JP2020004795A - Monitoring system and monitoring device for stationary induction device - Google Patents

Monitoring system and monitoring device for stationary induction device Download PDF

Info

Publication number
JP2020004795A
JP2020004795A JP2018120916A JP2018120916A JP2020004795A JP 2020004795 A JP2020004795 A JP 2020004795A JP 2018120916 A JP2018120916 A JP 2018120916A JP 2018120916 A JP2018120916 A JP 2018120916A JP 2020004795 A JP2020004795 A JP 2020004795A
Authority
JP
Japan
Prior art keywords
voltage
transformer
stationary induction
winding
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018120916A
Other languages
Japanese (ja)
Other versions
JP7045945B2 (en
Inventor
栗田 直幸
Naoyuki Kurita
直幸 栗田
貴郁 日比野
Takafumi Hibino
貴郁 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2018120916A priority Critical patent/JP7045945B2/en
Publication of JP2020004795A publication Critical patent/JP2020004795A/en
Application granted granted Critical
Publication of JP7045945B2 publication Critical patent/JP7045945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

To provide a monitoring system and a monitoring device capable of accurately and easily monitoring a stationary induction device.SOLUTION: A monitoring system of a stationary induction device includes a first instrument transformer having a high-voltage winding and a low-voltage winding, and connected between tap terminals that are not connected to a power system among tap terminals of a high-voltage winding, and a monitoring unit that determines a voltage between terminals of the high-voltage winding on the basis of a ratio of the number of turns of the first instrument transformer, a ratio of the number of turns of the high-voltage winding and the number of turns between the tap terminals, a correction value corresponding to a leakage impedance between the high-voltage winding and the tap terminal, and a voltage generated in the first instrument transformer.SELECTED DRAWING: Figure 1

Description

本発明は、変圧器やリアクトル等の静止誘導電器に関し、特に、その静止誘導電器の監視をする技術に関する。   The present invention relates to a static induction device such as a transformer or a reactor, and more particularly to a technique for monitoring the static induction device.

一般的な電力系統の受配電端では、配電用変電所からの3〜6kV級の電力が複数の高圧配電線により送電されて柱上に備えられた受配電用変圧器等の静止誘導電器に接続され、100〜200Vに降圧されて各需要家に配電される。電力系統の信頼性を確保し、適正な電圧・周波数を維持するため、従来は変電所等において配電状況を監視、調整している。   At the receiving end of a general power system, 3 to 6 kV-class power from a distribution substation is transmitted by a plurality of high-voltage distribution lines to a stationary induction device such as a receiving and distribution transformer provided on a pole. Connected, stepped down to 100-200V and distributed to each customer. Conventionally, in order to ensure the reliability of the power system and maintain proper voltage and frequency, the distribution situation is monitored and adjusted in substations and the like.

しかし、近年では電力系統への風力、太陽光発電等による再生可能エネルギー電源の導入が進展している。これらの発電電力は天候状況等により刻一刻と変動するため、電力系統の健全性の把握や維持が困難となっている。このような状況に鑑み、各需要家が消費する電力量を把握することが考えられる。   However, in recent years, introduction of renewable energy power sources, such as wind power and solar power generation, into power systems has been progressing. Since these generated powers fluctuate every moment due to weather conditions and the like, it is difficult to grasp and maintain the soundness of the power system. In view of such a situation, it is conceivable to grasp the amount of power consumed by each consumer.

各需要家が消費する電力量を確実に把握する方法として、個々の静止誘導電器の入出力電力を電圧、電流を直接計測して求め、計測値を有線または無線通信手段により収集して系統管理に資することが望まれる。そのような技術が実現できれば、系統監視のみならず、個々の静止誘導電器の異常や余寿命に関する情報が得られ、その突発的な故障による停電等の発生を未然に防ぐことも可能になる。   As a method of reliably grasping the amount of power consumed by each consumer, the input and output power of each static induction device is measured directly by measuring the voltage and current, and the measured values are collected by wired or wireless communication means for system management. It is desired to contribute to. If such a technique can be realized, not only system monitoring but also information on abnormalities and remaining life of individual stationary induction devices can be obtained, and it is possible to prevent the occurrence of power failure or the like due to a sudden failure.

しかし、3〜6kV級の高圧一次側の入力電圧を計測するには、十分な絶縁対策を施す必要があり、計測のための部品が高コストとなる問題がある。この問題を解決する手段として、低圧二次側の出力電圧の計測値と、一次側巻線と二次側巻線の巻数比から高圧一次側の電圧を計算により求める方法が考えられる。例えば、特許文献1には、絶縁型DC−DCコンバータのスイッチング動作の制御のため、絶縁トランスの二次側整流回路に接続された制御回路からのパルス信号を、一次側に伝達するために備えられたパルストランスの巻数比から入力電源電圧を算出し、それに応じたコンバータの制御を行う技術が、開示されている。   However, in order to measure the input voltage on the high voltage primary side of the 3 to 6 kV class, it is necessary to take sufficient insulation measures, and there is a problem that the components for the measurement become expensive. As a means for solving this problem, a method is conceivable in which the voltage on the high voltage primary side is calculated from the measured value of the output voltage on the low voltage secondary side and the turn ratio between the primary winding and the secondary winding. For example, Patent Literature 1 discloses that a pulse signal from a control circuit connected to a secondary rectifier circuit of an insulation transformer is transmitted to a primary side for controlling a switching operation of an insulation type DC-DC converter. There has been disclosed a technique of calculating an input power supply voltage from a given turns ratio of a pulse transformer and controlling the converter in accordance with the input power supply voltage.

WO2009/011374号公報WO2009 / 011374

特許文献1による技術は、DC−DCコンバータのように、入出力される電圧波形が厳密に制御される用途においては有効である。しかし、電力系統に用いられる静止誘導電器においては、上述したように再生可能エネルギー電源の増加に伴い、制御できない電圧、周波数の変動や、高調波の重畳が顕著となる。よって、静止誘導電器の一次側と二次側巻線間の漏れインピーダンスが不規則に変動し、巻数比による一次側電圧の算出精度が十分確保できない課題がある。そこで、静止誘導電器の高圧一次側の入力電圧を計測することが望ましいが、上記したように、例えば、3〜6kV級の高圧一次側の入力電圧を計測するには、十分な絶縁対策を施す必要があるため、対策が複雑となり、計測のための部品が高コストとなる問題がある。   The technique according to Patent Document 1 is effective in applications in which input and output voltage waveforms are strictly controlled, such as a DC-DC converter. However, in the static induction device used in the power system, as described above, as the number of renewable energy sources increases, uncontrollable voltage and frequency fluctuations and superimposition of harmonics become remarkable. Therefore, there is a problem that the leakage impedance between the primary side and the secondary side winding of the stationary induction device fluctuates irregularly, and the calculation accuracy of the primary side voltage based on the turns ratio cannot be sufficiently ensured. Therefore, it is desirable to measure the input voltage on the high voltage primary side of the stationary induction device. However, as described above, in order to measure the input voltage on the high voltage primary side of 3 to 6 kV class, for example, sufficient insulation measures are taken. Since it is necessary, there is a problem that the countermeasures are complicated and components for measurement are expensive.

