JP2020007694A - Functional porous material and method for production thereof - Google Patents

Functional porous material and method for production thereof Download PDF

Info

Publication number
JP2020007694A
JP2020007694A JP2019124705A JP2019124705A JP2020007694A JP 2020007694 A JP2020007694 A JP 2020007694A JP 2019124705 A JP2019124705 A JP 2019124705A JP 2019124705 A JP2019124705 A JP 2019124705A JP 2020007694 A JP2020007694 A JP 2020007694A
Authority
JP
Japan
Prior art keywords
porous material
reaction
fiber
functional
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019124705A
Other languages
Japanese (ja)
Other versions
JP7405392B2 (en
Inventor
西岡 将輝
Masateru Nishioka
将輝 西岡
正人 宮川
Masato Miyagawa
正人 宮川
長瀬 多加子
Takako Nagase
多加子 長瀬
孝之 石坂
Takayuki Ishizaka
孝之 石坂
千鶴 信樂
Chizuru Shigaraki
千鶴 信樂
涼子 岩渕
Ryoko Iwabuchi
涼子 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2020007694A publication Critical patent/JP2020007694A/en
Application granted granted Critical
Publication of JP7405392B2 publication Critical patent/JP7405392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

To provide a functional porous material capable of expressing functionality for a long period even when be exposed to friction and the like and also capable of restraining a direct contact of a functional chemical substance with skin or the like even when contacting human bodies, and to provide a method for production of the above material.SOLUTION: A method for production of a functional porous material includes: a process of impregnating a reaction material solution in the hole of a porous material 110; a process of immersing the impregnated porous material with the reaction material solution in a solvent noncompatible with the reaction material solution to shift the solution existing on the surface of the porous material and/or in the vicinity thereof to the inside of the hole of the porous material or the inside of a material structure; and a process of working a chemical reaction to the reaction material solution shifted to the inside of the hole of the porous material or into the material structure.SELECTED DRAWING: Figure 1

Description

本発明は、機能性多孔質素材及びその製造方法に関する。   The present invention relates to a functional porous material and a method for producing the same.

機能性多孔質素材として、繊維表面に導電性や抗菌性を持たせた機能性繊維が知られている。
例えば、マルチフィラメントからなる有機繊維基材に金属めっき膜を設けた金属被覆繊維が開示されている(特許文献1参照)。この金属被覆繊維は、マルチフィラメントにおけるモノフィラメント(単糸)1本1本に金属めっき膜が形成されているものである。
また、導電性セルロース系繊維材料の製造方法が記載されている(特許文献2参照)。その製造方法は、まずアルカリ金属水酸化物を含む水溶液によりセルロース系繊維材料を膨潤させる(膨潤工程)。次いで銅イオンを含む化合物を溶解させた水溶液によってセルロース系繊維材料の外周部及び内部に銅イオンを含浸させる(含浸工程)。そして、セルロース系繊維材料に含浸させた銅イオンを、硫化物イオンを含む化合物を溶解させた水溶液によって硫化還元させてセルロース系繊維材料の外周部及び内部に硫化銅からなる微粒子を生成させる(硫化還元工程)。この硫化銅によってセルロース系繊維材料に導電性が付与される。
さらに、抗菌性繊維としては、金属フタロシアニン誘導体と、金属アンミン錯体とを有効成分に含む抗菌消臭材が繊維に担持されているものが開示されている(特許文献3参照)。
As a functional porous material, a functional fiber having a fiber surface having conductivity or antibacterial property is known.
For example, a metal-coated fiber in which a metal plating film is provided on an organic fiber substrate made of a multifilament is disclosed (see Patent Document 1). The metal-coated fiber is a multifilament in which a metal plating film is formed on each monofilament (single yarn).
Also, a method for producing a conductive cellulosic fiber material is described (see Patent Document 2). In the production method, first, a cellulosic fiber material is swollen with an aqueous solution containing an alkali metal hydroxide (swelling step). Next, the outer periphery and the inside of the cellulosic fiber material are impregnated with copper ions with an aqueous solution in which a compound containing copper ions is dissolved (impregnation step). Then, the copper ions impregnated in the cellulosic fiber material are sulfided and reduced by an aqueous solution in which a compound containing a sulfide ion is dissolved, so that fine particles made of copper sulfide are generated on the outer periphery and inside of the cellulosic fiber material (sulfide). Reduction step). The copper sulfide imparts conductivity to the cellulosic fiber material.
Further, as an antibacterial fiber, a fiber in which an antibacterial deodorant containing a metal phthalocyanine derivative and a metal ammine complex as active ingredients is supported on the fiber is disclosed (see Patent Document 3).

特開2014‐055388号公報JP 2014-055388 A 特開2014‐167187号公報JP 2014-167187 A 特開2012‐095733号公報JP 2012-095733 A

従来の導電性繊維の多くは、繊維の表面に金属をコーティングするため(特許文献1、2参照)、摩擦による剥離、摩耗などによる性能劣化が生じる。また、抗菌性繊維(特許文献3参照)も、表面に付着した抗菌機能材が摩擦や洗濯等により脱離しやすく、抗菌寿命は短い。このように、既存の機能性多孔質素材はその機能性を長期に亘り持続させることが難しい。
また、機能性多孔質素材を人体等に接触させて用いる場合、機能性を担う化学物質が人体等と直に接触することにより皮膚疾患等の原因となるおそれもある。
Many of the conventional conductive fibers are coated with metal on the surface of the fibers (see Patent Documents 1 and 2), so that performance is deteriorated due to peeling due to friction, abrasion, and the like. In addition, antibacterial fibers (see Patent Document 3) also have a short antibacterial life because the antibacterial functional material attached to the surface is easily detached by friction or washing. As described above, it is difficult for the existing functional porous material to maintain its functionality for a long period of time.
In addition, when the functional porous material is used in contact with a human body or the like, a chemical substance which bears functionality may directly contact the human body or the like, which may cause a skin disease or the like.

本発明は、摩擦等に曝されても機能性を長期に亘り発現することができ、また人体等と接触させても機能性化学物質の皮膚等への直接的な接触を抑制することができる機能性多孔質素材及びその製造方法を提供することを課題とする。   INDUSTRIAL APPLICABILITY The present invention can exhibit functionality for a long time even when exposed to friction or the like, and can suppress direct contact of a functional chemical substance to skin or the like even when it comes into contact with a human body or the like. It is an object to provide a functional porous material and a method for producing the same.

本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、反応原料溶液を多孔質素材の孔内に浸透させ、それを反応原料溶液に対して非相溶性の溶媒に浸漬し、孔内部までは浸透せずに多孔質素材の表面又はその近傍に留まっていた反応原料溶液を、孔内のより内部へと移行させることができることを見出した。さらに、この状態で反応原料溶液に化学反応を生じさせることにより、多孔質素材の孔の内部に選択的に、反応生成物である機能性化学物質を配することができることを見出した。
本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
The present inventors have conducted intensive studies in view of the above problems. As a result, the reaction raw material solution penetrates into the pores of the porous material, is immersed in a solvent that is incompatible with the reaction raw material solution, and does not penetrate to the inside of the pore, but at or near the surface of the porous material It has been found that the reaction raw material solution remaining in the hole can be transferred to the inside of the pore. Furthermore, it has been found that by causing a chemical reaction in the reaction raw material solution in this state, a functional chemical substance as a reaction product can be selectively disposed inside the pores of the porous material.
The present invention has been further studied based on these findings, and has been completed.

すなわち、本発明の上記課題は下記の手段により解決される。
[1]
多孔質素材の孔内に反応原料溶液を浸透させる工程と、
前記反応原料溶液を浸透させた前記多孔質素材を、前記反応原料溶液とは非相溶性の溶媒中に浸漬して、前記多孔質素材の表面及び/又はその近傍に存在する前記反応原料溶液を前記多孔質素材の孔内の内部や素材組織内へと移行させる工程と、
前記多孔質素材の孔内の内部や素材組織内へと移行させた前記反応原料溶液に化学反応を生じさせる工程とを含む、機能性多孔質素材の製造方法。
[2]
前記化学反応を加熱により生じさせる、[1]に記載の機能性多孔質素材の製造方法。
[3]
前記加熱がマイクロ波照射による加熱である、[2]に記載の機能性多孔質素材の製造方法。
[4]
前記マイクロ波照射がシングルモードのマイクロ波照射である、[3]に記載の機能性多孔質素材の製造方法。
[5]
前記反応原料溶液は金属前駆体を含み、
前記化学反応が、前記金属前駆体から金属を析出する反応である、[1]〜[4]のいずれかに記載の機能性多孔質素材の製造方法。
[6]
前記反応原料溶液はアルコキシシラン化合物を含み、
前記化学反応が、前記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である、[1]〜[4]のいずれかに記載の機能性多孔質素材の製造方法。
[7]
前記化学反応が、前記反応原料溶液中の化学物質の結晶化もしくは析出である、[1]〜[4]のいずれかに記載の機能性多孔質素材の製造方法。
[8]
前記反応原料溶液はシリカ源、アルカリ源及び水を含み、
又は、前記シリカ源、前記アルカリ源及び前記水に加えケイ素を置換可能な金属源を含み、
前記化学反応がゼオライトを生じる反応である、[1]〜[4]のいずれかに記載の機能性多孔質素材の製造方法。
[9]
前記反応原料溶液はポリアミック酸を含み、
前記化学反応が前記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である、[1]〜[4]のいずれかに記載の機能性多孔質素材の製造方法。
[10]
前記多孔質素材が、植物繊維、動物繊維、化学繊維、中空糸繊維若しくは中空粒子で構成され、又はこれらの2種以上からなる複合素材で構成されている、[1]〜[9]のいずれかに記載の機能性多孔質素材の製造方法。
[11]
前記植物繊維が綿である、[10]に記載の機能性多孔質素材の製造方法。
[12]
多孔質素材の孔内に機能性化学物質を内包する機能性多孔質素材。
[13]
前記機能性化学物質が金属を含む、[12]に記載の機能性多孔質素材。
[14]
前記金属により抗菌及び/又は抗ウィルス機能を有する、[13]に記載の機能性多孔質素材。
[15]
前記機能性多孔質素材が前記金属により導電性を示す、[13]又は[14]に記載の機能性多孔質素材。
[16]
前記多孔質素材が綿素材とケイ素とを含む複合素材であり、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い[12]〜[15]のいずれかに記載の機能性多孔質素材。
[17]
前記多孔質素材が炭素を構造として持つ多孔質中空繊維であり、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している[12]〜[15]のいずれかに記載の機能性多孔質素材。
That is, the above object of the present invention is solved by the following means.
[1]
A step of penetrating the reaction raw material solution into the pores of the porous material,
The porous material impregnated with the reaction material solution is immersed in a solvent that is incompatible with the reaction material solution, and the reaction material solution existing on the surface of the porous material and / or in the vicinity thereof is removed. A step of moving the inside of the pores and the material structure of the porous material,
Causing a chemical reaction to occur in the reaction raw material solution transferred into the inside of the pores or the material structure of the porous material.
[2]
The method for producing a functional porous material according to [1], wherein the chemical reaction is caused by heating.
[3]
The method for producing a functional porous material according to [2], wherein the heating is heating by microwave irradiation.
[4]
The method for producing a functional porous material according to [3], wherein the microwave irradiation is a single-mode microwave irradiation.
[5]
The reaction raw material solution contains a metal precursor,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction for depositing a metal from the metal precursor.
[6]
The reaction raw material solution contains an alkoxysilane compound,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that produces silica by hydrolysis of the alkoxysilane compound and subsequent condensation polymerization.
[7]
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution.
[8]
The reaction raw material solution contains a silica source, an alkali source and water,
Or, comprising a metal source capable of replacing silicon in addition to the silica source, the alkali source and the water,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that generates zeolite.
[9]
The reaction raw material solution contains a polyamic acid,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that generates a polyimide by a dehydration and ring closure reaction of the polyamic acid.
[10]
Any of [1] to [9], wherein the porous material is composed of a plant fiber, an animal fiber, a chemical fiber, a hollow fiber, or a hollow particle, or is composed of a composite material composed of two or more of these. A method for producing a functional porous material according to the above item.
[11]
The method for producing a functional porous material according to [10], wherein the plant fiber is cotton.
[12]
A functional porous material that contains a functional chemical substance in the pores of the porous material.
[13]
The functional porous material according to [12], wherein the functional chemical substance includes a metal.
[14]
The functional porous material according to [13], which has an antibacterial and / or antiviral function by the metal.
[15]
The functional porous material according to [13] or [14], wherein the functional porous material exhibits conductivity by the metal.
[16]
The porous material is a composite material containing a cotton material and silicon, and the silicon concentration in the inside and / or the cotton material tissue is higher than the outer surface of the cotton material [12] to [15]. Functional porous material.
[17]
The porous material according to any one of [12] to [15], wherein the porous material is a porous hollow fiber having carbon as a structure, and zeolite is held in a hollow portion and / or an inner surface of the porous hollow fiber. Functional porous material.

本発明の機能性多孔質素材は摩擦等に曝されても機能性を長期に亘り発現することができ、また人体と接触させても機能性化学物質の皮膚等への直接的な接触を抑制することができる。本発明の機能性多孔質素材の製造方法によれば、上記の特性を有する本発明の機能性多孔質素材を得ることができる。   The functional porous material of the present invention can exhibit functionality for a long period of time even when exposed to friction or the like, and also suppresses direct contact of functional chemicals to skin etc. even when it comes into contact with the human body can do. According to the method for producing a functional porous material of the present invention, the functional porous material of the present invention having the above characteristics can be obtained.

