1 according to one embodiment of the present invention, the measuring section 20 measures the concentration of chlorine ions dissolved in the tap water by an electric current, and the adjusting section 40 corrects the basic value of the chlorine measurement to obtain a zero point state. Then, the effective concentration of chlorine can be accurately output from the tap water in which chlorine has been diluted.
In particular, the chlorine concentration measuring device 1 of the present invention can output an effective concentration based on a specific proportional value by relatively comparing the magnitude of the current depending on the concentration of chlorine ions dissolved in water.
In other words, the chlorine concentration measuring instrument 1 of the present invention corrects the zero point using the electric conductivity in the tap water as a reference point for the mineral dissolved in the tap water, that is, the concentration at which the salt affects the result value. Accurately measure the concentration of chlorine diluted in water.
Next, with reference to FIGS. 2 to 4, components of the chlorine concentration measuring device according to one embodiment of the present invention will be specifically described.
FIG. 2 is a block diagram of components constituting the chlorine concentration measuring device according to one embodiment of the present invention, and FIG. 3 is an exploded perspective view of the chlorine concentration measuring device according to one embodiment of the present invention. FIG. 4 is an enlarged view of the measuring unit in FIG.
Such a chlorine concentration measuring instrument 1 includes a body 10, a measuring unit 20, a calculation output unit 30, and an adjusting unit 40 as constituent elements.
The body 10 serves as the body of the chlorine concentration measuring instrument 1. Such a body portion 10 can have a shape that can be easily taken by a user with a finger. For example, the shape may be an inverted triangular longitudinal section.
The body 10 is formed to accommodate at least one battery F therein, and a power supply unit 11 that controls a flow of current output from the battery F to the outside, and the battery F. The structure includes the cover 60.
That is, the body part 10 can house at least one battery F therein, a power supply part 11 for controlling the flow of current from the battery F, and a structure that covers the battery F after housing the battery F inside. Is formed.
The power supply unit 11 may be a switch that interrupts the flow of current between the battery F and the measurement unit 20. As an example, when the user turns on the power supply unit 11, the current flows from the battery F to the measurement unit 20, the battery F and the measurement unit 20 are short-circuited, and the power supply unit 11 is turned off. The battery F and the measuring unit 20 can be opened so that no current flows to the measuring unit 20.
The measurement unit 20 is installed at one end of the body. The measurement unit 20 includes a positive electrode 21 and a negative electrode 22. Further, a thermometer 23 can be included.
The measurement unit 20 applies a current to the cleaning liquid B (see FIG. 5) flowing between the positive electrode 21 and the negative electrode 22 via the positive electrode 21 and the negative electrode 22, and is diluted with the cleaning liquid B. Considering chlorine as resistance, the dilution concentration of chlorine can be measured. More specifically, the measuring unit 20 allows a relatively small current to flow between the positive electrode 21 and the negative electrode 22 when the dilution concentration of chlorine is low, that is, when the resistance is high, When the dilution concentration is high, that is, when the resistance is low, a relatively large current flows, and the dilution concentration of chlorine can be measured. In other words, the measuring unit 20 can measure the dilution concentration of chlorine by outputting a current in an inverse relationship with the dilution concentration.
At this time, the measuring unit 20 can measure the dilution concentration of chlorine diluted in the cleaning liquid B to a small difference, since the positive electrode 21 and the negative electrode 22 are formed of platinum. For example, the measuring unit 20 can accurately measure the dilution concentration up to a difference of 1 ppm in resolution. Then, the temperature of the clean water can be measured via the thermometer 23. Such a thermometer 23 can measure the temperature in a wide range from 1 ° C. to 100 ° C., and can accurately measure up to a difference of 1 ° C.
The measurement unit 20 can transmit the measured dilution concentration data and temperature data to the calculation output unit 30. The arithmetic output unit 30 is a microcontroller unit (Micro Control Unit), that is, a device that performs arithmetic processing on data. The calculation output unit 30 may include an output module exposed on one surface of the body unit, and a calculation module connected to the output module and installed inside the body unit to calculate a signal from the measurement unit 20. .