本発明の目的は、精度よく、かつ簡易に静止誘導電器の監視ができる監視システム、および監視装置を提供することにある。   An object of the present invention is to provide a monitoring system and a monitoring device capable of accurately and easily monitoring a static induction appliance.

本発明の好ましい一例としては、高圧巻線と低圧巻線とを有する静止誘導電器の監視システムであって、
前記高圧巻線が有するタップ端子のうち、電力系統に接続されていないタップ端子間に接続された第1の計器用変圧器と、前記第1の計器用変圧器の巻数の比と、前記高圧巻線の巻数と前記タップ端子間の巻線の比と、前記高圧巻線と前記タップ端子間の漏れインピーダンスに対応する補正値と、前記第1の計器用変圧器に発生する電圧とに基づいて、前記高圧巻線の端子間の電圧を求める監視部とを有する静止誘導電器の監視システムである。
A preferred example of the present invention is a monitoring system for a static induction device having a high voltage winding and a low voltage winding,
Among the tap terminals of the high-voltage winding, a ratio of the number of turns of a first instrument transformer connected between tap terminals that are not connected to an electric power system and the first instrument transformer; The number of turns of the pressure winding and the ratio of the winding between the tap terminals, a correction value corresponding to the leakage impedance between the high-voltage winding and the tap terminal, and a voltage generated in the first instrument transformer. And a monitoring unit for obtaining a voltage between terminals of the high-voltage winding.

また、本発明の好ましい他の例は、高圧巻線と低圧巻線とを有し、前記高圧巻線が有するタップ端子のうち、電力系統に接続されていないタップ端子間に第1の計器用変圧器が接続されている静止誘導電器に取り付ける監視装置であって、
前記第1の計器用変圧器に発生する電圧を取得する電圧計測部と、
前記第1の計器用変圧器の巻数の比と、前記高圧巻線の巻数と前記タップ端子間の巻線の比と、前記高圧巻線と前記タップ端子間の漏れインピーダンスに対応する補正値と、前記電圧計測部からの計測結果とに基づいて、前記高圧巻線の端子間の電圧を求める演算部とを有する監視装置である。
Another preferred embodiment of the present invention has a high-voltage winding and a low-voltage winding, and among the tap terminals of the high-voltage winding, a first instrument is provided between tap terminals that are not connected to a power system. A monitoring device attached to a stationary induction device to which a transformer is connected,
A voltage measuring unit for acquiring a voltage generated in the first instrument transformer;
A ratio of the number of turns of the first instrument transformer, a ratio of a number of turns of the high-voltage winding and a ratio of a winding between the tap terminals, and a correction value corresponding to a leakage impedance between the high-voltage winding and the tap terminal. And a calculation unit for obtaining a voltage between terminals of the high-voltage winding based on a measurement result from the voltage measurement unit.

本発明により、精度よく、かつ簡易に静止誘導電器の監視をすることができる。   According to the present invention, it is possible to accurately and easily monitor a stationary induction device.

実施例1における単相変圧器の電流、電圧測定方法の回路図。FIG. 4 is a circuit diagram of a method for measuring a current and a voltage of the single-phase transformer according to the first embodiment. 実施例1における油入単相変圧器の縦方向の構成図。FIG. 2 is a vertical configuration diagram of an oil-filled single-phase transformer according to the first embodiment. 実施例1における油入単相変圧器の横方向の構成図。FIG. 2 is a horizontal configuration diagram of the oil-filled single-phase transformer according to the first embodiment. 実施例1における油入単相変圧器の運転監視システムの回路図。1 is a circuit diagram of an operation monitoring system for an oil-filled single-phase transformer according to a first embodiment. 実施例1における油入単相変圧器の運転監視システムの全体図。1 is an overall view of an operation monitoring system for an oil-filled single-phase transformer according to a first embodiment. 実施例2における油入単相変圧器の運転監視システムの回路図。FIG. 9 is a circuit diagram of an operation monitoring system for an oil-filled single-phase transformer according to a second embodiment. 実施例3における三相変圧器の電流、電圧測定方法の回路図。FIG. 13 is a circuit diagram of a method for measuring current and voltage of a three-phase transformer according to the third embodiment. 実施例3における油入三相変圧器の縦方向の構成図。FIG. 10 is a vertical configuration diagram of an oil-filled three-phase transformer according to a third embodiment. 実施例4におけるモールド三相変圧器の正面図。FIG. 14 is a front view of a molded three-phase transformer according to a fourth embodiment. 単相変圧器の電流、電圧についての比較例における測定方法を示す回路図。FIG. 4 is a circuit diagram showing a measurement method for a current and a voltage of a single-phase transformer in a comparative example.

以下、実施例を、図面を用いて詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図1から図5は、第1の実施例1を説明する図である。本実施例の構成とその作用について、図10に示した比較例を使い説明する。   FIGS. 1 to 5 are diagrams for explaining the first embodiment. The configuration and operation of this embodiment will be described using a comparative example shown in FIG.

図1は、実施例1における単相変圧器の電流、電圧を測定する方法を示す回路図である。鉄心3の周囲に、2つに分けられた高圧巻線1aおよび1bと、2つに分けられた低圧巻線2aおよび2bが巻回される。高圧巻線1aと1bの接続部には、一定の巻数ごとに複数のタップ端子1dが備えられ、任意のタップ端子間をタップ接続線1cで接続することで、該変圧器の高圧、低圧巻線間の巻数比を微調整し、低圧巻線2aと2bの接続部は、接続線2cにより接続されて運用に供される。タップ端子1dは、例えば、変圧器の受電する電圧が変動した場合、電圧に適合した巻数が選択できるように、巻線の途中から外部へ引き出した引出し線である。本実施例では、高圧側の電極U、V間に設けられている。該変圧器の高圧側電圧は電極U、V間に印加され、降圧された低圧側電圧は電極u、v間より出力される。   FIG. 1 is a circuit diagram illustrating a method for measuring a current and a voltage of a single-phase transformer according to the first embodiment. Around the iron core 3, two divided high-voltage windings 1a and 1b and two divided low-voltage windings 2a and 2b are wound. A plurality of tap terminals 1d are provided at a connection portion between the high-voltage windings 1a and 1b for every fixed number of turns. By connecting any tap terminals with a tap connection line 1c, the high-voltage and low-voltage windings of the transformer are provided. The turns ratio between the wires is finely adjusted, and the connection between the low-voltage windings 2a and 2b is connected by a connection wire 2c for operation. The tap terminal 1d is a lead wire drawn out from the middle of the winding so that, for example, when the voltage received by the transformer fluctuates, the number of turns suitable for the voltage can be selected. In this embodiment, it is provided between the electrodes U and V on the high voltage side. The high voltage of the transformer is applied between the electrodes U and V, and the reduced low voltage is output between the electrodes u and v.

