JP2020007463A - Addition curable raw material composition - Google Patents

Addition curable raw material composition Download PDF

Info

Publication number
JP2020007463A
JP2020007463A JP2018130085A JP2018130085A JP2020007463A JP 2020007463 A JP2020007463 A JP 2020007463A JP 2018130085 A JP2018130085 A JP 2018130085A JP 2018130085 A JP2018130085 A JP 2018130085A JP 2020007463 A JP2020007463 A JP 2020007463A
Authority
JP
Japan
Prior art keywords
iron
coupling agent
raw material
material composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018130085A
Other languages
Japanese (ja)
Other versions
JP6901999B2 (en
Inventor
克之 鈴村
Katsuyuki Suzumura
克之 鈴村
俊夫 猿山
Toshio Saruyama
俊夫 猿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority to JP2018130085A priority Critical patent/JP6901999B2/en
Publication of JP2020007463A publication Critical patent/JP2020007463A/en
Application granted granted Critical
Publication of JP6901999B2 publication Critical patent/JP6901999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To improve storage stability of the addition curable raw material composition containing an iron-containing powder, to provide a raw material composition hardly generating curing inhibition, and to provide an addition curable raw material composition suitable to a master batch.SOLUTION: An addition curable raw material composition contains a polymer, a curing catalyst, and an iron-containing powder, the iron-containing powder is at least one selected from iron, iron oxide, and metal oxide containing iron, the iron-containing powder is surface treated by at least one coupling agent selected from a titanium-based coupling agent, an aluminum-based coupling agent and a silane-based coupling agent.SELECTED DRAWING: None

Description

本発明は、表面処理された鉄含有粉体を含む付加硬化型原料組成物に関する。   The present invention relates to an addition-curable raw material composition containing a surface-treated iron-containing powder.

従来から、着色、導電、電磁波遮蔽、ノイズ抑制、誘電率の調整等の用途で、付加硬化型ポリマーには鉄含有粉体を混合して成形体とすることが知られている。特許文献1には、放熱性塗膜の着色剤として、酸化鉄フィラーを混合することが提案されている。特許文献2には、樹脂成形体の誘電率の調整として酸化鉄フィラー、酸化亜鉛粉体などが提案されている。特許文献3には、付加硬化型シリコーンゴムのフィラーを2〜50の平均重合度を有するオルガノポリシロキサンで表面処理することが提案されている。   2. Description of the Related Art Conventionally, it has been known to mix an addition-curable polymer with an iron-containing powder to form a molded product for applications such as coloring, conducting, shielding electromagnetic waves, suppressing noise, and adjusting the dielectric constant. Patent Literature 1 proposes mixing an iron oxide filler as a colorant for a heat dissipation coating film. Patent Document 2 proposes an iron oxide filler, a zinc oxide powder, and the like as an adjustment of the dielectric constant of a resin molded product. Patent Document 3 proposes that a filler of an addition-curable silicone rubber is surface-treated with an organopolysiloxane having an average degree of polymerization of 2 to 50.

再表2013−129677号公報No. 2013-129677 特開2015−028188号公報JP-A-2005-28188 特表2009−54157号公報JP-T-2009-54157

しかし、前記従来技術の鉄含有粉体を含む付加硬化型原料組成物は、保存安定性に問題があった。保存安定性に問題があると硬化阻害を起こし、良好な成形物が得られないという問題につながる。とくにマスターバッチとして使用する際に、長期保存が困難であった。   However, the addition-curable raw material composition containing the iron-containing powder of the prior art has a problem in storage stability. If there is a problem in storage stability, curing inhibition occurs, which leads to a problem that a good molded product cannot be obtained. Especially when used as a master batch, long-term storage was difficult.

本発明は前記従来の問題を解決するため、鉄含有粉体を含む付加硬化型原料組成物の保存安定性を改善し、硬化阻害を起こしにくい原料組成物を提供し、マスターバッチにも好適な付加硬化型原料組成物を提供する。   The present invention improves the storage stability of an addition-curable raw material composition containing an iron-containing powder, to provide a raw material composition that hardly inhibits curing, and is also suitable for a masterbatch. An addition-curable raw material composition is provided.

本発明は、ポリマーと硬化触媒と鉄含有粉体を含む付加硬化型原料組成物であって、前記鉄含有粉体は、鉄、酸化鉄、鉄を含む金属酸化物から選ばれる少なくとも一つであり、鉄含有粉体は、チタン系カップリング剤、アルミニウム系カップリング剤及びシラン系カップリング剤から選ばれる少なくとも一つのカップリング剤で表面処理されていることを特徴とする付加硬化型原料組成物である。   The present invention is an addition-curable raw material composition containing a polymer, a curing catalyst, and an iron-containing powder, wherein the iron-containing powder is at least one selected from iron, iron oxide, and a metal oxide containing iron. An addition-curable raw material composition, wherein the iron-containing powder is surface-treated with at least one coupling agent selected from a titanium-based coupling agent, an aluminum-based coupling agent, and a silane-based coupling agent. Things.

本発明は、ポリマーと硬化触媒と鉄含有粉体を含み、前記鉄含有粉体は、鉄、酸化鉄、鉄を含む金属酸化物から選ばれる少なくとも一つであり、鉄含有粉体は、チタン系カップリング剤、アルミニウム系カップリング剤及びシラン系カップリング剤から選ばれる少なくとも一つのカップリング剤で表面処理されていることにより、保存安定性を改善し、硬化阻害を起こしにくい原料組成物とすることができ、長期保存ができるマスターバッチにも好適な付加硬化型原料組成物となる。   The present invention comprises a polymer, a curing catalyst and an iron-containing powder, wherein the iron-containing powder is at least one selected from iron, iron oxide, and a metal oxide containing iron, and the iron-containing powder is titanium. By being surface-treated with at least one coupling agent selected from an aluminum-based coupling agent, an aluminum-based coupling agent, and a silane-based coupling agent, the storage stability is improved, and the raw material composition is less likely to cause curing inhibition. The addition-curable raw material composition is suitable for a master batch that can be stored for a long period of time.