Here, the output module can be formed of a display equipped with a backlight so that an output value can be checked even in a dark indoor space.
A set concentration is set in such an operation output unit 30, and the set value and the dilution concentration measured by the measurement unit 20 are calculated to correct the zero point, and then the calculated value is output. The calculation output unit 30 is connected to the adjustment unit 40, and can change the set density by a signal transmitted from the adjustment unit 40.
The adjustment section 40 is formed inside and outside the body section 10 and can change the set density. For example, the adjustment unit 40 is formed outside the body unit 10 and can be operated by a user to change the set concentration, or is connected to the measurement unit 20 inside the body unit 10. The set concentration can be changed by operating according to the data formed and measured by the measuring unit 20. In addition, the adjustment unit 40 includes temperature / concentration data in which a set concentration is set according to various temperatures, and can automatically adjust the set concentration according to the temperature measured by the measurement unit 20.
Hereinafter, the use state of the chlorine concentration measuring device according to one embodiment of the present invention will be described with reference to FIG. Then, referring to FIG. 6 and FIG. 6 to FIG. 8, the operation state of the chlorine concentration measuring device according to the use state will be specifically described.
FIG. 5 is a diagram showing a use state of the chlorine concentration measuring device according to one embodiment of the present invention. 6 and 7 are views showing an operation state of the chlorine concentration measuring device according to FIG. FIG. 8 is a view showing a state in which the chlorine concentration measuring device of the present invention is used by being fitted into a silicone spoon.
As shown in FIG. 5, the chlorine concentration measuring device 1 measures the chlorine concentration of the cleaning liquid B contained in the container A, that is, the chlorine concentration of clean water containing a fixed amount of chlorine. At this time, the cleaning liquid B may be a liquid obtained by diluting a certain amount of chlorine into the clean water by the user D, and the clean water is formed by the chlorine basically diluted in the wastewater treatment process and the salt itself. It may be a liquid having a first dilution concentration value.
As shown in FIG. 5, the chlorine concentration measuring device 1 can measure not only the cleaning liquid B for disinfecting fruits C but also the dilution concentration of the cleaning liquid for disinfecting tableware. For example, after measuring the effective concentration in a wide range from 50 ppm to 300 ppm, the chlorine concentration measuring device 1 can output the effective concentration through the arithmetic output unit 30 as shown in FIG.
At this time, the calculation output unit 30 calculates a zero point correction value by subtracting (calculating) the first dilution concentration value and the set concentration from each other, that is, performing a subtraction operation. , A summing operation, that is, an addition operation, of the diluted concentration values measured with the cleaning liquid diluted at a ratio of, and an effective concentration can be output. The chlorine concentration measuring device 1 can measure a chlorine concentration of 50 ppm to 300 ppm.
Therefore, the chlorine concentration measuring instrument 1 has a concentration of 100 ppm, which is an effective concentration of a cleaning solution for washing vegetables and fruits, and a concentration of 200 ppm, which is an effective concentration for washing kitchen utensils such as kitchen knives and cutting boards. After measuring without difficulty, it can be output.
Further, the chlorine concentration measuring device 1 can measure the temperature of the cleaning liquid and output the measured temperature via the calculation output unit 30 as shown in FIG.
The operation output unit 30 can output the temperature when the power supply unit 11 is turned off in a state where the measurement of the chlorine concentration is completed by the measurement unit 20.
At the same time, as shown in FIG. 7, the chlorine concentration measuring device 1 outputs a signal output from the measuring unit 20 after the measurement of the effective concentration is completed via the speaker 50 installed on one side of the body 10. Sound can be output correspondingly. For example, the chlorine concentration measuring device 1 outputs a sound corresponding to the start of the measurement and a sound corresponding to the completion of the measurement via the speaker 50 so that the user can intuitively recognize that the chlorine concentration of the cleaning liquid is measured. It can be so. Further, as shown in FIG. 8, the chlorine concentration measuring device 1 can include a silicone spoon E as one component.