本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いる綿繊維であり、綿繊維の各層を部分的に剥離した状態を斜視にて示した図面代用合成写真である。It is a cotton fiber used for a preferred embodiment of the method for producing a functional porous material of the present invention, and is a drawing substitute synthetic photograph showing a perspective view of a state in which each layer of the cotton fiber is partially peeled off. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いる綿繊維(図1に示した綿繊維、2本)を模式的に示した部分断面斜視図である。FIG. 2 is a partial cross-sectional perspective view schematically showing cotton fibers (two cotton fibers shown in FIG. 1) used in a preferred embodiment of the method for producing a functional porous material of the present invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の、図2に示した綿繊維に反応原料溶液が浸透する浸透工程を模式的に示した部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view schematically showing a permeation step of permeating a reaction fiber solution into the cotton fibers shown in FIG. 2 in a preferred embodiment of the method for producing a functional porous material of the present invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の、図3に示した綿繊維に対して反応原料溶液がさらに内部へと移行する移行工程を模式的に示した部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view schematically showing a transfer step in which a reaction raw material solution is further transferred to the inside of the cotton fiber shown in FIG. 3 in a preferred embodiment of the method for producing a functional porous material of the present invention. It is. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の加熱、化学反応工程を模式的に示した部分断面斜視図である。It is the partial cross-sectional perspective view which showed typically the heating and chemical reaction process of one preferable embodiment of the manufacturing method of the functional porous material of this invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いた綿繊維であり、綿繊維の各層を部分的に剥離した状態を斜視にて示した図面代用合成写真である。It is a cotton substitute used in a preferred embodiment of the method for producing a functional porous material of the present invention, and is a drawing substitute composite photograph showing a perspective view in a state where each layer of the cotton fiber is partially peeled off. (A)図は、実施例1の銀を析出した試料の綿布の断面を走査型電子顕微鏡(SEM)にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図の矢印A方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Point number)を示した。(A) is a drawing substitute photograph taken by a scanning electron microscope (SEM) of a cross section of a cotton cloth of a sample on which silver was precipitated in Example 1. (B) is a graph showing the result of analyzing the composition of the cross section of the cotton cloth in the direction of arrow A in (A) using energy dispersive X-ray spectroscopy. The vertical axis represents the silver component and the carbon component. The spectrum intensity (Intensity) is shown, and the position (Point number) is shown on the horizontal axis. (A)図は、実施例2の銀を析出した試料の綿布を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図の矢印B方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Point number)を示した。(A) is a drawing-substitute photograph taken with a scanning electron microscope of a cotton cloth of a sample on which silver was precipitated in Example 2. (B) is a graph showing the result of analyzing the composition of the cross section of the cotton cloth in the direction of arrow B in (A) using energy dispersive X-ray spectroscopy, and the vertical axis represents the silver component and the carbon component. The spectrum intensity (Intensity) is shown, and the position (Point number) is shown on the horizontal axis. (A)図は、実施例3の非晶質シリカを内部に析出した試料の綿布の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図中の矢印A方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。(A) is a drawing-substituting photograph taken by a scanning electron microscope of a cross section of a cotton cloth of a sample in which the amorphous silica of Example 3 was precipitated. (B) is a graph showing the results of a composition analysis of the cross section of the cotton cloth in the direction of arrow A in (A) using energy dispersive X-ray spectroscopy, with the ordinate indicating the silicon component and the carbon component. Are shown, and the abscissa indicates the position (Position). (A)図は、実施例4の試料としたカポック繊維の断面を走査型電子顕微鏡(SEM)にて撮影した図面代用写真である。(B)図は、実施例4の非晶質シリカを内部に析出した試料のカポック繊維の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) is a drawing-substitute photograph taken by a scanning electron microscope (SEM) of a cross section of a Kapok fiber used as a sample of Example 4. (B) is a drawing-substituting photograph taken by a scanning electron microscope of a cross section of a Kapok fiber of a sample in which the amorphous silica of Example 4 was precipitated. (C)図は、エネルギー分散型X線分光法を用いて図10の(B)図中の矢印A方向にカポック繊維断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。FIG. 10 (C) is a graph showing the results of a composition analysis of the cross section of the Kapok fiber in the direction of arrow A in FIG. 10 (B) using energy dispersive X-ray spectroscopy. The spectral intensity (Intensity) of the component and the carbon component are shown, and the position (Position) is shown on the horizontal axis. (A)図は、実施例5のシリカを内部に析出した試料の多孔質体中空糸(東レ社製 MKC.MXJ(600L))の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図中の矢印A方向に繊維断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。(A) is a drawing substitute photograph in which a cross section of a porous hollow fiber (MKC. MXJ (600L) manufactured by Toray Industries, Inc.) of a sample in which silica of Example 5 is precipitated is taken with a scanning electron microscope. . (B) is a graph showing the results of a composition analysis of the cross section of the fiber in the direction of arrow A in (A) using energy dispersive X-ray spectroscopy. Are shown, and the abscissa indicates the position (Position). (A)図は、実施例6の、ゼオライトを内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) shows a cross section of a porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poeflon (registered trademark) tube) of a sample in which zeolite is precipitated in Example 6, using a scanning electron microscope. It is a drawing substitute photograph taken. (B)図は、エネルギー分散型X線分光法を用いて実施例6の試料の組成分析をして得た、酸素、ナトリウム、シリコン、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) shows the distribution state of the oxygen, sodium, silicon, and aluminum components obtained by analyzing the composition of the sample of Example 6 using energy dispersive X-ray spectroscopy and was photographed with a scanning electron microscope. It is a drawing substitute photograph. (C)図は、X線回折測定により得られた回折パターンを示した図面であり、実施例6におけるゼオライトのX線回折パターンを示した図であり、縦軸に回折X線強度(Intensity)を示し、横軸に回折角度(2Theta degree)を示した。(C) is a drawing showing the diffraction pattern obtained by the X-ray diffraction measurement, and is a drawing showing the X-ray diffraction pattern of the zeolite in Example 6, wherein the vertical axis represents the diffraction X-ray intensity (Intensity). And the abscissa indicates the diffraction angle (2 Theta degree). 実施例7のポリイミドを内部に析出した試料の多孔質体中空糸(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。13 is a drawing-substituting photograph of a cross section of a porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poeflon (registered trademark) tube) of a sample obtained by depositing the polyimide of Example 7 inside using a scanning electron microscope. . 実施例8のヒノキチオール結晶を内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。A drawing substitute photograph of a cross section of a porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poreflon (registered trademark) tube) of a sample in which the hinokitiol crystal of Example 8 was precipitated was taken with a scanning electron microscope. is there. 実施例9のミョウバン結晶を内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。A drawing-substitute photograph taken by a scanning electron microscope of a cross section of a porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poreflon (registered trademark) tube) of a sample in which the alum crystal of Example 9 was precipitated. is there. (A)図は、実施例10のミョウバン結晶を内部に析出した試料の天然繊維(竹)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) is a drawing substitute photograph in which a cross section of a natural fiber (bamboo) of a sample in which the alum crystal of Example 10 was precipitated was taken with a scanning electron microscope. (B)図は、エネルギー分散型X線分光法を用いて実施例10の試料の組成分析をして得た、カーボン、硫黄、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) is a drawing substitute for a photograph taken by a scanning electron microscope of the distribution state of carbon, sulfur and aluminum components obtained by analyzing the composition of the sample of Example 10 using energy dispersive X-ray spectroscopy. It is a photograph. (A)図は、実施例11のミョウバン結晶を内部に析出した試料の天然繊維(杉)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) is a drawing substitute photograph in which a cross section of a natural fiber (cedar) of a sample in which the alum crystal of Example 11 was precipitated was taken with a scanning electron microscope. (B)図は、エネルギー分散型X線分光法を用いて実施例11の試料の組成分析をして得た、カーボン、硫黄、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) Drawing substitutes the drawing which image | photographed the distribution state of the carbon, sulfur, and aluminum component obtained by composition analysis of the sample of Example 11 using the energy dispersive X-ray spectroscopy with a scanning electron microscope. It is a photograph. 実施例12の加熱に用いた共振器型マイクロ波加熱装置の好ましい構成の一例を示した概略断面図である。FIG. 21 is a schematic sectional view showing an example of a preferred configuration of a resonator-type microwave heating device used for heating in Example 12. エネルギー分散型X線分光法を用いて、実施例12によって作製した綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。It is the graph which showed the result of having performed the composition analysis of the cross section of the cotton fabric produced by Example 12 using the energy dispersive X-ray spectroscopy, and the vertical axis | shaft showed the spectral intensity (Intensity) of a silver component and a carbon component, The position (Position) is shown on the horizontal axis.

[機能性多孔質素材の製造方法]
以下に本発明の機能性多孔質素材の製造方法の好ましい一実施形態を、図面を参照して説明する。
[Production method of functional porous material]
Hereinafter, a preferred embodiment of the method for producing a functional porous material of the present invention will be described with reference to the drawings.

図1には、原料とする多孔質素材110の一例として綿繊維111を示す。綿繊維111は、セルロースを多量に(例えば95質量%以上)含む細長い(例えば、長さ30mm程度)形状の綿細胞からなる。綿繊維111は、外側から、キューティクル層112とネットワーク層113とワインディング層114とを有する一次細胞壁115、二次細胞壁116及び内腔(ルーメン)117を有する。そして一次細胞壁115が二次細胞壁116を覆った多層構造をとる。一次細胞壁115及び二次細胞壁116はミクロフィブリルの集合体である。ミクロフィブリルは、ナノファイバー(セルロース分子)が複数本束ねられてなる。綿繊維111では、このミクロフィブリル間の間隙が多孔質素材としての孔を形成している。   FIG. 1 shows a cotton fiber 111 as an example of a porous material 110 as a raw material. The cotton fibers 111 are formed of slender (for example, about 30 mm long) shaped cotton cells containing a large amount of cellulose (for example, 95% by mass or more). The cotton fiber 111 has, from the outside, a primary cell wall 115 having a cuticle layer 112, a network layer 113, and a winding layer 114, a secondary cell wall 116, and a lumen 117. Then, the primary cell wall 115 has a multilayer structure in which the secondary cell wall 116 is covered. Primary cell wall 115 and secondary cell wall 116 are aggregates of microfibrils. Microfibrils are formed by bundling a plurality of nanofibers (cellulose molecules). In the cotton fibers 111, the gaps between the microfibrils form pores as a porous material.

多孔質素材としては、上記綿繊維の他に、各種の植物繊維、動物繊維、鉱物繊維、若しくは化学繊維により構成されたものを用いることができる。これらの繊維が単繊維の場合には、当該短繊維を束ねた繊維束(例えば、糸)等を多孔質素材として用いることができる。この場合、単繊維間の隙間が多孔質素材の孔になる。
植物繊維には、各種の植物由来の繊維が挙げられる。一例として、綿、リネン、芭蕉、カボック(通称 パンヤ綿)等が挙げられる。動物繊維には、各種の動物由来の繊維が挙げられる。一例として、羊毛、カシミア、アンゴラ、アルパカ等の獣毛、絹、羽毛等が挙げられる。鉱物繊維としては、石綿、ロックウール等が挙げられる。化学繊維には、再生セルロース繊維、半合成繊維、合成繊維、高機能繊維、無機繊維が挙げられる。再生セルロース繊維には、一例として、レーヨン、キュプラ、リオセル等が挙げられる。半合成繊維には、一例として、アセテート、トリアセテート等が挙げられる。合成繊維には、一例として、ポリアミド系繊維、ポリエステル系繊維等が挙げられる。高機能繊維には、一例として、アラミド繊維、ポリイミド繊維等が挙げられる。無機繊維には、一例として、ガラス繊維、炭素繊維等が挙げられる。
上記化学繊維は、中空繊維(ナイロン中空繊維、ポリエステル中空繊維等)であってもよい。
上記多孔質素材は、上述した繊維で構成されるものの他、中空粒子(中空ポリメタクリル酸メチル粒子、中空シリカ粒子等)であってもよい。
また、これら以外にも、ミクロポーラス材料、メソポーラス材料、マクロポーラス材料等を多孔質素材として用いることができる。ミクロポーラス材料としては、活性炭、ゼオライト、シリカゲル等が挙げられる。メソポーラス材料としては、二酸化ケイ素(メソポーラスシリカ)、酸化アルミニウム等が挙げられ、ニオブ、タンタル、チタン、ジルコニウム、セリウム、錫等の酸化物が挙げられる。マクロポーラス材料としては、軽石、ウレタンスポンジ等が挙げられる。IUPAC(国際純正応用化学連合)の定義では、多孔質材料は孔径分布で分類されており、孔径が、2nm未満のものをミクロポーラス、2〜50nmのものをメソポーラス、50nmより大きいものをマクロポーラスと規定する。孔径分布は、ガス吸着法(例えば、N吸着−BJH(Barrett,Joyner,Hallender)法、N吸着−DFT(Density Functional Theory)法等)、水銀圧入法等によって求めることができる。
上記多孔質素材としては、少なくとも多孔質素材を含む複合素材を挙げることができる。複合素材としては、綿素材とケイ素とを含む複合素材を挙げることができ、例えば、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い形態を挙げることができる。なお、この複合素材は、そのまま後述の機能性多孔質素材として用いることもできる。
また、上記多孔質素材としては、炭素を構造として持つ多孔質中空繊維を挙げることができる。例えば、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している形態として、後述する機能性多孔質素材として用いることができる。
As the porous material, in addition to the above-mentioned cotton fibers, those composed of various plant fibers, animal fibers, mineral fibers, or chemical fibers can be used. When these fibers are single fibers, a fiber bundle (for example, yarn) obtained by bundling the short fibers can be used as the porous material. In this case, the gap between the single fibers becomes a hole of the porous material.
Plant fibers include various plant-derived fibers. As an example, cotton, linen, basho, kabok (commonly called panya cotton) and the like can be mentioned. Animal fibers include various animal-derived fibers. Examples include animal hair such as wool, cashmere, angora, alpaca, silk, feathers, and the like. As mineral fibers, asbestos, rock wool and the like can be mentioned. The chemical fibers include regenerated cellulose fibers, semi-synthetic fibers, synthetic fibers, high-performance fibers, and inorganic fibers. Examples of the regenerated cellulose fibers include rayon, cupra, lyocell, and the like. Examples of the semi-synthetic fibers include acetate and triacetate. Examples of the synthetic fibers include polyamide-based fibers and polyester-based fibers. Examples of the high-performance fiber include aramid fiber and polyimide fiber. Examples of the inorganic fibers include glass fibers and carbon fibers.
The chemical fiber may be a hollow fiber (a nylon hollow fiber, a polyester hollow fiber, or the like).
The porous material may be hollow particles (hollow polymethyl methacrylate particles, hollow silica particles, etc.) in addition to the above-mentioned fibers.
In addition, a microporous material, a mesoporous material, a macroporous material, or the like can be used as the porous material. Examples of the microporous material include activated carbon, zeolite, and silica gel. Examples of the mesoporous material include silicon dioxide (mesoporous silica) and aluminum oxide, and oxides such as niobium, tantalum, titanium, zirconium, cerium, and tin. Examples of the macroporous material include pumice and urethane sponge. According to the definition of IUPAC (International Union of Pure and Applied Chemistry), porous materials are classified by pore size distribution. Microporous materials having a pore size of less than 2 nm, mesoporous materials having a pore size of 2 to 50 nm, and macroporous materials having a pore size larger than 50 nm. It is prescribed. Pore size distribution, gas adsorption method (eg, N 2 adsorption -BJH (Barrett, Joyner, Hallender) method, N 2 adsorption -DFT (Density Functional Theory) method, etc.), can be determined by mercury intrusion method.
Examples of the porous material include a composite material containing at least a porous material. Examples of the composite material include a composite material containing a cotton material and silicon. For example, a form having a higher silicon concentration inside and / or in the tissue of the cotton material than the outer surface of the cotton material can be given. In addition, this composite material can also be used as it is as a functional porous material described later.
In addition, examples of the porous material include a porous hollow fiber having carbon as a structure. For example, a form in which zeolite is held in the hollow portion and / or the inner surface of the porous hollow fiber can be used as a functional porous material described later.