本発明は、ポリマー(以下「マトリックス樹脂」ともいう。)と硬化触媒と鉄含有粉体を含む付加硬化型原料組成物である。付加硬化型のポリマーは、通常A液とB液に分かれており、どちらか一方に架橋成分が添加され、他方には硬化触媒、例えば白金系触媒が添加されており、この状態で市販されている。通常は、このA液とB液を混合し、必要であれば他の成分も加えて混合し、成形し、硬化させる。硬化は架橋又は加硫ともいう。このようなポリマーとしては、シリコーンゴム、エポキシ樹脂、ポリエーテル、ポリイソブチレン、などがあり、それ以外でもアルケニル基を有するポリマーならは使用することができる。ここで言う付加硬化は、化学的にはヒドロシリル化反応によってアルケニル基とSi-H基を反応させる硬化機構である。その際、ヒドロシリル化反応は種々の方法によって起こすことができるが、金属触媒、とくに白金などの貴金属化合物触媒を使用するのが一般的である。とくに硬化性組成物の場合には、白金触媒が使用されることが多い。   The present invention is an addition-curable raw material composition containing a polymer (hereinafter, also referred to as “matrix resin”), a curing catalyst, and an iron-containing powder. The addition-curable polymer is usually divided into liquid A and liquid B, and one of them is added with a crosslinking component, and the other is added with a curing catalyst, for example, a platinum-based catalyst. I have. Usually, the A liquid and the B liquid are mixed, and if necessary, other components are added, mixed, molded, and cured. Curing is also referred to as crosslinking or vulcanization. Examples of such a polymer include silicone rubber, epoxy resin, polyether, and polyisobutylene, and any other polymer having an alkenyl group can be used. The addition curing mentioned here is a curing mechanism in which an alkenyl group and a Si—H group are chemically reacted by a hydrosilylation reaction. At this time, the hydrosilylation reaction can be caused by various methods, but it is common to use a metal catalyst, particularly a noble metal compound catalyst such as platinum. Particularly in the case of a curable composition, a platinum catalyst is often used.

本発明で添加物として加える鉄含有粉体は、鉄、酸化鉄、鉄を含む金属酸化物から選ばれる少なくとも一つである。これらは、着色剤、導電材、電磁波遮蔽材、ノイズ抑制材等の用途に好適である。本発明においては、磁性粉は除く。   The iron-containing powder added as an additive in the present invention is at least one selected from iron, iron oxide, and a metal oxide containing iron. These are suitable for applications such as colorants, conductive materials, electromagnetic wave shielding materials, and noise suppression materials. In the present invention, the magnetic powder is excluded.

本発明の鉄含有粉体は、チタン系カップリング剤、アルミニウム系カップリング剤及びシラン系カップリング剤から選ばれる少なくとも一つのカップリング剤で表面処理されている。この中でもチタン系カップリング剤、アルミニウム系カップリング剤が好ましい。前記表面処理とは共有結合のほか吸着なども含む。鉄含有粉体をカップリング剤で表面処理すると、鉄含有粉体の表面をカップリング剤分子が覆うため、硬化触媒、例えば白金系触媒の吸着を防止するためと思われる。カップリング剤の表面処理方法は後に説明する。   The iron-containing powder of the present invention is surface-treated with at least one coupling agent selected from a titanium-based coupling agent, an aluminum-based coupling agent, and a silane-based coupling agent. Among them, a titanium-based coupling agent and an aluminum-based coupling agent are preferable. The surface treatment includes not only covalent bonding but also adsorption. When the surface treatment of the iron-containing powder is performed with the coupling agent, the surface of the iron-containing powder is covered with the coupling agent molecules, which is considered to prevent the adsorption of the curing catalyst, for example, the platinum-based catalyst. The surface treatment method of the coupling agent will be described later.

前記付加硬化型原料組成物は、付加硬化物成形体を得るためのマスターバッチに適用できる。ここでマスターバッチとは、樹脂又はゴムの成形前又は成形時に所定量添加することにより、成形物を着色すること等のときに使用する原料組成物であり、一般のコンパウンドに比べてコストが安く、取り扱い性の良いことが特徴である。マスターバッチは、通常1週間程度原料のまま保存し、必要に応じてA液とB液を混合し、成形と同時に硬化を進めてシートなどの成形体とする。本発明のマスターバッチは、通常1週間程度原料のまま保存しても、硬化阻害を起こさない。   The addition-curable raw material composition can be applied to a masterbatch for obtaining an addition-cured product molded body. Here, the masterbatch is a raw material composition used for coloring a molded product by adding a predetermined amount before or during molding of a resin or rubber, and the cost is lower than that of a general compound. It is characterized by good handleability. The masterbatch is usually stored as raw materials for about one week, and if necessary, the liquid A and the liquid B are mixed, and curing is advanced simultaneously with molding to form a molded article such as a sheet. The masterbatch of the present invention usually does not inhibit curing even when stored as raw materials for about one week.

本発明の付加硬化型原料組成物は、オルガノポリシロキサンであることが好ましい。オルガノポリシロキサンは、硬化してガム、ゴム、ゲル、パテ、グリース等にされ、この際に硬化阻害を起こす問題があったが、前記カップリング剤による鉄含有粉体の表面処理により、本発明によりこの問題は改善できた。   The addition-curable raw material composition of the present invention is preferably an organopolysiloxane. Organopolysiloxanes are cured into gums, rubbers, gels, putties, greases, and the like. There is a problem in that curing is inhibited at this time. Has improved this problem.

前記チタン系カップリング剤は、イソプロピルトリイソステアロイルチタネート、ジイソステアロイルエチレンチタネート及びこれらの部分加水分解物から選ばれる少なくとも一つが好ましい。また、前記アルミニウム系カップリング剤は、アルキルアセトアセテートアルミニウムジイソプロピレート及びその部分加水分解物から選ばれる少なくとも一つが好ましい。さらに、前記シラン系カップリング剤は、R(CH3aSi(OR’)3-a(Rは炭素数1〜20のアルキル基、R’は炭素数1〜4のアルキル基、aは0もしくは1)で示されるシラン化合物及びこれらの部分加水分解物から選ばれる少なくとも一つが好ましい。 The titanium-based coupling agent is preferably at least one selected from isopropyl triisostearoyl titanate, diisostearoyl ethylene titanate, and a partial hydrolyzate thereof. The aluminum-based coupling agent is preferably at least one selected from alkyl acetoacetate aluminum diisopropylate and a partial hydrolyzate thereof. Further, the silane-based coupling agent includes R (CH 3 ) a Si (OR ′) 3-a (R is an alkyl group having 1 to 20 carbon atoms, R ′ is an alkyl group having 1 to 4 carbon atoms, and a is At least one selected from silane compounds represented by 0 or 1) and partial hydrolysates thereof is preferred.

