JP2020008098A - Controller of power transmission device - Google Patents

Controller of power transmission device Download PDF

Info

Publication number
JP2020008098A
JP2020008098A JP2018130242A JP2018130242A JP2020008098A JP 2020008098 A JP2020008098 A JP 2020008098A JP 2018130242 A JP2018130242 A JP 2018130242A JP 2018130242 A JP2018130242 A JP 2018130242A JP 2020008098 A JP2020008098 A JP 2020008098A
Authority
JP
Japan
Prior art keywords
pulley
rotations
stress
oil pressure
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018130242A
Other languages
Japanese (ja)
Other versions
JP6655669B2 (en
Inventor
佐藤 敦
Atsushi Sato
敦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018130242A priority Critical patent/JP6655669B2/en
Priority to CN201910565757.8A priority patent/CN110701266B/en
Publication of JP2020008098A publication Critical patent/JP2020008098A/en
Application granted granted Critical
Publication of JP6655669B2 publication Critical patent/JP6655669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

To provide a controller of a power transmission device capable of preventing stress equal to or larger than fatigue limit from being generated on a pulley shaft.SOLUTION: A controller of a power transmission device comprises a pulley shaft (31) rotatably supporting a drive pulley (21) of a continuously variable transmission mechanism (10), and a controller (50) that controls stress applied to the pulley shaft (31). The controller is configured to calculate, from a value (A1) obtained by integrating the stress (D) generated in the pulley shaft (31) for each rotation of the pulley shaft (31) over a cumulative number of rotations (N1), the number of rotations (N2) converted to the number of rotations at specified stress (D2), and when the calculated number of rotations (N2) is equal to or greater than a predetermined number of rotations (Na) or exceeds the predetermined number of rotations (Na), execute control so that the stress generated in the pulley shaft (31) is equal to or less than predetermined stress.SELECTED DRAWING: Figure 2

Description

本発明は、車両に搭載したエンジンなど動力源からの動力(トルク)を伝達する動力伝達装置の制御装置に関する。   The present invention relates to a control device for a power transmission device that transmits power (torque) from a power source such as an engine mounted on a vehicle.

従来、車両に搭載されたエンジンなど動力源からの動力(トルク)を伝達する動力伝達装置として、例えば特許文献1に示すように、駆動プーリ及び従動プーリと、これら駆動プーリと従動プーリとの間に掛け渡した無端状のベルトとを備える無段変速機構を備えた変速機がある。   BACKGROUND ART Conventionally, as a power transmission device for transmitting power (torque) from a power source such as an engine mounted on a vehicle, for example, as shown in Patent Document 1, a drive pulley and a driven pulley, and a drive pulley and a driven pulley There is a transmission provided with a continuously variable transmission mechanism having an endless belt stretched over the belt.

上記のような構成の無段変速機構では、駆動プーリの側圧やベルトを介しての伝達トルクなどが設計上の許容最大値に近い値となると、駆動プーリを支持するシャフトに疲労限以上の応力(応力振幅を含む、以下同じ。)が発生するおそれがある。その状態で長期間に渡って使用を継続すると、万一の場合、サイクル疲労によってシャフトが破損するおそれがある。特に、動力源(エンジン)からのトルクが伝達されるインプットシャフト上のギヤと駆動プーリのプーリシャフト上のギヤとで減速ギヤ列が構成されたいわゆる1次減速型の無段変速機構では、減速ギヤ列を介してインプットシャフトからプーリシャフトに低トルクや負トルクがかかる際にプーリシャフトを曲げる力として、駆動プーリの側圧によるベルト張力とインプットシャフトからのトルクによるギヤ反力とがかかることで、プーリシャフトに疲労限以上の応力が発生するおそれが高くなる。したがって、プーリシャフトの破損を未然に防止するためには、プーリシャフトに疲労限以上の応力が発生することを防止するための対策が必要となる。   In the continuously variable transmission configured as described above, if the lateral pressure of the drive pulley or the torque transmitted through the belt becomes close to the maximum allowable value in design, the shaft supporting the drive pulley has a stress exceeding the fatigue limit. (Including the stress amplitude, the same applies hereinafter). If use is continued for a long time in such a state, in the unlikely event that the shaft is damaged due to cycle fatigue, the shaft may be damaged. Particularly, in a so-called primary reduction type continuously variable transmission mechanism in which a reduction gear train is constituted by a gear on an input shaft to which torque from a power source (engine) is transmitted and a gear on a pulley shaft of a driving pulley, the speed is reduced. When a low torque or a negative torque is applied to the pulley shaft from the input shaft via the gear train, the belt tension due to the side pressure of the drive pulley and the gear reaction force due to the torque from the input shaft are applied as a force to bend the pulley shaft. The possibility that stress exceeding the fatigue limit is generated on the pulley shaft increases. Therefore, in order to prevent breakage of the pulley shaft, it is necessary to take measures to prevent the generation of stress exceeding the fatigue limit on the pulley shaft.

なお、車両が備える動力伝達部材としてのシャフトにかかる応力の問題に対処するための従来技術として、特許文献1に示す技術がある。この従来技術は、走行中の車両の車軸に作用する応力振幅値(疲れ限界より大きい値)を累積加算し、疲労損傷データと比較し、疲労度を評価し寿命を予測して保守点検のために疲労監視するものである。   Note that there is a technique disclosed in Patent Document 1 as a conventional technique for addressing the problem of stress applied to a shaft as a power transmission member provided in a vehicle. This conventional technique accumulates and adds stress amplitude values (values greater than the fatigue limit) acting on the axle of a running vehicle, compares the accumulated values with fatigue damage data, evaluates the degree of fatigue, predicts the life, and performs maintenance and inspection. To monitor fatigue.

このように、シャフトにかかる応力振幅値を累積加算し、疲労度を評価する手段は既知の技術であるが、単にシャフトの疲労度を検知するだけではなく、シャフトに疲労限以上の応力が発生することを防止するための具体的な対策が必要であった。   As described above, the means for cumulatively adding the stress amplitude values applied to the shaft and evaluating the degree of fatigue is a known technique, but it is not merely a method of detecting the degree of fatigue of the shaft, but also the occurrence of stress exceeding the fatigue limit on the shaft. There was a need for specific measures to prevent this.

特開平9−243518号公報JP-A-9-243518

本発明は、上記問題に鑑みてなされたもので、その目的は、動力伝達装置である無段変速機構などが備えるプーリを支持するプーリシャフトに疲労限以上の応力が発生することを効果的に防止できる動力伝達装置の制御装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to effectively prevent a pulley shaft supporting a pulley provided in a continuously variable transmission mechanism or the like that is a power transmission device from generating a stress exceeding a fatigue limit. It is an object of the present invention to provide a control device for a power transmission device that can prevent the power transmission device.

上記目的を達成するため、本発明にかかる動力伝達装置の制御装置は、車両の動力源(1)と、前記動力源(1)からのトルクが伝達されるプーリ(21)と、前記プーリ(21)を回転可能に支持するプーリシャフト(31)と、前記プーリシャフト(31)に発生する応力を制御する制御手段(50)と、を備える動力伝達装置の制御装置において、前記制御手段(50)は、前記プーリシャフト(31)の回転ごとに該プーリシャフト(31)に発生する応力(D)を累積回転回数(N1)に渡って積算した値(A1)から、規定応力(D2)での回転回数に換算した換算回転回数(N2)を算出し、算出した前記換算回転回数(N2)が所定回転回数(Na)以上であるか又は前記所定回転回数(Na)を超える場合に、前記プーリシャフト(31)に発生する応力が所定応力(Db)以下又は未満となるように制御するプーリシャフト応力低減制御を行うことを特徴とする。   In order to achieve the above object, a control device for a power transmission device according to the present invention includes a power source (1) of a vehicle, a pulley (21) to which torque from the power source (1) is transmitted, and a pulley (21). 21) a control device for a power transmission device, comprising: a pulley shaft (31) rotatably supporting the pulley shaft (21); and a control unit (50) for controlling a stress generated in the pulley shaft (31). ) Is defined as a specified stress (D2) from a value (A1) obtained by integrating the stress (D) generated in the pulley shaft (31) for each rotation of the pulley shaft (31) over the cumulative number of rotations (N1). The number of rotations (N2) converted into the number of rotations is calculated, and when the calculated number of rotations (N2) is equal to or greater than a predetermined number of rotations (Na) or exceeds the predetermined number of rotations (Na), Pulley Stress generated in Yafuto (31) and performing a pulley shaft stress reduction control for controlling to a predetermined stress (Db) or less, or less.