続いて本発明の多孔質素材の製造方法の好ましい一例を説明する。図2〜5は、多孔質素材110として図1に示した綿繊維111を用いる場合を模式的に示したものである。なお、図2及び3では模式的に2本の綿繊維を示し、図4及び5では模式的に1本の綿繊維を示した。
まず、図2に示すように、綿繊維111に、反応原料溶液を浸透させる(浸透工程)。具体的には、容器(図示せず)に入れた反応原料溶液(図示せず)中に綿繊維111を浸漬して、綿繊維111中に反応原料溶液を浸透させる。この浸透工程は、例えば、液温が15℃〜30℃、大気圧(例えば、平地における大気圧)状態にて行うことができる。その結果、図3に示すように、綿繊維111の表面及び/又は表面近傍の綿繊維111の孔内や綿繊維組織内(すなわち綿繊維111の孔内及び/又は綿繊維組織内)に毛管現象によって反応原料溶液が浸透する。表面とは、綿繊維111の最も外側の外表面111Sをいう。孔内とは、綿繊維111のミクロフィブリル間の間隙内(図示せず)をいう。図面においては、綿繊維111の断面の色の濃い部分が反応原料溶液の浸透領域121を示す。浸透領域121は、綿繊維111の外表面111Sから内部方向に向かって分布する。この状態では、綿繊維111の半径方向内腔117側より表面側(キューティクル層112側)に反応原料溶液が多く浸透する。反応原料溶液の浸透を促進するために、浸透工程を減圧状態で行ってもよい。たとえば、0.01〜1気圧で実施すると、綿繊維内/繊維間に保持されていた空気の排出が促進され、その部分に反応原料溶液の保持量を増やすことができる。
ここで、綿繊維は極性を有し極性溶媒になじみやすいため、反応原料溶液の媒体としては、水、水溶性有機溶媒、又はこれらの混合液を用いることが好ましい。多孔質素材が合成繊維のように比較的極性が低く、水となじみにくい物性の場合には、反応原料溶液の媒体としては、より疎水性の高い溶媒を用いることが好ましい。
Next, a preferred example of the method for producing a porous material of the present invention will be described. FIGS. 2 to 5 schematically show a case where the cotton fiber 111 shown in FIG. 1 is used as the porous material 110. 2 and 3 schematically show two cotton fibers, and FIGS. 4 and 5 schematically show one cotton fiber.
First, as shown in FIG. 2, the reaction raw material solution is made to permeate the cotton fiber 111 (penetration step). Specifically, the cotton fiber 111 is immersed in a reaction material solution (not shown) placed in a container (not shown), and the reaction material solution is permeated into the cotton fiber 111. This infiltration step can be performed, for example, at a liquid temperature of 15 ° C. to 30 ° C. and atmospheric pressure (for example, atmospheric pressure on flat ground). As a result, as shown in FIG. 3, the capillary is formed in the hole of the cotton fiber 111 near the surface and / or in the cotton fiber structure (that is, in the hole of the cotton fiber 111 and / or in the cotton fiber structure). The reaction raw material solution permeates due to the phenomenon. The surface refers to the outermost outer surface 111S of the cotton fiber 111. The inside of the hole refers to the inside of the gap (not shown) between the microfibrils of the cotton fiber 111. In the drawing, the darker portion of the cross section of the cotton fiber 111 indicates the permeation area 121 of the reaction material solution. The permeation area 121 is distributed from the outer surface 111S of the cotton fiber 111 toward the inside. In this state, a larger amount of the reaction raw material solution permeates the surface side (the cuticle layer 112 side) than the radial bore 117 side of the cotton fiber 111. The permeation step may be performed under reduced pressure in order to promote the permeation of the reaction solution. For example, when the pressure is set at 0.01 to 1 atm, the discharge of the air retained in the cotton fiber / between the fibers is promoted, and the retained amount of the reaction raw material solution can be increased in that portion.
Here, since the cotton fiber has a polarity and is easily adapted to a polar solvent, it is preferable to use water, a water-soluble organic solvent, or a mixture thereof as a medium of the reaction raw material solution. When the porous material has relatively low polarity such as synthetic fiber and is hardly compatible with water, it is preferable to use a more hydrophobic solvent as a medium for the reaction raw material solution.

反応原料溶液には、例えば、金属前駆体(金属塩)を含ませることができる。この場合、反応生成物を析出金属とすることができる。
一例として、金属前駆体が銀塩の場合、反応原料溶液として、硝酸銀を、金属に対する還元作用を示す溶媒(例えばアルコール、又はアルコールと水の混合溶媒)に溶解してなる溶液を用いることができる。アルコールとしては、メタノール、エタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、テトラエチレングリコール、グリセロール、ベンジルアルコール、ジプロピレングリコール等を挙げることができる。また、金属前駆体は銀塩に限られず、銅、白金、パラジウム、ルテニウム、ニッケル、コバルト、鉄、アルミニウム、チタン、金、クロム、亜鉛等の種々の金属塩を用いることができる。
また、反応原料溶液と反応生成物の組み合わせとしては、上述した金属前駆体と析出金属の他、例えば、金属水酸化物と酸化物の組み合わせ、金属アルコキシドと金属酸化物の組み合わせ、有機物モノマーと高分子重合体の組み合わせ、配位子(リガンド)と金属錯体の組み合わせ等を挙げることができる。
The reaction raw material solution can contain, for example, a metal precursor (metal salt). In this case, the reaction product can be a deposited metal.
As an example, when the metal precursor is a silver salt, a solution obtained by dissolving silver nitrate in a solvent (for example, alcohol or a mixed solvent of alcohol and water) exhibiting a reducing action on metal can be used as a reaction raw material solution. . Examples of the alcohol include methanol, ethanol, ethylene glycol, diethylene glycol, propylene glycol, tetraethylene glycol, glycerol, benzyl alcohol, dipropylene glycol and the like. Further, the metal precursor is not limited to a silver salt, and various metal salts such as copper, platinum, palladium, ruthenium, nickel, cobalt, iron, aluminum, titanium, gold, chromium, and zinc can be used.
As the combination of the reaction raw material solution and the reaction product, in addition to the above-described metal precursor and precipitated metal, for example, a combination of a metal hydroxide and an oxide, a combination of a metal alkoxide and a metal oxide, and a combination of an organic monomer and a high Examples include a combination of molecular polymers, a combination of a ligand (ligand) and a metal complex, and the like.

反応原料溶液が浸透した綿繊維111から、必要により綿繊維111が保持できる反応原料溶液量を超える余剰の反応原料溶液を取り除く。例えば、軽く絞ることによって余剰の反応原料溶液を取り除くことができる。次いで、図4に示すように、容器131に入れた反応原料溶液とは非相溶性の溶媒132内に、綿繊維111を浸漬する。そして容器131内を密閉するように蓋133を被せることが好ましい。軽く絞るとは、液が垂れない程度に絞ることをいう。
溶媒132が反応原料溶液と非相溶性であるとは、溶媒132が反応原料溶液の溶媒と実質的に相溶しないことを意味する。すなわち、25℃において両溶媒が混じり合わずに各々独立した相で存在する関係を意味する。この場合において、本発明の効果を損なわない範囲であれば、両溶媒の界面付近において両溶媒が完全に相分離しておらず、互いに混じり合う領域が生じる関係にあってよい。より具体的に説明すると、実質的に相溶しない関係とは、25℃において溶媒132に対して反応原料溶液の溶媒の溶解度が10g/100g以下が好ましく、5g/100g以下がより好ましく、1g/100g以下がさらに好ましい。
例えば、多孔質素材として綿繊維を用い、反応原料溶液として水、水溶性有機溶媒、又はこれらの混合液(すなわち極性溶媒(親水性溶媒))を用いた場合には、溶媒132としては非極性溶媒(疎水性溶媒)を用いる。例えば、溶媒132として、ドデカン、デカン、ヘキサン、トルエン、ベンゼン、ナフタレン、フロリナート(商品名)、ハイドロフルオロオレフィン、シリコーンオイル、直鎖アルカン類、環状アルカン類、直鎖不飽和炭化水素類、環式不飽和炭化水素、芳香族類、フロン類、鉱油、植物油等を用いることができる。溶媒132の温度は特に制限されず、目的に応じて適宜に設定される。例えば−100℃〜300℃とすることができる。
If necessary, an excess amount of the reaction material solution exceeding the amount of the reaction material solution that the cotton fiber 111 can hold is removed from the cotton fiber 111 in which the reaction material solution has penetrated. For example, excess reaction raw material solution can be removed by squeezing lightly. Next, as shown in FIG. 4, the cotton fiber 111 is immersed in a solvent 132 incompatible with the reaction raw material solution contained in the container 131. Then, it is preferable to cover the lid 133 so as to seal the inside of the container 131. To squeeze lightly means to squeeze the liquid so that it does not drip.
The fact that the solvent 132 is incompatible with the reaction raw material solution means that the solvent 132 is not substantially compatible with the solvent of the reaction raw material solution. That is, the relationship means that both solvents are not mixed at 25 ° C. and exist in independent phases. In this case, as long as the effects of the present invention are not impaired, the two solvents may not be completely phase-separated near the interface between the two solvents, and may form a region where they are mixed with each other. More specifically, the substantially incompatible relationship means that the solubility of the solvent of the reaction raw material solution in the solvent 132 at 25 ° C. is preferably 10 g / 100 g or less, more preferably 5 g / 100 g or less, and 1 g / 100 g or less. 100 g or less is more preferable.
For example, when cotton fiber is used as the porous material and water, a water-soluble organic solvent, or a mixture thereof (that is, a polar solvent (hydrophilic solvent)) is used as the reaction raw material solution, the solvent 132 is non-polar. A solvent (hydrophobic solvent) is used. For example, as the solvent 132, dodecane, decane, hexane, toluene, benzene, naphthalene, florinate (trade name), hydrofluoroolefin, silicone oil, linear alkanes, cyclic alkanes, linear unsaturated hydrocarbons, cyclic Unsaturated hydrocarbons, aromatics, fluorocarbons, mineral oils, vegetable oils and the like can be used. The temperature of the solvent 132 is not particularly limited, and is appropriately set according to the purpose. For example, the temperature can be set to -100 ° C to 300 ° C.

図4の形態において、綿繊維111に含浸した溶媒132に非相溶性の反応原料溶液は、溶媒132の液圧によって、綿繊維111の外表面111S側からミクロフィブリル間の間隙(孔内)を通してさらに綿繊維111の内部方向や綿繊維(素材)組織内、すなわち綿繊維111の内部方向及び/又は綿繊維(素材)組織内へと移行する(移行工程)。なお、毛管力がさらに働く場合には、綿繊維111の内部に浸透した反応原料溶液はミクロフィブリル間の間隙を通ってさらに内部へと移行する。したがって、反応原料溶液の浸透領域121は、綿繊維111の外表面111Sから綿繊維111の内部方向へと移行する。この結果、綿繊維111の外表面111S側から綿繊維111の内部方向に向かって反応原料溶液が多く存在するようになる。   In the embodiment of FIG. 4, the reaction raw material solution that is incompatible with the solvent 132 impregnated in the cotton fiber 111 passes through the gap (in the hole) between the microfibrils from the outer surface 111S side of the cotton fiber 111 due to the liquid pressure of the solvent 132. Further, the inside of the cotton fiber 111 and the inside of the cotton fiber (material) tissue, that is, the inside of the cotton fiber 111 and / or the inside of the cotton fiber (material) tissue are transferred (transition step). When the capillary force further acts, the reaction raw material solution that has penetrated into the cotton fibers 111 moves further into the interior through the gaps between the microfibrils. Therefore, the permeation region 121 of the reaction raw material solution moves from the outer surface 111S of the cotton fiber 111 toward the inside of the cotton fiber 111. As a result, a large amount of the reaction raw material solution exists from the outer surface 111S side of the cotton fiber 111 toward the inside of the cotton fiber 111.

図4に示す形態では、綿繊維111を浸漬した溶媒132に圧力Pをかけている。圧力Pは、容器外部から、気体圧若しくは液体圧を加えてもよい。また、容器そのものに加圧シリンダを装備し、シリンダに動力を加えて加圧することもできる。若しくは容器を密閉し、溶液を加熱することで溶液の体積膨張や蒸気圧の発生により加圧してもよい。若しくは主溶媒の他に主溶媒よりも沸点が低い溶媒を加えて、加熱により気化させて加圧することも可能である。このように溶媒132の表面に大気圧よりも高い圧力がかかることによって、反応原料溶液が綿繊維111のミクロフィブリル間の間隙(孔内)を通って、さらに内部へと押し込まれるようになる。この結果、反応原料溶液は、綿繊維111の表面から内部へとより強い圧力によって移行し、綿繊維111の内腔117の内表面ないしその近傍にまで反応原料溶液を移行させることも可能となる。本発明の製造方法では、化学反応の開始前に圧力をかけてから化学反応を開始してもよく、また、化学反応を生じさせながら当該圧力をかける形態とすることもできる。また、この圧力の大きさは、多孔質素材の種類等に応じて適宜に設定することができる。例えば、1.05〜20気圧程度とすることができ、1.1〜10気圧程度としてもよい。   In the embodiment shown in FIG. 4, the pressure P is applied to the solvent 132 in which the cotton fibers 111 are immersed. As the pressure P, gas pressure or liquid pressure may be applied from outside the container. Further, a pressurizing cylinder may be provided in the container itself, and power may be applied to the cylinder to pressurize the cylinder. Alternatively, the container may be sealed, and the solution may be heated so that the solution is pressurized by volume expansion or generation of vapor pressure. Alternatively, it is also possible to add a solvent having a boiling point lower than that of the main solvent in addition to the main solvent, vaporize the mixture by heating, and pressurize the mixture. When a pressure higher than the atmospheric pressure is applied to the surface of the solvent 132, the reaction raw material solution passes through the gaps (in the holes) between the microfibrils of the cotton fibers 111 and is further pushed into the interior. As a result, the reaction raw material solution is transferred from the surface of the cotton fiber 111 to the inside by a stronger pressure, and the reaction raw material solution can be transferred to the inner surface of the lumen 117 of the cotton fiber 111 or the vicinity thereof. . In the production method of the present invention, the chemical reaction may be started after the pressure is applied before the chemical reaction is started, or the pressure may be applied while the chemical reaction occurs. The magnitude of the pressure can be appropriately set according to the type of the porous material and the like. For example, the pressure can be about 1.05 to 20 atm, or about 1.1 to 10 atm.

次に図5に示すように、綿繊維111に含浸された反応原料溶液の浸透領域121を所定の反応温度に加熱するなどして、その中の反応原料溶液に化学反応を生じさせる。反応原料溶液が上述した金属塩と還元剤を含む場合、加熱により金属塩が還元されて金属を析出させることができる。   Next, as shown in FIG. 5, a chemical reaction is caused in the reaction material solution therein by heating the permeation region 121 of the reaction material solution impregnated in the cotton fiber 111 to a predetermined reaction temperature. When the reaction raw material solution contains the above-described metal salt and a reducing agent, the metal salt can be reduced by heating to precipitate a metal.

上記加熱方法の一例として、容器131に入れた溶媒132中の綿繊維111にマイクロ波MWを照射する。そして、綿繊維111に含浸された反応原料溶液の浸透領域121を所定の反応温度へと加熱制御して、その中の金属前駆体(図示せず)を加熱する形態を挙げることができる。所定の反応温度は、目的の反応の種類によって適宜に設定される。すなわち、目的の反応が生じる温度以上とし、また、溶媒132の沸点未満の温度とすることが好ましい。容器131には、マイクロ波MWを吸収しにくい、例えば、ポリテトラフルオロエチレン製(例えば、テフロン(登録商標)製)、石英製、セラミック製、酸化アルミニウム(アルミナ)製、ポリエーテルエーテルケトン(PEEK)製、アクリル(商品名)樹脂製などを用いることが好ましい。上記マイクロ波MWには、一般にマイクロ波周波数2〜4GHzのSバンドを用いることができる。又は900〜930MHzや、5.725〜5.875GHzを用いることもできる。また、これ以外の周波数のマイクロ波を用いてもよい。
上記のようなマイクロ波MWの照射は、反応原料溶液の硝酸銀が直接発熱するため短時間に加熱でき、また熱伝導に起因する温度ムラが少なくできる点で好ましい。さらに非接触で加熱でき、マイクロ波MWの吸収の良い硝酸銀を選択的に加熱できる点でも好ましい。
マイクロ波照射はマルチモードでもシングルモードでもよく、目的の部位を効率的に、均一に加熱する観点ではシングルモードのマイクロ波照射を採用することが好ましい。
なお、加熱は、マイクロ波加熱に限定されない。例えば、光加熱であってもよい。またその他の加熱手段による加熱であっても良い。また、加熱は反応原料溶液に対して選択的に行ってもよいし、綿繊維や溶媒を加熱して間接的に反応原料溶液を加熱してもよい。
さらに、加熱手段以外による反応促進を用いることもできる。例えば、光重合では紫外線や可視光の照射でもよい。また、超音波の照射による反応促進も利用できる。若しくは衝撃波など圧力を反応開始に利用ができる。若しくはゆるやかな反応の場合は、単に静置することも有効な反応制御方法である。また、結晶化や析出など低温で促進される反応では、低温環境に保持するのも、有効な反応制御方法である。
As an example of the heating method, the microwave MW is applied to the cotton fibers 111 in the solvent 132 contained in the container 131. The permeation region 121 of the reaction raw material solution impregnated in the cotton fiber 111 is controlled to be heated to a predetermined reaction temperature, and a metal precursor (not shown) therein is heated. The predetermined reaction temperature is appropriately set depending on the type of the target reaction. That is, the temperature is preferably equal to or higher than the temperature at which the target reaction occurs, and lower than the boiling point of the solvent 132. The container 131 is made of, for example, polytetrafluoroethylene (for example, Teflon (registered trademark)), quartz, ceramic, aluminum oxide (alumina), polyetheretherketone (PEEK), which hardly absorbs the microwave MW. ), And acrylic (trade name) resin. For the microwave MW, generally, an S band having a microwave frequency of 2 to 4 GHz can be used. Alternatively, 900 to 930 MHz or 5.725 to 5.875 GHz can be used. Also, microwaves of other frequencies may be used.
Irradiation with the microwave MW as described above is preferable in that silver nitrate of the reaction raw material solution directly generates heat, so that heating can be performed in a short time and temperature unevenness due to heat conduction can be reduced. Further, it is preferable because it can be heated in a non-contact manner and can selectively heat silver nitrate having good absorption of microwave MW.
Microwave irradiation may be multi-mode or single-mode, and it is preferable to employ single-mode microwave irradiation from the viewpoint of efficiently and uniformly heating a target portion.
Note that heating is not limited to microwave heating. For example, light heating may be used. Heating by other heating means may be used. In addition, heating may be performed selectively on the reaction raw material solution, or cotton fiber or a solvent may be heated to indirectly heat the reaction raw material solution.
Further, reaction promotion by means other than heating means can be used. For example, in photopolymerization, irradiation with ultraviolet light or visible light may be used. Further, reaction promotion by irradiation with ultrasonic waves can also be used. Alternatively, pressure such as a shock wave can be used to start the reaction. Alternatively, in the case of a gentle reaction, simply standing still is an effective reaction control method. In a reaction promoted at a low temperature, such as crystallization or precipitation, maintaining a low temperature environment is also an effective reaction control method.

上記加熱によって、綿繊維111内の浸透領域121で選択的に化学反応を生じさせて化学物質を生成する。例えば、金属前駆体から金属を析出させる。   By the heating, a chemical reaction is selectively caused in the permeation region 121 in the cotton fiber 111 to generate a chemical substance. For example, a metal is deposited from a metal precursor.

その後、溶媒132から綿繊維111を取出し、必要により所望の溶媒中に浸漬するなどして洗浄し、次いで乾燥し、目的の機能性多孔質素材を得ることができる。洗浄は、エタノールに浸漬し、超音波洗浄機にて洗浄することが好ましい。また乾燥は、大気中における自然乾燥若しくは電気炉による加熱乾燥によって行うことができる。若しくは、空気や窒素などと接触させて乾燥させることも有効である。また、上記洗浄は、水若しくはアルコールなどの液体に浸漬して洗浄してもよく、流水や流動状態の液体に接触させて洗浄してもよい。   After that, the cotton fiber 111 is taken out from the solvent 132, washed if necessary by dipping it in a desired solvent, and then dried to obtain a desired functional porous material. The washing is preferably performed by dipping in ethanol and washing with an ultrasonic washing machine. Drying can be performed by natural drying in the air or heating and drying in an electric furnace. Alternatively, it is also effective to dry by contacting with air or nitrogen. The washing may be performed by immersion in a liquid such as water or alcohol, or may be performed by contact with running water or a liquid in a flowing state.

上記にようにして作製した綿繊維111は、図6に示すように、二次細胞壁116のミクロフィブリル118間に機能性化学物質(金属等)を有する。   The cotton fiber 111 produced as described above has a functional chemical substance (metal or the like) between the microfibrils 118 of the secondary cell wall 116, as shown in FIG.

上記実施形態では、主に、多孔質素材に親水性の綿繊維111を用いた場合に焦点をあてて説明したが、多孔質素材は上述した通り、綿繊維に限られない。
すなわち、反応原料溶液には疎水性の反応原料溶液を用いて、その反応原料溶液を疎水性の多孔質素材の孔内に浸透させ、さらに、その多孔質素材を反応原料溶液に対して非相溶性の親水性の溶媒に浸漬することによって、反応原料溶液を多孔質素材の孔内のより内部へと移行させることもできる。そして、多孔質素材内部へと移行させた反応原料溶液に化学反応を生じさせることによって、綿繊維と同様に、多孔質素材の表面よりもその内部に多く化学物質(例えば金属)を生成することができる。
また、化学反応は、上述のように加熱によることができるが、加熱に限定されるものではなく、反応原料の種類によって、光(放射線)照射、超音波照射、衝撃波照射、静置、冷却等の手段を用いることもできる。
本発明において化学反応という用語は広義の意味に用いる。すなわち、化学物質が反応して別の化学物質へと変化することの他、化学物質の状態の変化も、本発明における化学反応に包含される。例えば、化学物質自体の変化を生じない結晶化もしくは析出も本発明における化学反応に包含される。本発明の機能性多孔質素材の製造方法を適用する化学反応の好ましい例としては、例えば、酸化反応、還元反応、重合反応、縮合反応、置換反応結晶化及び析出があげられる。
具体的な例として、上述のように上記反応原料溶液が金属前駆体を含み、上記化学反応が、上記金属前駆体から金属を析出する反応である形態を挙げることができる。
また、上記反応原料溶液がアルコキシシラン化合物(好ましくはテトラアルコキシシラン)を含み、上記化学反応が、上記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である形態を挙げることができる。
また、上記化学反応が、上記反応原料溶液中の化学物質の結晶化や析出である形態を挙げることができる。
また、上記反応原料溶液が、シリカ源、アルカリ源及び水を含み、又は、シリカ源、アルカリ源及び水に加えケイ素を置換可能な金属源を含み、上記化学反応がゼオライトを生じる反応である形態を挙げることができる。シリカ源としてはコロイダルシリカ、テトラエトキシシラン(TEOS)等を挙げることができる。アルカリ源としてはアルカリ土類金属カチオン、アルキルアンモニウムカチオン等を挙げることができる。ケイ素を置換可能な金属源としてはアルミナ、チタン等を挙げることができる。
さらに、上記反応原料溶液がポリアミック酸を含み、上記化学反応が上記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である形態を挙げることができる。
In the above embodiment, the description has been mainly focused on the case where the hydrophilic cotton fiber 111 is used as the porous material, but the porous material is not limited to the cotton fiber as described above.
That is, using a hydrophobic reaction raw material solution as the reaction raw material solution, the reaction raw material solution is permeated into the pores of the hydrophobic porous material, and the porous raw material is incompatible with the reaction raw material solution. By immersing the raw material in a soluble hydrophilic solvent, the reaction raw material solution can be transferred further inside the pores of the porous material. Then, by causing a chemical reaction in the reaction raw material solution transferred to the inside of the porous material, a chemical substance (for example, a metal) is generated more inside the porous material than on the surface of the porous material, like the cotton fiber. Can be.
The chemical reaction can be performed by heating as described above, but is not limited to heating. Depending on the type of the reaction raw material, light (radiation) irradiation, ultrasonic irradiation, shock wave irradiation, standing, cooling, etc. Means can also be used.
In the present invention, the term chemical reaction is used in a broad sense. That is, in addition to a chemical substance reacting and changing to another chemical substance, a change in the state of a chemical substance is also included in the chemical reaction in the present invention. For example, crystallization or precipitation that does not change the chemical substance itself is included in the chemical reaction in the present invention. Preferred examples of the chemical reaction to which the method for producing a functional porous material of the present invention is applied include an oxidation reaction, a reduction reaction, a polymerization reaction, a condensation reaction, a substitution reaction crystallization, and precipitation.
As a specific example, there can be mentioned a form in which the reaction raw material solution contains a metal precursor and the chemical reaction is a reaction for precipitating a metal from the metal precursor as described above.
The reaction raw material solution may include an alkoxysilane compound (preferably tetraalkoxysilane), and the chemical reaction may be a reaction that produces silica by hydrolysis of the alkoxysilane compound and subsequent condensation polymerization. .
Further, there may be mentioned a form in which the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution.
Further, a form in which the reaction raw material solution contains a silica source, an alkali source and water, or a metal source capable of replacing silicon in addition to the silica source, the alkali source and water, and the chemical reaction is a reaction that generates zeolite. Can be mentioned. Examples of the silica source include colloidal silica and tetraethoxysilane (TEOS). Examples of the alkali source include an alkaline earth metal cation and an alkyl ammonium cation. Examples of the metal source capable of replacing silicon include alumina and titanium.
Further, there may be mentioned a form in which the reaction raw material solution contains a polyamic acid, and the chemical reaction is a reaction that produces a polyimide by a dehydration and ring closure reaction of the polyamic acid.

[機能性多孔質素材]
本発明の機能性多孔質素材は、上記説明した多孔質素材において、その孔内に機能性化学物質を内包するものである。内包とは、多孔質素材の外表面より内部側の孔内に機能性化学物質がより多く存在することを意味する。本発明の機能性多孔質素材が、その孔内に機能性化学物質を内包することにより、機能性多孔質素材が摩擦等に曝されても機能性を長期に亘り発現することができ、また人体等と接触させても機能性化学物質の皮膚等への直接的な接触を防ぎ又は抑えることができる。
機能性化学物質は、導電機能、抗菌機能、抗ウィルス機能、防カビ機能、防ダニ機能、生物忌避機能、調湿機能、保温機能、発熱機能、吸熱機能、冷感機能、脱臭機能、消臭機能、芳香性、有害物質捕獲機能、有害物質無害化機能、薬品徐放性機能、発色機能、発光機能、紫外線遮蔽機能、電磁波遮蔽機能、絶縁機能、誘電性、磁性、電磁波反射機能、紫外線・可視光線・赤外線吸収機能、紫外線・可視光線・赤外線反射機能、防音機能、遮熱機能、防炎機能、防火機能、難燃性、防汚機能、制電機能、帯電防止機能、撥水機能、親水機能、形状記憶機能、形態安定機能、衝撃吸収機能、耐切創機能、鎮静作用の少なくともいずれか一つを有することが好ましい。具体的には、銀、銅、白金、パラジウム、錫、ニッケル、コバルト、金等の種々の金属若しくはそれらの金属を含む化合物が挙げられる。また、導電性高分子、ゼオライト、層状化合物、粘土、シリカゲル、無機結晶、有機結晶、アモルファス粒子、マイクロカプセル、ナノ細孔材料、半導体材料、誘電体材料、磁性材料、圧電材、熱電材料、光触媒、発光材、蛍光材、蓄光材、酸化チタン、保水材、吸水性ポリマー、活性炭、難燃剤、消火剤、断熱材、蓄熱材、保温剤香料、衝撃吸収材、顔料、インク、鎮静剤、精神安定剤、医薬品、抗菌材、抗ウィルス材、防カビ材等を挙げることができる。
[Functional porous material]
The functional porous material of the present invention is a porous material as described above, which contains a functional chemical substance in its pores. The term “encapsulation” means that a larger amount of the functional chemical substance is present in the pores on the inner side than the outer surface of the porous material. The functional porous material of the present invention, by including a functional chemical substance in the pores, can exhibit functionality for a long time even if the functional porous material is exposed to friction or the like, Even when the functional chemical substance is brought into contact with the human body or the like, direct contact of the functional chemical substance with the skin or the like can be prevented or suppressed.
Functional chemicals are conductive, antibacterial, antiviral, antifungal, anti-mite, biological repellent, humidity-controlling, heat-retaining, heat-generating, heat-absorbing, cooling, deodorizing, and deodorizing. Function, fragrance, harmful substance capture function, harmful substance detoxification function, chemical sustained release function, coloring function, luminescence function, ultraviolet shielding function, electromagnetic wave shielding function, insulation function, dielectric, magnetism, electromagnetic wave reflection function, ultraviolet rays Visible light / infrared absorption function, ultraviolet / visible light / infrared reflection function, soundproof function, heat shield function, flameproof function, fireproof function, flame retardant, antifouling function, antistatic function, antistatic function, water repellent function, It preferably has at least one of a hydrophilic function, a shape memory function, a morphological stabilizing function, a shock absorbing function, an anti-cut wound function, and a sedative action. Specific examples include various metals such as silver, copper, platinum, palladium, tin, nickel, cobalt, and gold, or compounds containing those metals. In addition, conductive polymers, zeolites, layered compounds, clay, silica gel, inorganic crystals, organic crystals, amorphous particles, microcapsules, nanopore materials, semiconductor materials, dielectric materials, magnetic materials, piezoelectric materials, thermoelectric materials, photocatalysts , Luminescent material, Fluorescent material, Luminescent material, Titanium oxide, Water retention material, Water absorbing polymer, Activated carbon, Flame retardant, Fire extinguisher, Insulation material, Heat storage material, Heat retention fragrance, Impact absorber, Pigment, Ink, Sedative, Spirit Examples include stabilizers, pharmaceuticals, antibacterial materials, antiviral materials, and antifungal materials.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention should not be construed as being limited thereto.

上記した合成方法を用いて、繊維内部に銀を含有している綿布を製造したのでその詳細について説明する。   A cotton cloth containing silver inside the fiber was manufactured by using the above-described synthesis method, and the details will be described.

[実施例1]
実施例1は、試料を以下のように作製した。市販されている白色の綿布(5cm(縦)×17cm(横)×0.25mm(厚さ)、目付け300g/m)を測定試料とした。綿布の厚さは、測定領域に100g/cmの圧力をかけたときに測定した厚さである。
その測定試料を、反応原料溶液の硝酸銀1Mを溶解させたエチレングリコール溶液(3ml)に5分間浸漬して、全量を吸収させた。
この綿布とドデカン(15ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、綿布をドデカン中に3分間浸漬し、綿繊維の表面又はその近傍に存在する反応原料溶液を綿布の綿繊維の孔内内部や綿繊維組織内へと移行させた。その後、テフロン(登録商標)製の蓋を被せて密閉し、マイクロ波加熱を行った。マイクロ波加熱装置としてMicroSYNTH(商品名)(マイルストーンゼネラル株式会社製)を用い、溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧(101kPa)にして5分間の加熱を行った。なお、150℃到達時の容器内圧力は1.2気圧であった。この容器内圧力の上昇は、硝酸銀溶液中に含まれる水分が気体になったためと推察される。温度測定は、光ファイバー温度計を用いて、ドデカンの温度を測定した。圧力測定は、MicroSYNTH付属の圧力センサーを用いて、容器内の圧力を測定した。
加熱後、容器を50℃まで冷却して、容器から綿布を取り出した。そして、洗浄し、乾燥した。洗浄は、綿布をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、走査型電子顕微鏡(SEM)(日立ハイテクノロジー社製S−4800(商品名))及びエネルギー分散型X線分光法(EDX)(BRUKER社製QUANTAX400(商品名))を用いて、綿布断面の観察及び組成分析を行った。
カッターを用いて綿布を切断し、その断面をSEMにより観察した。図7(A)に示したように、綿布のSEM断面像において、図の中心付近に示された矢印A方向に沿って綿繊維111の断面の組成分析を行い、一本の綿繊維に対して直径方向の銀成分及びカーボン成分の強度分布を調べた。図7(B)に示したように、成分の強度分布より、綿繊維表面はカーボン成分が主であり、銀成分は綿繊維表面にはほとんど含まれていないことが確認された。また、綿繊維は中空(内腔)を有することが知られており、銀成分は2つのピークを示したことから、二次細胞壁116のミクロフィブリル118(図6参照)間の隙間に選択的に分布しているといえる。
[Example 1]
In Example 1, a sample was prepared as follows. A commercially available white cotton cloth (5 cm (length) × 17 cm (width) × 0.25 mm (thickness), weight 300 g / m 2 ) was used as a measurement sample. The thickness of the cotton cloth is a thickness measured when a pressure of 100 g / cm 2 is applied to the measurement area.
The measurement sample was immersed for 5 minutes in an ethylene glycol solution (3 ml) in which 1 M of silver nitrate as a reaction raw material solution was dissolved to absorb the entire amount.
This cotton cloth and dodecane (15 ml) are placed in a Teflon (registered trademark) container (capacity: 100 ml), and the cotton cloth is immersed in dodecane for 3 minutes, and the reaction raw material solution present on or near the surface of the cotton fiber is washed with the cotton cloth. Was transferred into the inside of the pores of the cotton fiber and into the cotton fiber tissue. Thereafter, a lid made of Teflon (registered trademark) was put on and sealed, and microwave heating was performed. Using MicroSYNTH (trade name) (manufactured by Milestone General Co., Ltd.) as a microwave heating apparatus, heating was performed for 5 minutes at a solvent temperature of 150 ° C. and a pressure in the vessel at the start of heating of 1 atm (101 kPa). . The pressure in the vessel when reaching 150 ° C. was 1.2 atm. This increase in the pressure in the container is presumed to be because the water contained in the silver nitrate solution became gas. For the temperature measurement, the temperature of dodecane was measured using an optical fiber thermometer. For the pressure measurement, the pressure in the container was measured using a pressure sensor attached to MicroSYNTH.
After the heating, the container was cooled to 50 ° C., and the cotton cloth was taken out of the container. Then, it was washed and dried. For washing, a cotton cloth was immersed in ethanol and washed with an ultrasonic cleaner for 3 minutes. The cotton cloth was dried naturally in the air at room temperature for 24 hours.
Then, using a scanning electron microscope (SEM) (S-4800 (trade name) manufactured by Hitachi High-Technologies Corporation) and an energy dispersive X-ray spectroscopy (EDX) (QUANTAX 400 (trade name) manufactured by BRUKER), a cotton cloth cross section is used. Was observed and the composition was analyzed.
The cotton cloth was cut using a cutter, and the cross section was observed by SEM. As shown in FIG. 7A, in the SEM cross-sectional image of the cotton cloth, the composition of the cross-section of the cotton fiber 111 was analyzed along the direction of arrow A shown near the center of the figure, and one cotton fiber was analyzed. The intensity distribution of the silver component and the carbon component in the diameter direction was examined. As shown in FIG. 7 (B), it was confirmed from the intensity distribution of the components that the surface of the cotton fiber was mainly composed of the carbon component and the silver component was hardly contained on the surface of the cotton fiber. Further, it is known that the cotton fiber has a hollow (lumen), and the silver component shows two peaks. Therefore, the cotton fiber is selectively formed in the gap between the microfibrils 118 (see FIG. 6) of the secondary cell wall 116. It can be said that it is distributed in.

[実施例2]
実施例2は、試料を以下のように作製した。市販されている綿布(2.5cm(縦)×5cm(横)×0.25mm(厚さ)、目付け300g/m)を測定試料として、酢酸銀0.4Mとエチレンジアミン四酢酸四ナトリウム0.8Mを溶解させたエチレングリコール溶液(0.5ml)に5分間浸漬して、全量を吸収させた。
この綿布とドデカン(15ml)及びヘキサン(5ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、綿布をドデカンとヘキサンの混合溶媒中に3分間浸漬し、綿繊維の表面又はその近傍に存在する反応原料溶液を綿布の綿繊維の孔内内部や綿繊維組織内へと移行させた。その後、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧にして5分間の加熱を行った。なお、150℃到達時の容器内圧力は3.5気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。
加熱後、容器を50℃まで冷却して、容器から綿布を取り出した。そして、洗浄し、乾燥した。洗浄は、綿布をエタノールに浸漬した状態にして、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、SEM及びEDXを用いて、綿布断面の観察及び組成分析を行った。図8(A)に示したように、綿布のSEM断面像において、図の中心付近に示された矢印B方向に沿って綿繊維の断面の組成分析を行い、一本の綿繊維に対して直径方向の銀成分及びカーボン成分の強度分布を調べた。その結果、図8(B)に示したように、成分の強度分布より、綿繊維表面はカーボン成分が主であり、銀成分は綿繊維表面にはほとんど含まれていないことが確認された。銀成分は綿繊維の中空に近い部分でピークを示した。これは容器内圧力を高くしたことで、実施例1よりも反応原料溶液が綿繊維の中心部に移動し、綿繊維の太さ方向の中心部に銀が分布していた。
[Example 2]
In Example 2, a sample was prepared as follows. Using a commercially available cotton cloth (2.5 cm (length) × 5 cm (width) × 0.25 mm (thickness), basis weight 300 g / m 2 ) as a measurement sample, 0.4 M of silver acetate and 0.4% of tetrasodium ethylenediaminetetraacetate were used. It was immersed in an ethylene glycol solution (0.5 ml) in which 8 M was dissolved for 5 minutes to absorb the whole amount.
This cotton cloth, dodecane (15 ml) and hexane (5 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml), and the cotton cloth was immersed in a mixed solvent of dodecane and hexane for 3 minutes, and the surface of the cotton fiber or The reaction raw material solution existing in the vicinity was transferred to the inside of the pores of the cotton fibers of the cotton cloth and into the cotton fiber structure. Thereafter, a lid made of Teflon (registered trademark) was put on and sealed, and microwave heating was performed as in Example 1. The temperature of the solvent was set to 150 ° C., the pressure in the container at the start of heating was set to 1 atm, and heating was performed for 5 minutes. The pressure in the container when 150 ° C. was reached was 3.5 atm. This increase in the pressure in the container is presumed to be due to a part of hexane (boiling point: 69 ° C.) becoming gas.
After the heating, the container was cooled to 50 ° C., and the cotton cloth was taken out of the container. Then, it was washed and dried. For washing, the cotton cloth was immersed in ethanol and washed with an ultrasonic cleaner for 3 minutes. The cotton cloth was dried naturally in the air at room temperature for 24 hours.
Then, the cross section of the cotton cloth was observed and the composition was analyzed using SEM and EDX. As shown in FIG. 8 (A), in the SEM cross-sectional image of the cotton cloth, the composition of the cross section of the cotton fiber was analyzed along the direction of arrow B shown near the center of the figure. The intensity distribution of the silver component and the carbon component in the diameter direction was examined. As a result, as shown in FIG. 8B, it was confirmed from the intensity distribution of the components that the surface of the cotton fiber was mainly composed of the carbon component, and that the silver component was hardly contained on the surface of the cotton fiber. The silver component showed a peak near the hollow portion of the cotton fiber. This was because the pressure in the container was increased, so that the reaction raw material solution moved to the center of the cotton fiber as compared with Example 1, and silver was distributed at the center in the thickness direction of the cotton fiber.

[実施例3]
実施例3は、綿布への無機化合物の内包例として、繊維内部に非晶質シリカ(シリカゲル)を含有している綿布を製造した。その詳細について説明する。
非晶質シリカの合成反応には、TEOSをジメチルアミンで加水分解する反応を用いた。
試料は以下のように作製した。市販されている綿布0.05gを測定試料とし、反応原料溶液(0.2ml)に1分間浸漬して、全量を吸収させた。反応原料溶液は、2−プロパノール(2.5ml)、純水(0.5ml)、TEOS(0.16ml)、ジメチルアミン50質量%溶液(0.02ml)を1分間、スターラー撹拌にて混合したものを用いた。この溶液は25℃で静置する場合、透明だった溶液は約10分後から徐々に白色を呈し、約3時間後には非晶質シリカの合成反応が完了することを、透過電子顕微鏡での粒子観察から確認している。スターラー撹拌直後の反応原料溶液を用いて1分間、綿布を浸漬した。その後、フロリナート(3M社製 FC−43)を充填した石英製の試験管(内径4mm外径6mm)にこの綿布を入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、綿布の繊維の表面又はその近傍に存在する反応原料溶液を繊維の孔内内部や繊維組織内へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管から綿布を取り出し、洗浄・乾燥した。洗浄は、綿布をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、SEM及びEDXを用いて、綿布の繊維断面の観察及び組成分析を行った。カッターを用いて綿布の繊維を切断し、その断面をSEMにより観察した。図9(A)に示したように、繊維のSEM断面像において、矢印A方向に沿って繊維の断面の組成分析を行い、一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布を調べた。図9(B)に示した成分の強度分布より、シリコン成分とカーボン成分は同じ領域に分布しており、非晶質シリカは繊維内部に分布していることがわかった。
[Example 3]
In Example 3, a cotton cloth containing amorphous silica (silica gel) inside the fiber was manufactured as an example of including the inorganic compound in the cotton cloth. The details will be described.
A reaction for hydrolyzing TEOS with dimethylamine was used for the synthesis reaction of amorphous silica.
The sample was produced as follows. 0.05 g of a commercially available cotton cloth was used as a measurement sample and immersed in a reaction raw material solution (0.2 ml) for 1 minute to absorb the entire amount. As the reaction raw material solution, 2-propanol (2.5 ml), pure water (0.5 ml), TEOS (0.16 ml), and a 50% by mass dimethylamine solution (0.02 ml) were mixed for 1 minute by stirring with a stirrer. Was used. When this solution was allowed to stand at 25 ° C., it was confirmed by a transmission electron microscope that the transparent solution gradually turned white after about 10 minutes, and that the synthesis reaction of amorphous silica was completed after about 3 hours. Confirmed from particle observation. A cotton cloth was immersed for 1 minute using the reaction raw material solution immediately after stirring by the stirrer. Thereafter, the cotton cloth was put into a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with Florinert (FC-43 manufactured by 3M). Then, one end of the test tube is connected to a plunger pump, and further pressurized to about 5 atm by sending florinate, and the reaction raw material solution existing on or near the surface of the cotton fabric fiber is filled into the inside of the fiber hole or inside. It migrated into the fibrous tissue. The pressurization was completed within 10 minutes from the start of the mixing of the reaction raw material solution, and the pressurized state at about 5 atm was maintained at 25 ° C. for 3 hours. Three hours after the start of pressurization, the cotton cloth was taken out of the test tube, washed and dried. For washing, a cotton cloth was immersed in ethanol and washed with an ultrasonic cleaner for 3 minutes. The cotton cloth was dried naturally in the air at room temperature for 24 hours.
Thereafter, the cross section of the fiber of the cotton cloth was observed and the composition was analyzed using SEM and EDX. The fibers of the cotton cloth were cut using a cutter, and the cross section was observed by SEM. As shown in FIG. 9A, in the SEM cross-sectional image of the fiber, the composition of the cross section of the fiber was analyzed along the direction of arrow A, and the strength of the silicon component and the carbon component in the diametric direction for one fiber. The distribution was examined. From the intensity distribution of the components shown in FIG. 9B, it was found that the silicon component and the carbon component were distributed in the same region, and the amorphous silica was distributed inside the fiber.

[実施例4]
実施例4は、綿布(綿花)とは異なる天然繊維への機能性物質の内包例として、カポック繊維(通称パンヤ綿)の内部に非晶質シリカ(シリカゲル)を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されているカポック繊維0.02gを測定試料とし、反応原料溶液(0.5ml)に1分間浸漬して、全量を吸収させた。反応原料溶液は、実施例3と同じものを用いた。1分間の浸漬後、フロリナートを充填した石英製の試験管(内径4mm外径6mm)にカポック繊維を入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、カポック繊維の表面又はその近傍に存在する反応原料溶液をカポック繊維の内部へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管からカポック繊維を取り出し、洗浄・乾燥した。洗浄は、カポック繊維をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、カポック繊維を室温の大気中にて24時間自然乾燥した。
その後、カッターを用いてカポック繊維を切断し、その断面をSEMにより観察した。図10(A)に示した反応原料溶液を吸収させる前のカポック繊維の断面像と、図10(B)に示す反応原料溶液を吸収させて上述の処理を行った後のカポック繊維の断面像を比較すると、図10(B)に示したように、繊維の中空部に多量の粒子が存在することが確認された。さらに一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布をEDXにて調べた。図11(C)に示したように、シリコン成分は主に繊維の中空部に分布することが確認され、非晶質シリカ粒子は主に繊維の中空部に分布していることがわかった。
[Example 4]
Example 4 produced a fiber containing amorphous silica (silica gel) inside Kapok fiber (commonly known as panya cotton) as an example of inclusion of a functional substance in a natural fiber different from cotton cloth (cotton). . The details will be described.
The sample was produced as follows. A commercially available Kapok fiber (0.02 g) was used as a measurement sample, and immersed in a reaction raw material solution (0.5 ml) for 1 minute to absorb the entire amount. The same reaction raw material solution as in Example 3 was used. After immersion for 1 minute, the kapok fiber was put into a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with Fluorinert. Then, one end of the test tube is connected to a plunger pump, and further pressurized to about 5 atm by sending florinate, and the reaction raw material solution present on or near the surface of the kapok fiber is transferred into the inside of the kapok fiber. I let it. The pressurization was completed within 10 minutes from the start of the mixing of the reaction raw material solution, and the pressurized state at about 5 atm was maintained at 25 ° C. for 3 hours. Three hours after the start of pressurization, the Kapok fiber was taken out of the test tube, washed and dried. For washing, the Kapok fiber was immersed in ethanol, and washed with an ultrasonic cleaner for 3 minutes. For drying, the kapok fiber was naturally dried in the air at room temperature for 24 hours.
Thereafter, the Kapok fiber was cut using a cutter, and the cross section was observed by SEM. A cross-sectional image of the Kapok fiber before absorbing the reaction raw material solution shown in FIG. 10A and a cross-sectional image of the Kapok fiber after absorbing the reaction raw material solution shown in FIG. As shown in FIG. 10B, it was confirmed that a large amount of particles existed in the hollow portion of the fiber. Further, the intensity distribution of the silicon component and the carbon component in the diameter direction of one fiber was examined by EDX. As shown in FIG. 11C, it was confirmed that the silicon component was mainly distributed in the hollow portion of the fiber, and that the amorphous silica particles were mainly distributed in the hollow portion of the fiber.

[実施例5]
実施例5は、化学繊維への無機化合物の内包例として、多孔質体中空糸の内部にシリカを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている浄水器用の多孔質体中空糸(東レ社製 MKC.MXJ(600L))を3cmの長さに切って測定試料とし、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで、多孔質体中空糸の繊維内部まで反応原料溶液を吸収させた。反応原料溶液は、実施例3と同じものを用いた。約1分間、反応原料溶液を吸収させた後、フロリナートを充填した石英製の試験管(内径4mm外径6mm)にこの繊維を入れて、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、繊維の表面又はその近傍に存在する反応原料溶液を繊維の内部へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管から多孔質体中空糸の繊維を取り出し、取り出した繊維を室温の大気中にて72時間自然乾燥した。
その後、SEM及びEDXを用いて、多孔質体中空糸の繊維断面の観察及び組成分析を行った。カッターを用いて繊維を切断し、その断面をSEMにより観察した。図12(A)に示したように、多孔質体中空糸の繊維のSEM断面像において、図の中心付近に示された矢印A方向に沿って繊維の断面の組成分析を行い、一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布を調べた。図12(B)に示した成分の強度分布より、シリコン成分とカーボン成分は同じ領域に分布しており、非晶質シリカは多孔質体中空糸の繊維内部に分布していることがわかった。
[Example 5]
In Example 5, as an example of encapsulating an inorganic compound in a chemical fiber, a fiber containing silica inside a porous hollow fiber was produced. The details will be described.
The sample was produced as follows. A commercially available porous hollow fiber for a water purifier (MKC. MXJ (600 L) manufactured by Toray Industries, Inc.) is cut into a length of 3 cm to obtain a measurement sample, immersed in a reaction raw material solution, and degassed with an evaporator (about 0.8 mm). Pressure) to absorb the reaction raw material solution to the inside of the fiber of the porous hollow fiber. The same reaction raw material solution as in Example 3 was used. After absorbing the reaction raw material solution for about 1 minute, this fiber was put into a test tube (inner diameter 4 mm, outer diameter 6 mm) made of quartz filled with Fluorinert, and one end of the test tube was connected to a plunger pump. Was fed to the reactor to increase the pressure to about 5 atm, and the reaction raw material solution existing on or near the surface of the fiber was transferred into the fiber. The pressurization was completed within 10 minutes from the start of the mixing of the reaction raw material solution, and the pressurized state at about 5 atm was maintained at 25 ° C. for 3 hours. Three hours after the start of pressurization, the fibers of the porous hollow fiber were taken out of the test tube, and the taken out fibers were air-dried in the air at room temperature for 72 hours.
Then, the cross section of the fiber of the porous hollow fiber was observed and the composition was analyzed using SEM and EDX. The fiber was cut using a cutter, and the cross section was observed by SEM. As shown in FIG. 12A, in the SEM cross-sectional image of the fiber of the porous hollow fiber, the composition of the cross-section of the fiber was analyzed along the direction of arrow A shown near the center of the figure. The strength distribution of the silicon component and the carbon component in the diameter direction with respect to the fiber was examined. From the intensity distribution of the components shown in FIG. 12 (B), it was found that the silicon component and the carbon component were distributed in the same region, and the amorphous silica was distributed inside the fiber of the porous hollow fiber. .

[実施例6]
実施例6は、化学繊維への無機化合物の内包例として、多孔質体中空糸の内部にゼオライトを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、(材質:テフロン(登録商標))、内径3mm、外径4mm)を4cmの長さに切り、繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで繊維内部まで反応原料溶液を吸収させた。反応原料溶液は、アルミン酸ナトリウム、コロイダルシリカ30質量%溶液、水酸化ナトリウムをそれぞれ純水に溶解させて、それらを、Na:Al:Si:HO=4:1:1:53となるように混合した後、室温にて24時間撹拌したものを用いた。約1分間、反応原料溶液を吸収させた後、この繊維とドデカン(15ml)及びヘキサン(5ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧にして10分間の加熱を行った。なお、150℃到達時の容器内圧力は約5気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。加熱後、容器を30℃まで冷却して、容器から繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、繊維を切断したところ、繊維の内壁に白色の内包物が付着しているのを確認した。この内包物に対して実施例1と同様のSEM及びEDXを用いて、観察及び組成分析を行った。
カッターを用いて繊維を切断し、その断面をSEMにより観察した。図13(A)に示すSEM像で見られるように、粒子径5〜10μmの球状粒子が確認された。また、図14(B)に示すEDXでの組成分析結果より、酸素、ナトリウム、シリコン、アルミニウム成分は均質に分布していることが分かった。EDXのエネルギースペクトルから求めた組成比(atom%)は、O:Na:Si:Al=50.2:29.1:11.4:9.3であった。続いて、内包物の粉末に対するX線回折測定(装置:Rigaku社製 SmartLab)を行った。その結果、図15(C)に示した回折パターンより、SOD型のゼオライト構造が確認され、繊維の内包物にゼオライト微粒子が含まれていることがわかった。
[Example 6]
In Example 6, as an example of encapsulating an inorganic compound in a chemical fiber, a fiber containing zeolite inside a porous hollow fiber was produced. The details will be described.
The sample was produced as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poeflon (registered trademark) tube, (material: Teflon (registered trademark)), inner diameter 3 mm, outer diameter 4 mm) is cut into 4 cm lengths. Then, both ends of the fiber were fused and sealed by heating with a burner to obtain a measurement sample. Then, it was immersed in the reaction raw material solution and deaerated (about 0.8 atm) by an evaporator to absorb the reaction raw material solution to the inside of the fiber. The reaction raw material solution is obtained by dissolving sodium aluminate, a 30% by mass solution of colloidal silica, and sodium hydroxide in pure water, respectively, to obtain Na: Al: Si: H 2 O = 4: 1: 1: 53. And then stirred at room temperature for 24 hours. After absorbing the reaction raw material solution for about 1 minute, the fiber, dodecane (15 ml) and hexane (5 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml), and Teflon (registered trademark) was added. A lid was put on and sealed, and microwave heating was performed in the same manner as in Example 1. The temperature of the solvent was set to 150 ° C., and the pressure in the container at the start of heating was set to 1 atm, and heating was performed for 10 minutes. The pressure in the container when 150 ° C. was reached was about 5 atm. This increase in the pressure in the container is presumed to be due to a part of hexane (boiling point: 69 ° C.) becoming gas. After heating, the container was cooled to 30 ° C., the fiber was taken out from the container, and air-dried in the air at room temperature for 72 hours.
Thereafter, when the fiber was cut, it was confirmed that a white inclusion was attached to the inner wall of the fiber. Observation and composition analysis were performed on this inclusion using the same SEM and EDX as in Example 1.
The fiber was cut using a cutter, and the cross section was observed by SEM. As can be seen from the SEM image shown in FIG. 13A, spherical particles having a particle diameter of 5 to 10 μm were confirmed. Further, from the result of the composition analysis by EDX shown in FIG. 14B, it was found that the oxygen, sodium, silicon, and aluminum components were homogeneously distributed. The composition ratio (atom%) determined from the energy spectrum of EDX was O: Na: Si: Al = 50.2: 29.1: 11.4: 9.3. Subsequently, X-ray diffraction measurement (apparatus: SmartLab, manufactured by Rigaku Corporation) was performed on the powder of the inclusions. As a result, the SOD type zeolite structure was confirmed from the diffraction pattern shown in FIG. 15 (C), and it was found that zeolite fine particles were contained in the inclusions of the fibers.

[実施例7]
実施例7は、化学繊維への有機化合物の内包例として、多孔質体中空糸の内部にポリイミドを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径1mm、外径2mm)を4cmの長さに切って測定試料とし、繊維の両端をバーナーで熱することで融着・封止した。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで繊維内部まで反応原料溶液を吸収させた。反応原料溶液として、poly(4,4’−oxydiphenylene−pyromellitimide)(ピロメリット酸二無水物と4,4’−オキシジアニリンの共重合体であり、代表的なポリイミドであるカプトン(登録商標)の原料)が2質量%、無水酢酸とピリジンが各0.06質量%ずつ溶解しているN,N−ジメチルアセトアミド溶液を用いた。約10秒間、繊維に反応原料溶液を吸収させた後、この繊維とヘキサン(15ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を90℃、加熱開始時の容器内圧力を1気圧にして30分間の加熱を行った。なお、90℃到達時の容器内圧力は3気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。加熱後、容器を25℃まで冷却して、容器から多孔質体中空繊維を取り出し、室温の大気中にて24時間自然乾燥した。
乾燥後の多孔質体中空繊維の外表面は実験前と同じ白色を呈していたが、繊維を切断したところ、図16に示した写真で見られるように、繊維内壁に粉末状の黄色い内包物が付着しており、繊維内にポリイミド粉末が含まれていることがわかった。
[Example 7]
In Example 7, as an example of encapsulating an organic compound in a chemical fiber, a fiber containing polyimide inside a porous hollow fiber was produced. The details will be described.
The sample was produced as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, trade name: Poeflon (registered trademark) tube, inner diameter 1 mm, outer diameter 2 mm) is cut into a length of 4 cm to obtain a measurement sample, and both ends of the fiber are burner. And sealed by heating. Then, it was immersed in the reaction raw material solution and deaerated (about 0.8 atm) by an evaporator to absorb the reaction raw material solution to the inside of the fiber. As a reaction raw material solution, poly (4,4'-oxydiphenylene-pyromellitimide) (a copolymer of pyromellitic dianhydride and 4,4'-oxydianiline, and a typical polyimide, Kapton (registered trademark)) Was used, and an N, N-dimethylacetamide solution in which 2% by mass of acetic anhydride and 0.06% by mass of pyridine were dissolved was used. After allowing the fiber to absorb the reaction raw material solution for about 10 seconds, the fiber and hexane (15 ml) are placed in a Teflon (registered trademark) container (capacity: 100 ml), and a Teflon (registered trademark) lid is placed. Then, microwave heating was performed in the same manner as in Example 1. Heating was performed for 30 minutes at a solvent temperature of 90 ° C. and a pressure in the vessel at the start of heating of 1 atm. The pressure in the vessel when the temperature reached 90 ° C. was 3 atm. This increase in the pressure in the container is presumed to be due to a part of hexane (boiling point: 69 ° C.) becoming gas. After heating, the container was cooled to 25 ° C., the porous hollow fiber was taken out of the container, and was naturally dried in the air at room temperature for 24 hours.
The outer surface of the porous hollow fiber after drying had the same white color as before the experiment, but when the fiber was cut, as shown in the photograph shown in FIG. 16, a powdery yellow inclusion on the fiber inner wall was observed. Was adhered, and it was found that the polyimide powder was contained in the fiber.

