JP2020006808A - Flight work body - Google Patents

Flight work body Download PDF

Info

Publication number
JP2020006808A
JP2020006808A JP2018129731A JP2018129731A JP2020006808A JP 2020006808 A JP2020006808 A JP 2020006808A JP 2018129731 A JP2018129731 A JP 2018129731A JP 2018129731 A JP2018129731 A JP 2018129731A JP 2020006808 A JP2020006808 A JP 2020006808A
Authority
JP
Japan
Prior art keywords
unit
contact
ceiling surface
work body
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018129731A
Other languages
Japanese (ja)
Other versions
JP7078475B2 (en
Inventor
利昭 波田野
Toshiaki Hatano
利昭 波田野
大介 松家
Daisuke Matsuka
大介 松家
廣 荻原
Hiroshi Ogiwara
廣 荻原
英夫 綿貫
Hideo Watanuki
英夫 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Sewerage Service Corp
Hitachi Ltd
Original Assignee
Tokyo Metropolitan Sewerage Service Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Sewerage Service Corp, Hitachi Ltd filed Critical Tokyo Metropolitan Sewerage Service Corp
Priority to JP2018129731A priority Critical patent/JP7078475B2/en
Publication of JP2020006808A publication Critical patent/JP2020006808A/en
Application granted granted Critical
Publication of JP7078475B2 publication Critical patent/JP7078475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

To provide a flight work body capable of solving problems for example, when moving directly, on a curve ceiling plane such as inside of a duct, when the flight work body is deviated from a direct movement direction, since force directed to a peripheral direction of the curve ceiling plane acts the wheels, the flight work body tends to meander in lateral directions, thereby resulting in difficulty of direct movement.SOLUTION: There is provided a flight work body which performs a work by contact movement on a ceiling plane, the flight work body comprises: a ceiling plane contact unit which has a contact part contacting the ceiling plane; a flight unit which is provided below the ceiling plane contact unit and has a propulsion part for flight; and a connection part for connecting the ceiling plane contact unit and the flight unit, and comprising a rotary freedom degree to a pitch axis. The ceiling plane contact unit has front steering means having a rotary axis for controlling a movement direction when moving in contact to the ceiling plane, and rear steering means having a rotary axis, the rotary axis of the front steering means is inclined so that a front side thereof becomes higher, and a rotary axis of the rear steering means is inclined so that a rear side thereof is higher.SELECTED DRAWING: Figure 3

Description

本発明は、トンネル、共同溝、下水管路等の構造物の天井面を接触移動しながら、点検、調査、補修等の作業を行う飛行作業体に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flying work body that performs operations such as inspection, inspection, and repair while contacting and moving a ceiling surface of a structure such as a tunnel, a common ditch, and a sewer pipe.

天井面を接触移動しながら点検作業等を行う飛行作業体の従来技術として、特許文献1がある。特許文献1の特許請求の範囲や、図2、図3には、「複数のスラスタを有し、前記スラスタで発生する推進力を制御することにより、飛行姿勢が変化する飛行ユニットと、前記飛行ユニットに設けられ、前記飛行ユニットの周辺の対象面に接する2つ以上の接触部と、前記接触部のそれぞれに設けられ、前記接触部と前記対象面との接触によって加わる力を接触力として検出する接触力検出部と、前記接触力検出部で検出したそれぞれの前記接触力が等しくなるように前記飛行ユニットの姿勢を制御する姿勢制御部と、を備える飛行装置」が開示されている。   As a prior art of a flying work body that performs an inspection work or the like while contacting and moving on a ceiling surface, there is Patent Document 1 (Japanese Patent Application Laid-Open No. H11-163873). The claims in Patent Document 1 and FIGS. 2 and 3 show a “flight unit having a plurality of thrusters, the flight attitude of which changes by controlling the thrust generated by the thrusters, Two or more contact portions provided on the unit and in contact with a target surface around the flight unit; and a force applied by the contact between the contact portion and the target surface provided on each of the contact portions is detected as a contact force. And a posture control unit that controls the posture of the flying unit such that the respective contact forces detected by the contact force detection unit are equal.

特開2017−061298号公報JP 2017-061298 A

しかしながら、特許文献1の飛行装置では、円形管路内のような曲面天井に接触しながら管路を軸方向に直進する場合、飛行装置が管路の軸方向から逸れてしまうと、飛行装置が傾いてしまい、車輪の片側は天井面から離れ易くなると共に、天井面に接触している車輪には飛行装置を周方向に向ける力が作用するため、飛行装置が左右に蛇行しやすくなる。このような状態になると、飛行装置が曲面天井の中央へ復帰することが困難になるが、特許文献1ではこの課題については何ら考慮されていない。   However, in the flight device of Patent Literature 1, when the flight device goes straight in the axial direction while contacting a curved ceiling such as in a circular pipeline, if the flight device deviates from the axial direction of the pipeline, the flight device As a result, the one side of the wheel is likely to separate from the ceiling surface, and a force that orients the flying device in the circumferential direction acts on the wheel that is in contact with the ceiling surface, so that the flying device is likely to meander left and right. In such a state, it is difficult for the flying device to return to the center of the curved ceiling, but Patent Literature 1 does not consider this problem at all.