前記酸化鉄は、四酸化三鉄(Fe34)及び三酸化二鉄(Fe23)から選ばれる少なくとも一つが好ましい。これらは着色材、安定材、難燃材などとして有用である。このうち三酸化二鉄(Fe23)(汎用名では酸化第二鉄)にはいくつかの結晶形があり、α-酸化鉄(ベンガラなど)、β-酸化鉄(磁性あり)なども有用である。 The iron oxide is preferably at least one selected from triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe 2 O 3 ). These are useful as coloring materials, stabilizers, flame retardants, and the like. Of these, diiron trioxide (Fe 2 O 3 ) (ferric oxide in a generic name) has several crystal forms, such as α-iron oxide (such as red iron oxide) and β-iron oxide (with magnetism). Useful.

前記カップリング剤は、鉄含有粉体100質量部に対して0.1〜10質量部添加するのが好ましく、さらに好ましくは0.5〜8質量部である。   The coupling agent is preferably added in an amount of 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, per 100 parts by mass of the iron-containing powder.

カップリング剤の表面処理方法としては、(1)乾式法、(2)湿式法、(3)インテグラルブレンド法等がある。
(1)乾式法
乾式法は、ヘンシェルミキサー、ナウターミキサー、振動ミルのような機械的な撹拌により鉄含有粉体を撹拌しながら、これに薬剤を滴下して表面処理をおこなう方法である。薬剤には前記カップリング剤をアルコール溶剤で希釈した溶液や、前記カップリング剤をアルコール溶剤で希釈し、さらに水を添加した溶液や、前記カップリング剤をアルコール溶剤で希釈しさらに水、酸を添加した溶液等がある。
(2)湿式法
湿式法は、鉄含有粉体を薬剤に直接浸漬しておこなう方法である。薬剤は前記カップリング剤をアルコール溶剤で希釈した溶液や、前記カップリング剤をアルコール溶剤で希釈しさらに水を添加した溶液や、前記カップリング剤をアルコール溶剤で希釈しさらに水、酸を添加した溶液等がある。
(3)インテグラルブレンド法
インテグラルブレンド法は、マトリックス樹脂と鉄含有粉体を混合するときに前記カップリング剤を原液またはアルコール等で希釈したものを混合機の中に直接添加し、撹拌する方法である。薬剤の調整方法は乾式法及び湿式法と同様であるが、インテグラルブレンド法でおこなう場合の前記カップリング剤量は前記、乾式法、湿式法に比べて多くすることが一般的である。
Examples of the surface treatment method of the coupling agent include (1) a dry method, (2) a wet method, and (3) an integral blend method.
(1) Dry method The dry method is a method in which an iron-containing powder is stirred by mechanical stirring such as a Henschel mixer, a Nauta mixer, or a vibrating mill, and a surface treatment is performed by dropping a drug onto the iron-containing powder. For the drug, a solution obtained by diluting the coupling agent with an alcohol solvent, a solution obtained by diluting the coupling agent with an alcohol solvent and further adding water, or a solution obtained by diluting the coupling agent with an alcohol solvent and further adding water and acid There is a solution added.
(2) Wet method The wet method is a method in which iron-containing powder is directly immersed in a chemical. The drug is a solution obtained by diluting the coupling agent with an alcohol solvent, a solution obtained by diluting the coupling agent with an alcohol solvent and further adding water, or a solution obtained by diluting the coupling agent with an alcohol solvent and further adding water and acid. There are solutions.
(3) Integral blending method In the integral blending method, when a matrix resin and an iron-containing powder are mixed, the coupling agent diluted with a stock solution or alcohol or the like is directly added to a mixer and stirred. Is the way. The method of preparing the drug is the same as the dry method and the wet method, but the amount of the coupling agent when the method is performed by the integral blend method is generally larger than that in the dry method and the wet method.

前記乾式法及び湿式法においては、薬剤の乾燥を必要に応じて適宜おこなう。アルコール等を使用した薬剤を添加した場合は、アルコールを揮発させる必要がある。アルコールが最終的に配合物に残るとポリマー分に悪影響を及ぼし、製品からガスとなって発生することになる。乾燥温度は使用した溶剤の沸点以上にすることが好ましい。さらには鉄含有粉体と反応しなかった前記カップリング剤を迅速に除去するために装置を用い、高い温度に加熱することが好ましいが、前記カップリング剤の耐熱性も考慮し前記カップリング剤の分解点未満の温度に保つのが好ましい。処理温度は約80〜150℃、処理時間は0.5〜4時間が好ましい。乾燥温度と時間は処理量により適宜選択することによって溶剤や未反応カップリング剤も除去することが可能になる。本発明においては、乾式法による事前処理が好ましい。   In the dry method and the wet method, the drug is appropriately dried as necessary. When a drug using alcohol or the like is added, it is necessary to volatilize the alcohol. If the alcohol ultimately remains in the formulation, it will adversely affect the polymer content and generate gas from the product. The drying temperature is preferably higher than the boiling point of the solvent used. Further, it is preferable to use an apparatus to quickly remove the coupling agent that has not reacted with the iron-containing powder and to heat the coupling agent to a high temperature, but in consideration of the heat resistance of the coupling agent, the coupling agent is used. Is preferably maintained at a temperature lower than the decomposition point. The processing temperature is preferably about 80 to 150 ° C, and the processing time is preferably 0.5 to 4 hours. The solvent and unreacted coupling agent can be removed by appropriately selecting the drying temperature and time according to the processing amount. In the present invention, pretreatment by a dry method is preferred.

鉄含有粉体の表面を処理するのに必要な前記カップリング剤量は次式で計算することができる。
カップリング剤量(g)=鉄含有粉体の量(g)×鉄含有粉体の比表面積(m2/g)/カップリング剤の最小被覆面積(m2/g)
「カップリング剤の最小被覆面積」は次の計算式で求める。
カップリング剤の最小被覆面積(m2/g)=(6.02×1023)×(13×10-20)/カップリング剤の分子量
前記式中、6.02×1023:アボガドロ定数
13×10-20:1分子のカップリング剤が覆う面積(0.13nm2
The amount of the coupling agent required to treat the surface of the iron-containing powder can be calculated by the following equation.
Amount of coupling agent (g) = Amount of iron-containing powder (g) × Specific surface area of iron-containing powder (m 2 / g) / Minimum covering area of coupling agent (m 2 / g)
"Minimum covering area of coupling agent" is determined by the following formula.
Minimum coating area of coupling agent (m 2 /g)=(6.02×10 23 ) × (13 × 10 −20 ) / molecular weight of coupling agent In the above formula, 6.02 × 10 23 : Avogadro constant 13 × 10 -20 : Area covered by one molecule of coupling agent (0.13 nm 2 )

必要なカップリング剤量はこの計算式で計算されるカップリング剤量の0.5倍以上1.0倍未満であることが好ましい。上限が1.0倍未満であるのは未反応分を考慮して実際に鉄含有粉体表面に存在するカップリング剤量を1.0より小さくするためである。下限値を上記計算式で計算される量としたのは0.5倍量でもマトリックス樹脂への鉄含有粉体充填性の向上には充分効果のある量であるためである。   The required amount of the coupling agent is preferably 0.5 times or more and less than 1.0 times the amount of the coupling agent calculated by this calculation formula. The upper limit is less than 1.0 because the amount of the coupling agent actually present on the surface of the iron-containing powder is made smaller than 1.0 in consideration of unreacted components. The reason why the lower limit is set to the amount calculated by the above formula is that even a 0.5-fold amount is an amount that is sufficiently effective in improving the filling property of the iron-containing powder into the matrix resin.