The chlorine concentration measuring device 1 is inserted into one side of the silicone spoon E, and can measure the chlorine concentration of the cleaning liquid contained in the silicone spoon E more stably and accurately.
Hereinafter, with reference to FIG. 9, the effective concentration output by the chlorine concentration measuring device of the present invention after correcting the zero point will be described.
FIG. 9 is a graph showing the relationship between the current output from the chlorine concentration measuring device according to one embodiment of the present invention and the concentration measured by the chlorine concentration measuring device.
The tap water supplied from the tap water source contains residual chlorine due to the chlorine diluted in the chlorination process. That is, tap water has a first dilution concentration value. In other words, such clean water is not distilled water.
Since tap water is not distilled water, the proportional value of available chlorine and amperometric titration by the amperometric method forms a cubic curve according to the degree of combination of organic and inorganic substances remaining in the tap water.
The chlorine concentration measuring instrument 1 of the present invention shows an effective concentration with a reference point of 50 ppm in consideration of a conversion value converted into a current value corresponding to residual chlorine contained in tap water and water quality characteristics. Here, 50 ppm is only an example, and the reference point is not limited to 50 ppm.
When measuring the chlorine dilution concentration of the cleaning liquid B by the amperometric titration method, as shown in FIG. 9A, the chlorine concentration measuring device 1 measures 50 ppm with the current I1 and 150 ppm with the current I2. After zero-point correction of the reference point itself, 0 ppm can be output with the current I1 and 100 ppm can be output with the current I2.
At this time, the chlorine concentration measuring device 1 can adjust the reference point by adjusting the reference point by a fixed size according to the measured temperature of the cleaning liquid B, and can correct the zero point. Thus, the user can accurately mix distilled water and chlorine to precisely adjust the effective concentration of the cleaning solution.
The chlorine concentration measuring device 1 can prevent side effects from occurring due to a cleaning liquid having a chlorine concentration equal to or higher than an appropriate chlorine concentration to be cleaned by accurately adjusting the effective concentration of the cleaning liquid.
Hereinafter, the operation sequence of the chlorine concentration measuring device will be described with reference to FIG.
FIG. 10 is a flowchart showing the operation sequence of the chlorine concentration measuring device according to one embodiment of the present invention.
The operation of the chlorine concentration measuring instrument 1 of the present invention can be started in a state where the set concentration is set in the calculation output section 30 (S110). The chlorine concentration measuring device 1 is turned on by the power supply unit 11 while being turned off, and is turned into a state where the chlorine concentration can be measured by outputting a turn-on signal sound (S120).
The chlorine concentration measuring device 1 can measure the chlorine concentration of the cleaning liquid B by the measuring unit 20 and correct the zero point via the reference point (S130), and then output the diluted concentration of the cleaning liquid B (S140). At this time, the chlorine concentration measuring device 1 can output a measurement completion signal sound via the speaker 50. Then, the chlorine concentration measuring device 1 is switched from the turn-on state to the turn-off state again by the power supply unit 11, and can output the temperature of the cleaning liquid via the arithmetic output unit 30.
After finishing the measurement of the chlorine concentration, the chlorine concentration measuring device 1 cleans the measuring section with a neutral detergent or the like (S150), and then measures the chlorine concentration of another cleaning liquid or stores it in a case. it can.
As described above, the embodiments of the present invention have been described with reference to the accompanying drawings. However, those having ordinary knowledge in the technical field to which the present invention pertains can execute the present invention without changing the technical idea and essential features. It can be understood that the present invention can be implemented in a specific form. Therefore, it is to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