そこで、本発明の目的は、円形管路内のような曲面天井面を安定して接触移動でき、安定した点検、調査、補修等の作業を実現する飛行作業体を提供することにある。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a flying body capable of stably moving a curved ceiling surface such as in a circular conduit and performing operations such as stable inspection, inspection, and repair.

前記課題を解決するために本発明の飛行作業体は、天井面を接触移動して作業を行う飛行作業体であって、前記天井面に接触する接触部を備えた天井面接触ユニットと、該天井面接触ユニットの下方に設けられ、飛行のための推進部を備えた飛行ユニットと、前記天井面接触ユニットと前記飛行ユニットを接続すると共に、少なくともピッチ軸に対し回転自由度を有する接続部と、から構成され、前記天井面接触ユニットは、前記天井面に接触して移動する際の進行方向を制御するための回転軸を有する前方操舵手段と後方操舵手段を備え、前記前方操舵手段の回転軸は、前方が高くなるように傾斜しており、前記後方操舵手段の回転軸は、後方が高くなるように傾斜しているものとした。   In order to solve the above-described problems, a flying work body of the present invention is a flying work body that performs a work by contacting and moving a ceiling surface, and a ceiling surface contact unit including a contact portion that contacts the ceiling surface, A flight unit provided below the ceiling surface contact unit and provided with a propulsion unit for flight, and a connection unit that connects the ceiling surface contact unit and the flight unit and has at least a degree of freedom of rotation with respect to a pitch axis. , The ceiling surface contact unit includes a front steering unit and a rear steering unit having a rotation axis for controlling a traveling direction when moving in contact with the ceiling surface, the rotation of the front steering unit The axis is inclined so that the front becomes higher, and the rotation axis of the rearward steering means is inclined so that the rear becomes higher.

本発明の飛行作業体によれば、円形管路内のような曲面天井に接触しながら管路を軸方向へ直進する際に、飛行作業体が管路の軸方向から逸れた場合であっても、飛行作業体の天井面接触ユニットの傾斜した操舵部を制御することにより、天井面接触ユニットの基準平面に対し、車輪の軌道を3次元的に変化させて車輪と曲面天井の接触状態を維持できるようにすることで、曲面天井の中央へ復帰しやすくする。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。   According to the flying work body of the present invention, when the flying work body deviates from the axial direction of the pipeline when traveling straight in the axial direction while contacting a curved ceiling such as in a circular pipeline. Also, by controlling the inclined steering unit of the ceiling contact unit of the flying work body, the trajectory of the wheel is three-dimensionally changed with respect to the reference plane of the ceiling contact unit, and the contact state between the wheel and the curved ceiling is changed. Being able to maintain it will make it easier to return to the center of the curved ceiling. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

実施例1の飛行作業体が円形管路内の天井面を移動する概略側面図。FIG. 2 is a schematic side view of the flying work body of the first embodiment moving on a ceiling surface in a circular pipeline. 従来の飛行作業体が曲面天井中央から逸れた場合の概略正面図。FIG. 9 is a schematic front view when a conventional flying work body deviates from the center of a curved ceiling. 実施例1の飛行作業体の側面図。FIG. 2 is a side view of the flying work body according to the first embodiment. 実施例1の飛行作業体の天井面接触ユニットの等角図。FIG. 2 is an isometric view of a ceiling contact unit of the flying work body according to the first embodiment. 実施例1の飛行作業体の天井面接触ユニットの操舵部周辺の拡大図。FIG. 2 is an enlarged view of the vicinity of a steering unit of a ceiling contact unit of the flying work body according to the first embodiment. 実施例1の飛行作業体の天井面接触ユニットが右に操舵した場合の等角図。FIG. 3 is an isometric view of the case where the ceiling contact unit of the flying work body according to the first embodiment is steered to the right. 実施例1の飛行作業体が天井中央から逸れた場合に、天井中央に復帰するため天井面接触ユニットの舵を切った際の管路内正面図。FIG. 4 is a front view in the pipeline when the rudder of the ceiling contact unit is turned to return to the center of the ceiling when the flying work body of the first embodiment deviates from the center of the ceiling. 実施例1の飛行作業体の天井面接触ユニットの変形例1の上面図。FIG. 5 is a top view of a first modification of the ceiling contact unit of the flying work body according to the first embodiment. 実施例2の飛行作業体の側面図。FIG. 10 is a side view of the flying work body according to the second embodiment.

以下、図面を用いて、本発明の実施例を説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付け、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and redundant description will be omitted.

始めに、図1と図2を用いて、飛行作業体10の天井面接触移動時の課題について説明する。飛行作業体10は、主に、天井面に車輪を押し当て移動するための天井面接触ユニット11と、飛行推力を発生させる飛行ユニット12から構成されるものである。図1の概略側面図に示すように、飛行作業体10は、下水管路、共同溝、トンネル等の管路1内を移動し、飛行作業体10に搭載されたカメラやセンサ等を用いて管内映像を取得し、調査や点検を行うものである。   First, a problem when the flying work body 10 moves in contact with the ceiling surface will be described with reference to FIGS. 1 and 2. The flying work body 10 mainly includes a ceiling surface contact unit 11 for pressing and moving a wheel against a ceiling surface, and a flight unit 12 for generating a flight thrust. As shown in the schematic side view of FIG. 1, the flying work body 10 moves in a pipeline 1 such as a sewer pipe, a common ditch, or a tunnel, and uses a camera, a sensor, or the like mounted on the flying work body 10. It is to acquire images in the jurisdiction and conduct investigations and inspections.