本発明における付加反応による硬化時の温度は25℃〜110℃が好ましい。より好ましくは、70℃〜100℃である。前記の温度範囲であれば、硬化時間は5分〜120分、好ましくは10分〜30分である。   The temperature at the time of curing by the addition reaction in the present invention is preferably 25 ° C to 110 ° C. More preferably, it is 70 ° C to 100 ° C. In the above temperature range, the curing time is 5 minutes to 120 minutes, preferably 10 minutes to 30 minutes.

本発明の原料組成物には、熱伝導性フィラーが混合されていてもよい。熱伝導性フィラーは、電気伝導性フィラー、電気絶縁性フィラー等があるが、どちらでもよい。電気伝導性のフィラーとしては、カーボンブラック等の炭素粉末又は金属粉末がある。金属粉末の場合は表面抵抗が1Ω/□以下の物がよく、具体的には金、銀、白金、銅、ニッケル、鉄、パラジュウム、コバルト、クロム、アルミニウム等の金属類やステンレス等の合金類からなる粉末、又は電気抵抗を低減する為に表面を金、銀、等の貴金属で被覆した金属粉末を用いるのが好ましい。電気絶縁性フィラーとしては、アルミナ,酸化亜鉛,酸化マグネシウム、窒化アルミ、窒化ホウ素、水酸化アルミ、石英又はシリカが好ましい。形状は球状,鱗片状,多面体状等様々なものを使用できる。アルミナを使用する場合は、純度99.5質量%以上のα−アルミナが好ましい。熱伝導性粒子の比表面積は0.06〜10m2/gの範囲が好ましい。比表面積はBET比表面積であり、測定方法はJIS R1626にしたがう。平均粒子径を用いる場合は、0.1〜100μmの範囲が好ましい。粒子径の測定はレーザ回折光散乱法により、メディアン径を測定する。この測定器としては、例えば堀場製作所製社製のレーザ回折/散乱式粒子分布測定装置LA−950S2がある。前記シリコーンシートは、熱伝導率が0.5W/mK以上であるのが好ましい。好ましい熱伝導率は0.7W/mK以上である。 The raw material composition of the present invention may contain a thermally conductive filler. The thermally conductive filler includes an electrically conductive filler, an electrically insulating filler, and the like. Examples of the electrically conductive filler include carbon powder such as carbon black or metal powder. In the case of metal powders, those having a surface resistance of 1 Ω / □ or less are preferred, and specifically, metals such as gold, silver, platinum, copper, nickel, iron, palladium, cobalt, chromium, aluminum, and alloys such as stainless steel. It is preferable to use a powder of a metal or a metal powder whose surface is coated with a noble metal such as gold, silver or the like in order to reduce electric resistance. As the electrically insulating filler, alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, quartz or silica is preferable. Various shapes such as a sphere, a scale, and a polyhedron can be used. When using alumina, α-alumina having a purity of 99.5% by mass or more is preferable. The specific surface area of the thermally conductive particles is preferably in the range of 0.06 to 10 m 2 / g. The specific surface area is a BET specific surface area, and the measuring method is in accordance with JIS R1626. When the average particle size is used, the range is preferably from 0.1 to 100 μm. The median diameter is measured by a laser diffraction light scattering method. As this measuring device, for example, there is a laser diffraction / scattering type particle distribution measuring device LA-950S2 manufactured by Horiba, Ltd. The silicone sheet preferably has a thermal conductivity of 0.5 W / mK or more. The preferred thermal conductivity is 0.7 W / mK or more.

マトリックス樹脂がオルガノポリシロキサンの場合は、下記組成のコンパウンドを硬化して得るのが好ましい。
(A)ベースポリマー成分:1分子中に平均2個以上かつ分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状オルガノポリシロキサン
(B)架橋成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサンが、前記A成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量
(C)白金系金属触媒:A成分に対して重量単位で0.01〜1000ppm
(D)鉄含有粉体:マトリックス樹脂100重量部に対して0.1〜2,000重量部
When the matrix resin is an organopolysiloxane, it is preferably obtained by curing a compound having the following composition.
(A) Base polymer component: a linear organopolysiloxane having an average of two or more per molecule and alkenyl groups bonded to silicon atoms at both ends of the molecular chain; (B) crosslinking component: an average of two per molecule The organohydrogenpolysiloxane containing a hydrogen atom bonded to a silicon atom is less than 1 mole based on 1 mole of the silicon-bonded alkenyl group in the component A. (C) Platinum metal catalyst: Component A 0.01 to 1000 ppm by weight
(D) Iron-containing powder: 0.1 to 2,000 parts by weight based on 100 parts by weight of the matrix resin

(1)ベースポリマー成分(A成分)
ベースポリマー成分(A成分)は、一分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンであり、アルケニル基を2個含有するオルガノポリシロキサンは本発明のシリコーンゴム組成物における主剤(ベースポリマー成分)である。このオルガノポリシロキサンは、アルケニル基として、ビニル基、アリル基等の炭素原子数2〜8、特に2〜6の、ケイ素原子に結合したアルケニル基を一分子中に2個有する。粘度は25℃で10〜1000000mPa・s、特に100〜100000mPa・sであることが作業性、硬化性などから望ましい。
(1) Base polymer component (A component)
The base polymer component (A component) is an organopolysiloxane containing two or more alkenyl groups bonded to silicon atoms in one molecule, and the organopolysiloxane containing two alkenyl groups is a silicone rubber composition of the present invention. (Base polymer component). This organopolysiloxane has two alkenyl groups having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, such as a vinyl group and an allyl group, bonded to a silicon atom as alkenyl groups in one molecule. The viscosity at 25 ° C. is preferably from 100 to 100,000 mPa · s, particularly preferably from 100,000 to 100,000 mPa · s from the viewpoint of workability and curability.

具体的には、下記一般式(化1)で表される1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用する。側鎖はトリオルガノシロキシ基で封鎖された直鎖状オルガノポリシロキサンである。25℃における粘度は10〜1000000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。   Specifically, an organopolysiloxane containing an alkenyl group bonded to a silicon atom at an average of two or more and in a molecular chain terminal in one molecule represented by the following general formula (Formula 1) is used. The side chains are straight-chain organopolysiloxanes blocked with triorganosiloxy groups. A viscosity at 25 ° C. of 10 to 100000 mPa · s is desirable from the viewpoint of workability and curability. The linear organopolysiloxane may contain a small amount of a branched structure (trifunctional siloxane unit) in the molecular chain.

Figure 2020007463
Figure 2020007463

式中、R1は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R2はアルケニル基であり、kは0又は正の整数である。ここで、R1の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基としては、例えば、炭素原子数1〜10、特に1〜6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、並びに、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基、シアノエチル基等が挙げられる。R2のアルケニル基としては、例えば炭素原子数2〜6、特に2〜3のものが好ましく、具体的にはビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、好ましくはビニル基である。一般式(1)において、kは、一般的には0≦k≦10000を満足する0又は正の整数であり、好ましくは5≦k≦2000、より好ましくは10≦k≦1200を満足する整数である。 In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no same or different aliphatic unsaturated bonds, R 2 is an alkenyl group, and k is 0 or a positive integer. Here, as the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond of R 1 , for example, those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms are preferable, and specifically, , Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl, nonyl, alkyl groups such as decyl, phenyl Group, tolyl group, xylyl group, aryl group such as naphthyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, and part or all of the hydrogen atoms of these groups are replaced with fluorine, bromine, chlorine, etc. Substituted with a halogen atom, a cyano group, etc., for example, a halogen atom such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, etc. Alkyl group, cyanoethyl group and the like. As the alkenyl group for R 2 , for example, those having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms are preferable, and specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group and a hexenyl group. , Cyclohexenyl group and the like, and preferably a vinyl group. In the general formula (1), k is generally 0 or a positive integer satisfying 0 ≦ k ≦ 10000, preferably 5 ≦ k ≦ 2000, more preferably an integer satisfying 10 ≦ k ≦ 1200. It is.

A成分のオルガノポリシロキサンとしては一分子中に例えばビニル基、アリル基等の炭素原子数2〜8、特に2〜6のケイ素原子に結合したアルケニル基を3個以上、通常、3〜30個、好ましくは、3〜20個程度有するオルガノポリシロキサンを併用しても良い。分子構造は直鎖状、環状、分岐状、三次元網状のいずれの分子構造のものであってもよい。好ましくは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、25℃での粘度が10〜1000000mPa・s、特に100〜100000mPa・sの直鎖状オルガノポリシロキサンである。   As the organopolysiloxane of the component A, three or more alkenyl groups bonded to a silicon atom having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, such as a vinyl group and an allyl group, usually 3 to 30 Preferably, an organopolysiloxane having about 3 to about 20 may be used in combination. The molecular structure may be any of linear, cyclic, branched, and three-dimensional network. Preferably, the main chain is composed of repeating diorganosiloxane units, and both ends of the molecular chain are blocked with triorganosiloxy groups, and the viscosity at 25 ° C. is 100 to 100,000 mPas, particularly 100 to 100,000 mPas. Organopolysiloxane.

アルケニル基は分子のいずれかの部分に結合していればよい。例えば、分子鎖末端、あるいは分子鎖非末端(分子鎖途中)のケイ素原子に結合しているものを含んでも良い。なかでも下記一般式(化2)で表される分子鎖両末端のケイ素原子上にそれぞれ1〜3個のアルケニル基を有し(但し、この分子鎖末端のケイ素原子に結合したアルケニル基が、両末端合計で3個未満である場合には、分子鎖非末端(分子鎖途中)のケイ素原子に結合したアルケニル基を、(例えばジオルガノシロキサン単位中の置換基として)、少なくとも1個有する直鎖状オルガノポリシロキサンであって、上記でも述べた通り25℃における粘度が10〜1,000,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。   The alkenyl group may be attached to any part of the molecule. For example, it may include those bonded to the silicon atom at the terminal of the molecular chain or at the non-terminal (in the middle of the molecular chain) of the molecular chain. Above all, it has 1 to 3 alkenyl groups on both silicon atoms at both ends of the molecular chain represented by the following general formula (Formula 2) (provided that the alkenyl group bonded to the silicon atom at the molecular chain end is When the total is less than 3 at both ends, the alkenyl group bonded to the silicon atom at the non-terminal (in the middle of the molecular chain) of the silicon atom (for example, as a substituent in a diorganosiloxane unit) has at least one alkenyl group. As described above, a chain organopolysiloxane having a viscosity of 10 to 1,000,000 mPa · s at 25 ° C. is desirable from the viewpoints of workability, curability, etc. The linear organopolysiloxane has a small amount of branched It may contain a tertiary structure (trifunctional siloxane unit) in the molecular chain.

Figure 2020007463
Figure 2020007463

式中、R3は互いに同一又は異種の非置換又は置換一価炭化水素基であって、少なくとも1個がアルケニル基である。R4は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R5はアルケニル基であり、l,mは0又は正の整数である。ここで、R3の一価炭化水素基としては、炭素原子数1〜10、特に1〜6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。 In the formula, R 3 is the same or different, unsubstituted or substituted monovalent hydrocarbon group, and at least one is an alkenyl group. R 4 is an unsubstituted or substituted monovalent hydrocarbon group having no same or different aliphatic unsaturated bond, R 5 is an alkenyl group, and l and m are 0 or a positive integer. Here, as the monovalent hydrocarbon group for R 3 , those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Alkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, phenyl group, tolyl group, xylyl group, naphthyl group, etc., benzyl Alkenyl groups such as aralkyl groups such as phenylethyl group and phenylpropyl group, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group and octenyl group, and hydrogen of these groups. Those in which some or all of the atoms have been replaced with halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc., for example, chloromethyl , Chloropropyl group, bromoethyl group, and a halogen-substituted alkyl group or cyanoethyl group such trifluoropropyl group.

また、R4の一価炭化水素基としても、炭素原子数1〜10、とくに1〜6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。R5のアルケニル基としては、例えば炭素数2〜6、特に炭素数2〜3のものが好ましく、具体的には前記式(化1)のR2と同じものが例示され、好ましくはビニル基である。 The monovalent hydrocarbon group of R 4 also preferably has 1 to 10 carbon atoms, and particularly preferably has 1 to 6 carbon atoms, and the same as the specific examples of the above R 1 can be exemplified, provided that the alkenyl group is not included. . As the alkenyl group for R 5 , for example, those having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms are preferable, and specific examples are the same as R 2 in the above formula (Chemical Formula 1). It is.

l,mは、一般的には0<l+m≦10000を満足する0又は正の整数であり、好ましくは5≦l+m≦2000、より好ましくは10≦l+m≦1200で、かつ0<l/(l+m)≦0.2、好ましくは、0.0011≦l/(l+m)≦0.1を満足する整数である。   l and m are generally 0 or a positive integer satisfying 0 <l + m ≦ 10000, preferably 5 ≦ l + m ≦ 2000, more preferably 10 ≦ l + m ≦ 1200, and 0 <l / (l + m ) ≦ 0.2, preferably an integer satisfying 0.0011 ≦ l / (l + m) ≦ 0.1.

(2)架橋成分(B成分)
本発明のB成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、この成分中のSiH基とA成分中のアルケニル基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよく、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(即ち、重合度)は2〜1000、特に2〜300程度のものを使用することができる。
(2) Crosslinking component (B component)
The organohydrogenpolysiloxane of the component B of the present invention acts as a crosslinking agent, and forms a cured product by an addition reaction (hydrosilylation) between the SiH group in the component and the alkenyl group in the component A. Things. Such an organohydrogenpolysiloxane may be any one having at least two hydrogen atoms bonded to a silicon atom (ie, SiH group) in one molecule, and the molecular structure of the organohydrogenpolysiloxane is as follows. May be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (that is, the degree of polymerization) is from 2 to 1,000, particularly from about 2 to 300. Can be used.

水素原子が結合するケイ素原子の位置は特に制約はなく、分子鎖の末端でも非末端(途中)でもよい。また、水素原子以外のケイ素原子に結合した有機基としては、前記一般式(化1)のR1と同様の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基が挙げられる。 The position of the silicon atom to which the hydrogen atom is bonded is not particularly limited, and may be at the terminal of the molecular chain or at a non-terminal (midway). Examples of the organic group bonded to a silicon atom other than a hydrogen atom include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond similar to R 1 in the general formula (Chemical Formula 1). .

B成分のオルガノハイドロジェンポリシロキサンとしては下記構造のものが例示できる。   As the organohydrogenpolysiloxane of the component B, those having the following structures can be exemplified.

Figure 2020007463
Figure 2020007463

Figure 2020007463
Figure 2020007463

Figure 2020007463
Figure 2020007463

上記の式中、Phはフェニル基、エポキシ基、アクリロイル基、メタアクリロイル基、アルコキシ基の少なくとも1種を含む有機基である。Lは0〜1,000の整数、特には0〜300の整数であり、Mは1〜200の整数である。)   In the above formula, Ph is an organic group containing at least one of a phenyl group, an epoxy group, an acryloyl group, a methacryloyl group, and an alkoxy group. L is an integer of 0 to 1,000, particularly an integer of 0 to 300, and M is an integer of 1 to 200. )

(3)触媒成分(C成分)
C成分の触媒成分は、本組成物の硬化を促進させる成分である。C成分としては、ヒドロシリル化反応に用いられる触媒として周知の触媒を用いることができる。例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。C成分の配合量は、硬化に必要な量であればよく、所望の硬化速度などに応じて適宜調整することができる。A成分に対して金属原子重量として0.01〜1000ppm添加する。
(3) Catalyst component (C component)
The catalyst component C is a component that promotes curing of the present composition. As the component C, a known catalyst used for the hydrosilylation reaction can be used. For example, platinum black, secondary platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid with a monohydric alcohol, a complex of chloroplatinic acid with olefins or vinyl siloxane, a platinum-based catalyst such as platinum bisacetoacetate, a palladium-based catalyst Examples of the catalyst include a platinum group metal catalyst such as a catalyst and a rhodium catalyst. The compounding amount of the component C may be an amount necessary for curing, and can be appropriately adjusted according to a desired curing speed and the like. 0.01 to 1000 ppm as a metal atom weight is added to the component A.

(4)鉄含有粉体(D成分)
前記鉄含有粉体は、イソプロピルトリイソステアロイルチタネート、ジイソステアロイルエチレンチタネート及びこれらの部分加水分解物から選ばれる少なくとも一つのチタン系カップリング剤、アルキルアセトアセテートアルミニウムジイソプロピレート及びその部分加水分解物から選ばれる少なくとも一つのアルミニウム系カップリング剤、R(CH3aSi(OR’)3-a(Rは炭素数1〜20のアルキル基、R’は炭素数1〜4のアルキル基、aは0もしくは1)で示されるシラン系カップリング剤及びこれらの部分加水分解物から選ばれる少なくとも一つより表面処理する。事前に表面処理を行なってもよいし、混合時に表面処理剤を添加して処理する。この表面処理により、硬化阻害を防ぐことができる。
(4) Iron-containing powder (D component)
The iron-containing powder is isopropyl triisostearoyl titanate, at least one titanium-based coupling agent selected from diisostearoyl ethylene titanate and partial hydrolysates thereof, alkyl acetoacetate aluminum diisopropylate and partial hydrolysates thereof At least one aluminum-based coupling agent selected from the group consisting of R (CH 3 ) a Si (OR ′) 3-a (R is an alkyl group having 1 to 20 carbon atoms, R ′ is an alkyl group having 1 to 4 carbon atoms, a is surface-treated with at least one selected from silane coupling agents represented by 0 or 1) and partial hydrolysis products thereof. The surface treatment may be performed in advance, or a surface treatment agent may be added during mixing. This surface treatment can prevent curing inhibition.

以下実施例を用いて説明する。本発明は実施例に限定されるものではない。
(実施例1)
<使用原料>
(1)シリコーンポリマー
A液:ビニル基を含むシリコーンポリマー+Pt系触媒
B液:ビニル基を含むシリコーンポリマー+SiHを含むシリコーンポリマー
(2)フィラー
四酸化三鉄(Fe34):黒色顔料
(3)フィラーの表面処理剤
アルミネート処理剤, アルキルアセトアセテートアルミニウムジイソプロピレート
(4)フィラーの表面処理
乾式法により事前処理した。具体的には、前記四酸化三鉄(Fe34)100gに対し、前記アルミネート処理剤を2g添加し、攪拌し、その後温度70℃で1時間加熱処理した。
(5)マスターバッチの作成
前記表面処理後のフィラー70gに対し、前記シリコーンポリマーA液を30g加え、攪拌した。
(6)成形及び硬化物の作成
前記A液のマスターバッチ100gに対し、前記シリコーンポリマーB液を30g加え、攪拌し、厚み1.0mmにシート化した。このシートを温度100℃で15分間加熱し、シートを硬化させた。マスターバッチを作成した初日と、マスターバッチ作成1週間後の硬化性を評価した。結果は後にまとめて表1に示す。
Hereinafter, an embodiment will be described. The present invention is not limited to the embodiments.
(Example 1)
<Raw materials>
(1) Silicone polymer A liquid: Silicone polymer containing vinyl group + Pt-based catalyst B liquid: Silicone polymer containing vinyl group + Silicone polymer containing SiH (2) Filler triiron tetroxide (Fe 3 O 4 ): Black pigment (3) ) Filler surface treatment agent Aluminate treatment agent, alkyl acetoacetate aluminum diisopropylate (4) Filler surface treatment Pre-treatment by dry method. Specifically, 2 g of the aluminate treating agent was added to 100 g of the triiron tetroxide (Fe 3 O 4 ), and the mixture was stirred and then heated at 70 ° C. for 1 hour.
(5) Preparation of master batch To 70 g of the filler after the surface treatment, 30 g of the silicone polymer A liquid was added and stirred.
(6) Formation of Molded and Cured Product 30 g of the silicone polymer B solution was added to 100 g of the master batch of the solution A, and the mixture was stirred to form a sheet having a thickness of 1.0 mm. This sheet was heated at a temperature of 100 ° C. for 15 minutes to cure the sheet. The curability was evaluated on the first day when the master batch was prepared and one week after the master batch was prepared. The results are summarized in Table 1 below.

(実施例2)
フィラーの表面処理剤を前記アルミネート処理剤に換えてチタネート処理剤, イソプロピルトリイソステアロイルチタネートを使用した以外は実施例1と同様に実験した。
(Example 2)
An experiment was performed in the same manner as in Example 1 except that the aluminate treatment agent was used instead of the filler surface treatment agent, and a titanate treatment agent and isopropyl triisostearoyl titanate were used.

(実施例3)
前記乾式法による事前処理法に換えて、インテグラルブレンド法により処理した。すなわち、前記シリコーンポリマーA液30gに、前記チタネート処理剤を1.4g添加し、攪拌した。これをマスターバッチとした。成形及び硬化物は実施例2と同様に実験した。
(Example 3)
Instead of the pretreatment method by the dry method, treatment was performed by an integral blend method. That is, 1.4 g of the titanate treating agent was added to 30 g of the silicone polymer A liquid and stirred. This was used as a master batch. The molding and the cured product were tested in the same manner as in Example 2.

(比較例1)
フィラーの表面処理をしない以外は実施例1と同様に実験した。結果はまとめて表1に示す。表1において、硬化性評価:Aは硬化性良好、Bは未硬化を示す。
(Comparative Example 1)
An experiment was performed in the same manner as in Example 1 except that the surface treatment of the filler was not performed. The results are summarized in Table 1. In Table 1, curability evaluation: A indicates good curability, and B indicates uncured.

Figure 2020007463
Figure 2020007463

表1から明らかなとおり、本発明の各実施例はマスターバッチを1週間保存しても硬化阻害は起きこらず、保存安定性が高かった。これに対して表面処理していない比較例1は初日から硬化阻害を起こした。
また、実施例1及び2の事前処理と、実施例3のインテグラルブレンドを比較すると、事前処理のマスターバッチは、明らかに低粘度であった。粘度は高くて測定できないが、手で攪拌して確かめた。これに対して実施例3のインテグラルブレンドは、最初は高粘度であるが、ある程度攪拌すると粘度が低下し、ダイラタンシー性を示した。このことから事前処理のほうが、優位性があった。
As is clear from Table 1, in each of the examples of the present invention, curing inhibition did not occur even when the master batch was stored for one week, and the storage stability was high. On the other hand, Comparative Example 1, which was not surface-treated, caused curing inhibition from the first day.
Also, comparing the pre-treatment of Examples 1 and 2 with the integral blend of Example 3, the pre-treated masterbatch had a clearly lower viscosity. Although the viscosity was too high to be measured, it was checked by hand stirring. On the other hand, the integral blend of Example 3 had a high viscosity at first, but the viscosity decreased after stirring to some extent, and showed dilatancy. From this, the pre-processing was superior.

Claims (8)

ポリマーと硬化触媒と鉄含有粉体を含む付加硬化型原料組成物であって、
前記鉄含有粉体は、鉄、酸化鉄、鉄を含む金属酸化物から選ばれる少なくとも一つであり、
鉄含有粉体は、チタン系カップリング剤、アルミニウム系カップリング剤及びシラン系カップリング剤から選ばれる少なくとも一つのカップリング剤で表面処理されていることを特徴とする付加硬化型原料組成物。
An addition-curable raw material composition comprising a polymer, a curing catalyst, and an iron-containing powder,
The iron-containing powder is iron, iron oxide, at least one selected from metal oxides containing iron,
An addition-curable raw material composition, wherein the iron-containing powder is surface-treated with at least one coupling agent selected from a titanium-based coupling agent, an aluminum-based coupling agent, and a silane-based coupling agent.
前記付加硬化型原料組成物は、成形体を得るためのマスターバッチ用原料組成物である請求項1に記載の付加硬化型原料組成物。   The addition-curable raw material composition according to claim 1, wherein the addition-curable raw material composition is a raw material composition for a masterbatch for obtaining a molded article. 前記ポリマーは、オルガノポリシロキサンである請求項1又は2に記載の付加硬化型原料組成物。   The addition-curable raw material composition according to claim 1, wherein the polymer is an organopolysiloxane. 前記チタン系カップリング剤は、イソプロピルトリイソステアロイルチタネート、ジイソステアロイルエチレンチタネート及びこれらの部分加水分解物から選ばれる少なくとも一つである請求項1〜3のいずれかに記載の付加硬化型原料組成物。   The addition-curable raw material composition according to any one of claims 1 to 3, wherein the titanium-based coupling agent is at least one selected from isopropyltriisostearoyl titanate, diisostearoylethylene titanate, and a partial hydrolyzate thereof. object. 前記アルミニウム系カップリング剤は、アルキルアセトアセテートアルミニウムジイソプロピレート及びその部分加水分解物から選ばれる少なくとも一つである請求項1〜4のいずれかに記載の付加硬化型原料組成物。   The addition-curable raw material composition according to any one of claims 1 to 4, wherein the aluminum-based coupling agent is at least one selected from alkyl acetoacetate aluminum diisopropylate and a partial hydrolyzate thereof. 前記シラン系カップリング剤は、R(CH3aSi(OR’)3-a(Rは炭素数1〜20のアルキル基、R’は炭素数1〜4のアルキル基、aは0もしくは1)で示されるシラン化合物及びこれらの部分加水分解物から選ばれる少なくとも一つである請求項1〜4のいずれかに記載の付加硬化型原料組成物。 The silane coupling agent may be R (CH 3 ) a Si (OR ′) 3-a (R is an alkyl group having 1 to 20 carbon atoms, R ′ is an alkyl group having 1 to 4 carbon atoms, a is 0 or The addition-curable raw material composition according to any one of claims 1 to 4, which is at least one selected from the silane compounds represented by 1) and partial hydrolysates thereof. 前記酸化鉄は、四酸化三鉄(Fe34)及び三酸化二鉄(Fe23)から選ばれる少なくとも一つである請求項1〜6のいずれかに記載の付加硬化型原料組成物。 The iron oxide, addition curable raw material composition according to claim 1 is at least one selected from triiron tetraoxide (Fe 3 O 4) and ferric oxide (Fe 2 O 3) object. 前記カップリング剤は、鉄含有粉体100質量部に対して0.1〜10質量部添加されている請求項1〜7のいずれかに記載の付加硬化型原料組成物。   The addition-curable raw material composition according to any one of claims 1 to 7, wherein the coupling agent is added in an amount of 0.1 to 10 parts by mass based on 100 parts by mass of the iron-containing powder.
JP2018130085A 2018-07-09 2018-07-09 Additive-curable raw material composition Active JP6901999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130085A JP6901999B2 (en) 2018-07-09 2018-07-09 Additive-curable raw material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130085A JP6901999B2 (en) 2018-07-09 2018-07-09 Additive-curable raw material composition

Publications (2)

Publication Number Publication Date
JP2020007463A true JP2020007463A (en) 2020-01-16
JP6901999B2 JP6901999B2 (en) 2021-07-14

Family

ID=69150574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130085A Active JP6901999B2 (en) 2018-07-09 2018-07-09 Additive-curable raw material composition

Country Status (1)

Country Link
JP (1) JP6901999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172547A1 (en) 2021-02-15 2022-08-18 富士高分子工業株式会社 Heat-conductive silicone composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360955A (en) * 1976-11-12 1978-05-31 Toray Silicone Co Ltd Self-extinguishing silicone rubber composition
JPS6052501A (en) * 1983-08-31 1985-03-25 Fukuda Kinzoku Hakufun Kogyo Kk Treatment of metallic powder
JPH05230374A (en) * 1991-11-28 1993-09-07 Wacker Chemie Gmbh Material storable in the absence of water and crosslinkable at room temperature on permeation of water to give elastomer
JPH11116807A (en) * 1997-10-13 1999-04-27 Suzuki Sogyo Co Ltd Silicone rubber composition having thermal conductivity and its molding product
JP2004331962A (en) * 2003-04-15 2004-11-25 Dow Corning Toray Silicone Co Ltd Addition curing type heat conductive liquid silicone rubber composition
JP2016518461A (en) * 2013-05-23 2016-06-23 東レ・ダウコーニング株式会社 Heat resistant silicone rubber composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360955A (en) * 1976-11-12 1978-05-31 Toray Silicone Co Ltd Self-extinguishing silicone rubber composition
JPS6052501A (en) * 1983-08-31 1985-03-25 Fukuda Kinzoku Hakufun Kogyo Kk Treatment of metallic powder
JPH05230374A (en) * 1991-11-28 1993-09-07 Wacker Chemie Gmbh Material storable in the absence of water and crosslinkable at room temperature on permeation of water to give elastomer
JPH11116807A (en) * 1997-10-13 1999-04-27 Suzuki Sogyo Co Ltd Silicone rubber composition having thermal conductivity and its molding product
JP2004331962A (en) * 2003-04-15 2004-11-25 Dow Corning Toray Silicone Co Ltd Addition curing type heat conductive liquid silicone rubber composition
JP2016518461A (en) * 2013-05-23 2016-06-23 東レ・ダウコーニング株式会社 Heat resistant silicone rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172547A1 (en) 2021-02-15 2022-08-18 富士高分子工業株式会社 Heat-conductive silicone composition

Also Published As

Publication number Publication date
JP6901999B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP5627941B2 (en) Process for producing silicone coatings and silicone moldings from light-crosslinkable silicone mixtures
JP2704732B2 (en) Curable liquid organopolysiloxane composition
EP1008149B1 (en) Electroconductive composition, composite suitable for making same, and methods for producing such composition and composite
US20040192834A1 (en) Silver-filled electrically conductive organosiloxane compositions
JPH03146557A (en) Electrically conductive silicone rubber composition and cured product thereof
JP7055255B1 (en) Method for Producing Thermally Conductive Silicone Composition
JP3406776B2 (en) Silicone rubber composition for electrical insulation materials
EP3372630B1 (en) Method for producing thermally-conductive polysiloxane composition
JP2001139818A (en) Thermally conductive silicone rubber composition
JP6240593B2 (en) Thermally conductive silicone composition and cured product thereof
JP2018118940A (en) Surface treatment agent for thermally conductive polysiloxane composition
JP6264307B2 (en) Addition-curing silicone composition
JP2022060339A (en) Heat conductive silicone composition
JP7401878B2 (en) Silsesquioxane derivatives and their uses
JP6901999B2 (en) Additive-curable raw material composition
CN114729192A (en) Heat conductive silicone gel composition, heat conductive silicone gel sheet, and method for producing same
JP3275630B2 (en) Conductive filler and conductive silicone composition
JP2009138038A (en) Solvent resistant silicone rubber composition
JP2006328302A (en) Electroconductive silicone rubber composition and electroconductive material
EP0110371B1 (en) One-component electrically conductive organopolysiloxane compositions
CN117413021A (en) Thermally conductive silicone composition and cured product thereof
JP6988023B1 (en) Thermally conductive silicone heat dissipation material
JP2021187874A (en) Thermally conductive addition curing-type silicone composition and method for producing the same
JPS61275354A (en) Production of silicone rubber composition
TW202419576A (en) Polysiloxane composition and uses of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R150 Certificate of patent or registration of utility model

Ref document number: 6901999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250