本発明にかかる動力伝達装置の制御装置によれば、プーリシャフトの換算回転回数が所定回転回数以上であるか、または所定回転回数を超える場合に、プーリシャフトに発生する応力が所定応力以下又は未満となるように制御することで、プーリシャフトに発生する応力を車両の走行状態(走行履歴)に応じて適切に低減することができる。したがって、プーリシャフトに疲労限以上の応力が発生することを防止できるので、サイクル疲労によるシャフトの破損を未然に防止することができる。また、プーリシャフトに発生する応力が所定応力を超えないようにすることで、通常走行時の動力伝達の応答性を損なわずにプーリシャフトを効果的に保護することが可能となる。   According to the control device of the power transmission device according to the present invention, when the reduced number of rotations of the pulley shaft is equal to or more than the predetermined number of rotations or exceeds the predetermined number of rotations, the stress generated in the pulley shaft is equal to or less than the predetermined stress. By controlling so as to satisfy, the stress generated in the pulley shaft can be appropriately reduced according to the traveling state (traveling history) of the vehicle. Therefore, it is possible to prevent a stress exceeding the fatigue limit from being generated in the pulley shaft, and it is possible to prevent the shaft from being damaged due to cycle fatigue. Further, by preventing the stress generated in the pulley shaft from exceeding a predetermined stress, the pulley shaft can be effectively protected without impairing the responsiveness of power transmission during normal running.

また、この動力伝達装置の制御装置では、前記制御手段(50)は、前記換算回転回数(N2)が前記所定回転回数(Na)以上のときに前記プーリシャフト応力低減制御を行うようにしてもよい。   In the control device for a power transmission device, the control means (50) may perform the pulley shaft stress reduction control when the converted number of rotations (N2) is equal to or greater than the predetermined number of rotations (Na). Good.

この構成によれば、プーリシャフトに疲労限以上の応力が発生することを防止しながらも、プーリシャフトの応力累積状態に応じて可能な限りプーリシャフトにかかる応力を制限しない状態で動力を伝達することが可能となる。   According to this configuration, the power is transmitted in a state in which the stress applied to the pulley shaft is not limited as much as possible according to the accumulated stress state of the pulley shaft, while preventing the generation of stress exceeding the fatigue limit on the pulley shaft. It becomes possible.

また、この動力伝達装置の制御装置では、前記プーリ(21)の側圧を制御するための作動油圧を供給する油圧供給機構(51)を備え、前記制御手段(50)は、前記プーリシャフト応力低減制御として、前記プーリ(21)に供給する作動油圧を減圧する制御を行うようにしてもよい。   Further, the control device for the power transmission device includes a hydraulic pressure supply mechanism (51) for supplying an operating oil pressure for controlling a lateral pressure of the pulley (21), and the control means (50) reduces the pulley shaft stress reduction. As the control, control for reducing the operating oil pressure supplied to the pulley (21) may be performed.

この構成によれば、駆動プーリにかかる作動油圧を減圧することで、無段変速機構のトルクと変速比に対する影響を少なく抑えての車両の走行が可能となる。したがって、プーリシャフトに疲労限以上の応力が発生することを防止しながらも、車両の運転者が求める良好な走行性能の確保が可能となる。   According to this configuration, by reducing the operating oil pressure applied to the drive pulley, the vehicle can travel with less influence on the torque and the gear ratio of the continuously variable transmission mechanism. Therefore, it is possible to secure favorable running performance required by the driver of the vehicle while preventing the generation of stress exceeding the fatigue limit on the pulley shaft.

また、この動力伝達装置の制御装置では、前記プーリ(21)に供給する前記作動油圧の目標値である第1油圧目標(P3)と、前記換算回転回数(N2)が前記所定回転回数(Na)以上であるか又は前記所定回転回数(Na)を超える領域において前記第1油圧目標(P3)よりも低い値である第2油圧目標(P1)と、が設定されており、前記制御手段(50)は、算出した前記換算回転回数(N2)が前記所定回転回数(Na)以上であるか又は前記所定回転回数(Na)を超える場合に、前記第1油圧目標(P3)に代えて前記第2油圧目標(P1)に基づいて前記作動油圧を制御するようにしてもよい。   Further, in the control device for the power transmission device, the first hydraulic pressure target (P3), which is a target value of the operating hydraulic pressure supplied to the pulley (21), and the reduced number of rotations (N2) are equal to the predetermined number of rotations (Na). ) Or a second hydraulic pressure target (P1) that is lower than the first hydraulic pressure target (P3) in a region that is equal to or greater than or exceeds the predetermined number of rotations (Na). 50), when the calculated number of rotations (N2) is equal to or more than the predetermined number of rotations (Na) or exceeds the predetermined number of rotations (Na), the first hydraulic pressure target (P3) is used instead of the first hydraulic pressure target (P3). The working oil pressure may be controlled based on a second oil pressure target (P1).

駆動プーリの作動油圧の目標値として、第1油圧目標よりも低い目標値である第2油圧目標を設定していることで、プーリシャフトにかかる応力を駆動プーリに供給する作動油圧のみで制御する場合には、車両の運転者が求める車両のトルクと変速比を維持しながらの車両の走行が可能となる。また、作動油圧の目標値を持ちかえることで、車両の走行状態に合わせた適切な駆動プーリの側圧の制御が可能となる。   By setting a second hydraulic pressure target, which is a target value lower than the first hydraulic pressure target, as the target value of the operating hydraulic pressure of the driving pulley, the stress applied to the pulley shaft is controlled only by the operating hydraulic pressure supplied to the driving pulley. In this case, the vehicle can run while maintaining the vehicle torque and the gear ratio required by the driver of the vehicle. In addition, by changing the target value of the operating oil pressure, it becomes possible to appropriately control the lateral pressure of the drive pulley in accordance with the running state of the vehicle.

また、この動力伝達装置の制御装置では、駆動プーリ(21)及び従動プーリ(22)と、前記駆動プーリ(21)と前記従動プーリ(22)との間に掛け渡した無端状のベルト(23)と、を備える無段変速機構(10)を備え、前記プーリ(21)は、前記駆動プーリ(21)又は前記従動プーリ(22)であり、前記第2油圧目標(P1)に基づいて前記作動油圧を制御するときに、前記作動油圧が所定の時間内に所定の圧力以下に減圧しないように前記作動油圧の減圧率を制限してもよい。   In the control device of the power transmission device, the endless belt (23) bridged between the driving pulley (21) and the driven pulley (22) and the driven pulley (21) and the driven pulley (22). ), The pulley (21) is the drive pulley (21) or the driven pulley (22), and the pulley (21) is based on the second hydraulic pressure target (P1). When controlling the operating oil pressure, the pressure reduction rate of the operating oil pressure may be limited so that the operating oil pressure does not decrease below a predetermined pressure within a predetermined time.

この構成によれば、作動油圧を減圧することでプーリシャフトにかかる応力を制限して疲労限以上の応力が発生することを防止しながらも、作動油圧の急激な変化を抑制することで、駆動プーリと従動プーリとの間に掛け渡したベルトのスリップを効果的に防止することができる。したがって、プーリシャフトに疲労限以上の応力が発生することの防止とベルトのスリップの防止との両立が可能となる。   According to this configuration, by reducing the working oil pressure, the stress applied to the pulley shaft is limited to prevent the occurrence of stress exceeding the fatigue limit, while suppressing a sudden change in the working oil pressure, The slip of the belt stretched between the pulley and the driven pulley can be effectively prevented. Therefore, it is possible to prevent both the generation of stress exceeding the fatigue limit on the pulley shaft and the prevention of belt slippage.

また、この動力伝達装置の制御装置では、駆動プーリ(21)及び従動プーリ(22)と、前記駆動プーリ(21)と前記従動プーリ(22)との間に掛け渡した無端状のベルト(23)と、を備える無段変速機構(10)を備え、前記プーリ(21)は、前記駆動プーリ(21)又は前記従動プーリ(22)であり、前記ベルト(23)に滑りが生じない限界の油圧である滑り限界油圧(P4)を有し、前記制御手段(50)は、前記第2油圧目標(P1)に基づいて前記作動油圧を制御するときに、前記作動油圧が前記滑り限界油圧(P4)を下回らないように前記作動油圧の減圧量を制限してもよい。   In the control device of the power transmission device, the endless belt (23) bridged between the driving pulley (21) and the driven pulley (22) and the driven pulley (21) and the driven pulley (22). ), Wherein the pulley (21) is the driving pulley (21) or the driven pulley (22), and the pulley (21) has a limit at which the belt (23) does not slip. The control means (50) has a slip limit oil pressure (P4) which is a hydraulic pressure, and when the control oil pressure is controlled based on the second oil pressure target (P1), the control oil pressure is set to the slip limit oil pressure (P4). The pressure reduction amount of the operating oil pressure may be limited so as not to fall below P4).

この構成によれば、プーリシャフトにかかる応力を制限することにより疲労限以上の応力が発生することを防止しながらも、作動油圧が滑り限界油圧を下回らないようにその減圧量を制限することで、ベルトのスリップを未然に防止することができる。したがって、プーリシャフトに疲労限以上の応力が発生することの防止とベルトのスリップの防止との両立が可能となる。   According to this configuration, by limiting the stress applied to the pulley shaft, it is possible to prevent the occurrence of a stress exceeding the fatigue limit, while limiting the amount of pressure reduction so that the working oil pressure does not fall below the slip limit oil pressure. In addition, the belt can be prevented from slipping. Therefore, it is possible to prevent both the generation of stress exceeding the fatigue limit on the pulley shaft and the prevention of belt slippage.