1 塩素濃度測定器
10 胴体部
11 電源部
20 測定部
21 陽電極
22 陰電極
23 温度計
30 演算出力部
40 調整部
50 スピーカー
60 カバー
F バッテリー
DESCRIPTION OF SYMBOLS 1 Chlorine concentration measuring instrument 10 Body part 11 Power supply part 20 Measurement part 21 Positive electrode 22 Negative electrode 23 Thermometer 30 Calculation output part 40 Adjustment part 50 Speaker 60 Cover F Battery

Claims (2)

内部に少なくとも1つのバッテリーを収容し、前記バッテリーからの電流の流れを制御する電源部を含む胴体部;
前記胴体部の一端に設置されて陽電極と陰電極を含み、前記陽電極と前記陰電極との間に上水が接触したときに、前記陽電極と前記陰電極との間に電流が流れるようにし、前記上水に希釈された塩素の希釈濃度を測定する測定部;
設定濃度が設定されており、前記設定濃度と前記測定部で測定された希釈濃度とを演算してゼロ点補正した後、演算値を出力する演算出力部;及び
前記演算出力部に接続され、前記演算出力部に信号を伝送して前記設定濃度を調整することができる調整部;を備え、
前記上水は、排水処理過程で希釈された塩素によって第1希釈濃度値を有し、
前記演算出力部は、前記第1希釈濃度値と前記設定濃度とを減算演算してゼロ点補正値を算出し、前記ゼロ点補正値に、塩素が一定の割合で希釈された洗浄液で測定される希釈濃度値を加算演算して有効濃度を出力し、
前記測定部は、前記上水または前記洗浄液の1℃から100℃までの温度を測定する温度計をさらに含み、
前記調整部は、内部に様々な温度に応じて設定濃度が設定された温度濃度データが保存され、前記測定部で測定された温度に応じて前記演算出力部の設定濃度を自動的に調整する、塩素濃度測定器。
A body containing at least one battery therein and including a power supply for controlling the flow of current from the battery;
A positive electrode and a negative electrode are installed at one end of the body, and when water flows between the positive electrode and the negative electrode, a current flows between the positive electrode and the negative electrode. A measuring unit for measuring a dilution concentration of the chlorine diluted in the tap water;
A set concentration is set, and after calculating the set concentration and the dilution concentration measured by the measurement unit to correct the zero point, a calculation output unit that outputs a calculation value; and is connected to the calculation output unit; An adjustment unit that can adjust the set concentration by transmitting a signal to the calculation output unit;
The clean water has a first dilution concentration value due to chlorine diluted in a wastewater treatment process,
The calculation output unit calculates a zero-point correction value by subtracting the first dilution concentration value and the set concentration, and the zero-point correction value is measured with a cleaning solution in which chlorine is diluted at a constant rate. Adds the dilution concentration value and outputs the effective concentration,
The measurement unit further includes a thermometer that measures a temperature of the clean water or the cleaning liquid from 1 ° C. to 100 ° C.,
The adjustment unit stores therein temperature density data in which a set density is set according to various temperatures, and automatically adjusts the set density of the calculation output unit according to the temperature measured by the measurement unit. , Chlorine concentration measuring instrument.
前記胴体部は、前記演算出力部に接続され、前記演算出力部から出力される信号に対応して音を出力するスピーカーをさらに含む、請求項1に記載の塩素濃度測定器。 The chlorine concentration measuring device according to claim 1, wherein the body unit further includes a speaker connected to the calculation output unit and outputting a sound corresponding to a signal output from the calculation output unit.
JP2019125256A 2018-07-05 2019-07-04 Chlorine concentration measuring instrument Active JP7288281B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0078065 2018-07-05
KR1020180078065A KR101942022B1 (en) 2018-07-05 2018-07-05 Chlorine Concentration Meter

Publications (2)

Publication Number Publication Date
JP2020008582A true JP2020008582A (en) 2020-01-16
JP7288281B2 JP7288281B2 (en) 2023-06-07

Family

ID=65277336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125256A Active JP7288281B2 (en) 2018-07-05 2019-07-04 Chlorine concentration measuring instrument

Country Status (2)