[実施例8]
実施例8は、化学繊維への有機結晶の内包例として、多孔質体中空糸の内部にヒノキチオール結晶を含有している繊維を製造した。その詳細について説明する。
本実施例は、実施例1〜7とは逆の非相溶性溶媒の組み合わせ、すなわち疎水性溶媒に原料を溶解させて、親水性溶媒にて加圧を行っている例である。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径3mm、外径4mm)を4cmの長さに切り、多孔質体中空繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで多孔質体中空繊維内部まで反応原料溶液を吸収させた。反応原料溶液として、ヒノキチオールを1質量%溶解したヘキサン溶液を用いた。約1分間、反応原料溶液を吸収させた後、一端を封止した長さ1mのチューブ(内径10mm)にこの多孔質体中空繊維と水を入れて、封止部を下にしてチューブを鉛直方向に設置し、多孔質体中空繊維をチューブの封止部付近に保持することで、水の静水圧で約1.1気圧まで加圧した。その後、多孔質体中空繊維を含むチューブの封止部付近をウォーターバスに浸して、25℃から昇温を行った。加熱開始から約15分後に75℃に到達した時点で加熱を終了し、チューブを大気中に取り出して冷却を行った。冷却開始から10分後にはチューブ表面温度は室温である25℃となっていた。この時点で多孔質体中空繊維をチューブから取り出し、室温の大気中にて24時間自然乾燥した。
その後、カッターを用いて多孔質体中空繊維を切断し、その繊維断面をレーザー顕微鏡(キーエンス製 VK−9510)にて観察した。図17に示したように、繊維の内壁に直径50μm前後の透明な結晶物が付着しており、繊維内にヒノキチオール結晶が含まれていることがわかった。
Example 8
In Example 8, as an example of inclusion of an organic crystal in a chemical fiber, a fiber containing a hinokitiol crystal inside a porous hollow fiber was produced. The details will be described.
The present embodiment is an example in which a raw material is dissolved in a hydrophobic solvent and a pressure is applied with a hydrophilic solvent, which is a combination of incompatible solvents opposite to those in Examples 1 to 7.
The sample was produced as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poeflon (registered trademark) tube, inner diameter 3 mm, outer diameter 4 mm) is cut into a length of 4 cm, and both ends of the porous hollow fiber are burned. The sample was melted and sealed by heating in the above to prepare a measurement sample. Then, the reaction material solution was immersed in the reaction material solution and degassed (about 0.8 atm) by an evaporator to absorb the reaction material solution to the inside of the porous hollow fiber. A hexane solution in which 1% by mass of hinokitiol was dissolved was used as a reaction raw material solution. After absorbing the reaction material solution for about 1 minute, the porous hollow fiber and water are put into a 1 m long tube (inner diameter: 10 mm) sealed at one end, and the tube is placed vertically with the sealed portion down. And the porous hollow fiber was held near the sealed portion of the tube, so that the hydrostatic pressure of water was increased to about 1.1 atm. Thereafter, the vicinity of the sealed portion of the tube containing the porous hollow fibers was immersed in a water bath, and the temperature was raised from 25 ° C. The heating was stopped when the temperature reached 75 ° C. about 15 minutes after the start of heating, and the tube was taken out into the atmosphere and cooled. Ten minutes after the start of cooling, the tube surface temperature was 25 ° C., which is room temperature. At this time, the porous hollow fiber was taken out of the tube and air-dried in the air at room temperature for 24 hours.
Then, the porous hollow fiber was cut using a cutter, and the fiber cross section was observed with a laser microscope (VK-9510, manufactured by KEYENCE). As shown in FIG. 17, a transparent crystal having a diameter of about 50 μm was attached to the inner wall of the fiber, and it was found that the fiber contained hinokitiol crystal.

[実施例9]
実施例9は、化学繊維への無機結晶の内包例として、多孔質体中空糸の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径3mm、外径4mm)を4cmの長さに切り、繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、ウォーターバスにて60℃に加熱した反応原料溶液に浸してエバポレーターで脱気(0.5〜0.9気圧)することで繊維内部まで溶液を吸収させた。反応原料溶液として、1Lの水に焼ミョウバン(AlK(SO・12HO)170gを溶解させたものを用いた。約1分間、反応原料溶液を吸収させた後、この多孔質体中空繊維を素早く60℃のドデカンを充填した石英製の試験管(内径4mm、外径6mm)に入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにドデカンを送液することで約1.1気圧まで加圧した。この試験管を60℃のウォーターバスに5分間浸漬後、試験管を徐冷した。徐冷開始から約10分後に25℃となり、試験管から多孔質体中空繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、カッターを用いて多孔質体中空繊維を切断し、その繊維断面をレーザー顕微鏡にて観察した。図18に示したように、繊維の内壁に直径数百μmの透明な結晶物が付着しており、繊維内にミョウバン結晶が含まれていることがわかった。
[Example 9]
In Example 9, a fiber containing an alum crystal inside a porous hollow fiber was manufactured as an example of inclusion of an inorganic crystal in a chemical fiber. The details will be described.
The sample was produced as follows. Cut a commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: Poeflon (registered trademark) tube, inner diameter 3 mm, outer diameter 4 mm) into a length of 4 cm, and heat both ends of the fiber with a burner. And sealed to obtain a measurement sample. Then, the solution was immersed in a reaction raw material solution heated to 60 ° C. in a water bath and deaerated (0.5 to 0.9 atm) by an evaporator to absorb the solution to the inside of the fiber. As a reaction raw material solution, a solution prepared by dissolving 170 g of calcined alum (AlK (SO 4 ) 2 .12H 2 O) in 1 L of water was used. After absorbing the reaction raw material solution for about 1 minute, the porous hollow fiber was quickly placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with dodecane at 60 ° C. Then, one end of the test tube was connected to a plunger pump, and further pressurized to about 1.1 atm by feeding dodecane. After immersing this test tube in a water bath at 60 ° C. for 5 minutes, the test tube was gradually cooled. About 10 minutes after the start of the slow cooling, the temperature became 25 ° C., and the porous hollow fiber was taken out of the test tube and air-dried in the air at room temperature for 72 hours.
Thereafter, the porous hollow fiber was cut using a cutter, and the fiber cross section was observed with a laser microscope. As shown in FIG. 18, a transparent crystal having a diameter of several hundred μm was attached to the inner wall of the fiber, and it was found that the fiber contained alum crystals.

[実施例10]
実施例10は、天然繊維への無機結晶の内包例として、竹の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。竹(直径2mm、長さ10mm)を測定試料とし、ウォーターバスにて60℃に加熱した反応原料溶液に浸して、エバポレーターで脱気(0.5〜0.9気圧)することで竹の繊維内部まで溶液を吸収させた。反応原料溶液として、1Lの水に焼ミョウバン(AlK(SO・12HO)170gを溶解させたものを用いた。約5分間、反応原料溶液を吸収させた後、この竹の繊維を素早く60℃のヘキサンを充填した石英製の試験管(内径4mm外径6mm)に入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにヘキサンを送液することで約5気圧まで加圧した。約5気圧を保持したまま、この試験管を60℃のウォーターバスに10分間浸漬後、試験管を徐冷した。徐冷開始から約10分後に25℃となり、試験管から竹の繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、竹の繊維を導管方向と平行に切断し、その繊維断面をSEM及びEDXを用いて、観察及び組成分析を行った。図19(A)に示したSEM像の点線部で囲んだ部分に見られるように、導管内において導管の直径(約50μm)と同等程度の結晶物が確認された。図20(B)に示したEDXでの組成分析結果より、結晶物には硫黄とアルミニウム成分が含まれることから、繊維の内包物にミョウバン結晶が含まれていることがわかった。
Example 10
In Example 10, as an example of inclusion of the inorganic crystal in the natural fiber, a fiber containing alum crystals in bamboo was manufactured. The details will be described.
The sample was produced as follows. A bamboo (diameter 2 mm, length 10 mm) is used as a measurement sample, immersed in a reaction raw material solution heated to 60 ° C. in a water bath, and deaerated (0.5 to 0.9 atm) with an evaporator to obtain a bamboo fiber. The solution was absorbed to the inside. As a reaction raw material solution, a solution prepared by dissolving 170 g of calcined alum (AlK (SO 4 ) 2 .12H 2 O) in 1 L of water was used. After absorbing the reaction raw material solution for about 5 minutes, the bamboo fiber was quickly placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with hexane at 60 ° C. Then, one end of the test tube was connected to a plunger pump, and hexane was further fed to increase the pressure to about 5 atm. While maintaining the pressure of about 5 atm, the test tube was immersed in a water bath at 60 ° C. for 10 minutes, and then the test tube was gradually cooled. About 10 minutes after the start of the slow cooling, the temperature reached 25 ° C., and the bamboo fiber was taken out of the test tube and air-dried in the air at room temperature for 72 hours.
Thereafter, the bamboo fiber was cut in parallel with the conduit direction, and the fiber cross section was observed and analyzed for composition using SEM and EDX. As can be seen in the portion surrounded by the dotted line in the SEM image shown in FIG. 19 (A), a crystalline material equivalent to the diameter of the conduit (about 50 μm) was confirmed in the conduit. From the result of the composition analysis by EDX shown in FIG. 20B, it was found that the alum crystals were contained in the fiber inclusions because the crystals contained sulfur and aluminum components.

[実施例11]
実施例11は、天然繊維への無機結晶の内包例として、木材の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。実施例10の竹の代わりに杉材(直径2mm、長さ8mm)を測定試料として用いた以外は同じ手順とした。
作製した繊維を導管方向と平行に切断し、その繊維断面をSEM及びEDXを用いて、観察及び組成分析を行った。図21(A)に示したすSEM像の点線で囲んだ部分に見られるように、導管内において導管と同等程度の直径(約30μm)を有する結晶物が見られた。図22(B)に示した、図21(A)の点線で囲んだ部分を中心としたEDXでの組成分析により、結晶物には硫黄成分とアルミニウム成分が含まれることから、繊維の内包物にミョウバン結晶が含まれていることがわかった。
[Example 11]
Example 11 produced a fiber containing alum crystals inside wood as an example of inclusion of inorganic crystals in natural fibers. The details will be described.
The sample was produced as follows. The same procedure was followed except that cedar (diameter 2 mm, length 8 mm) was used as a measurement sample instead of the bamboo of Example 10.
The produced fiber was cut in parallel with the direction of the conduit, and the fiber cross section was observed and analyzed for composition using SEM and EDX. As can be seen in the portion surrounded by the dotted line in the SEM image shown in FIG. 21A, a crystal having a diameter (about 30 μm) equivalent to that of the conduit was found in the conduit. The composition analysis by EDX centering on the portion surrounded by the dotted line in FIG. 21A shown in FIG. 22B shows that the crystal contains the sulfur component and the aluminum component, Was found to contain alum crystals.

[実施例12]
実施例12は、共振器型マイクロ波加熱装置を用いて、綿布内部に銀成分を内包させた。その詳細について説明する。
試料は以下のように作製した。綿布0.013gを測定試料とし、反応原料溶液の硝酸銀400mMを溶解させたエチレングリコール溶液(0.05ml)に5分間浸漬して、全量を吸収させた。
この綿布を、ドデカンを充填した石英製の試験管(内径4mm外径6mm、長さ100mm)に入れ、図23に示すように、試験管21の一端をプランジャーポンプ15に接続した。そして、試験管21内にドデカン41を送液することで約3気圧まで加圧し、綿布31の表面又はその近傍に存在する反応原料溶液を綿布の繊維の孔内内部や繊維組織内へと移行させた。その後、共振器型マイクロ波加熱装置10を用いて綿布31の加熱を行った。試験管21内の圧力は試験管21の入口に設けた圧力計16(長野計器社製BA10−273−5000)によって測定した。
マイクロ波加熱装置10の空胴共振器11には、内部に円筒型のマイクロ波照射空間12を有する金属製の空胴共振器を用いた。このマイクロ波照射空間12は、TM010モードと呼ばれる定在波が形成できるように、マイクロ波発振器(図示せず)の周波数帯に応じた内径を設定した。マイクロ波照射空間12の内径とは、円筒型のマイクロ波照射空間12の中心軸Cに直交する方向の断面形状である円形の直径をいう。TM010モードでは、円筒中心軸C上に電界が極大となる定在波が形成される。そして、マイクロ波発生器(図示せず)を備えたマイクロ波発振器には、周波数を調整できるVCO発振器(Voltage Controlled Oscillator)を用いた。マイクロ波発振器の発振周波数は、空胴共振器11内にTM010モードの定在波が維持できる周波数となるように、マイクロ波照射空間12内部のエネルギー強度を計測するための検出部(図示せず)からの信号を制御して調整した。
[Example 12]
In Example 12, the silver component was included inside the cotton cloth using the resonator type microwave heating device. The details will be described.
The sample was produced as follows. Using 0.013 g of a cotton cloth as a measurement sample, it was immersed in an ethylene glycol solution (0.05 ml) in which 400 mM of silver nitrate as a reaction raw material solution was dissolved for 5 minutes to absorb the entire amount.
This cotton cloth was placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm, length 100 mm) filled with dodecane, and one end of the test tube 21 was connected to the plunger pump 15 as shown in FIG. Then, the dodecane 41 is fed into the test tube 21 to pressurize it to about 3 atm, and the reaction raw material solution existing on or near the surface of the cotton cloth 31 is transferred into the inside of the pores of the cotton cloth and into the fiber structure. I let it. Thereafter, the cotton cloth 31 was heated using the resonator-type microwave heating device 10. The pressure in the test tube 21 was measured by a pressure gauge 16 (BA10-273-5000 manufactured by Nagano Keiki Co., Ltd.) provided at the inlet of the test tube 21.
As the cavity resonator 11 of the microwave heating device 10, a metal cavity resonator having a cylindrical microwave irradiation space 12 inside was used. The inside diameter of the microwave irradiation space 12 is set according to the frequency band of a microwave oscillator (not shown) so that a standing wave called TM010 mode can be formed. The inner diameter of the microwave irradiation space 12 refers to a circular diameter that is a cross-sectional shape in a direction orthogonal to the central axis C of the cylindrical microwave irradiation space 12. In the TM010 mode, a standing wave at which the electric field is maximized is formed on the central axis C of the cylinder. A VCO oscillator (Voltage Controlled Oscillator) whose frequency can be adjusted was used as a microwave oscillator provided with a microwave generator (not shown). A detection unit (not shown) for measuring the energy intensity inside the microwave irradiation space 12 such that the oscillation frequency of the microwave oscillator becomes a frequency at which the TM010 mode standing wave can be maintained in the cavity resonator 11. ) Was controlled and adjusted.