また、この動力伝達装置の制御装置では、前記動力源(1)からのトルクが伝達されるインプットシャフト(2)と、前記インプットシャフト(2)上に設置した駆動ギヤ(41)と前記プーリシャフト(31)上に設置されて前記駆動ギヤ(41)と噛合する従動ギヤ(42)とからなる動力伝達ギヤ列(50)と、を備えてもよい。   Further, in the control device for the power transmission device, the input shaft (2) to which the torque from the power source (1) is transmitted, the drive gear (41) installed on the input shaft (2), and the pulley shaft (31) A power transmission gear train (50) including a driven gear (42) installed on the driving gear (41) and engaged with the driving gear (41).

この構成によれば、インプットシャフト上に設置した駆動ギヤとプーリシャフト上に設置した従動ギヤとからなる動力伝達ギヤ列を備えることにより、当該動力伝達ギヤ列からプーリシャフトへ伝達される応力とベルトからプーリを介してプーリシャフトへ伝達される応力とが合わさる場合にも、本発明にかかるシャフト応力低減制御を行うことで、プーリシャフトに疲労限以上の応力が発生することを防止できる。   According to this configuration, by providing the power transmission gear train including the drive gear installed on the input shaft and the driven gear installed on the pulley shaft, the stress transmitted from the power transmission gear train to the pulley shaft and the belt Even when the stress transmitted from the pulley to the pulley shaft via the pulley matches, by performing the shaft stress reduction control according to the present invention, it is possible to prevent the generation of a stress exceeding the fatigue limit on the pulley shaft.

また、この動力伝達装置の制御装置では、前記動力伝達ギヤ列(50)は、前記駆動ギヤ(41)から前記従動ギヤ(42)へ動力の回転を減速して伝達する減速ギヤ列であってよい。   In the control device for the power transmission device, the power transmission gear train (50) is a reduction gear train that reduces the speed of rotation of the power from the drive gear (41) and transmits the power to the driven gear (42). Good.

この構成によれば、動力伝達ギヤ列が減速ギヤ列であることで、インプットシャフトからプーリシャフトに低トルクや負トルクがかかる際にプーリシャフトを曲げる力として、駆動プーリの作動油圧によるベルト張力とインプットシャフトからのトルクによるギヤ反力とがかかることで、プーリシャフトに過大な応力が発生するおそれがあるところ、本発明にかかる応力低減制御を行うことで、プーリシャフトに疲労限以上の応力が発生することを効果的に防止できる。   According to this configuration, since the power transmission gear train is a reduction gear train, when a low torque or a negative torque is applied to the pulley shaft from the input shaft, the belt tension due to the operating oil pressure of the drive pulley is used as a force to bend the pulley shaft. When the gear reaction force due to the torque from the input shaft is applied, excessive stress may be generated in the pulley shaft.However, by performing the stress reduction control according to the present invention, the stress exceeding the fatigue limit is applied to the pulley shaft. This can be effectively prevented.

また、この動力伝達装置の制御装置では、前記プーリシャフト(31)にかかる応力は、応力振幅(D)であってよい。   In the power transmission control device, the stress applied to the pulley shaft (31) may be a stress amplitude (D).

この構成によれば、プーリシャフトにかかる応力として応力振幅を用いることで、シャフトやギヤのような負荷状態が変化する構造物にかかる応力をより精度良く判断できるので、プーリシャフトに疲労限以上の応力が発生することをより効果的に防止できる。
なお、上記の括弧内の符号は、後述する実施形態における対応する構成要素の図面参照番号を参考のために示すものである。
According to this configuration, by using the stress amplitude as the stress applied to the pulley shaft, it is possible to more accurately determine the stress applied to a structure whose load state changes, such as a shaft or a gear. Generation of stress can be more effectively prevented.
The reference numerals in the parentheses indicate the reference numbers of the corresponding components in the embodiments described later for reference.

本発明にかかる動力伝達装置の制御装置によれば、無段変速機構などが備えるプーリを支持するプーリシャフトに疲労限以上の応力が発生することを効果的に防止できる。   ADVANTAGE OF THE INVENTION According to the control apparatus of the power transmission device which concerns on this invention, generation | occurrence | production of the stress more than a fatigue limit can be effectively prevented on the pulley shaft which supports the pulley with which a continuously variable transmission mechanism etc. are provided.

本発明の一実施形態にかかる無段変速機構(動力伝達装置)及びその制御装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a continuously variable transmission mechanism (power transmission device) and a control device thereof according to an embodiment of the present invention. 入力シャフトの累積回転回数と応力振幅との関係を示すグラフである。5 is a graph showing a relationship between the cumulative number of rotations of the input shaft and the stress amplitude. 入力シャフトの換算回転回数と応力振幅との関係を示すグラフである。5 is a graph showing a relationship between the number of rotations of the input shaft and the stress amplitude. 本実施形態のプーリシャフト応力低減制御における各値の変化を示すタイミングチャートである。6 is a timing chart showing changes in respective values in pulley shaft stress reduction control according to the embodiment.

以下、添付図面を参照して本発明の実施形態について説明する。図1は、本発明の一実施形態にかかる無段変速機構(動力伝達装置)及びその制御装置の構成を示す図である。同図に示すように、入力シャフト(本発明のプーリシャフト)31と出力シャフト32との間には、無段変速機構10が配設される。無段変速機構10は、入力シャフト31上に設けられた駆動プーリ(DRプーリ)21と、出力シャフト32上に設けられた従動プーリ(DNプーリ)22と、これら駆動プーリ21と従動プーリ22との間に巻き掛けられた無端状のベルト23とを備える。駆動プーリ21及び従動プーリ22の溝幅は、油室61,62の油圧によって相互に逆方向に増減し、入力シャフト31及び出力シャフト32間の変速比を連続的に変化させる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a configuration of a continuously variable transmission mechanism (power transmission device) and a control device thereof according to an embodiment of the present invention. As shown in FIG. 1, a continuously variable transmission mechanism 10 is provided between an input shaft (pulley shaft of the present invention) 31 and an output shaft 32. The continuously variable transmission mechanism 10 includes a drive pulley (DR pulley) 21 provided on an input shaft 31, a driven pulley (DN pulley) 22 provided on an output shaft 32, and these drive pulley 21 and driven pulley 22. And an endless belt 23 wound therebetween. The groove widths of the drive pulley 21 and the driven pulley 22 increase and decrease in opposite directions by the oil pressure of the oil chambers 61 and 62, and continuously change the speed ratio between the input shaft 31 and the output shaft 32.

また、無段変速機構10の入力シャフト31とエンジン(動力源)1の出力軸であるエンジン軸(本発明のインプットシャフト)2との間には、エンジン軸2上に配設される駆動ギヤ41と、無段変速機構10の入力シャフト31上に配設されて駆動ギヤ41に噛合する従動ギヤ42とからなる動力伝達ギヤ列40が設けられている。駆動ギヤ41と従動ギヤ42のギヤ比は1よりも大きい。そのため、動力伝達ギヤ列40は、エンジン軸2からの駆動力を減速して無段変速機構10の入力シャフト31へ伝達する減速ギヤ列として機能する。   A drive gear disposed on the engine shaft 2 is provided between an input shaft 31 of the continuously variable transmission mechanism 10 and an engine shaft (input shaft of the present invention) 2 which is an output shaft of the engine (power source) 1. A power transmission gear train 40 is provided, which includes a power transmission gear train 41 and a driven gear 42 that is disposed on the input shaft 31 of the continuously variable transmission mechanism 10 and meshes with the drive gear 41. The gear ratio between the driving gear 41 and the driven gear 42 is larger than 1. Therefore, the power transmission gear train 40 functions as a reduction gear train for reducing the driving force from the engine shaft 2 and transmitting the reduced driving force to the input shaft 31 of the continuously variable transmission mechanism 10.

図1に示すように、無段変速機10の制御装置(本発明の制御手段)50は、無段変速機構10の駆動プーリ21の油室61と従動プーリ22の油室62それぞれに作動油圧を供給することで駆動プーリ21と従動プーリ22の側圧を制御する油圧供給装置51と、油圧供給装置51に油圧の指令を与えるためのコントローラ(ECU)52とを備えて構成されている。制御装置50は、目標油圧に基づいて駆動プーリ21と従動プーリ22それぞれに与える作動油圧を制御する。   As shown in FIG. 1, the control device (control means of the present invention) 50 of the continuously variable transmission 10 is configured such that an operating oil pressure is provided to an oil chamber 61 of the drive pulley 21 and an oil chamber 62 of the driven pulley 22 of the continuously variable transmission mechanism 10. And a controller (ECU) 52 for giving a hydraulic pressure command to the hydraulic supply device 51 by controlling the lateral pressure of the drive pulley 21 and the driven pulley 22. The control device 50 controls the operating oil pressure applied to each of the driving pulley 21 and the driven pulley 22 based on the target oil pressure.