Country Link
JP (1) JP7288281B2 (en)
KR (1) KR101942022B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102220655B1 (en) * 2019-09-20 2021-02-25 김시원 Measuring Device for Residual Sodium Hydroxide
KR102190487B1 (en) * 2019-09-30 2020-12-18 김시원 system for manage measured measurements by meter for salinity and disinfection
KR102229262B1 (en) 2019-12-10 2021-03-18 주식회사 쓰리에이치 Chlorine Concentration Meter For Guarantees Reproducibility
KR102335865B1 (en) 2020-03-05 2021-12-03 김시원 Chlorine Concentration Meter For Zero Adjustment With Tilt Correction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231856A (en) * 1990-12-28 1992-08-20 Kubota Corp Method and apparatus for calibrating residual chlorine meter
JPH07209231A (en) * 1994-01-12 1995-08-11 Funai Electric Co Ltd Apparatus for measuring concentration of chlorine
JPH11241977A (en) * 1998-02-25 1999-09-07 Shimadzu Corp Fluid concentration measuring device
JP2002005862A (en) * 2000-06-20 2002-01-09 Teruo Kawaida Circuit for measuring salinity concentration
JP2002116182A (en) * 2000-10-05 2002-04-19 Horiba Ltd Residual chlorine meter
JP2005127763A (en) * 2003-10-22 2005-05-19 Tanita Corp Residual chlorine meter
US20160131608A1 (en) * 2014-11-07 2016-05-12 Ecolab Usa Inc. Ppm pool sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098669A (en) * 2000-09-26 2002-04-05 Hoshizaki Electric Co Ltd Measuring method for chlorine concentration
JP3795769B2 (en) * 2001-05-29 2006-07-12 大日本スクリーン製造株式会社 Method for measuring chlorine concentration in plating solution
JP4231856B2 (en) 2005-03-29 2009-03-04 アール・ビー・コントロールズ株式会社 Ignition device
KR100768340B1 (en) 2006-11-24 2007-10-17 대윤계기산업 주식회사 Residual chlorine analyzer of sampling form
KR101526211B1 (en) * 2014-12-01 2015-06-05 길주형 On-Line Smart pH Analyzer
JP6856867B2 (en) * 2017-01-31 2021-04-14 東亜ディーケーケー株式会社 Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
JP7209231B2 (en) 2017-09-05 2023-01-20 ブラザー工業株式会社 toner cartridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231856A (en) * 1990-12-28 1992-08-20 Kubota Corp Method and apparatus for calibrating residual chlorine meter
JPH07209231A (en) * 1994-01-12 1995-08-11 Funai Electric Co Ltd Apparatus for measuring concentration of chlorine
JPH11241977A (en) * 1998-02-25 1999-09-07 Shimadzu Corp Fluid concentration measuring device
JP2002005862A (en) * 2000-06-20 2002-01-09 Teruo Kawaida Circuit for measuring salinity concentration
JP2002116182A (en) * 2000-10-05 2002-04-19 Horiba Ltd Residual chlorine meter
JP2005127763A (en) * 2003-10-22 2005-05-19 Tanita Corp Residual chlorine meter
US20160131608A1 (en) * 2014-11-07 2016-05-12 Ecolab Usa Inc. Ppm pool sensor

Also Published As

Publication number Publication date
JP7288281B2 (en) 2023-06-07
KR101942022B1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7288281B2 (en) Chlorine concentration measuring instrument
US11913903B1 (en) Systems and methods for testing and measuring compounds
JP6577353B2 (en) Control system for controlling the concentration of electrolyzed water in CIP applications and method of use thereof
KR101593450B1 (en) Apparatus for Measuring Multiple Quality of Water of Pen Type
CN111593366A (en) Disinfectant liquid manufacturing device and manufacturing method
JP6397674B2 (en) Automatic analyzer
KR100897069B1 (en) Real-time monitoring system of concentration sodium hypochlorite for sodium hypochlorite generator
JP4950547B2 (en) Slightly acidic water generator
ES2767326T3 (en) Procedure to measure and control the concentration of electrolytically active species in aqueous solutions
KR102229262B1 (en) Chlorine Concentration Meter For Guarantees Reproducibility
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP4806359B2 (en) Air sanitizer
KR20120028515A (en) Device and method for generating sterilizer
EP1739421A1 (en) Electrochemical analyser for the selective measurement of chlorites in water
JP2019097514A (en) Food product washing device and method
KR102335865B1 (en) Chlorine Concentration Meter For Zero Adjustment With Tilt Correction
JP2010063477A (en) Electric shaver washer
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
KR20180065696A (en) Apparatus and method of determining exchange period of sterilization electrode
JP2014018700A (en) Multifunctional electrolytic water
KR100676306B1 (en) Sensor for detecting microorganisms and water cleansing apparatus having the same
KR102220655B1 (en) Measuring Device for Residual Sodium Hydroxide
KR102204841B1 (en) Moss removal apparatus in seawater aquarium using the resistance of seawater
JP5410406B2 (en) Blood measuring device
JPH11142370A (en) Portable residual chlorine meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220701

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7288281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150