マイクロ波発生器(図示せず)には半導体式マイクロ波発生器(895〜935MHz、最大出力300W)を用い、空胴共振器11には、内径239mm、試験管21への照射長さは40mmの空胴共振器を用いた。試験管21内の綿布31を含む部分を空胴共振器11内に設置し、設定温度130℃にて1分間、マイクロ波加熱を行った。温度計測には放射温度計(図示せず)を用い、試験管21の表面温度を測定した。
加熱後、綿布31をエタノールに浸漬して、超音波洗浄器にて3分間洗浄を行った。その後、室温の大気中にて24時間自然乾燥した。
図24に、SEM−EDX測定より得られた、一本の繊維断面の銀成分およびカーボン成分の強度分布を示した。銀成分は2つのピークを示したことから、二次細胞壁116のミクロフィブリル118(図6参照)間の隙間に選択的に分布しているといえる。
A semiconductor-type microwave generator (895-935 MHz, maximum output 300 W) is used for the microwave generator (not shown), the cavity resonator 11 has an inner diameter of 239 mm, and the irradiation length on the test tube 21 is 40 mm. Cavity resonator was used. A portion including the cotton cloth 31 in the test tube 21 was set in the cavity resonator 11, and microwave heating was performed at a set temperature of 130 ° C. for 1 minute. The surface temperature of the test tube 21 was measured using a radiation thermometer (not shown) for temperature measurement.
After the heating, the cotton cloth 31 was immersed in ethanol, and washed with an ultrasonic cleaner for 3 minutes. Then, it was air-dried in the air at room temperature for 24 hours.
FIG. 24 shows the intensity distribution of the silver component and the carbon component on the cross section of one fiber obtained by SEM-EDX measurement. Since the silver component showed two peaks, it can be said that the silver component was selectively distributed in the gaps between the microfibrils 118 (see FIG. 6) of the secondary cell wall 116.

10 マイクロ波加熱装置
11 空胴共振器
12 マイクロ波照射空間
15 プランジャーポンプ
16 圧力計
21 試験管
31 綿布
41 ドデカン
110 多孔質素材
111 綿繊維
111S 外表面
112 キューティクル層
113 ネットワーク層
114 ワインディング層
115 一次細胞壁
116 二次細胞壁
117 内腔(ルーメン)
118 ミクロフィブリル
121 反応原料溶液の浸透領域
131 容器
132 溶媒
133 蓋
MW マイクロ波
Reference Signs List 10 microwave heating device 11 cavity resonator 12 microwave irradiation space 15 plunger pump 16 pressure gauge 21 test tube 31 cotton cloth 41 dodecane 110 porous material 111 cotton fiber 111S outer surface 112 cuticle layer 113 network layer 114 winding layer 115 primary Cell wall 116 Secondary cell wall 117 Lumen
118 Microfibril 121 Permeation area of reaction raw material solution 131 Container 132 Solvent 133 Lid MW Microwave

Claims (17)

多孔質素材の孔内に反応原料溶液を浸透させる工程と、
前記反応原料溶液を浸透させた前記多孔質素材を、前記反応原料溶液とは非相溶性の溶媒中に浸漬して、前記多孔質素材の表面及び/又はその近傍に存在する前記反応原料溶液を前記多孔質素材の孔内の内部や素材組織内へと移行させる工程と、
前記多孔質素材の孔内の内部や素材組織内へと移行させた前記反応原料溶液に化学反応を生じさせる工程とを含む、機能性多孔質素材の製造方法。
A step of penetrating the reaction raw material solution into the pores of the porous material,
The porous material impregnated with the reaction material solution is immersed in a solvent that is incompatible with the reaction material solution, and the reaction material solution existing on the surface of the porous material and / or in the vicinity thereof is removed. A step of moving the inside of the pores and the material structure of the porous material,
Causing a chemical reaction to occur in the reaction raw material solution transferred into the inside of the pores or the material structure of the porous material.
前記化学反応を加熱により生じさせる、請求項1に記載の機能性多孔質素材の製造方法。   The method for producing a functional porous material according to claim 1, wherein the chemical reaction is caused by heating. 前記加熱がマイクロ波照射による加熱である、請求項2に記載の機能性多孔質素材の製造方法。   The method for producing a functional porous material according to claim 2, wherein the heating is heating by microwave irradiation. 前記マイクロ波照射がシングルモードのマイクロ波照射である、請求項3に記載の機能性多孔質素材の製造方法。   The method for producing a functional porous material according to claim 3, wherein the microwave irradiation is a single mode microwave irradiation. 前記反応原料溶液は金属前駆体を含み、
前記化学反応が、前記金属前駆体から金属を析出する反応である、請求項1〜4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains a metal precursor,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction for depositing a metal from the metal precursor.
前記反応原料溶液はアルコキシシラン化合物を含み、
前記化学反応が、前記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である、請求項1〜4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains an alkoxysilane compound,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that produces silica by hydrolysis of the alkoxysilane compound and subsequent condensation polymerization.
前記化学反応が、前記反応原料溶液中の化学物質の結晶化もしくは析出である、請求項1〜4のいずれか1項に記載の機能性多孔質素材の製造方法。   The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution. 前記反応原料溶液はシリカ源、アルカリ源及び水を含み、
又は、前記シリカ源、前記アルカリ源及び前記水に加えケイ素を置換可能な金属源を含み、
前記化学反応がゼオライトを生じる反応である、請求項1〜4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains a silica source, an alkali source and water,
Or, comprising a metal source capable of replacing silicon in addition to the silica source, the alkali source and the water,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that generates zeolite.
前記反応原料溶液はポリアミック酸を含み、
前記化学反応が前記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である、請求項1〜4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains a polyamic acid,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that generates a polyimide by a dehydration and ring closure reaction of the polyamic acid.
前記多孔質素材が、植物繊維、動物繊維、化学繊維、中空糸繊維若しくは中空粒子で構成され、又はこれらの2種以上からなる複合素材で構成されている、請求項1〜9のいずれか1項に記載の機能性多孔質素材の製造方法。   The porous material according to any one of claims 1 to 9, wherein the porous material is composed of a plant fiber, an animal fiber, a chemical fiber, a hollow fiber, or a hollow particle, or a composite material composed of two or more of these. Item 14. The method for producing a functional porous material according to item 8. 前記植物繊維が綿である、請求項10に記載の機能性多孔質素材の製造方法。   The method for producing a functional porous material according to claim 10, wherein the plant fiber is cotton. 多孔質素材の孔内に機能性化学物質を内包する機能性多孔質素材。   A functional porous material that contains a functional chemical substance in the pores of the porous material. 前記機能性化学物質が金属を含む、請求項12に記載の機能性多孔質素材。   13. The functional porous material according to claim 12, wherein the functional chemical substance includes a metal. 前記金属により抗菌及び/又は抗ウィルス機能を有する、請求項13に記載の機能性多孔質素材。   14. The functional porous material according to claim 13, having an antibacterial and / or antiviral function by the metal. 前記機能性多孔質素材が前記金属により導電性を示す、請求項13又は14に記載の機能性多孔質素材。   The functional porous material according to claim 13, wherein the functional porous material exhibits conductivity due to the metal. 前記多孔質素材が綿素材とケイ素とを含む複合素材であり、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い請求項12〜15のいずれか1項に記載の機能性多孔質素材。   The said porous material is a composite material containing a cotton material and silicon, and the silicon concentration inside and / or in the cotton material tissue is higher than the outer surface of the cotton material, according to any one of claims 12 to 15. Functional porous material. 前記多孔質素材が炭素を構造として持つ多孔質中空繊維であり、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している請求項12〜15のいずれか1項に記載の機能性多孔質素材。   The porous material according to any one of claims 12 to 15, wherein the porous material is a porous hollow fiber having carbon as a structure, and zeolite is held in a hollow portion and / or an inner surface of the porous hollow fiber. Functional porous material.
JP2019124705A 2018-07-03 2019-07-03 Functional porous material and its manufacturing method Active JP7405392B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018126900 2018-07-03
JP2018126900 2018-07-03

Publications (2)

Publication Number Publication Date
JP2020007694A true JP2020007694A (en) 2020-01-16
JP7405392B2 JP7405392B2 (en) 2023-12-26

Family

ID=69150990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124705A Active JP7405392B2 (en) 2018-07-03 2019-07-03 Functional porous material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7405392B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930614A (en) * 1972-07-22 1974-03-19
JPS6023429A (en) * 1983-07-19 1985-02-06 Chuetsu Pulp Kogyo Kk Magnetic cellulosic material and its production
JPH01239163A (en) * 1988-03-18 1989-09-25 Koichi Nishimoto Production of flame-retardant vegetable fiber material
JPH08506612A (en) * 1993-02-11 1996-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polymer impregnation method
JP2001123373A (en) * 1999-10-20 2001-05-08 Tokai Senko Kk Method for aromatic acylation of cellulose-based fiber product
JP2005060855A (en) * 2003-08-08 2005-03-10 Sk Kaken Co Ltd Modified vegetable fiber
JP2008081871A (en) * 2006-09-27 2008-04-10 Akio Henmi Functional fiber and method for producing the same
JP2013170190A (en) * 2012-02-20 2013-09-02 National Institute Of Advanced Industrial Science & Technology Composite fine particle of metal nanoparticle/polyimide, and method for producing the same
JP2015047535A (en) * 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
JP2018501412A (en) * 2014-12-03 2018-01-18 コベントリー ユニバーシティー Method for producing antibacterial yarn and fabric by nanoparticle impregnation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930614A (en) * 1972-07-22 1974-03-19
JPS6023429A (en) * 1983-07-19 1985-02-06 Chuetsu Pulp Kogyo Kk Magnetic cellulosic material and its production
JPH01239163A (en) * 1988-03-18 1989-09-25 Koichi Nishimoto Production of flame-retardant vegetable fiber material
JPH08506612A (en) * 1993-02-11 1996-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polymer impregnation method
JP2001123373A (en) * 1999-10-20 2001-05-08 Tokai Senko Kk Method for aromatic acylation of cellulose-based fiber product
JP2005060855A (en) * 2003-08-08 2005-03-10 Sk Kaken Co Ltd Modified vegetable fiber
JP2008081871A (en) * 2006-09-27 2008-04-10 Akio Henmi Functional fiber and method for producing the same
JP2013170190A (en) * 2012-02-20 2013-09-02 National Institute Of Advanced Industrial Science & Technology Composite fine particle of metal nanoparticle/polyimide, and method for producing the same
JP2015047535A (en) * 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
JP2018501412A (en) * 2014-12-03 2018-01-18 コベントリー ユニバーシティー Method for producing antibacterial yarn and fabric by nanoparticle impregnation

Also Published As

Publication number Publication date
JP7405392B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
Li et al. Wood‐derived carbon materials and light‐emitting materials
Zhao et al. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications
Park Electrospinning and its applications
Cai et al. Cellulose aerogels from aqueous alkali hydroxide–urea solution
Chen et al. Multifunctional polyacrylonitrile‐Z n O/A g electrospun nanofiber membranes with various Z n O morphologies for photocatalytic, UV‐shielding, and antibacterial applications
Sun et al. Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent
He et al. Silver nanoparticles prepared by gamma irradiation across metal–organic framework templates
Zhao et al. Emulsion‐electrospinning n‐octadecane/silk composite fiber as environmental‐friendly form‐stable phase change materials
JPWO2009041302A1 (en) Fiber containing nanosize diamond and platinum nanocolloid and bedding using the same
Kucherik et al. Two-stage laser-induced synthesis of linear carbon chains
Atta Immobilization of silver and strontium oxide aluminate nanoparticles integrated into plasma‐activated cotton fabric: Luminescence, superhydrophobicity, and antimicrobial activity
Mo et al. Nanoengineering natural leather for dynamic thermal management and electromagnetic interference shielding
Sun et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers
Hu et al. A transparent TiO 2–C@ TiO 2–graphene free-standing film with enhanced visible light photocatalysis
CN107687086B (en) Porous graphene-carbon nanotube composite fiber and rapid preparation method thereof
Jockusch et al. Photoinduced surface crosslinking of superabsorbent polymer particles
Wang et al. Fabrication of Zinc Oxide Composite Microfibers for Near‐Infrared‐Light‐Mediated Photocatalysis
JP7405392B2 (en) Functional porous material and its manufacturing method
JP2003506230A (en) Filmable material with selectively modifiable properties by applying a specific type of energy
Wang et al. Degradable ultrathin high-performance photocatalytic hydrogen generator from porous electrospun composite fiber membrane with enhanced light absorption ability
Ghayempour et al. Herbal products on cellulosic fabric with controlled release: comparison of in situ encapsulation and UV curing of the prepared nanocapsules
Du et al. Investigation of gas sensing materials tin oxide nanofibers treated by oxygen plasma
CN108601316A (en) A kind of preparation method and application of electromagnetic shielding material
Liu et al. Preparation and characterization of a novel form-stable phase change material for thermal energy storage
JP7421789B2 (en) Functional hollow carbon fiber and its manufacturing method

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7405392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150