そして、本実施形態の制御装置50は、無段変速機構10の入力シャフト31に発生する応力(応力振幅)によって当該入力シャフト31に破損に至るおそれのある程度に疲労が蓄積することを未然に防止するための制御として、入力シャフト31の回転ごとに該入力シャフト31に発生する応力振幅を累積回転回数に渡って積算した値から、限界応力振幅(本発明の規定応力)での回転回数に換算した換算回転回数を算出し、この算出した換算回転回数が所定回転回数以上であるか又は所定回転回数を超える場合に、当該入力シャフト31に発生する応力を下げる制御(以下、この制御を「プーリシャフト応力低減制御」という。)を行う。このシャフト応力低減制御について詳細に説明する。   The control device 50 according to the present embodiment prevents the input shaft 31 of the continuously variable transmission mechanism 10 from accumulating fatigue to the extent that the input shaft 31 may be damaged due to stress (stress amplitude). As a control for performing this operation, a value obtained by integrating the amplitude of stress generated in the input shaft 31 for each rotation of the input shaft 31 over the cumulative number of rotations is converted into a number of rotations at a critical stress amplitude (specified stress of the present invention). The calculated number of rotations is calculated, and when the calculated number of rotations is equal to or more than the predetermined number of rotations or exceeds the predetermined number of rotations, a control for reducing the stress generated in the input shaft 31 (hereinafter, this control is referred to as “Poo”) Reshaft stress reduction control ”). The shaft stress reduction control will be described in detail.

図2は、入力シャフト31の回転回数と入力シャフト31に発生する応力振幅との関係を示すグラフで、後述する換算回転回数の算出手順を説明するための図である。同図のグラフは、横軸に入力シャフト31の回転回数Nをとり、縦軸に入力シャフト31に発生する応力振幅Dをとっている。ここではまず、入力シャフト31の回転ごとの応力振幅Dを積算した値(応力振幅Dを累積回転回数N1に渡って積分した値)を算出する。この値は、グラフの領域A1の面積となる。そして、この値を用いて、限界応力振幅D2(本発明の規定応力)での回転回数に換算した換算回転回数N2を算出する。これには、グラフの領域A1の面積の値と、限界応力振幅D2と換算回転回数N2の積の値(グラフの領域A2の面積の値)とが等しいことを用いる。   FIG. 2 is a graph showing a relationship between the number of rotations of the input shaft 31 and the amplitude of stress generated in the input shaft 31, and is a diagram for explaining a calculation procedure of a converted number of rotations described later. In the graph of FIG. 7, the horizontal axis represents the number of rotations N of the input shaft 31, and the vertical axis represents the stress amplitude D generated in the input shaft 31. Here, first, a value obtained by integrating the stress amplitude D for each rotation of the input shaft 31 (a value obtained by integrating the stress amplitude D over the cumulative number of rotations N1) is calculated. This value is the area of the region A1 in the graph. Then, using this value, a converted number of rotations N2 converted into the number of rotations at the critical stress amplitude D2 (specified stress of the present invention) is calculated. For this, the fact that the value of the area of the area A1 in the graph is equal to the value of the product of the critical stress amplitude D2 and the number of rotations N2 (the value of the area of the area A2 in the graph) is used.

例えば、入力シャフト31の応力振幅D=200MPaで累積回転回数N1=100回転であり、限界応力振幅D2=400MPaであれば、
200(MPa)×100(回転)=400(MPa)×50(回転)
となるので、換算回転回数N2=50(回転)となる。
For example, if the stress amplitude D of the input shaft 31 is 200 MPa and the number of cumulative rotations N1 is 100, and the limit stress amplitude D2 is 400 MPa,
200 (MPa) × 100 (rotation) = 400 (MPa) × 50 (rotation)
Therefore, the converted number of rotations N2 = 50 (rotation).

なお、この図2のグラフに示す入力シャフト31にかかる応力振幅Dは、無段変速機構10のレシオ(変速比)と、駆動プーリ21の入力トルクと、駆動プーリ21(油室61)にかかる作動油圧(側圧)とによって算出することが可能である。   The stress amplitude D applied to the input shaft 31 shown in the graph of FIG. 2 is applied to the ratio (speed change ratio) of the continuously variable transmission mechanism 10, the input torque of the drive pulley 21, and the drive pulley 21 (oil chamber 61). It can be calculated based on the operating oil pressure (side pressure).

そして、制御装置50は、プーリシャフト応力低減制御として、上記の換算回転回数N2が所定回転回数以上であるか、または所定回転回数を超える場合に、入力シャフト31にかかる応力振幅Dが所定応力振幅以下又は未満となるように制御する。   Then, as the pulley shaft stress reduction control, when the converted number of rotations N2 is equal to or more than the predetermined number of rotations or exceeds the predetermined number of rotations, the control device 50 sets the stress amplitude D applied to the input shaft 31 to the predetermined stress amplitude. It is controlled to be less than or less than.

図3は、無段変速機構10の入力シャフト31の回転回数と応力振幅との関係を示すグラフである。同図のグラフ(SN線図)では、横軸に入力シャフト31の回転回数Nをとり、縦軸に応力振幅Dをとっている。このグラフに斜線で示す領域Aは、入力シャフト31にかかる応力振幅Dの値と入力シャフト31の回転回数Nとの関係に対して入力シャフト31が破損するおそれのある領域を示すラインである。したがって、入力シャフト31の破損を未然に防止するためには、入力シャフト31に発生する応力振幅Dの値と入力シャフト31の回転回数Nとの関係を示すラインが常にこの領域Aの外側(領域Aよりも下側)にあることが必要である。なお、領域A内においては、応力振幅Dの値が大きくなるほど、また回転回数Nの値が大きくなるほど、すなわち領域A内の右上のラインになるほど、入力シャフト31が破損するおそれの割合(確率)が高くなる傾向を有している。   FIG. 3 is a graph showing the relationship between the number of rotations of the input shaft 31 of the continuously variable transmission mechanism 10 and the stress amplitude. In the graph (SN diagram), the horizontal axis indicates the number of rotations N of the input shaft 31 and the vertical axis indicates the stress amplitude D. An area A indicated by oblique lines in this graph is a line indicating an area where the input shaft 31 may be damaged with respect to the relationship between the value of the stress amplitude D applied to the input shaft 31 and the number of rotations N of the input shaft 31. Therefore, in order to prevent damage to the input shaft 31 beforehand, a line indicating the relationship between the value of the stress amplitude D generated in the input shaft 31 and the number of rotations N of the input shaft 31 is always outside this region A (region (Below A). In the region A, as the value of the stress amplitude D increases and as the value of the number of rotations N increases, that is, as the line on the upper right in the region A increases, the probability (probability) that the input shaft 31 may be damaged (probability) Has a tendency to increase.

そして、図3のグラフにおいて太線(実線)で示すラインが本実施形態のプーリシャフト応力低減制御を実施した場合の入力シャフト31にかかる応力振幅Dの上限値の変化を示すラインである。同図のグラフに示すように、プーリシャフト応力低減制御では、初期状態では、入力シャフト31にかかる応力振幅Dの上限値=Daであるが、回転回数N(換算回転回数N2)が所定値Naを超えると、入力シャフト31にかかる応力振幅DをDaから徐々に減少させて、最終的には、回転回数N=Nbのときの応力振幅D=Db(<Da)まで低減させる。このように、入力シャフト31の換算回転回数N2が回転回数Na(本発明の所定回転回数)以上であるか又は回転回数Naを超える場合に、入力シャフト31に発生する応力振幅Dが所定応力以下又は未満となるように制御する。これにより、入力シャフト31にかかる応力振幅が疲労によって入力シャフト31が破損するおそれのある領域Aに入らずに済み、入力シャフト31に疲労限以上の応力振幅が発生することを防止できる。   In the graph of FIG. 3, a line indicated by a thick line (solid line) is a line indicating a change in the upper limit value of the stress amplitude D applied to the input shaft 31 when the pulley shaft stress reduction control of the present embodiment is performed. As shown in the graph of FIG. 7, in the pulley shaft stress reduction control, in the initial state, the upper limit of the stress amplitude D applied to the input shaft 31 is Da, but the number of rotations N (converted number of rotations N2) is equal to the predetermined value Na. Is exceeded, the stress amplitude D applied to the input shaft 31 is gradually reduced from Da, and finally reduced to the stress amplitude D = Db (<Da) when the number of rotations N = Nb. As described above, when the converted rotation number N2 of the input shaft 31 is equal to or larger than the rotation number Na (the predetermined rotation number of the present invention) or exceeds the rotation number Na, the stress amplitude D generated in the input shaft 31 is equal to or smaller than the predetermined stress. Or it controls so that it may become less than. Accordingly, the stress amplitude applied to the input shaft 31 does not enter the region A where the input shaft 31 may be damaged due to fatigue, and it is possible to prevent the input shaft 31 from generating a stress amplitude greater than the fatigue limit.