図10は、前記の単相変圧器に入力される電圧と電流、および出力される電圧と電流の計測方法を示した比較例としての回路図である。U、V電極間に第1の計器用変圧器(VT)10が、u、v電極間に第2の計器用変圧器20が接続され、高圧側電圧V1と低圧側電圧V2をそれぞれ計測する。そして、高圧側電極には第1の変流器(CT)11が、低圧側電極には第2の変流器21が備えられ、高圧側の電流I1と低圧側の電流I2をそれぞれ計測する。該単相変圧器の入力電力Pin、および出力電力Poutは、電流、電圧の時間波形の積を周期Tに渡って時間積分することにより、それぞれ以下の式(1)および式(2)により、求められる。ただし、第1の計器用変圧器10、および第2の計器用変圧器20の巻数比は、いずれもnとする。ここで、巻数比nは、高圧巻線の巻数を、低圧巻線の巻数で割った値をいう。周期Tとしては、例えば、1/50秒、または1/60秒間とし、そのような時間に渡って時間積分して静止誘導電器の入力電力もしくは出力電力を求めることができる、   FIG. 10 is a circuit diagram as a comparative example showing a method of measuring the voltage and current input to the single-phase transformer and the output voltage and current. A first instrument transformer (VT) 10 is connected between the U and V electrodes, and a second instrument transformer 20 is connected between the u and v electrodes, and measures the high-side voltage V1 and the low-side voltage V2, respectively. . The high voltage side electrode is provided with a first current transformer (CT) 11, and the low voltage side electrode is provided with a second current transformer 21. The high voltage side current I1 and the low voltage side current I2 are measured. . The input power Pin and the output power Pout of the single-phase transformer are obtained by time-integrating the product of the time waveforms of the current and the voltage over the period T, according to the following equations (1) and (2), respectively. Desired. However, the turns ratio of the first instrument transformer 10 and the second instrument transformer 20 is n. Here, the turns ratio n refers to a value obtained by dividing the number of turns of the high-voltage winding by the number of turns of the low-voltage winding. The period T is, for example, 1/50 second or 1/60 second, and the input power or output power of the stationary induction device can be obtained by performing time integration over such time.

Figure 2020004795
Figure 2020004795

Figure 2020004795
Figure 2020004795

単相変圧器に入力される電圧と電流、および出力される電圧と電流の比較例における計測方法では、高圧側電極U、V間には3〜6kV級の電圧Vが印加されるため、第1の計器用変圧器10の巻数比nを非常に大きくして、計測される電圧V1を十分降圧させて、計測される電圧V1を、式(3)により求める必要がある。 In the measurement method in the comparative example of the voltage and current input to the single-phase transformer and the output voltage and current, a voltage V0 of 3 to 6 kV class is applied between the high-side electrodes U and V. It is necessary to make the turns ratio n of the first instrument transformer 10 very large, sufficiently lower the measured voltage V1, and obtain the measured voltage V1 by equation (3).

Figure 2020004795
Figure 2020004795

さらに、電圧を計測するための部品の絶縁対策も施す必要がある。そのため、比較例では、計器用変圧器10をはじめ、電圧波形を取得するための電子回路や、その先に配置される電子回路等のコストが増加し、安全性の確保も困難となる。 Furthermore, it is necessary to take measures to insulate components for measuring voltage. Therefore, in the comparative example, the cost of the electronic circuit for acquiring the voltage waveform, the electronic circuit disposed ahead of the electronic circuit, and the like, including the instrument transformer 10, increase, and it is difficult to ensure safety.

実施例1では、図1に示す回路図により単相変圧器に入力される電圧と電流、および出力される電圧と電流を計測する。低圧側の電圧V2と電流I2、および高圧側の電流I1の計測方法は、比較例と同一である。該単相変圧器の高圧巻線の途中に備えられている、電力系統に接続されていないタップ端子1d間に第1の計器用変圧器10を接続し、該タップ端子間に発生する電圧V1を計測する。高圧巻線全体の巻数をN1、第1の計器用変圧器10を接続したタップ端子1d間の巻数をNt、さらに、高圧巻線と、タップ端子1d間の巻線間の漏れインピーダンスに対応する補正係数をrとすると、計測される電圧V1と、高圧側電極U、V間の高圧側電圧Vとの関係は、式(4)により求めることができる。 In the first embodiment, the voltage and current input to the single-phase transformer and the output voltage and current are measured by the circuit diagram shown in FIG. The method of measuring the voltage V2 and current I2 on the low voltage side and the current I1 on the high voltage side are the same as those in the comparative example. A first instrument transformer 10 is connected between tap terminals 1d provided in the high-voltage winding of the single-phase transformer and not connected to the power system, and a voltage V1 generated between the tap terminals is connected. Is measured. The number of turns of the entire high-voltage winding is N1, the number of turns between the tap terminals 1d to which the first instrument transformer 10 is connected is Nt, and the leakage impedance between the high-voltage winding and the winding between the tap terminals 1d. When the correction coefficient is r, the relationship between the voltage V1 measured, the high-pressure side electrode U, and the high side voltage V 0 which between V can be obtained by equation (4).

Figure 2020004795
Figure 2020004795

さらに、該変圧器の入力電力Pin’は以下のように求められる。 Further, the input power Pin 'of the transformer is obtained as follows.

Figure 2020004795
Figure 2020004795

第1の計器用変圧器10を接続するタップ端子1d間の巻線は、高圧巻線1a、1bの一部なので、該高圧巻線に対する漏れインピーダンスは十分に小さい。よって、式(5)内の補正係数rの考慮により、入力電力Pin’を計算することができる。該単相変圧器で発生する損失Lossは、以下の式により求められる。   Since the winding between the tap terminals 1d connecting the first instrument transformer 10 is a part of the high-voltage windings 1a and 1b, the leakage impedance to the high-voltage winding is sufficiently small. Therefore, the input power Pin 'can be calculated by considering the correction coefficient r in the equation (5). The loss Loss generated in the single-phase transformer is obtained by the following equation.

Figure 2020004795
Figure 2020004795

図2は、実施例1における油入単相変圧器の縦方向の構成図を示す。図2では、該単相変圧器の高圧側の電極U、Vのみの配線の状況を示している。単相鉄心3の周囲に低圧巻線2aと2bが、さらにその外側に高圧巻線1a、1bが、それぞれ2本の磁脚に分けて巻回されている。低圧巻線2aと2bは、接続線2cにより接続される。単相鉄心3の上部と下部には固定金具5が備えられ、図示していないが、巻線とともに絶縁油タンク6の内壁に固定されている。上部の固定金具5にはタップ端子台4が備えられ、該端子台には、高圧巻線と接続されたタップ端子が備えられる。高圧巻線1aと1bは、タップ接続線1cにより接続されている。そして電力系統に接続されていないタップ端子1dに、第1の計器用変圧器10を接続し、電圧V1を計測する。高圧側電極には第1の変流器11が備えられて、高圧側の電流I1を計測する。そして式(5)により、該単相変圧器への入力電力Pin’が求められる。   FIG. 2 is a vertical configuration diagram of the oil-filled single-phase transformer according to the first embodiment. FIG. 2 shows a state of wiring of only the electrodes U and V on the high voltage side of the single-phase transformer. The low-voltage windings 2a and 2b are wound around the single-phase iron core 3, and the high-voltage windings 1a and 1b are wound around the single-phase iron core 3 separately on two magnetic legs. The low voltage windings 2a and 2b are connected by a connection line 2c. At the upper and lower portions of the single-phase iron core 3, fixing members 5 are provided, and are fixed to the inner wall of the insulating oil tank 6 together with the windings, although not shown. The upper fixing bracket 5 is provided with a tap terminal block 4, and the terminal block is provided with a tap terminal connected to a high-voltage winding. The high-voltage windings 1a and 1b are connected by a tap connection line 1c. Then, the first instrument transformer 10 is connected to the tap terminal 1d not connected to the power system, and the voltage V1 is measured. The high voltage side electrode is provided with a first current transformer 11, and measures the high voltage side current I1. Then, the input power Pin 'to the single-phase transformer is obtained by the equation (5).

図3は、実施例1における油入単相変圧器の横方向の構成図を示す。図2で説明した構成部材の記号は同一なので、その説明は省略する。本図において、絶縁油タンク6の下側には高圧側電極U、Vが備えられ、第1の計器用変圧器10が接続された端子台4に接続される。そして絶縁油タンク6の上側には低圧側電極u、vが備えられ、低圧巻線2a、2bに直接接続される。第2の計器用変圧器20は、絶縁油タンク6の外部で、低圧側電極u、vに直接接続される。   FIG. 3 is a horizontal configuration diagram of the oil-filled single-phase transformer according to the first embodiment. Since the symbols of the components described in FIG. 2 are the same, description thereof will be omitted. In this figure, the high pressure side electrodes U and V are provided below the insulating oil tank 6 and are connected to the terminal block 4 to which the first instrument transformer 10 is connected. On the upper side of the insulating oil tank 6, low voltage side electrodes u and v are provided, and are directly connected to the low voltage windings 2a and 2b. The second instrument transformer 20 is directly connected to the low-voltage side electrodes u and v outside the insulating oil tank 6.

図4は、本実施例1における油入単相変圧器の運転監視システムの回路図を示す。絶縁油タンク6の内部のタップ端子台4に接続された第1の計器用変圧器10で計測される電圧V1とする。低圧側電極u、vに接続された第2の計器用変圧器20で計測される電圧V2とする。高圧側電極に備えた第1の変流器11で計測される電流I1とする。低圧側電極に備えた第2の変流器21で計測される電流I2とする。V1、V2、I1、およびI2は、監視部もしくは監視装置を構成する基板35に備えられた電圧、電流波形の計測手段30に入力される。   FIG. 4 is a circuit diagram of the operation monitoring system of the oil-filled single-phase transformer according to the first embodiment. The voltage V1 is measured by the first instrument transformer 10 connected to the tap terminal block 4 inside the insulating oil tank 6. The voltage V2 is measured by the second instrument transformer 20 connected to the low voltage side electrodes u and v. The current I1 is measured by the first current transformer 11 provided on the high-voltage side electrode. The current I2 is measured by the second current transformer 21 provided on the low-voltage side electrode. V1, V2, I1, and I2 are input to the voltage and current waveform measuring means 30 provided on the substrate 35 constituting the monitoring unit or the monitoring device.

計測手段30は、基板35上の制御手段31により制御され、一定時間ごとに前記の電圧、電流波形を計測する。計測された波形、および式(2)、式(5)、および式(6)により、演算部とし機能する制御手段31が、計算した、該単相変圧器の入力電力Pin’、出力電力Pout、損失Loss、電圧波形の時系列データ、または電流波形の時系列データは、記録手段32に蓄積される。   The measuring means 30 is controlled by the control means 31 on the substrate 35, and measures the voltage and current waveform at regular intervals. The control means 31 functioning as an arithmetic unit calculates the input power Pin ′ and the output power Pout of the single-phase transformer based on the measured waveform and the equations (2), (5), and (6). , Loss Loss, time-series data of a voltage waveform, or time-series data of a current waveform are stored in the recording unit 32.

計測、蓄積されたこれらの数値データは、通信手段33とアンテナ34により送信され、電力系統の状態の監視、および該単相変圧器の健全性の監視に使われる。なお、計測された数値データの送信方法は、本図に示したアンテナ34を経由する方法だけではなく、有線通信、あるいは赤外線等の光通信による方法を用いてもよい。基板35上に備えられる各手段は、電池36より供給される電力により駆動される。   These measured and accumulated numerical data are transmitted by the communication means 33 and the antenna 34, and are used for monitoring the state of the power system and monitoring the soundness of the single-phase transformer. It should be noted that the method of transmitting the measured numerical data is not limited to the method via the antenna 34 shown in this figure, but may be a method using wired communication or optical communication such as infrared rays. Each unit provided on the substrate 35 is driven by electric power supplied from the battery 36.

図5は、実施例1における油入単相変圧器の運転監視システムの全体図を示す。図4に示した、計器用変圧器10と20、電圧、電流の計測手段30、制御手段31、記録手段32、および通信手段33を備えた基板35は、該単相変圧器の絶縁油タンク6の外面に固定され、電池36とアンテナ34が接続されている。   FIG. 5 is an overall view of an operation monitoring system of the oil-filled single-phase transformer according to the first embodiment. The substrate 35 provided with the instrument transformers 10 and 20, the voltage and current measuring means 30, the control means 31, the recording means 32, and the communication means 33 shown in FIG. 4 is an insulating oil tank of the single-phase transformer. 6, the battery 36 and the antenna 34 are connected.

基板35は、静止誘導電器の筐体としての該絶縁油タンク6の外面に、固定した保護部材としての箱状部材の内部に収納してもよい。もしくは、基板35は、防水性の保護部材としての樹脂材で覆い、絶縁油タンク6の外面に接着することで固定してもよい。また、監視装置もしくは監視部を構成する基板35は、防水などの保護部材を、その表面に設けることで、絶縁油タンク6内の開いたスペースに配置することも出来る。そうすることで、絶縁油タンク6の外側のスペースを別の用途に利用できる。   The substrate 35 may be housed inside a box-shaped member as a fixed protection member on the outer surface of the insulating oil tank 6 as a housing of the stationary induction device. Alternatively, the substrate 35 may be covered with a resin material as a waterproof protection member, and fixed by bonding to the outer surface of the insulating oil tank 6. Further, the substrate 35 constituting the monitoring device or the monitoring unit can be disposed in an open space in the insulating oil tank 6 by providing a protective member such as waterproof on the surface thereof. By doing so, the space outside the insulating oil tank 6 can be used for another purpose.

実施例1によれば、静止誘導電器の高圧側の電圧や、消費される電力などを、簡易な構成で、低コストで監視することができる。また、高精度な電力系統の監視、調整が可能になる。さらに、該変圧器の異常や、余寿命に関する情報が得られ、突発的な変圧器の故障による停電等を未然に防ぐことが可能になる。その上、本実施例の監視部もしくは監視装置は、既設の静止誘導電器へ簡便に追加できるので、静止誘導電器の大規模な入れ替え作業を経ずに、高精度な電力系統の監視、調整が可能となる効果も奏する。   According to the first embodiment, the voltage on the high voltage side of the stationary induction device, the consumed power, and the like can be monitored at a low cost with a simple configuration. In addition, it is possible to monitor and adjust the power system with high accuracy. Further, information on the abnormality of the transformer and the remaining life can be obtained, and it is possible to prevent a power failure or the like due to a sudden failure of the transformer. In addition, the monitoring unit or the monitoring device of the present embodiment can be easily added to the existing static induction device, so that high-precision monitoring and adjustment of the power system can be performed without a large-scale replacement work of the static induction device. There are also possible effects.

図6は、実施例2における油入単相変圧器の運転監視システムの回路図を示す。実施例1と共通の構成部材には図4と同一の記号が付されており、これらの説明は省略する。実施例1では、基板35上に備えられる各手段は、電池より供給される電力により駆動されるが、定期的な電池の交換作業が必要になるという課題がある。   FIG. 6 is a circuit diagram of an operation monitoring system for an oil-filled single-phase transformer according to the second embodiment. The same components as those in the first embodiment are denoted by the same symbols as those in FIG. 4, and description thereof will be omitted. In the first embodiment, each unit provided on the substrate 35 is driven by electric power supplied from the battery, but there is a problem that periodic battery replacement work is required.

そこで実施例2では、該単相変圧器の高圧側電極に受電コイル37aを備え、該電極を流れる電流I1により作られる磁界から誘導起電力を得て、これを基板35上の各手段を駆動させる電力に供する。   Therefore, in the second embodiment, the high-voltage side electrode of the single-phase transformer is provided with a power receiving coil 37a, and an induced electromotive force is obtained from a magnetic field created by a current I1 flowing through the electrode, and this is used to drive each unit on the substrate 35. Power.

基板35上には、受電コイル37aから出力される交流電力に重畳される高周波成分を除去し、直流電力に変換するフィルタおよび交流−直流変換手段37が備えられ、生成した直流電力により、基板35上の他の各手段を駆動させる。   On the substrate 35, a filter for removing high-frequency components superimposed on the AC power output from the power receiving coil 37a and converting the component into DC power and an AC-DC converter 37 are provided. Drive each of the other means above.

実施例2により、該単相変圧器が電力系統に接続されている間は、監視システムを連続して駆動させることが可能になり、電池の交換作業等が不要になる。   According to the second embodiment, while the single-phase transformer is connected to the electric power system, the monitoring system can be continuously driven, and a battery replacement operation or the like becomes unnecessary.

図7および図8は、実施例3を説明するための図である。図7は、実施例3における三相変圧器の電流、電圧の測定方法の回路図であり、一般的な受配電用変圧器で採用されている、三相高圧巻線1u、1v、1wをスター結線し、三相低圧巻線2u、2v、2wをデルタ結線した例を示している。実施例1などと共通した箇所の説明は省略している。三相高圧巻線1u、1v、1wの電極U、V、Wの反対側には、一定の巻数ごとに複数のタップ端子1dが備えられ、任意のタップ端子間をタップ接続線1cで接続することで、該変圧器の高圧、低圧巻線間の巻数比を微調整し、三相低圧巻線2u、2v、2wは、接続線2cによりデルタ結線されて運用に供される。該三相変圧器の高圧側の三相電圧は電極U、V、Wに印加され、降圧された低圧側の三相電圧は電極u、v、wより出力される。   7 and 8 are diagrams for explaining the third embodiment. FIG. 7 is a circuit diagram of a method for measuring the current and voltage of the three-phase transformer according to the third embodiment, and illustrates the three-phase high-voltage windings 1 u, 1 v, and 1 w employed in a general power receiving and distribution transformer. An example is shown in which the three-phase low-voltage windings 2u, 2v, and 2w are star-connected and delta-connected. Description of the parts common to the first embodiment and the like is omitted. On the opposite side of the electrodes U, V, W of the three-phase high-voltage windings 1u, 1v, 1w, a plurality of tap terminals 1d are provided for every fixed number of turns, and arbitrary tap terminals are connected by a tap connection line 1c. Thus, the turns ratio between the high-voltage and low-voltage windings of the transformer is finely adjusted, and the three-phase low-voltage windings 2u, 2v, and 2w are delta-connected by the connection line 2c for operation. The three-phase voltage on the high voltage side of the three-phase transformer is applied to the electrodes U, V, W, and the reduced three-phase voltage on the low voltage side is output from the electrodes u, v, w.

該三相変圧器の三相高圧巻線1u、1v、1wの途中に備えられている、電力系統に接続されていないタップ端子1d間に、第1の計器用変圧器10u、10v、10wをそれぞれ接続し、該タップ端子間に発生する相電圧V1u、V1v、V1wを計測する。実施例1と同様に、各相の高圧側電極間、つまり、U−V間、V−W間、U−W間の高圧電圧は、それぞれ、式(4)に基づいて、算出することができる。   A first instrument transformer 10u, 10v, 10w is provided between tap terminals 1d, which are provided in the middle of the three-phase high-voltage windings 1u, 1v, 1w of the three-phase transformer and are not connected to the power system. Each of them is connected, and phase voltages V1u, V1v, V1w generated between the tap terminals are measured. Similarly to the first embodiment, the high-voltages between the high-voltage electrodes of each phase, that is, the high-voltages between U-V, V-W, and U-W can be calculated based on Equation (4). it can.

また、低圧側の三相電極u、v、w間に、第2の計器用変圧器20uv、20vw、20wuをそれぞれ接続し、該電極間に発生する線間電圧V2uv、V2vw、V2wuを計測する。そして高圧側の三相電極U、V、Wには、それぞれ第1の変流器11u、11v、11wを備えて相電流I1u、I1v、I1wを計測し、低圧側の三相電極u、v、wには、それぞれ第2の変流器21u、21v、21wを備えて線間電流I2u、I2v、I2wを計測する。   Further, the second instrument transformers 20uv, 20vw, 20wu are respectively connected between the three-phase electrodes u, v, w on the low voltage side, and the line voltages V2uv, V2vw, V2wu generated between the electrodes are measured. . The high-voltage three-phase electrodes U, V, and W are provided with first current transformers 11u, 11v, and 11w, respectively, to measure phase currents I1u, I1v, and I1w. , W are provided with second current transformers 21u, 21v, 21w, respectively, to measure line currents I2u, I2v, I2w.

該三相変圧器の入力電力Pin3、および出力電力Pout3は、前記の計器用変圧器および変流器により計測される電圧、電流の時間波形の積を周期Tに渡って時間積分することにより求められる。高圧側の三相巻線1u、1v、1wそれぞれの巻数をN1、第1の計器用変圧器10u、10v、10wを接続したタップ端子1d間の巻数をNt、計器用変圧器の巻数比をn、さらに高圧巻線1u、1v、1wと、各巻線内のタップ端子1d間の巻線間の漏れインピーダンスに対応する補正係数をそれぞれru、rv、rwとすると、入力電力Pin3は、   The input power Pin3 and the output power Pout3 of the three-phase transformer are obtained by time-integrating the product of the voltage and current time waveforms measured by the instrument transformer and current transformer over a period T. Can be The number of turns of each of the three-phase windings 1u, 1v, and 1w on the high voltage side is N1, the number of turns between tap terminals 1d to which the first instrument transformers 10u, 10v, and 10w are connected is Nt, and the turns ratio of the instrument transformer is Nt. n, and assuming that the correction coefficients corresponding to the leakage impedance between the high-voltage windings 1u, 1v, and 1w and the winding between the tap terminals 1d in each winding are ru, rv, and RW, respectively, the input power Pin3 is

Figure 2020004795
Figure 2020004795

と表される。また、出力電力Pout3は、 It is expressed as Also, the output power Pout3 is

Figure 2020004795
Figure 2020004795

と表され、該三相変圧器で発生する損失Loss3は、以下の式により求められる。 And the loss Loss3 generated in the three-phase transformer is obtained by the following equation.

Figure 2020004795
Figure 2020004795

図8は、実施例3における油入三相変圧器の縦方向の構成図を示す。図8では、該三相変圧器の高圧側の電極U、V、Wのみの配線の状況を示している。三相鉄心3の周囲に三相低圧巻線2u、2v、2wが、さらにその外側に三相高圧巻線1u、1v、1wが巻回されている。三相鉄心3の上部と下部には固定金具5が備えられ、図示していないが、巻線とともに絶縁油タンク6の内壁に固定されている。上部の固定金具5にはタップ端子台4が備えられ、該端子台には、高圧巻線と接続されたタップ端子が備えられる。そして電力系統に接続されていないタップ端子1dに、第1の計器用変圧器10u、10v、10wを接続し、相電圧V1u、V1v、V1wを計測する。高圧側電極U、V、Wには第1の変流器11u、11v、11wが備えられて、相電流I1u、I1v、I1wを計測する。そして(7)式により、実施例1と同様に、制御手段31が、該三相変圧器への入力電力Pin3を算出する。   FIG. 8 is a vertical configuration diagram of an oil-filled three-phase transformer according to the third embodiment. FIG. 8 shows a state of wiring of only the electrodes U, V, and W on the high voltage side of the three-phase transformer. Three-phase low-voltage windings 2u, 2v, and 2w are wound around the three-phase core 3, and three-phase high-voltage windings 1u, 1v, and 1w are further wound around the three-phase iron core 3. Fixing fittings 5 are provided on the upper and lower parts of the three-phase iron core 3, and are fixed to the inner wall of the insulating oil tank 6 together with the windings, though not shown. The upper fixing bracket 5 is provided with a tap terminal block 4, and the terminal block is provided with a tap terminal connected to a high-voltage winding. Then, the first instrument transformers 10u, 10v, and 10w are connected to the tap terminals 1d that are not connected to the power system, and the phase voltages V1u, V1v, and V1w are measured. The high voltage side electrodes U, V, W are provided with first current transformers 11u, 11v, 11w, and measure the phase currents I1u, I1v, I1w. Then, in the same manner as in the first embodiment, the control unit 31 calculates the input power Pin3 to the three-phase transformer according to the equation (7).

実施例3によれば、三相変圧器などの三相の静止誘導電器における高圧側の電圧や、消費される電力などを、低コストで監視することができる。   According to the third embodiment, it is possible to monitor the voltage on the high voltage side, the consumed power, and the like in a three-phase static induction device such as a three-phase transformer at a low cost.

図9は、実施例4を示す、モールド三相変圧器の正面図である。実施例4では、実施例3と共通の構成部材には図8と同一の記号が付しており、これらの説明は省略する。実施例4では、樹脂などでモールドされた三相高圧巻線1u、1v、1wの表面に複数のタップ端子1dが備えられ、任意のタップ端子間をタップ接続線1cで接続することで、三相高圧巻線をスター結線している。実施例4では、該高圧巻線の表面に備えられた電力系統に接続されていないタップ端子1d間に第1の計器用変圧器10u、10v、10wを接続することで、相電圧V1u、V1v、V1wが計測される。   FIG. 9 is a front view of a molded three-phase transformer showing the fourth embodiment. In the fourth embodiment, the same components as those in the third embodiment are denoted by the same reference numerals as those in FIG. 8, and the description thereof will be omitted. In the fourth embodiment, a plurality of tap terminals 1d are provided on the surface of the three-phase high-voltage windings 1u, 1v, and 1w molded with resin or the like, and arbitrary tap terminals are connected by a tap connection line 1c. The phase high-voltage winding is star-connected. In the fourth embodiment, the first instrument transformers 10u, 10v, and 10w are connected between the tap terminals 1d that are not connected to the power system provided on the surface of the high-voltage winding, so that the phase voltages V1u and V1v are connected. , V1w are measured.

実施例4によれば、モールド三相変圧器などの三相のモールドされた静止誘導電器における高圧側の電圧や、消費される電力などを、簡易な構成で、低コストで監視することができる。   According to the fourth embodiment, it is possible to monitor the voltage on the high voltage side, the consumed power, and the like in a three-phase molded stationary induction device such as a molded three-phase transformer with a simple configuration and at low cost. .

上述した各実施例は、構成を限定するものではない。また、任意の複数の実施例を組み合わせて構成することを排除するわけではない。   The embodiments described above do not limit the configuration. In addition, it does not exclude that a plurality of embodiments are combined and configured.

1a,1b:単相高圧巻線、1c:タップ接続線、1d:タップ端子、2a,2b:単相低圧巻線、2c:低圧巻線の接続線、10:高圧巻線側の計器用変圧器(VT)、11:高圧巻線側の変流器(CT)、20:低圧巻線側の計器用変圧器(VT)、21:低圧巻線側の変流器(CT)、3 :鉄心、30:電圧・電流波形の取得手段、31:制御手段、32:記録手段、33:通信手段、35:基板 1a, 1b: single-phase high-voltage winding, 1c: tap connection line, 1d: tap terminal, 2a, 2b: single-phase low-voltage winding, 2c: low-voltage winding connection line, 10: high-voltage winding-side instrument transformer (VT), 11: Current transformer (CT) on high voltage winding side, 20: Instrument transformer (VT) on low voltage winding side, 21: Current transformer (CT) on low voltage winding side, 3: Iron core, 30: voltage / current waveform acquisition means, 31: control means, 32: recording means, 33: communication means, 35: substrate

Claims (10)

高圧巻線と低圧巻線とを有する静止誘導電器の監視システムであって、
前記高圧巻線が有するタップ端子のうち、電力系統に接続されていないタップ端子間に接続された第1の計器用変圧器と、
前記第1の計器用変圧器の巻数の比と、前記高圧巻線の巻数と前記タップ端子間の巻線の比と、前記高圧巻線と前記タップ端子間の漏れインピーダンスに対応する補正値と、前記第1の計器用変圧器に発生する電圧とに基づいて、前記高圧巻線の端子間の電圧を求める監視部とを有することを特徴とする静止誘導電器の監視システム。
A monitoring system for a static induction device having a high voltage winding and a low voltage winding,
Among the tap terminals of the high-voltage winding, a first instrument transformer connected between tap terminals that are not connected to a power system,
A ratio of the number of turns of the first instrument transformer, a ratio of a number of turns of the high-voltage winding and a ratio of a winding between the tap terminals, and a correction value corresponding to a leakage impedance between the high-voltage winding and the tap terminal. A monitoring unit for determining a voltage between terminals of the high-voltage winding based on a voltage generated in the first instrument transformer.
請求項1に記載の静止誘導電器の監視システムにおいて、
低圧側の電圧を計測する第2の計器用変圧器と、高圧側の電流を計測する第1の変流器と、低圧側の電流を計測する第2の変流器を有し、
前記監視部は、
前記第1の計器用変圧器と前記第1の変流器で計測した電圧および電流に基づいて、前記静止誘導電器の入力電力を求め、
前記第2の計器用変圧器と前記第2の変流器で計測した電圧および電流に基づいて、前記静止誘導電器の出力電力を求め、
前記入力電力と前記出力電力に基づいて、前記静止誘導電器で消費される消費電力を求めることを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 1,
A second current transformer for measuring the voltage on the low voltage side, a first current transformer for measuring the current on the high voltage side, and a second current transformer for measuring the current on the low voltage side;
The monitoring unit is
Based on the voltage and current measured by the first instrument transformer and the first current transformer, determine the input power of the stationary induction device,
Based on the voltage and current measured by the second instrument transformer and the second current transformer, determine the output power of the stationary induction device,
A monitoring system for a static induction device, wherein power consumption consumed by the static induction device is obtained based on the input power and the output power.
請求項2に記載の静止誘導電器の監視システムにおいて、
前記監視部は、
前記第1の計器用変圧器と前記第1の変流器で計測した電圧および電流の瞬時値を掛けた値を所定時間にわたり時間積分をすることで、前記入力電力を求め、
前記第2の計器用変圧器と前記第2の変流器で計測した電圧および電流の瞬時値を掛けた値を所定時間にわたり時間積分をすることで、前記出力電力を求め、
前記入力電力から前記出力電力を減算することで、前記消費電力を求めることを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction device according to claim 2,
The monitoring unit is
The input power is obtained by time-integrating a value obtained by multiplying the instantaneous value of the voltage and current measured by the first instrument transformer and the first current transformer over a predetermined time,
The output power is obtained by integrating the value obtained by multiplying the instantaneous value of the voltage and current measured by the second instrument transformer and the second current transformer over a predetermined time,
A stationary induction machine monitoring system, wherein the power consumption is obtained by subtracting the output power from the input power.
請求項1に記載の静止誘導電器の監視システムにおいて、
前記監視部は、
前記第1の計器用変圧器に発生する前記電圧の波形を計測する計測手段と、
前記高圧巻線の端子間の前記電圧を演算する演算部と、
前記第1の計器用変圧器に発生する前記電圧の時系列データ、もしくは前記高圧巻線の端子間の前記電圧を記録する記録手段とを有することを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 1,
The monitoring unit is
Measuring means for measuring the waveform of the voltage generated in the first instrument transformer;
A calculation unit for calculating the voltage between the terminals of the high-voltage winding;
Recording means for recording time-series data of the voltage generated in the first instrument transformer or the voltage between terminals of the high-voltage winding.
請求項4に記載の静止誘導電器の監視システムにおいて、
前記監視部は、
前記記録手段に記録した前記時系列データ、もしくは前記高圧巻線の端子間の前記電圧を、外部に送信する手段を有することを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 4,
The monitoring unit is
A monitoring system for a static induction appliance, further comprising means for transmitting the time-series data recorded in the recording means or the voltage between terminals of the high-voltage winding to the outside.
請求項1に記載の静止誘導電器の監視システムにおいて、
前記監視部は、防水用の保護部材で囲まれており、
前記静止誘導電器の筐体の外部に配置したことを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 1,
The monitoring unit is surrounded by a protective member for waterproofing,
A stationary induction machine monitoring system, wherein the monitoring system is disposed outside a housing of the stationary induction machine.
請求項1に記載の静止誘導電器の監視システムにおいて、
前記監視部は、
前記静止誘導電器の高圧側に配置した受電コイルから供給される電力により駆動されることを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 1,
The monitoring unit is
A monitoring system for a stationary induction device, which is driven by power supplied from a power receiving coil disposed on a high voltage side of the stationary induction device.
請求項1に記載の静止誘導電器の監視システムにおいて、
前記静止誘導電器は、三相の前記高圧巻線と前記低圧巻線とを有し、
前記第1の計器用変圧器は、前記三相の前記高圧巻線の前記タップ端子間に配置され、
第1の変流器は、前記三相の高圧側に配置され、
第2の計器用変圧器は、前記三相の低圧側に配置され、
第2の変流器は、前記三相の低圧側に配置され、
前記監視部は、
前記第1の計器用変圧器と前記第2の計器用変圧器で計測した電圧と、前記第1の変流器と前記第2の変流器で計測した電流とに基づいて、前記三相の前記静止誘導電器で消費される消費電力を求めることを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 1,
The stationary induction device has the three-phase high-voltage winding and the low-voltage winding,
The first instrument transformer is disposed between the tap terminals of the three-phase high-voltage winding,
A first current transformer is arranged on the high-pressure side of the three-phase;
A second instrument transformer is located on the low pressure side of the three phase;
A second current transformer is disposed on the low-pressure side of the three phase;
The monitoring unit is
Based on the voltage measured by the first instrument transformer and the second instrument transformer and the current measured by the first current transformer and the second current transformer, the three-phase And a power consumption consumed by said stationary induction device.
請求項8に記載の静止誘導電器の監視システムにおいて、
前記静止誘導電器は、モールド三相変圧器であり、
前記三相の前記高圧巻線はモールドされ、前記タップ端子は、モールド表面に配置されたことを特徴とする静止誘導電器の監視システム。
The monitoring system for a stationary induction machine according to claim 8,
The static induction device is a molded three-phase transformer,
The three-phase high-voltage winding is molded, and the tap terminal is disposed on a mold surface.
高圧巻線と低圧巻線とを有し、前記高圧巻線が有するタップ端子のうち、電力系統に接続されていないタップ端子間に第1の計器用変圧器が接続されている静止誘導電器に取り付ける監視装置であって、
前記第1の計器用変圧器に発生する電圧を取得する電圧計測部と、
前記第1の計器用変圧器の巻数の比と、前記高圧巻線の巻数と前記タップ端子間の巻線の比と、前記高圧巻線と前記タップ端子間の漏れインピーダンスに対応する補正値と、前記電圧計測部からの計測結果とに基づいて、前記高圧巻線の端子間の電圧を求める演算部とを有することを特徴とする監視装置。
A stationary induction electric device having a high-voltage winding and a low-voltage winding, and among the tap terminals of the high-voltage winding, a first instrument transformer is connected between tap terminals that are not connected to the power system. A monitoring device to be installed,
A voltage measuring unit for acquiring a voltage generated in the first instrument transformer;
A ratio of the number of turns of the first instrument transformer, a ratio of a number of turns of the high-voltage winding and a ratio of a winding between the tap terminals, and a correction value corresponding to a leakage impedance between the high-voltage winding and the tap terminal. A monitoring unit that calculates a voltage between terminals of the high-voltage winding based on a measurement result from the voltage measurement unit.
JP2018120916A 2018-06-26 2018-06-26 Static induction electric device monitoring system and monitoring device Active JP7045945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120916A JP7045945B2 (en) 2018-06-26 2018-06-26 Static induction electric device monitoring system and monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120916A JP7045945B2 (en) 2018-06-26 2018-06-26 Static induction electric device monitoring system and monitoring device

Publications (2)

Publication Number Publication Date
JP2020004795A true JP2020004795A (en) 2020-01-09
JP7045945B2 JP7045945B2 (en) 2022-04-01

Family

ID=69100463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120916A Active JP7045945B2 (en) 2018-06-26 2018-06-26 Static induction electric device monitoring system and monitoring device

Country Status (1)

Country Link
JP (1) JP7045945B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211932A (en) * 1981-06-23 1982-12-25 Mitsubishi Electric Corp Transformer protecting relay
JPS5934166A (en) * 1982-08-20 1984-02-24 Mitsubishi Electric Corp Measuring device of transformer loss
JP2000341950A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Power supply and power meter
JP2007305770A (en) * 2006-05-11 2007-11-22 Hitachi Industrial Equipment Systems Co Ltd Molded transformer
JP2013004776A (en) * 2011-06-17 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd Mold transformer
CN103543329A (en) * 2013-11-07 2014-01-29 遵义汇峰智能系统有限责任公司 Method for measuring electric energy loss of high-energy-consumption smelting system
US20150243428A1 (en) * 2014-02-21 2015-08-27 Varentec, Inc. Methods and systems of field upgradeable transformers
JP2016090447A (en) * 2014-11-06 2016-05-23 国立大学法人 東京大学 Power measuring instrument and power measuring system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211932A (en) * 1981-06-23 1982-12-25 Mitsubishi Electric Corp Transformer protecting relay
JPS5934166A (en) * 1982-08-20 1984-02-24 Mitsubishi Electric Corp Measuring device of transformer loss
JP2000341950A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Power supply and power meter
JP2007305770A (en) * 2006-05-11 2007-11-22 Hitachi Industrial Equipment Systems Co Ltd Molded transformer
JP2013004776A (en) * 2011-06-17 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd Mold transformer
CN103543329A (en) * 2013-11-07 2014-01-29 遵义汇峰智能系统有限责任公司 Method for measuring electric energy loss of high-energy-consumption smelting system
US20150243428A1 (en) * 2014-02-21 2015-08-27 Varentec, Inc. Methods and systems of field upgradeable transformers
JP2016090447A (en) * 2014-11-06 2016-05-23 国立大学法人 東京大学 Power measuring instrument and power measuring system

Also Published As

Publication number Publication date
JP7045945B2 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
Nuutinen et al. Research site for low-voltage direct current distribution in a utility network—structure, functions, and operation
US8097970B2 (en) Method and arrangement in wind power plant
US20090309754A1 (en) Wireless current transformer
US6496391B1 (en) Power supply unit utilizing a current transformer
US20140217947A1 (en) Short circuit safe rectifier stage for a subsea power grid
KR101604906B1 (en) High voltage direct current transmission system
CN106168638B (en) Method for realizing online monitoring of high-voltage parallel capacitor by using relay protection device
US20160241153A1 (en) Converters for wind turbine generators
CN105098809A (en) High-voltage direct current transmission system control device
Jimichi et al. Design and loss analysis of a medium-voltage DC-DC converter intended for offshore wind farms
CN110118885A (en) Electrical energy measurement test connecting box, target meter replacing options and electric energy metering device
KR20130117998A (en) A electric controling box having an elctronic compensating device for reactive power
CN106575924A (en) Electrical power conversion system
JP2014128165A (en) Insulation determination system
JP7045945B2 (en) Static induction electric device monitoring system and monitoring device
WO2021002088A1 (en) Stationary induction apparatus
EP3010134B1 (en) Single-phase photovoltaic inverter
CN204947892U (en) A kind of flexible transmission direct current capacitor
KR100442340B1 (en) Power supplier for measuring line impedance of underground cable
KR100332839B1 (en) Regulated voltage generator using magnetic flux
RU2412280C1 (en) Multi-channel cathodic protection station
CN104620455A (en) A power supply and measuring device for an intelligent electronic device
CN103326590B (en) Power device for controlling power semiconductor device to form series valve group
CN219512379U (en) Alternating current-channeling direct current alarm device of transformer substation
KR102270285B1 (en) power supply device of current transformer for wireless online monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7045945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150