飛行作業体10が回転翼等により浮上する構造で、管路1の内径が、飛行作業体10のサイズに対して比較的小さい場合、飛行作業体10自身が発生させた風が管路1内で巻き風となり、飛行作業体10の姿勢や高度を安定化させるのが困難となる。そこで、図1に示すように、飛行作業体10の天井面接触ユニット11を管路1の天井面2に接触させながら移動することで、移動中の飛行作業体10の姿勢と高度を安定させることができる。なお、図1中の太い黒矢印は、飛行作業体10の進行方向を示す。   When the flying body 10 is levitated by a rotating wing or the like, and the inner diameter of the pipeline 1 is relatively small with respect to the size of the flying body 10, wind generated by the flying body 10 itself is generated in the pipeline 1. As a result, it becomes difficult to stabilize the attitude and altitude of the flying work body 10. Therefore, as shown in FIG. 1, the attitude and the altitude of the moving flying body 10 are stabilized by moving the ceiling surface contacting unit 11 of the flying body 10 while making contact with the ceiling surface 2 of the pipeline 1. be able to. The thick black arrow in FIG. 1 indicates the traveling direction of the flying work body 10.

管路1の断面が矩形で、天井面が平面である場合、飛行作業体10が天井面を接触移動する際に、機体がロール軸方向に大きく傾くことはない。しかし、管路1の断面が円形等の曲面である場合、図2の概略正面図に示すように、飛行作業体が天井曲面中央(管の軸方向)から逸れると、従来は、車輪の片側(図2では右側車輪)が天井面から離れやすくなると共に、天井曲面に接触している車輪(図2では左側車輪)に飛行作業体10を周方向に向ける力が作用するため、飛行作業体10が左右に蛇行しやすくなる。このため、従来の飛行作業体には、天井曲面中央へ復帰するのが困難になるという課題があった。本発明は、このような課題を解決するために、飛行最業態10を次に述べる構成としたものである。   In the case where the cross section of the pipeline 1 is rectangular and the ceiling surface is flat, the airframe does not greatly tilt in the roll axis direction when the flying work body 10 moves in contact with the ceiling surface. However, when the cross section of the pipeline 1 is a curved surface such as a circle, as shown in the schematic front view of FIG. 2, if the flying work body deviates from the center of the ceiling curved surface (axial direction of the pipe), conventionally, one side of the wheel is provided. (The right wheel in FIG. 2) can be easily separated from the ceiling surface, and a force that orients the flying work body 10 in the circumferential direction acts on the wheel (the left wheel in FIG. 2) that is in contact with the curved curved surface. 10 is easy to meander left and right. For this reason, the conventional flying work body has a problem that it is difficult to return to the center of the ceiling curved surface. In the present invention, in order to solve such a problem, the flight mode of operation 10 is configured as follows.

始めに、実施例1の飛行作業体10の基本構成について、図3の機体側面図を用いて説明する。ここに示すように、飛行作業体10は、天井面2と接触しながら移動するための天井面接触ユニット11と、天井面接触ユニット11の下方に設けられ、飛行のための推進部を備えた飛行ユニット12から構成され、両者は、少なくとも1軸方向以上の回転自由度を有する接続部13で接続されている。本実施例では、接続部13として、天井面接触ユニット11のピッチ軸方向(管の軸方向)と垂直に円柱状の固定ピン32を配置しており、これにより両ユニットを回動自在に連結している。本構成により、図1に示すように、固定ピン32を回転軸として、天井面接触ユニット11に対して飛行ユニット12を前後に傾けることができるので、天井面接触ユニット11の車輪14を天井面2に押し付けながら、飛行作業体10を安定して接触移動させることが可能となる。   First, the basic configuration of the flying work body 10 according to the first embodiment will be described with reference to the body side view of FIG. As shown here, the flying work body 10 includes a ceiling surface contact unit 11 for moving while contacting the ceiling surface 2, and a propulsion unit provided below the ceiling surface contact unit 11 for flight. It is composed of a flight unit 12 and both are connected by a connection portion 13 having at least one axis of rotation or more. In the present embodiment, a cylindrical fixing pin 32 is arranged as the connecting portion 13 in a direction perpendicular to the pitch axis direction (axial direction of the pipe) of the ceiling surface contact unit 11, thereby connecting both units rotatably. are doing. With this configuration, as shown in FIG. 1, the flight unit 12 can be tilted back and forth with respect to the ceiling surface contact unit 11 using the fixing pin 32 as a rotation axis, so that the wheels 14 of the ceiling surface contact unit 11 2, the flying work body 10 can be stably contacted and moved.