図4は、本実施形態のプーリシャフト応力低減制御を実施しているときに駆動プーリ21にかかる作動油圧など各値の変化を示すタイミングチャートである。同図のタイミングチャートでは、疲労限油圧P1、制限後油圧P2、制限前油圧P3、トルク伝達可能油圧P4、アクセルペダル開度AP、油圧制限中フラグFA、油圧レート中フラグFBそれぞれの経過時間tに対する変化を示している。ここで、疲労限油圧P1は、入力シャフト31に疲労限に相当する応力が発生する作動油圧であり、予め用意した駆動プーリ21(油室61)にかかる作動油圧の上限値と、ベルト23を介して駆動プーリ21にかかるトルクと、無段変速機構10のレシオとの関係を示すマップから検索した値である。制限後油圧P2は、疲労限油圧P1の値に基づいて駆動プーリ21にかかる作動油圧の値を制限した後の値であり、制限前油圧P3は、駆動プーリ21にかかる作動油圧の値を制限する前の値である。また、トルク伝達可能油圧P4は、駆動プーリ21に掛けられたベルト23に滑りが生じない限界の作動油圧である。また、アクセルペダル開度APは、車両の運転者が行うアクセルペダル(図示せず)の操作によるアクセル(エンジン1のスロットル)の開度である。   FIG. 4 is a timing chart showing changes in various values such as the operating oil pressure applied to the drive pulley 21 when the pulley shaft stress reduction control of the present embodiment is performed. In the timing chart of FIG. 5, the fatigue limit hydraulic pressure P1, the post-restriction hydraulic pressure P2, the pre-restriction hydraulic pressure P3, the torque transmittable hydraulic pressure P4, the accelerator pedal opening AP, the hydraulic restriction flag FA, and the hydraulic pressure flag FB each elapsed time t. Shows the change with respect to. Here, the fatigue limit oil pressure P1 is a working oil pressure at which a stress corresponding to the fatigue limit is generated in the input shaft 31, and the upper limit value of the working oil pressure applied to the drive pulley 21 (oil chamber 61) prepared in advance and the belt 23 are determined. The value is a value retrieved from a map showing the relationship between the torque applied to the drive pulley 21 via the motor and the ratio of the continuously variable transmission mechanism 10. The post-restriction hydraulic pressure P2 is a value after restricting the value of the operating hydraulic pressure applied to the drive pulley 21 based on the value of the fatigue limit hydraulic pressure P1, and the pre-restriction hydraulic pressure P3 restricts the value of the operation hydraulic pressure applied to the drive pulley 21. Value before The torque transmittable hydraulic pressure P4 is a limit hydraulic pressure at which the belt 23 hung on the drive pulley 21 does not slip. The accelerator pedal opening AP is an opening of an accelerator (throttle of the engine 1) by an operation of an accelerator pedal (not shown) performed by a driver of the vehicle.

プーリシャフト応力低減制御を実施しているときには、同図のグラフでは、時刻t1より前には、疲労限油圧P1が制限前油圧P3を上回っている。この状態では、制限前油圧P3と制限後油圧P2とが等しい値である。そして、時刻t1の直前にアクセルペダル開度APが0(OFF状態)となることで、エンジン軸2から駆動プーリ21の入力シャフト31に低トルク又は負トルクがかかる。これにより、時刻t1に疲労限油圧P1が制限前油圧P3を下回ると、それ以降、制限後油圧P2の値が制限前油圧P3を下回る値に制限される。同図のグラフでは、この制限状態は時刻t3まで継続し、その間、油圧制限中フラグFAがオンとなる。一方、時刻t3になると、疲労限油圧P1が制限前油圧P3を上回ることで制限後油圧P2の値の制限が解除され、それ以降、再び制限前油圧P3と制限後油圧P2とが等しい値となる。   When the pulley shaft stress reduction control is performed, in the graph of FIG. 5, before the time t1, the fatigue limit oil pressure P1 exceeds the pre-limit oil pressure P3. In this state, the pre-restriction hydraulic pressure P3 and the post-restriction hydraulic pressure P2 have the same value. Then, just before time t1, the accelerator pedal opening AP becomes 0 (OFF state), so that a low torque or a negative torque is applied from the engine shaft 2 to the input shaft 31 of the drive pulley 21. Thus, when the fatigue limit oil pressure P1 falls below the pre-restriction oil pressure P3 at time t1, the value of the post-restriction oil pressure P2 is thereafter limited to a value lower than the pre-restriction oil pressure P3. In the graph of FIG. 6, this restriction state continues until time t3, during which the oil pressure restriction flag FA is turned on. On the other hand, at time t3, the restriction on the value of the post-restriction hydraulic pressure P2 is released because the fatigue limit hydraulic pressure P1 exceeds the pre-restriction hydraulic pressure P3, and thereafter, the pre-restriction hydraulic pressure P3 and the post-restriction hydraulic pressure P2 again become equal to each other. Become.

すなわちここでは、駆動プーリ21にかかる作動油圧の目標値として、制限前油圧P3(第1油圧目標)と、入力シャフト31の換算回転回数N2が回転回数Na以上、または回転回数Naを超える領域においてこの制限前油圧P3よりも低い値となる疲労限油圧P1(第2油圧目標)とが設定されている。そして、入力シャフト31の換算回転回数N2が回転回数Na以上、または回転回数Naを超える場合(図4に示すグラフの時刻t1から時刻t3の間)、制限前油圧P3(第1油圧目標)に代えて疲労限油圧P1(第2油圧目標)に基づいて作動油圧を制御するようにしている。   That is, here, as the target values of the operating hydraulic pressure applied to the drive pulley 21, the pre-restriction hydraulic pressure P3 (first hydraulic pressure target) and the region where the converted number of rotations N2 of the input shaft 31 is equal to or more than the number of rotations Na or exceeds the number of rotations Na A fatigue limit oil pressure P1 (second oil pressure target) that is lower than the pre-restriction oil pressure P3 is set. When the converted rotation number N2 of the input shaft 31 is equal to or more than the rotation number Na or exceeds the rotation number Na (from time t1 to time t3 in the graph shown in FIG. 4), the pre-restriction hydraulic pressure P3 (first hydraulic pressure target) is set. Instead, the operating oil pressure is controlled based on the fatigue limit oil pressure P1 (second oil pressure target).

またこの制限状態では、制限後油圧P2の値は、基本的には疲労限油圧P1の値に追従するように制御されるが、制限の開始後の所定時間(ここでは時刻t1から時刻t2までの間)は、作動油圧の急激な変動(低下)を防止するために、疲労限油圧P1の変化率(減少率、すなわちグラフ上の傾きの大きさ)が所定以上である場合(つまり、疲労限油圧P1が所定の時間内に所定の圧力以下に減圧する場合)には、疲労限油圧P1の値よりも大きな値を取りながら疲労限油圧P1の値に徐々に近づいていくような値(レート値)に制御される。この制御は、時刻t2まで継続し、その間、油圧レート中フラグFBがオンとなる。時刻t2以降は、制限後油圧P2の値が疲労限油圧P1の値と一致する値として推移する。   In this limit state, the value of the post-limit hydraulic pressure P2 is basically controlled so as to follow the value of the fatigue limit hydraulic pressure P1, but it is controlled for a predetermined time after the start of the limit (here, from time t1 to time t2). During the period, the change rate (decrease rate, that is, the magnitude of the gradient on the graph) of the fatigue limit oil pressure P1 is equal to or greater than a predetermined value (that is, the fatigue When the pressure limit P1 is reduced to a predetermined pressure or less within a predetermined time), a value that gradually approaches the value of the fatigue limit pressure P1 while taking a value larger than the value of the fatigue limit pressure P1 ( Rate value). This control continues until time t2, during which the oil pressure rate flag FB is turned on. After time t2, the value of the post-limit hydraulic pressure P2 changes as a value that matches the value of the fatigue limit hydraulic pressure P1.

またここでは、制限後油圧P2の値が制限前油圧P3を下回る値に制限された状態(油圧制限中フラグFAがオンの状態)で、制限後油圧P2の値はトルク伝達可能油圧P4を下回ることがないように制御される。すなわちここでは、上記のレート値に制御された制限後油圧P2の値はトルク伝達可能油圧P4を下回ることが無いように制御される。これにより、駆動プーリ21に掛けられたベルト23に滑りが生じることを未然に防止することができる。   Further, here, in a state where the value of the post-restriction hydraulic pressure P2 is limited to a value lower than the pre-restriction hydraulic pressure P3 (the state in which the hydraulic pressure restriction flag FA is on), the value of the post-restriction hydraulic pressure P2 is lower than the torque transmittable hydraulic pressure P4. It is controlled so as not to be. That is, here, the value of the post-limit hydraulic pressure P2 controlled to the above-described rate value is controlled so as not to be lower than the torque transmittable hydraulic pressure P4. Thereby, it is possible to prevent the belt 23 hung on the driving pulley 21 from slipping.

なお、これ以外にも、図示及び詳細な説明は省略するが、制限後油圧P2の値が制限前油圧P3を下回る値に制限された状態(油圧制限中フラグFAがオンの状態)で、制限後油圧P2の値がトルク伝達可能油圧P4を下回ることがないように制御することよりも、制限後油圧P2の値が疲労限油圧P1の値を上回ることがないように制御することを優先してもよい。   In addition, although illustration and detailed description are omitted, in a state where the value of the post-restriction hydraulic pressure P2 is limited to a value lower than the pre-restriction hydraulic pressure P3 (the hydraulic restriction in-use flag FA is on), the restriction is performed. Rather than controlling the value of the post hydraulic pressure P2 to fall below the torque transmittable hydraulic pressure P4, priority is given to controlling the value of the post-limit hydraulic pressure P2 not to exceed the value of the fatigue limit hydraulic pressure P1. You may.