また、本実施例の飛行作業体10は、上述の基本構成に加えて、管路1内を点検するための機器として、動画及び/又は静止画を撮像可能なカメラ21を搭載している。なお、調査環境に応じて、照明器、環境センサ等を設ける構成としても良い。さらに、管内で劣化箇所を補修する場合には、充填材や腐食止め塗料を含んだスプレーガンやロボットアーム等を搭載させても良い。   Further, in addition to the above-described basic configuration, the flying work body 10 of the present embodiment is equipped with a camera 21 that can capture a moving image and / or a still image as a device for inspecting the inside of the pipeline 1. Note that a configuration may be adopted in which a lighting device, an environment sensor, and the like are provided according to the investigation environment. Further, when repairing a deteriorated portion in the pipe, a spray gun or a robot arm containing a filler or a corrosion-inhibiting paint may be mounted.

次に、飛行ユニット12の構成を詳細に説明する。飛行ユニット12は、飛行ユニットフレーム18、プロペラ16及びモータ17からなる推力部、飛行制御部19、バッテリー等の動力源20より構成される。本実施例では、四組のプロペラ16とモータ17から成る、従来のマルチコプタ型の推進部を用いた制御方式を採っている。すなわち、各々のプロペラ16の回転数を変化させることで、飛行ユニット12自体を傾け、前後左右、上下へ移動させることができ、飛行制御部19に搭載されているIMU(Inertial Measurement Unit)センサの加速度、角速度、方位情報をフィードバックし、空中での姿勢制御を行っている。なお、十分な飛行推力を発生させ、推力方向を任意に制御できるのであれば、他の構成の推力発生部を用いても良い。   Next, the configuration of the flight unit 12 will be described in detail. The flight unit 12 includes a flight unit frame 18, a thrust unit including a propeller 16 and a motor 17, a flight control unit 19, and a power source 20 such as a battery. In this embodiment, a control system using a conventional multi-copter type propulsion unit including four sets of propellers 16 and a motor 17 is employed. That is, by changing the rotation speed of each propeller 16, the flight unit 12 itself can be tilted and moved back and forth, right and left, and up and down. Feedback on acceleration, angular velocity, and azimuth information is used to control the attitude in the air. As long as sufficient flight thrust can be generated and the thrust direction can be arbitrarily controlled, a thrust generation unit having another configuration may be used.

続いて、図4を用いて、天井面接触ユニット11の詳細を説明する。天井面接触ユニット11は、飛行作業体10が天井面に接触したときに安定した接触移動を実現するためのものであり、天井面接触ユニットフレーム15で形成したシャーシの前後に、二本の車軸31を取り付けた、二軸四輪の台車構造である。なお、車輪14の形状は、特に限定しないが、天井面2が円管のような曲面の場合、図4に示すように車輪14にテーパーを切り、円管の曲率に近くした方が、管の軸方向への直進性や旋回性が上がるため望ましい。   Subsequently, the details of the ceiling surface contact unit 11 will be described with reference to FIG. The ceiling contact unit 11 is for realizing a stable contact movement when the flying work body 10 comes into contact with the ceiling, and has two axles before and after the chassis formed by the ceiling contact unit frame 15. 31 is a two-axle, four-wheel truck structure. The shape of the wheels 14 is not particularly limited. However, when the ceiling surface 2 is a curved surface such as a circular tube, it is preferable that the wheels 14 be tapered as shown in FIG. It is desirable because the straightness and the turning property in the axial direction of the lens increase.

本実施例では、車輪14の各々には、自走用アクチュエータを設けていないため、自走用アクチュエータの回転制御による進行方向制御には対応していないが、サーボモータ等からなる操舵装置30(前方操舵装置30f、後方操舵装置30r)によって、前後の車軸31の向きを制御し、進行方向を制御することができる。また、常時駆動が必要な自走用アクチュエータと異なり、操舵装置30は、進行方向を変更するときのみ駆動すれば良い。このような操舵機構を用いることで、各車輪に常時駆動が必要な自走用アクチュエータを用いる構成に比べ、総重量と消費電力の両方を大きく抑制することができる。   In this embodiment, since each of the wheels 14 is not provided with a self-propelled actuator, it does not correspond to the traveling direction control by rotation control of the self-propelled actuator. The front steering device 30f and the rear steering device 30r) can control the directions of the front and rear axles 31 to control the traveling direction. Further, unlike a self-propelled actuator which needs to be constantly driven, the steering device 30 need only be driven when the traveling direction is changed. By using such a steering mechanism, both the total weight and the power consumption can be greatly reduced as compared with a configuration using a self-propelled actuator that requires constant driving of each wheel.