以上説明したように、本実施形態のシャフト応力低減制御では、入力シャフト31の換算回転回数N2が所定回転回数Na以上であるか、または所定回転回数Naを超える場合に、入力シャフト31に発生する応力振幅Dが限界応力振幅D2(規定応力振幅)以下となるように、または限界応力振幅D2を超えないように、入力シャフト31に発生する応力振幅を下げる制御を行うことで、駆動プーリ21の入力シャフト31にかかる応力振幅を車両の走行状態(走行履歴)に応じて適切に下げることができる。したがって、駆動プーリ21の入力シャフト31に疲労限以上の応力振幅が発生することを防止できるので、サイクル疲労による入力シャフト31の破損を効果的に防止することができる。また、入力シャフト31にかかる応力振幅Dが上限値を超えないようにすることで、通常走行時の動力伝達の応答性を損なわずに入力シャフト31を効果的に保護することが可能となる。   As described above, in the shaft stress reduction control according to the present embodiment, when the converted number of rotations N2 of the input shaft 31 is equal to or greater than the predetermined number of rotations Na or exceeds the predetermined number of rotations Na, the input shaft 31 is generated. By performing control to reduce the stress amplitude generated in the input shaft 31 so that the stress amplitude D is equal to or smaller than the critical stress amplitude D2 (specified stress amplitude), the drive pulley 21 The stress amplitude applied to the input shaft 31 can be appropriately reduced according to the running state (running history) of the vehicle. Therefore, it is possible to prevent the occurrence of a stress amplitude greater than the fatigue limit on the input shaft 31 of the driving pulley 21, and it is possible to effectively prevent the input shaft 31 from being damaged due to cycle fatigue. Further, by preventing the stress amplitude D applied to the input shaft 31 from exceeding the upper limit, the input shaft 31 can be effectively protected without impairing the responsiveness of power transmission during normal traveling.

また、このプーリシャフト応力低減制御では、入力シャフト31の換算回転回数N2が回転回数Na以上のときにのみ入力シャフト31にかかる応力振幅を下げる制御を行うようにしてもよい。このように、入力シャフト31の換算回転回数N2が回転回数Na以上のときにのみ入力シャフト31に発生する応力振幅を下げる制御を行うようにすれば、入力シャフト31に疲労限以上の応力振幅が発生することを防止しながらも、入力シャフト31の応力累積状態に合わせて可能な限り入力シャフト31にかかる応力振幅を制限しないで動力を伝達することが可能となる。   In this pulley shaft stress reduction control, control may be performed to reduce the stress amplitude applied to the input shaft 31 only when the converted number of rotations N2 of the input shaft 31 is equal to or greater than the number of rotations Na. As described above, if the control is performed to reduce the stress amplitude generated in the input shaft 31 only when the converted number of rotations N2 of the input shaft 31 is equal to or greater than the number of rotations Na, the input shaft 31 has a stress amplitude greater than the fatigue limit. Power can be transmitted without restricting the amplitude of the stress applied to the input shaft 31 as much as possible in accordance with the stress accumulation state of the input shaft 31 while preventing occurrence of the power.

また、このプーリシャフト応力低減制御では、入力シャフト31にかかる応力振幅を、無段変速機構10の変速比と、駆動プーリ21にかかる入力トルクと、駆動プーリ21にかかる作動油圧とから算出し、当該入力シャフト31にかかる応力振幅を下げる制御として、駆動プーリ21にかかる作動油圧を減圧する制御を行うようにしている。   In the pulley shaft stress reduction control, the stress amplitude applied to the input shaft 31 is calculated from the speed ratio of the continuously variable transmission mechanism 10, the input torque applied to the drive pulley 21, and the hydraulic pressure applied to the drive pulley 21. As a control for reducing the stress amplitude applied to the input shaft 31, a control for reducing the operating oil pressure applied to the drive pulley 21 is performed.

この構成によれば、無段変速機構10の変速比と、駆動プーリ21にかかる入力トルクと、駆動プーリ21にかかる作動油圧の三つのうち、駆動プーリ21にかかる作動油圧を減圧することで、車両走行時の無段変速機構10による変速制御の応答性は幾分か低下するものの、車両の運転者が求める車両のトルクと変速比に対する影響を少なく抑えての車両の走行が可能となる。   According to this configuration, of the three speed ratios of the continuously variable transmission mechanism 10, the input torque applied to the drive pulley 21, and the operating oil pressure applied to the drive pulley 21, the operating oil pressure applied to the drive pulley 21 is reduced. Although the responsiveness of the shift control by the continuously variable transmission mechanism 10 during the running of the vehicle is somewhat reduced, the vehicle can be run with less influence on the torque and the gear ratio of the vehicle required by the driver of the vehicle.

また、このプーリシャフト応力低減制御では、駆動プーリ21にかかる作動油圧の目標値である第1油圧目標である制限前油圧P3と、入力シャフト31の換算回転回数N2が回転回数Na以上、または回転回数Naを超える領域において第1油圧目標よりも低い第2油圧目標である疲労限油圧P1とが設定されており、制御装置50は、入力シャフト31の換算回転回数N2が回転回数Na以上、または回転回数Naを超える場合に、第1油圧目標である制限前油圧P3に代えて第2油圧目標である疲労限油圧P1に基づいて駆動プーリ21の作動油圧を制御するようにしている。   In this pulley shaft stress reduction control, the pre-restriction hydraulic pressure P3, which is the first hydraulic pressure target, which is the target value of the operating hydraulic pressure applied to the drive pulley 21, and the converted number of rotations N2 of the input shaft 31 is equal to or more than the number of rotations Na, or The fatigue limit oil pressure P1, which is a second oil pressure target lower than the first oil pressure target, is set in a region exceeding the number of rotations Na, and the control device 50 determines that the converted number of rotations N2 of the input shaft 31 is equal to or greater than the number of rotations Na, or When the number of rotations Na is exceeded, the operating oil pressure of the drive pulley 21 is controlled based on the fatigue limit oil pressure P1 as the second oil pressure target instead of the pre-restriction oil pressure P3 as the first oil pressure target.

このように、駆動プーリ21の作動油圧の目標値として、入力シャフト31の換算回転回数N2が回転回数Na以上、または回転回数Naを超える領域において第1油圧目標よりも低い第2油圧目標を設定していることで、入力シャフト31にかかる応力を作動油圧のみで制御する場合には、車両走行時の無段変速機構10による変速制御の応答性は幾分か低下するものの、車両の運転者が求める車両のトルクと変速比を維持しながらの車両の走行が可能となる。また、このように作動油圧の目標値を持ちかえることで、車両の走行状態に合わせた適切な作動油圧の供給が可能となる。   In this manner, as the target value of the operating oil pressure of the drive pulley 21, the second oil pressure target lower than the first oil pressure target is set in a region where the converted number of rotations N2 of the input shaft 31 is equal to or more than the number of rotations Na or exceeds the number of rotations Na. Therefore, when the stress applied to the input shaft 31 is controlled only by the operating oil pressure, the responsiveness of the shift control by the continuously variable transmission mechanism 10 during the vehicle running is slightly reduced, but the driver of the vehicle is not driven. The vehicle can run while maintaining the required vehicle torque and gear ratio. Also, by changing the target value of the operating oil pressure in this way, it becomes possible to supply an appropriate operating oil pressure according to the running state of the vehicle.

また、このプーリシャフト応力低減制御では、第2油圧目標である疲労限油圧P1に基づいて作動油圧を制御するときに、作動油圧が所定の時間内に所定の圧力以下に減圧しないようにその減圧率を制限するようにしている。   Further, in this pulley shaft stress reduction control, when controlling the operating oil pressure based on the fatigue limit oil pressure P1, which is the second oil pressure target, the operating oil pressure is not reduced to a predetermined pressure or less within a predetermined time. I try to limit the rate.

この構成によれば、作動油圧を減圧することで入力シャフト31にかかる応力振幅を制限して入力シャフト31に疲労限以上の応力が発生することを防止しながらも、作動油圧の急激な変化(減少)を抑制することで、駆動プーリ21と従動プーリ22との間に掛け渡したベルト23の滑り(スリップ)を効果的に防止することができる。したがって、入力シャフト31に疲労限以上の応力が発生することの防止とベルト23のスリップの防止との両立が可能となる。   According to this configuration, the working oil pressure is reduced, thereby limiting the stress amplitude applied to the input shaft 31 to prevent the input shaft 31 from generating a stress exceeding the fatigue limit. By suppressing the decrease, the slippage of the belt 23 spanned between the driving pulley 21 and the driven pulley 22 can be effectively prevented. Accordingly, it is possible to prevent both the occurrence of stress exceeding the fatigue limit on the input shaft 31 and the slip of the belt 23.

また、このシャフト応力低減制御では、駆動プーリ21に掛けられたベルト23に滑りが生じない滑り限界油圧であるトルク伝達可能油圧P4を有し、第2油圧目標に基づいて作動油圧を制御するときに、作動油圧がこのトルク伝達可能油圧P4を下回らないように、作動油圧の減圧量を制限するようにしている。   Further, in this shaft stress reduction control, when the operating hydraulic pressure is controlled based on the second hydraulic pressure target, there is a torque transmittable hydraulic pressure P4 which is a slip limit hydraulic pressure at which the belt 23 hung on the drive pulley 21 does not slip. Further, the amount of pressure reduction of the operating oil pressure is limited so that the operating oil pressure does not fall below the torque transmittable oil pressure P4.