ここで、各々の操舵装置30は、操舵装置30の傾斜角度を調整する傾斜角度調整部33を介して天井面接触ユニットフレーム15と接続されている。図5に、操舵装置30の周辺の拡大図を示す。ここに示すように、本実施例の飛行作業体10では、傾斜角度調整部33を用いることで、円形の管路のように天井面が曲面である場合、その曲率に応じた傾斜角度となるように操舵装置30を斜めに傾けて固定することができる。なお、本実施例では、前後の双方に傾斜角度調整部33を設けており、図3または図4に示すように、前方操舵装置30fの回転軸は前方が高くなるように、また、後方操舵装置30rの回転軸は後方が高くなるように傾斜させている。   Here, each steering device 30 is connected to the ceiling surface contact unit frame 15 via an inclination angle adjusting unit 33 that adjusts the inclination angle of the steering device 30. FIG. 5 is an enlarged view of the periphery of the steering device 30. As shown here, in the flying work body 10 of the present embodiment, by using the inclination angle adjusting unit 33, when the ceiling surface is a curved surface such as a circular pipeline, the inclination angle is in accordance with the curvature. Thus, the steering device 30 can be fixed by being inclined obliquely. In the present embodiment, the front and rear tilt angle adjusting sections 33 are provided on both sides, and as shown in FIG. 3 or FIG. The rotation axis of the device 30r is inclined so that the rear is higher.

また、本実施例では、前後の操舵装置30の動作タイミング及び回転量を同期させており、その回転方向は前後で逆になっている。図6は、前後の操舵装置30の同期制御の一例である。太い黒矢印に示すように、飛行作業体10の舵を右に切りたい場合には、前方操舵装置30f、後方操舵装置30rの双方を、図6における時計回りに所定量だけ回転させることで、前後双方の車軸31について、右側の車輪を上げ、左側の車輪を下げた状態、すなわち、右に舵を切る状態にすることができる。一方、飛行作業体10の舵を左に切りたい場合には、前方操舵装置30f、後方操舵装置30rの双方を、図6における反時計回りに所定量だけ回転させることで、前後双方の車軸31について、左側の車輪を上げ、右側の車輪を下げた状態、すなわち、左に舵を切る状態にすることができる。なお、各々の操舵装置30の回転量は、舵を切りたい量に略比例するものであり、通常は、管路1の中立位置からの飛行作業体10の位置のずれ量に略比例させて、操舵装置30の回転量を制御すればよい。   Further, in the present embodiment, the operation timing and the rotation amount of the front and rear steering devices 30 are synchronized, and the rotation directions are reversed in the front and rear. FIG. 6 is an example of synchronous control of the front and rear steering devices 30. As shown by a thick black arrow, when it is desired to turn the rudder of the flying work body 10 to the right, both the front steering device 30f and the rear steering device 30r are rotated clockwise in FIG. With respect to both the front and rear axles 31, the right wheel can be raised and the left wheel lowered, that is, the steering can be turned to the right. On the other hand, when it is desired to turn the rudder of the flying work body 10 to the left, both the front steering device 30f and the rear steering device 30r are rotated counterclockwise by a predetermined amount in FIG. With regard to, the left wheel can be raised and the right wheel lowered, that is, the steering can be turned to the left. The amount of rotation of each steering device 30 is substantially proportional to the amount of turning of the rudder, and is usually made substantially proportional to the amount of deviation of the position of the flying work body 10 from the neutral position of the pipeline 1. The amount of rotation of the steering device 30 may be controlled.

このように、舵を切る方向が水平方向に限定される従来の飛行作業体とは異なり、本実施例の飛行作業体10では、舵を切る方向が上下方向にも拡張され、つまり3次元的に舵を切ることができるため、管路1の天井が曲面である場合でも、飛行作業体10の四輪全てを天井に接触させた安定した状態で、進路を所望の方向に変更することが可能となる。その結果、図7のように飛行作業体10が円管の中央から左側に逸れた位置で接触していても、天井面接触ユニット11の車輪14の四輪全てを天井面2に接触させた状態で舵を右側に切ることができ、円管の天井中央へ飛行作業体10を復帰させることが可能となる。
(変形例1)
次に、図8を用いて、実施例1の飛行作業体10の変形例1を説明する。図4の天井面接触ユニット11では、天井面接触部として二軸四輪の台車構造を示したが、必ずしもこれに限られるものではない。すなわち、天井面接触ユニット11が、安定した天井面の接触移動を達成するための接触方式として、同一直線上にない3点以上の接触点を形成できる天井面接触部であれば良く、例えば、図8に示す天井面接触ユニット11のように、二軸三輪の台車構造を用いても良い。なお、接触点の数は、三輪(三点)以上であれば個数や種類に制限は無いが、飛行ユニット12のペイロードに余裕を持たせるため、軽量であること、すなわち、車輪14の数が少ないことが好ましい。また、天井面の状態に応じて、種類や外径の異なる車輪を組み合わせてもよい。各々の車輪14(接触点)の配置は、天井面接触ユニット11が天井面に接触し、移動した際に、左右前後のふらつきを抑制するため、また、各接触点に均等に接触力が加わるように接触点を飛行作業体10の主たる進行方向(管軸方向)に対して、左右対称に配置することが望ましい。
As described above, unlike the conventional flying work body in which the rudder turning direction is limited to the horizontal direction, in the flying work body 10 of the present embodiment, the rudder turning direction is also extended in the up-down direction, that is, three-dimensionally. Therefore, even when the ceiling of the pipeline 1 is a curved surface, the course can be changed to a desired direction in a stable state in which all four wheels of the flying work body 10 are in contact with the ceiling. It becomes possible. As a result, all four wheels 14 of the ceiling surface contact unit 11 were brought into contact with the ceiling surface 2 even when the flying work body 10 was in contact with a position deviated to the left from the center of the circular tube as shown in FIG. In this state, the rudder can be turned to the right, and the flying work body 10 can be returned to the center of the ceiling of the circular tube.
(Modification 1)
Next, a first modification of the flying work body 10 according to the first embodiment will be described with reference to FIG. In the ceiling surface contact unit 11 of FIG. 4, a two-axis four-wheel trolley structure is shown as the ceiling surface contact portion, but the invention is not necessarily limited to this. That is, the ceiling surface contact unit 11 may be a ceiling surface contact portion that can form three or more contact points that are not on the same straight line as a contact method for achieving stable contact movement of the ceiling surface. As in the case of the ceiling surface contact unit 11 shown in FIG. 8, a two-axle three-wheel truck structure may be used. The number of contact points is not limited as long as the number of contact points is three or more (three points). However, the number of contact points is light in order to provide a margin for the payload of the flight unit 12, that is, the number of wheels 14 is small. Preferably, it is small. Further, wheels having different types and outer diameters may be combined according to the state of the ceiling surface. The arrangement of the wheels 14 (contact points) suppresses the left-right and front-rear fluctuations when the ceiling surface contact unit 11 comes into contact with the ceiling surface and moves, and a contact force is uniformly applied to each contact point. As described above, it is desirable to arrange the contact points symmetrically with respect to the main traveling direction (the pipe axis direction) of the flying work body 10.

次に、図9を用いて、本発明の実施例2の飛行作業体10を説明する。なお、実施例1と共通する点は重複説明を省略するものとする。本実施例の飛行作業体10も、基本的な機体構成は実施例1と同じであり、天井面接触ユニット11と飛行ユニット12を接続部13で接続したものである。しかし、本実施例では、図9に示すように接続部13の下に、飛行ユニット12が天井面接触ユニット11を天井面2に押し付ける圧力(接触圧)を検出するための接触圧検出装置40が追加されている。   Next, a flying work body 10 according to a second embodiment of the present invention will be described with reference to FIG. Note that the same points as in the first embodiment will not be described repeatedly. The basic structure of the flying work body 10 of the present embodiment is also the same as that of the first embodiment, and a ceiling contact unit 11 and a flying unit 12 are connected by a connection unit 13. However, in the present embodiment, as shown in FIG. 9, a contact pressure detection device 40 for detecting a pressure (contact pressure) at which the flight unit 12 presses the ceiling surface contact unit 11 against the ceiling surface 2 below the connection portion 13. Has been added.

従って、本実施例の飛行作業体10では、接触圧検出装置40が検出した接触圧に基づいて飛行ユニット12の推力を調整することができ、これにより、天井面接触ユニット11を一定の力で天井面に接触させることもできる。このような推力制御を実行すれば、飛行ユニット12の推力が過剰となる状態を回避できるため、飛行ユニット12の消費電力を抑制しつつ、各々の車輪14に所望のグリップ力を与えることができるため、安定した天井面接触移動が可能となる。   Therefore, in the flying work body 10 of the present embodiment, the thrust of the flying unit 12 can be adjusted based on the contact pressure detected by the contact pressure detecting device 40, and thereby the ceiling contact unit 11 can be adjusted with a constant force. It can also be in contact with the ceiling surface. By executing such thrust control, it is possible to avoid a state where the thrust of the flight unit 12 is excessive, so that a desired grip force can be given to each wheel 14 while suppressing the power consumption of the flight unit 12. Therefore, stable contact movement on the ceiling surface is possible.

なお、本実施例では、接触圧検出装置40をバネのような弾性体41、変位センサ42、アーム43で構成し、パンタグラフのような構造を採った。天井面2に天井面接触ユニット11を押付けると弾性体41が収縮するため、その変形量を変位センサ42で計測する。弾性体41のヤング率が明らかな場合、弾性体41の変形量から接触圧を演算できるため、接触圧を直接的に測定することが可能である。   In this embodiment, the contact pressure detecting device 40 is constituted by an elastic body 41 such as a spring, a displacement sensor 42, and an arm 43, and adopts a pantograph-like structure. When the ceiling surface contact unit 11 is pressed against the ceiling surface 2, the elastic body 41 contracts, and the amount of deformation is measured by the displacement sensor 42. When the Young's modulus of the elastic body 41 is clear, the contact pressure can be calculated from the deformation amount of the elastic body 41, so that the contact pressure can be directly measured.

また、接触圧を直接的に観測しない場合であっても、変位センサ42が検出した弾性体41の変形量が一定になるように、飛行ユニット12の推力を制御すれば、実質的には、一定の接触圧を天井面接触ユニット11に付加する制御を実現することができる。なお、図9では、接続部13の下に接触圧検出装置40を配置させたが、天井面接触ユニット11の車輪14と天井面接触ユニットフレーム15の間にサスペンションの要領で追加させても良い。また、当然の事ながら、天井面への接触圧をロードセル等の圧力センサで直接計測しても構わない。   Further, even when the contact pressure is not directly observed, if the thrust of the flight unit 12 is controlled so that the amount of deformation of the elastic body 41 detected by the displacement sensor 42 becomes constant, substantially, Control for applying a constant contact pressure to the ceiling surface contact unit 11 can be realized. In FIG. 9, the contact pressure detecting device 40 is arranged below the connection portion 13, but may be added between the wheels 14 of the ceiling surface contact unit 11 and the ceiling surface contact unit frame 15 in the manner of a suspension. . Naturally, the contact pressure on the ceiling surface may be directly measured by a pressure sensor such as a load cell.

以上で説明した本発明は、上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施例に適用可能である。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成について、他の構成の追加、削除、置換をすることが可能である。   The present invention described above is not limited to the above embodiments, and can be applied to various embodiments without departing from the gist thereof. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, with respect to the configuration of each embodiment, it is possible to add, delete, or replace another configuration.

1 管路、
2 天井面、
10 飛行作業体、
11 天井面接触ユニット、
12 飛行ユニット、
13 接続部、
14 車輪、
15 天井面接触ユニットフレーム、
16 プロペラ、
17 モータ、
18 飛行ユニットフレーム、
19 飛行制御部、
20 動力源、
21 カメラ、
30 操舵装置、
30f 前方操舵装置、
30r 後方操舵装置、
31 車軸、
32 固定ピン、
33 傾斜角度調整部、
40 接触圧検出装置、
41 弾性体、
42 変位センサ、
43 アーム、
1 pipeline,
2 ceiling surface,
10 flying bodies,
11 ceiling contact unit,
12 flight units,
13 connections,
14 wheels,
15 ceiling contact unit frame,
16 propellers,
17 motor,
18 flight unit frames,
19 Flight control unit,
20 power sources,
21 cameras,
30 steering gear,
30f forward steering device,
30r rear steering device,
31 axles,
32 fixing pins,
33 tilt angle adjustment unit,
40 contact pressure detecting device,
41 elastic body,
42 displacement sensor,
43 arms,

Claims (6)

天井面を接触移動して作業を行う飛行作業体であって、
前記天井面に接触する接触部を備えた天井面接触ユニットと、
該天井面接触ユニットの下方に設けられ、飛行のための推進部を備えた飛行ユニットと、
前記天井面接触ユニットと前記飛行ユニットを接続すると共に、少なくともピッチ軸に対し回転自由度を有する接続部と、から構成され、
前記天井面接触ユニットは、
前記天井面に接触して移動する際の進行方向を制御するための回転軸を有する前方操舵手段と後方操舵手段を備え、
前記前方操舵手段の回転軸は、前方が高くなるように傾斜しており、
前記後方操舵手段の回転軸は、後方が高くなるように傾斜していることを特徴とする飛行作業体。
A flying work body that works by touching and moving the ceiling surface,
A ceiling surface contact unit having a contact portion that contacts the ceiling surface,
A flight unit provided below the ceiling contact unit and including a propulsion unit for flight;
A connection unit that connects the ceiling surface contact unit and the flight unit, and has at least a rotational degree of freedom with respect to a pitch axis;
The ceiling surface contact unit,
It comprises a front steering unit and a rear steering unit having a rotation axis for controlling a traveling direction when moving in contact with the ceiling surface,
The rotation axis of the front steering means is inclined so that the front is higher,
A flying body, wherein a rotation axis of the rear steering means is inclined so that the rear is higher.
請求項1に記載の飛行作業体において、
前記天井面接触ユニットの前記接触部は四輪台車であり、前記前方操舵手段と前記後方操舵手段の回転軸には左右二輪が同軸に取付けられていることを特徴とする飛行作業体。
The flying work body according to claim 1,
The flying work body, wherein the contact portion of the ceiling surface contact unit is a four-wheeled vehicle, and two left and right wheels are coaxially mounted on rotation axes of the front steering means and the rear steering means.
請求項2に記載の飛行作業体において、
前記四輪台車に用いる車輪の接地面を正面視したときの曲率を、曲面天井面の曲率に近似させたことを特徴とする飛行作業体。
The flying work body according to claim 2,
A flying body, wherein a curvature of a ground contact surface of wheels used in the four-wheeled vehicle is approximated to a curvature of a curved ceiling surface.
請求項1に記載の飛行作業体において、
前記前方操舵手段または前記後方操舵手段の回転軸の傾斜角度を任意に調整可能な傾斜角度調整部を備えることを特徴とする飛行作業体。
The flying work body according to claim 1,
A flying work body comprising: a tilt angle adjusting unit that can arbitrarily adjust a tilt angle of a rotation axis of the front steering unit or the rear steering unit.
天井面を接触移動して作業を行う飛行作業体であって、
天井面に接触する接触部を備えた天井面接触ユニットと、
該天井面接触ユニットの下方に設けられ、飛行のための推進部を備えた飛行ユニットと、
前記天井面接触ユニットと前記飛行ユニットを接続すると共に、少なくともピッチ軸に対し回転自由度を有する接続部と、から構成され、
前記天井面接触ユニットの前記接触部は、
前方または後方に、前記天井面に接触して移動する際の進行方向を制御するための回転軸を有する操舵手段を備えた三輪台車であって、
前記操舵手段が前方にあるとき、その回転軸は、前方が高くなるように傾斜し、
前記操舵手段が後方にあるとき、その回転軸は、後方が高くなるように傾斜しており、
前記操舵手段の回転軸には左右二輪が同軸に取付けられていることを特徴とする飛行作業体。
A flying work body that works by touching and moving the ceiling surface,
A ceiling contact unit having a contact portion that contacts the ceiling,
A flight unit provided below the ceiling contact unit and including a propulsion unit for flight;
A connection unit that connects the ceiling surface contact unit and the flight unit, and has at least a rotational degree of freedom with respect to a pitch axis;
The contact portion of the ceiling surface contact unit,
Forward or rearward, a three-wheeled trolley including a steering means having a rotation axis for controlling the traveling direction when moving in contact with the ceiling surface,
When the steering means is in front, the rotation axis is inclined so that the front is higher,
When the steering means is at the rear, its rotation axis is inclined so that the rear is higher,
A flying body, wherein two left and right wheels are coaxially mounted on a rotation shaft of the steering means.
請求項1から請求項5の何れか一項に記載の飛行作業体において、
前記天井面接触ユニットを前記天井面に押付ける接触圧を検出する接圧検出部を更に備えたことを特徴とする飛行作業体。
The flying work body according to any one of claims 1 to 5,
The flying work body further includes a contact pressure detection unit that detects a contact pressure that presses the ceiling surface contact unit against the ceiling surface.
JP2018129731A 2018-07-09 2018-07-09 Flying object Active JP7078475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018129731A JP7078475B2 (en) 2018-07-09 2018-07-09 Flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129731A JP7078475B2 (en) 2018-07-09 2018-07-09 Flying object

Publications (2)

Publication Number Publication Date
JP2020006808A true JP2020006808A (en) 2020-01-16
JP7078475B2 JP7078475B2 (en) 2022-05-31

Family

ID=69150336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129731A Active JP7078475B2 (en) 2018-07-09 2018-07-09 Flying object

Country Status (1)

Country Link
JP (1) JP7078475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080418A (en) * 2020-12-07 2022-06-14 서울과학기술대학교 산학협력단 Multipurpose vehicle capable of driving on the ground and walls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223995A (en) * 2014-05-29 2015-12-14 株式会社熊谷組 Unmanned flight body for photographing
CN105730173A (en) * 2016-05-06 2016-07-06 吉林大学 Water, land, air and wall type quadruple robot
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure
CN106814091A (en) * 2017-01-20 2017-06-09 绍兴文理学院 A kind of tunnel-liner defect GPR detecting system that car is detected based on wall-attaching type
JP2018118525A (en) * 2017-01-23 2018-08-02 株式会社日立製作所 Flying work body and work system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223995A (en) * 2014-05-29 2015-12-14 株式会社熊谷組 Unmanned flight body for photographing
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure
CN105730173A (en) * 2016-05-06 2016-07-06 吉林大学 Water, land, air and wall type quadruple robot
CN106814091A (en) * 2017-01-20 2017-06-09 绍兴文理学院 A kind of tunnel-liner defect GPR detecting system that car is detected based on wall-attaching type
JP2018118525A (en) * 2017-01-23 2018-08-02 株式会社日立製作所 Flying work body and work system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080418A (en) * 2020-12-07 2022-06-14 서울과학기술대학교 산학협력단 Multipurpose vehicle capable of driving on the ground and walls
KR102486418B1 (en) 2020-12-07 2023-01-06 서울과학기술대학교 산학협력단 Multipurpose vehicle capable of driving on the ground and walls

Also Published As

Publication number Publication date
JP7078475B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6448071B2 (en) Drone
JP5208906B2 (en) Inverted pendulum type vehicle
JP5322562B2 (en) Moving trolley
CN107757912A (en) Power set, aircraft and flying vehicles control method
JP6804313B2 (en) Flying work body and work system using it
US8245966B2 (en) Airship and vectored propeller drive therefor
CN106184542A (en) A kind of without wheelspan vehicle control system and control method
CN104843177B (en) Aircraft
JPH0263993A (en) Unmanned diving machine
WO2022059714A1 (en) Two-wheeled vehicle
JP2018165131A (en) Flight machine and method for using flight machine
CN106873645B (en) Spherical gyro mechanism capable of conducting omnidirectional precession and control method
JP7078475B2 (en) Flying object
CN103963871B (en) There is the five of automatic leveling platform and take turns exploration car
JP2002243579A (en) Wind tunnel model support device and wind tunnel test device using it
JP7089735B2 (en) Unmanned aerial vehicle
JP4256205B2 (en) Wind tunnel model support device
CN214397249U (en) Carry on parallelly connected arm aircraft
JP2009190506A (en) Posture control device for artificial satellite and posture control method of artificial satellite
JP5429954B2 (en) Wheel moving device and its traveling direction control method
JP6973124B2 (en) Flyer
JP7120587B1 (en) Attitude control method for flying object and flying object
KR100493214B1 (en) Omni-directional vehicle with continuous variable transmission
JP2019130974A (en) Flight machine
JPH08300960A (en) Ominidirectional moving vehicle and its steering control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150