この制御によれば、入力シャフト31にかかる応力を制限しながらも、作動油圧がトルク伝達可能油圧P4を下回らないようにその減圧量を制限することで、ベルト23のスリップを未然に防止することができる。したがって、入力シャフト31に疲労限以上の応力が発生することの防止とベルト23のスリップの防止との両立が可能となる。   According to this control, while limiting the stress applied to the input shaft 31, the amount of pressure reduction is limited so that the operating oil pressure does not fall below the torque transmittable oil pressure P4, thereby preventing the belt 23 from slipping. Can be. Accordingly, it is possible to prevent both the occurrence of stress exceeding the fatigue limit on the input shaft 31 and the slip of the belt 23.

また、本実施形態の動力伝達装置(無段変速機構10)は、エンジン(動力源)1からの動力(トルク)が伝達されるエンジン軸(インプットシャフト)2と、エンジン軸2上に設置した駆動ギヤ41と無段変速機構10の入力シャフト31上に設置されて駆動ギヤ41と噛合する従動ギヤ42とからなる動力伝達ギヤ列40を備えている。   Further, the power transmission device (the continuously variable transmission mechanism 10) of the present embodiment is installed on the engine shaft (input shaft) 2 to which the power (torque) from the engine (power source) 1 is transmitted and on the engine shaft 2. A power transmission gear train 40 including a drive gear 41 and a driven gear 42 installed on the input shaft 31 of the continuously variable transmission mechanism 10 and meshing with the drive gear 41 is provided.

この構成によれば、エンジン軸2上に設置した駆動ギヤ41と入力シャフト31上に設置した従動ギヤ42とからなる動力伝達ギヤ列40を備えることにより、当該動力伝達ギヤ列40から入力シャフト31へ伝達される応力とベルト23から駆動プーリ21を介して入力シャフト31へ伝達される応力とが合わさる場合にも、本実施形態のプーリシャフト応力低減制御を行うことで、入力シャフト31に疲労限以上の応力が発生することを防止できる。   According to this configuration, the power transmission gear train 40 including the drive gear 41 installed on the engine shaft 2 and the driven gear 42 installed on the input shaft 31 is provided. Even when the stress transmitted to the input shaft 31 and the stress transmitted from the belt 23 to the input shaft 31 via the drive pulley 21 match, the pulley shaft stress reduction control of the present embodiment is performed to reduce the fatigue limit of the input shaft 31. The generation of the above stress can be prevented.

また、上記の動力伝達ギヤ列40は、駆動ギヤ41から従動ギヤ42へ動力の回転を減速して伝達する減速ギヤ列である。この構成によれば、動力伝達ギヤ列40が減速ギヤ列であることで、エンジン軸2から駆動プーリ21の入力シャフト31に低トルクや負トルクがかかる際に入力シャフト31を曲げる力として、駆動プーリの作動油圧によるベルト張力とエンジン軸2からのトルクによるギヤ反力とがかかることで、入力シャフト31に過大な応力が発生するおそれが高くなるところ、本実施形態のシャフト応力低減制御を行うことで、入力シャフト31に疲労限以上の応力が発生することを防止できる。   The power transmission gear train 40 described above is a reduction gear train that reduces the power of rotation from the drive gear 41 to the driven gear 42 and transmits the reduced power. According to this configuration, since the power transmission gear train 40 is a reduction gear train, the driving force is used as a force to bend the input shaft 31 when a low torque or a negative torque is applied to the input shaft 31 of the drive pulley 21 from the engine shaft 2. When the belt tension due to the operating hydraulic pressure of the pulley and the gear reaction force due to the torque from the engine shaft 2 are applied, the possibility that excessive stress is generated in the input shaft 31 increases. This can prevent the input shaft 31 from being stressed beyond the fatigue limit.

また、本実施形態のシャフト応力低減制御では、入力シャフト31にかかる応力として応力振幅の値を用いていることで、シャフトやギヤのような負荷状態が変化する構造物にかかる応力をより精度良く判断できるので、入力シャフト31に疲労限以上の応力が発生することをより効果的に防止できる。   In the shaft stress reduction control of the present embodiment, since the value of the stress amplitude is used as the stress applied to the input shaft 31, the stress applied to a structure whose load state changes, such as a shaft or a gear, can be more accurately determined. Since the determination can be made, it is possible to more effectively prevent the occurrence of stress exceeding the fatigue limit on the input shaft 31.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施形態では、本発明のプーリが無段変速機構10の駆動プーリ21であり、本発明の制御装置が当該駆動プーリ21の入力シャフト31に発生する応力を制御する場合を示したが、これ以外にも、本発明のプーリが無段変速機構10の従動プーリ22であり、本発明の制御装置が当該従動プーリ22の出力シャフト32に発生する応力を制御するように構成することも可能である。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of the claims and the technical idea described in the specification and the drawings. Deformation is possible. For example, in the above embodiment, the case where the pulley of the present invention is the drive pulley 21 of the continuously variable transmission mechanism 10 and the control device of the present invention controls the stress generated on the input shaft 31 of the drive pulley 21 has been described. Alternatively, the pulley of the present invention may be the driven pulley 22 of the continuously variable transmission mechanism 10, and the control device of the present invention may be configured to control the stress generated on the output shaft 32 of the driven pulley 22. It is possible.

1 エンジン(動力源)
2 エンジン軸(インプットシャフト)
10 無段変速機構
21 駆動プーリ(プーリ)
22 従動プーリ
23 ベルト
31 入力シャフト(プーリシャフト)
32 出力シャフト
40 動力伝達ギヤ列
41 駆動ギヤ
42 従動ギヤ
50 制御装置(制御手段)
51 油圧供給装置(油圧供給機構)
52 コントローラ(ECU)
61,62 油室
D 応力振幅
D2 限界応力振幅(規定応力)
N (入力シャフト)回転回数
N1 累積回転回数
N2 換算回転回数
Na 所定回転回数
P1 疲労限油圧(第2油圧目標)
P2 制限後油圧
P3 制限前油圧(第1油圧目標)
P4 トルク伝達可能油圧(滑り限界油圧)
1 engine (power source)
2 Engine shaft (input shaft)
10 continuously variable transmission mechanism 21 drive pulley (pulley)
22 driven pulley 23 belt 31 input shaft (pulley shaft)
32 output shaft 40 power transmission gear train 41 drive gear 42 driven gear 50 control device (control means)
51 Hydraulic supply device (hydraulic supply mechanism)
52 Controller (ECU)
61, 62 Oil chamber D Stress amplitude D2 Critical stress amplitude (specified stress)
N (input shaft) number of rotations N1 cumulative number of rotations N2 converted number of rotations Na predetermined number of rotations P1 fatigue limit oil pressure (second oil pressure target)
P2 Hydraulic pressure after restriction P3 Hydraulic pressure before restriction (first hydraulic pressure target)
P4 Torque transmittable oil pressure (Slip limit oil pressure)

Claims (9)

車両の動力源と、
前記動力源からのトルクが伝達されるプーリと、
前記プーリを回転可能に支持するプーリシャフトと、
前記プーリシャフトに発生する応力を制御する制御手段と、を備える動力伝達装置の制御装置において、
前記制御手段は、
前記プーリシャフトの回転ごとに該プーリシャフトに発生する応力を累積回転回数に渡って積算した値から、規定応力での回転回数に換算した換算回転回数を算出し、
算出した前記換算回転回数が所定回転回数以上であるか又は前記所定回転回数を超える場合に、前記プーリシャフトに発生する応力が所定応力以下又は未満となるように制御するプーリシャフト応力低減制御を行う
ことを特徴とする動力伝達装置の制御装置。
Vehicle power source,
A pulley to which torque from the power source is transmitted;
A pulley shaft rotatably supporting the pulley,
Control means for controlling the stress generated in the pulley shaft, a control device for a power transmission device comprising:
The control means,
From the value obtained by integrating the stress generated in the pulley shaft for each rotation of the pulley shaft over the cumulative number of rotations, a converted number of rotations calculated as the number of rotations at a specified stress is calculated,
When the calculated number of rotations is equal to or greater than a predetermined number of rotations or exceeds the predetermined number of rotations, pulley shaft stress reduction control is performed such that the stress generated in the pulley shaft is equal to or less than a predetermined stress. A control device for a power transmission device, characterized in that:
前記制御手段は、
前記換算回転回数が前記所定回転回数以上のときに前記プーリシャフト応力低減制御を行う
ことを特徴とする請求項1に記載の動力伝達装置の制御装置。
The control means,
The control device for a power transmission device according to claim 1, wherein the pulley shaft stress reduction control is performed when the converted number of rotations is equal to or greater than the predetermined number of rotations.
前記プーリの側圧を制御するための作動油圧を供給する油圧供給機構を備え、
前記制御手段は、
前記プーリシャフト応力低減制御として、前記プーリに供給する作動油圧を減圧する制御を行う
ことを特徴とする請求項1又は2に記載の動力伝達装置の制御装置。
A hydraulic pressure supply mechanism for supplying a working oil pressure for controlling the side pressure of the pulley,
The control means,
The control device for a power transmission device according to claim 1, wherein, as the pulley shaft stress reduction control, control is performed to reduce a hydraulic pressure supplied to the pulley.
前記プーリに供給する前記作動油圧の目標値である第1油圧目標と、
前記換算回転回数が前記所定回転回数以上であるか又は前記所定回転回数を超える領域において前記第1油圧目標よりも低い値である第2油圧目標と、が設定されており、
前記制御手段は、
算出した前記換算回転回数が前記所定回転回数以上であるか又は前記所定回転回数を超える場合に、前記第1油圧目標に代えて前記第2油圧目標に基づいて前記作動油圧を制御する
ことを特徴とする請求項3に記載の動力伝達装置の制御装置。
A first hydraulic pressure target that is a target value of the operating hydraulic pressure supplied to the pulley;
A second hydraulic pressure target having a value lower than the first hydraulic pressure target in a region where the converted rotation frequency is equal to or more than the predetermined rotation frequency or in a region exceeding the predetermined rotation frequency,
The control means,
When the calculated number of rotations is equal to or greater than the predetermined number of rotations or exceeds the predetermined number of rotations, the operating hydraulic pressure is controlled based on the second hydraulic pressure target instead of the first hydraulic pressure target. The control device for a power transmission device according to claim 3, wherein
駆動プーリ及び従動プーリと、前記駆動プーリと前記従動プーリとの間に掛け渡した無端状のベルトと、を備える無段変速機構を備え、
前記プーリは、前記駆動プーリ又は前記従動プーリであり、
前記第2油圧目標に基づいて前記作動油圧を制御するときに、
前記作動油圧が所定の時間内に所定の圧力以下に減圧しないように前記作動油圧の減圧率を制限する
ことを特徴とする請求項4に記載に動力伝達装置の制御装置。
A continuously variable transmission mechanism including a driving pulley and a driven pulley, and an endless belt stretched between the driving pulley and the driven pulley,
The pulley is the driving pulley or the driven pulley,
When controlling the working oil pressure based on the second oil pressure target,
The control device for a power transmission device according to claim 4, wherein a pressure reduction rate of the operating oil pressure is limited so that the operating oil pressure does not decrease below a predetermined pressure within a predetermined time.
駆動プーリ及び従動プーリと、前記駆動プーリと前記従動プーリとの間に掛け渡した無端状のベルトと、を備える無段変速機構を備え、
前記プーリは、前記駆動プーリ又は前記従動プーリであり、
前記ベルトに滑りが生じない限界の油圧である滑り限界油圧を有し、
前記制御手段は、
前記第2油圧目標に基づいて前記作動油圧を制御するときに、
前記作動油圧が前記滑り限界油圧を下回らないように前記作動油圧の減圧量を制限する
ことを特徴とする請求項4に記載の動力伝達装置の制御装置。
A continuously variable transmission mechanism including a driving pulley and a driven pulley, and an endless belt stretched between the driving pulley and the driven pulley,
The pulley is the driving pulley or the driven pulley,
Having a slip limit oil pressure that is a limit oil pressure at which no slip occurs in the belt,
The control means,
When controlling the working oil pressure based on the second oil pressure target,
The control device for a power transmission device according to claim 4, wherein a reduction amount of the operating oil pressure is limited so that the operating oil pressure does not fall below the slip limit oil pressure.
前記動力源からのトルクが伝達されるインプットシャフトと、
前記インプットシャフト上に設置した駆動ギヤと前記プーリシャフト上に設置されて前記駆動ギヤと噛合する従動ギヤとからなる動力伝達ギヤ列と、を備える
ことを特徴とする請求項1乃至6のいずれか1項に記載の動力伝達装置の制御装置。
An input shaft to which torque from the power source is transmitted;
7. A power transmission gear train comprising a drive gear provided on the input shaft and a driven gear provided on the pulley shaft and meshing with the drive gear. 2. The control device for a power transmission device according to claim 1.
前記動力伝達ギヤ列は、前記駆動ギヤから前記従動ギヤへ動力の回転を減速して伝達する減速ギヤ列である
ことを特徴とする請求項7に記載の動力伝達装置の制御装置。
The control device for a power transmission device according to claim 7, wherein the power transmission gear train is a reduction gear train that reduces the speed of rotation of power from the drive gear to the driven gear and transmits the reduced power.
前記プーリシャフトにかかる応力は、応力振幅である
ことを特徴とする請求項1乃至8のいずれか1項に記載の動力伝達装置の制御装置。
The control device for a power transmission device according to any one of claims 1 to 8, wherein the stress applied to the pulley shaft is a stress amplitude.
JP2018130242A 2018-07-09 2018-07-09 Power transmission control device Expired - Fee Related JP6655669B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018130242A JP6655669B2 (en) 2018-07-09 2018-07-09 Power transmission control device
CN201910565757.8A CN110701266B (en) 2018-07-09 2019-06-27 Control device for power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130242A JP6655669B2 (en) 2018-07-09 2018-07-09 Power transmission control device

Publications (2)

Publication Number Publication Date
JP2020008098A true JP2020008098A (en) 2020-01-16
JP6655669B2 JP6655669B2 (en) 2020-02-26

Family

ID=69151266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130242A Expired - Fee Related JP6655669B2 (en) 2018-07-09 2018-07-09 Power transmission control device

Country Status (2)

Country Link
JP (1) JP6655669B2 (en)
CN (1) CN110701266B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247157B2 (en) * 2020-12-01 2023-03-28 本田技研工業株式会社 Continuously Variable Transmission for Vehicle, Vehicle Having Continuously Variable Transmission for Vehicle, and Control Method for Continuously Variable Transmission for Vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114782A (en) * 1997-06-19 1999-01-22 Shikoku Electric Power Co Inc Method and device for evaluating deterioration of piping
JP2004125010A (en) * 2002-09-30 2004-04-22 Toyota Motor Corp Controller for continuously variable transmission
JP2009292430A (en) * 2008-06-09 2009-12-17 Toyota Motor Corp Protection device for power transmitting mechanism
JP2010078025A (en) * 2008-09-25 2010-04-08 Honda Motor Co Ltd Belt deterioration determining device for continuously variable transmission
JP2011241755A (en) * 2010-05-18 2011-12-01 Toyota Motor Corp Control device for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535490B2 (en) * 2001-10-19 2004-06-07 本田技研工業株式会社 Power transmission device
ATE335942T1 (en) * 2002-07-15 2006-09-15 Luk Lamellen & Kupplungsbau CONE PULLEY GEARBOX
JP4039379B2 (en) * 2004-03-23 2008-01-30 トヨタ自動車株式会社 Belt type continuously variable transmission
CN1594920A (en) * 2004-07-09 2005-03-16 上汽集团奇瑞汽车有限公司 Power transmission device for infinite variable speed mechanism
US9851004B2 (en) * 2014-05-29 2017-12-26 GM Global Technology Operations LLC Method of controlling a variator
JP6638320B2 (en) * 2015-10-27 2020-01-29 トヨタ自動車株式会社 Power transmission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114782A (en) * 1997-06-19 1999-01-22 Shikoku Electric Power Co Inc Method and device for evaluating deterioration of piping
JP2004125010A (en) * 2002-09-30 2004-04-22 Toyota Motor Corp Controller for continuously variable transmission
JP2009292430A (en) * 2008-06-09 2009-12-17 Toyota Motor Corp Protection device for power transmitting mechanism
JP2010078025A (en) * 2008-09-25 2010-04-08 Honda Motor Co Ltd Belt deterioration determining device for continuously variable transmission
JP2011241755A (en) * 2010-05-18 2011-12-01 Toyota Motor Corp Control device for vehicle

Also Published As

Publication number Publication date
JP6655669B2 (en) 2020-02-26
CN110701266B (en) 2021-01-01
CN110701266A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
KR101755478B1 (en) Appartus for controlling hybrid vehicle having eop and method thereof
JP2001225672A (en) Controller for vehicle provided with continuously variable transmission
KR100750543B1 (en) Cooperative control system for prime mover and continuously variable transmission of vehicle
KR20090099432A (en) Clutch torque control system of hybrid electric vehicle
US8600631B2 (en) Engine speed assist torque converter clutch control
JP6655669B2 (en) Power transmission control device
JP4344233B2 (en) Slip identification method and slip identification device for winding member of winding belt transmission
WO2011104884A1 (en) Controller of continuously variable transmission
JP2011043110A (en) Control device of vehicle
JP2011043109A (en) Control device of vehicle
JP6071918B2 (en) Control device for continuously variable transmission
JP2004001761A (en) Controller for vehicle provided with continuously variable transmission
JP4165258B2 (en) Renewal method of hydraulic pump discharge pressure map
JP5235811B2 (en) Shift control device for continuously variable transmission for vehicle
US11028769B2 (en) Restart standby control method and restart standby control device for internal-combustion engine
JP6007998B2 (en) Four-wheel drive vehicle control device and four-wheel drive vehicle
JP2023114557A (en) Controller of belt type continuously variable transmission
JP4333211B2 (en) Coordinated control device for vehicle power source and transmission
WO2023176777A1 (en) Transmission control device, transmission control method, and program
JP6981172B2 (en) Vehicle vibration control method and vibration control device
US11719331B2 (en) Control method and control device for vehicular automatic transmission and recording medium
JP6241728B2 (en) Hydraulic control device for twin clutch transmission
JPH05312255A (en) Speed change controller for continuously variable transmission
JP2003254432A (en) Control system for drive mechanism including continuously variable transmission
JP2007092835A (en) Controller for start clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees