JP2020004311A - 解析装置、解析方法及び解析プログラム - Google Patents

解析装置、解析方法及び解析プログラム Download PDF

Info

Publication number
JP2020004311A
JP2020004311A JP2018125744A JP2018125744A JP2020004311A JP 2020004311 A JP2020004311 A JP 2020004311A JP 2018125744 A JP2018125744 A JP 2018125744A JP 2018125744 A JP2018125744 A JP 2018125744A JP 2020004311 A JP2020004311 A JP 2020004311A
Authority
JP
Japan
Prior art keywords
data
shape
mesh
dimensions
creating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125744A
Other languages
English (en)
Inventor
洋典 湯村
Hironori Yumura
洋典 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2018125744A priority Critical patent/JP2020004311A/ja
Publication of JP2020004311A publication Critical patent/JP2020004311A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】設計データへの反映が容易な特徴量をメッシュデータから抽出できるようにする。【解決手段】解析装置1は、ベース形状Fbの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータを複数作成し、作成された複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデル133を作成する。作成した形状学習モデル133により、設計データへ直接反映させることが可能な寸法の情報を、形状の特徴量としてメッシュデータから好適に抽出することができる。【選択図】図3

Description

本発明は、機械学習を利用して形状を解析する技術に関する。
近年、コンピュータの高速化・汎用化に伴い、CAE(Computer Aided Engineering)を用いた部品設計が広く浸透してきている。
このような部品設計においては、実験・解析結果と形状との相関をスムーズに分析できるように、解析用のメッシュデータから寸法などの特徴量を自動抽出したい、という要望がある。
この解決策としては、メッシュデータの特徴量を人手で計測し、メッシュ(座標・エレメント情報など)と特徴量のセットをトレーニングデータとして学習させる発想が一般的である。
しかし、学習に必要なトレーニングデータ数を用意するためには、膨大な特徴量計測工数を必要とする。また、既存のメッシュデータ数しかトレーニングデータを準備出来ないため、十分な学習精度を確保できないおそれがある。
そこで、例えば特許文献1に記載の技術では、入力データ群を任意の次元の競合層へと写像する自己組織化写像を利用しており、競合層として予めメッシュ化して設定したベース形状に対し、入力データ群として予めメッシュ化して設定した入力形状を投射して、この投射された入力形状によりベース形状と入力形状との形状差を認識している。
この技術によれば、ベース形状と入力形状との形状差を抽出することができ、形状の各部の寸法を計測したりすることなく、対象とする物体と比較する物体の形状の違いを容易に精度良く認識することができる。
特開2014−2467号公報
しかしながら、上記特許文献1に記載の技術では、形状の特徴量を「ベース形状との類似度(形状差)」としているため、この「類似度」を出力として得られても、これを設計データへ直接的には反映させにくいという問題があった。
本発明は、上記事情を鑑みてなされたもので、設計データへの反映が容易な特徴量をメッシュデータから好適に抽出できるようにすることを目的とする。
上記目的を達成するために、請求項1に記載の発明は、解析装置であって、
基本形状データの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータを複数作成するデータ作成手段と、
前記データ作成手段により作成された複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデルを作成するモデル作成手段と、
を備えることを特徴とする。
請求項2に記載の発明は、請求項1に記載の解析装置において、
前記データ作成手段は、
実験計画法に基づいて、前記基本形状データの主要寸法をパラメータとしてその数値を複数設定し、
前記基本形状データの主要寸法を設定された数値に変更しつつメッシュ生成して、複数のメッシュデータを作成することを特徴とする。
請求項3に記載の発明は、請求項1又は2に記載の解析装置において、
前記データ作成手段は、
前記基本形状データの主要寸法をパラメータとしてその数値を複数設定し、
CADのパラメトリック機能を用いて、前記基本形状データの主要寸法を設定された数値に変更しつつメッシュ生成して、複数のメッシュデータを作成することを特徴とする。
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の解析装置において、
前記データ作成手段は3次元メッシュデータを作成することを特徴とする。
請求項5及び請求項6に記載の発明は、請求項1に記載の解析装置と同様の特徴を具備する解析方法及び解析プログラムである。
本発明によれば、基本形状データの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータが複数作成され、この複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデルが作成される。つまり、寸法とメッシュデータとのセットを自動で大量に作成し、これをトレーニングデータとして機械学習により形状学習モデルを作成することができる。
したがって、作成した形状学習モデルを用いることで、設計データへ直接反映させることが可能な寸法の情報を、形状の特徴量としてメッシュデータから好適に抽出することができる。
また、トレーニングデータの作成から形状学習モデルの作成まで自動で実行できるため、メッシュデータの寸法を人手で計測する場合と異なり、計測工数を必要としないうえに、トレーニングデータを大量に準備して学習精度を高めることができる。
実施形態における解析装置の概略構成を示すブロック図である。 自己組織化写像の原理を説明するための図である。 実施形態における形状学習処理の流れを示すフローチャートである。 実施形態における解析対象を示す図であって、(a)が側面図、(b)がメッシュ化されたベース形状の側面図、(c)がメッシュ化された比較形状の側面図である。 ベース形状に対して比較形状を自己組織化写像によってマッピングして形状差を明らかにした結果の一例を示す図である。 実施形態におけるSOMマップ作成処理の流れを示すフローチャートである。 実施形態における一般グリッドの一例を示す図である。 実施形態におけるSOMマップの一例を示す図である。 実施形態における解析処理の流れを示すフローチャートである。
以下、本発明の実施形態について、図面を参照して説明する。
<解析装置の構成>
まず、本実施形態における解析装置1の構成について説明する。
図1は、解析装置1の概略構成を示すブロック図である。
解析装置1は、部品設計を行うためのコンピュータであり、より詳しくは、所望の物理量(例えば圧力損失や質量など)が得られる形状(メッシュデータ)や寸法を求めるためのものである。本実施形態では、両端に相対する方向への曲げ部を有するパイプP(図4(a)参照)を解析対象としている。
具体的には、図1に示すように、解析装置1は、入力部11と、表示部12と、記憶部13と、CPU(Central Processing Unit)14とを備えている。
入力部11は、図示しないキーボードやマウスを備えており、操作されたキーやボタンの種類に対応する入力信号をCPU14に出力する。
表示部12は、図示しないディスプレイを備えており、CPU14から入力される表示信号に基づいて各種情報をディスプレイに表示する。
記憶部13は、RAM(Random Access Memory)やROM(Read Only Memory)等により構成されるメモリであり、各種のプログラム及びデータを記憶するとともに、CPU14の作業領域としても機能する。本実施形態では、記憶部13は、形状学習プログラム130と、SOMマップ作成プログラム131と、解析プログラム132とを記憶している。
形状学習プログラム130は、後述の形状学習処理(図3参照)を実行するプログラムである。
SOMマップ作成プログラム131は、後述のSOMマップ作成処理(図6参照)を実行するプログラムである。
解析プログラム132は、後述の解析処理(図9参照)を実行するプログラムである。
また、記憶部13は、ベース形状Fbと、形状学習モデル133と、SOMマップ134とを記憶しているとともに、物理量データベース135を有している。
ベース形状Fbは、解析対象(本実施形態ではパイプP)の基本形状データであり、3次元CAD(Computer-Aided Design)データが三角メッシュにより予めモデリングされたものである(図4(b)参照)。このベース形状Fbは、各部寸法が予め明らかなものである。但し、ベース形状Fbはメッシュ生成されていないものでもよい。
形状学習モデル133は、形状と寸法の相関を表すものであって、より詳しくは、形状(メッシュデータ)を入力、寸法を出力とするものであり、後述の形状学習処理により作成される。
SOMマップ134は、寸法と物理量との相関を表すものであり、自己組織化写像(Self-organizing maps, SOM)を用いた後述のSOMマップ作成処理により作成されるものである(図8参照)。
物理量データベース135には、互いに異なる形状を示す複数の寸法のデータセットと、各寸法のデータセットにおける圧力損失や質量等の物理量のデータとが対応付けられて格納されている。物理量は、実験やCAE(Computer Aided Engineering)解析により予め求められたものである。
CPU14は、入力される指示に応じて所定のプログラムに基づいた処理を実行し、各機能部への指示やデータの転送等を行い、解析装置1を統括的に制御する。具体的に、CPU14は、入力部11から入力される操作信号等に応じて記憶部13から各種プログラムを読み出し、当該プログラムに従って処理を実行する。そして、CPU14は、処理結果を記憶部13に一時保存するとともに表示部12に適宜出力させる。
<自己組織化写像>
続いて、後述のSOMマップ作成処理で実行される自己組織化写像(Self-organizing maps, SOM)の原理について、簡単に説明する。
図2は、自己組織化写像の原理を説明するための図である。
自己組織化写像とは、教師無し学習により入力データ群をそのデータ間の関係を保ったまま、任意の次元の競合層へと写像する技術である。
例えば、図2(a)に示すように、各エレメントのデータ(ここでは、ベクトル(位置、方向)で表現される各エレメントで構成されるグリッド)を初期化する。次に、図2(b)に示すような、入力ベクトル(位置、方向)が提示されると、図2(c)に示すように、初期化された各エレメントのデータから、入力ベクトルに最も近いデータが検索され、勝者ユニットとして設定される。そして、全ての入力ベクトルについての勝者ユニットを検索した後、これら勝者ユニットをマッピングする。この際、図2(d)に示すように、予め設定した領域(図2(d)の例では勝者ユニットを中心とする半径rの領域)を学習処理して領域内のエレメントを勝者ユニットの値に近づける。
このような処理により、似た特徴のベクトルが近くに集まってくる。つまり、処理過程のどこにも分類という作業がないにも関わらず、自然にカテゴリー分けが行われる。このように、自己組織化写像では、入力データ群の分布を表すネットワークが自己組織的に獲得される。
なお、一つの入力ベクトルに対し、何度もマッピング・学習を繰り返し、マップが変わらなくなったら、この入力ベクトルに対する処理を終了し、次に、他の入力ベクトルに対し、同様の処理を繰り返す方法を採用してもよい。
<形状学習処理>
続いて、形状と寸法の相関を表す形状学習モデル133を作成する形状学習処理について説明する。
図3は、形状学習処理の流れを示すフローチャートであり、図4は、解析対象のパイプPを示す図であって、(a)が側面図、(b)がメッシュ化されたベース形状Fbの側面図、(c)がメッシュ化された比較形状Fcの側面図であり、図5は、ベース形状Fbに対して比較形状Fcをマッピングして形状差を明らかにした結果の一例を示す説明図である。
図3に示すように、形状学習処理が実行されると、まずCPU14は、記憶部13からパイプPのベース形状Fbを読み込む(ステップS11)。
本実施形態のベース形状Fbは、図4(b)に示すように、両端に相対する方向の半径40mmの曲げ部を有するパイプPの3次元CAD(Computer-Aided Design)データが三角メッシュにより予めモデリングされたものである。なお、ベース形状Fbは、記憶部13でなく、記憶メディアや他の記憶装置等に記憶されていてもよい。
次に、CPU14は、ベース形状Fbの各部寸法を変更した比較形状Fcを複数作成する(ステップS12)。
具体的に、まずCPU14は、例えば実験計画法等に基づいて、ベース形状Fbの各部寸法(例えば、曲げ部の半径、ストレート部長さ、パイプ肉厚等の主要寸法。これらの組合せを含む)をパラメータとして、その数値を複数設定する。そして、CPU14は、例えばCADのパラメトリック機能により、ベース形状Fbの各部寸法を設定された数値に調整することで複数の3次元CADモデルを作成し、これを例えば三角メッシュでモデリングすることにより複数の比較形状Fcの3次元メッシュデータを作成する。
本実施形態では、例えば図4(c)に示すように、両端に相対する方向の半径x(例えば、x=20mm、30mm、35mm)の曲げ部を有するパイプの3次元メッシュデータが作成される。同様に、ストレート部長さや肉厚等が振られた3次元メッシュデータも作成される。また、ベース形状Fbがメッシュデータでない場合には、ベース形状Fbのメッシュ生成も行う。
こうして、比較形状Fcとして、寸法が明らかな(寸法の情報が対応付けられた)3次元メッシュデータが自動的に複数生成される。
なお、各部寸法の数値の振り方や、その寸法部位の設定方法は特に限定されず、ユーザが個別に設定してもよい。
次に、作成された複数の比較形状Fcをトレーニング用データセットとして、形状学習モデル133を作成していく(ステップS13)。本実施形態では、複数の比較形状Fcを教師データとし、畳み込みニューラルネットワーク(Convolutional neural network;CNN)を用いて形状学習モデル133が作成される。
こうして、複数の比較形状Fcをトレーニング用データセットとして、3次元メッシュデータ(形状)と寸法との相関を表す形状学習モデル133が作成され、記憶部13に格納される。この形状学習モデル133に、寸法が不明の3次元メッシュデータを入力すると、図5に示すように、曲げ部の半径などの各部寸法(主要寸法)を得ることができる。つまり、形状学習モデル133により、設計データへ直接反映させることが可能な寸法の情報を、形状の特徴量として3次元メッシュデータから抽出することができる。このような形状学習モデル133は、例えば、他人が作成したメッシュデータからも容易に寸法を取り出せるため、複数人で情報を共有して解析を進めたい場合に有用であるし、リバースエンジニアリングによって取得した形状から具体的な寸法を抽出したい場合などにも利用できる。
このように、解析装置1では、寸法とメッシュデータとのセット(比較形状Fc)を自動で大量に作成し、これをトレーニングデータとして、機械学習により形状学習モデル133を作成することができる。このようなベース形状Fbを用いた形状学習は、例えばエンジンの吸気ポート・燃焼室のように、ある程度同じような形状が想定される部品設計において、特に有用である。
また、トレーニングデータの作成から形状学習モデル133の作成まで自動で実行できるため、メッシュデータの寸法を人手で計測する場合と異なり、計測工数を必要としないうえに、トレーニングデータを大量に準備して学習精度を高めることができる。
なお、形状学習モデルを作成する手順は特に限定されず、例えば比較形状Fcを全数作成(ステップS11、S12)してから学習(ステップS13〜S17)するのではなく、少なくとも1つの比較形状Fcを作成するたびに学習することとしてもよい。また、形状学習モデルを作成する機械学習手法は特に限定されず、例えばCNN以外のニューラルネットワークや、サポートベクターマシンなどを用いてもよい。ただし、入出力関係を陽に表現できる教師あり学習であることが好ましい。
<SOMマップ作成処理>
続いて、寸法と物理量との相関を表すSOMマップ134を作成するSOMマップ作成処理について説明する。
図6は、SOMマップ作成処理の流れを示すフローチャートであり、図7は、後述の一般グリッドbgの一例を示す図であり、図8は、SOMマップ134の一例を示す図である。
図6に示すように、SOMマップ作成処理が実行されると、まずCPU14は、物理量データベース135に格納されているデータに基づいて、各形状の寸法に物理量を関連付けて入力ベクトル化処理する(ステップS21)。
具体的には、CPU14は、各形状の寸法情報(本実施形態では、曲げ部の半径、ストレート部長さ、パイプ肉厚等の主要寸法)に、このときの物理量(例えば、圧力損失や質量等)を結合させて入力ベクトルとする。これにより、主要寸法の数と物理量の数とを足した次元数の入力ベクトルが、物理量データベース135に格納されている形状の個数分だけ作成される。
次に、CPU14は、ステップS21で作成した入力ベクトルを一般グリッドbgに提示する(ステップS22)。
一般グリッドbgは、予め設定しておいた自己組織化写像における一般的なグリッドであり、例えば、図7に示すように、XYZの直交3軸を有する三次元座標で表現されるグリッドである。この一般グリッドbgは、上述した自己組織化写像の説明では図2(a)に相当する。ステップS22では、この一般グリッドbgに、図2(b)に示すように、入力ベクトルを提示する。
次に、CPU14は、図2(c)で説明したように、一般グリッドbgから、ステップS22で提示された入力ベクトルに最も近いデータを勝者ユニットして検索する(ステップS23)。
次に、CPU14は、図2(d)で説明したように、勝者ユニットをマッピングし、この勝者ユニットを中心とする所定の領域内の各ユニットに対して学習処理(勝者ユニットに近づける処理)をする(ステップS24)。
そして、CPU14は、物理量データベース135に格納されている全ての形状(すなわち全ての入力ベクトル)について、自己組織化写像による処理が終了したか否かを判定し(ステップS25)、終了していないと判定した場合には(ステップS25;No)、ステップS22へ処理を移行し、次の形状についてステップS22〜S24の処理を繰り返す。
一方、全ての形状について自己組織化写像による処理が終了したと判定した場合には(ステップS25;Yes)、CPU14は、全ての形状を投影したデータをSOMマップ134として設定する(ステップS26)。
このSOMマップ134は、図8に示すように、物理量データベース135に格納されている全ての形状のデータを、その物理量と関連付けてマップ化したものである。なお、図8は、SOMマップ134のXY平面上に例えば圧力損失のコンターを表示したものである。
<解析処理>
続いて、所望の物理量が得られる3次元形状を解析する解析処理について説明する。
図9は、この解析処理の流れを示すフローチャートである。
図9に示すように、解析処理が実行されると、まずCPU14は、ユーザ操作に基づいて、所望の物理量(種類とその値。例えば所定値の圧力損失など)を、SOMマップ134に含まれるもののなかから少なくとも1つ選択する(ステップS31)。
次に、CPU14は、SOMマップ134を参照し、ステップS31で選択した物理量に対応する寸法情報を抽出する(ステップS32)。つまり、CPU14は、SOMマップ134を参照して、ステップS31で選択した物理量に該当する点を抽出し、この点に格納されている寸法情報を抽出する。
次に、CPU14は、形状学習モデル133を参照し、ステップS32で抽出した寸法情報に対応する形状(3次元メッシュデータ)を抽出する(ステップS33)。
そして、CPU14は、抽出した形状をディスプレイに表示させ(ステップS34)、解析処理を終了する。
こうして、所望の物理量が得られる形状の3次元メッシュデータを速やかに取得することができる。
<効果>
以上のように、本実施形態によれば、ベース形状Fbの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータが複数作成され、この複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデル133が作成される。つまり、寸法とメッシュデータとのセットを自動で大量に作成し、これをトレーニングデータとして機械学習により形状学習モデル133を作成することができる。
したがって、作成した形状学習モデル133を用いることで、設計データへ直接反映させることが可能な寸法の情報を、形状の特徴量としてメッシュデータから好適に抽出することができる。
また、トレーニングデータの作成から形状学習モデル133の作成まで自動で実行できるため、メッシュデータの寸法を人手で計測する場合と異なり、計測工数を必要としないうえに、トレーニングデータを大量に準備して学習精度を高めることができる。
<変形例>
なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
また、SOMマップ作成処理では自己組織化写像によりSOMマップ134(形状−物理量相関学習モデル)を作成することとしたが、形状−物理量相関学習モデル(寸法を入力とし物理量を出力とする学習モデルを含む)を作成できるものであれば、自己組織化写像以外の機械学習手法を用いることとしてもよい。
例えば、SOMマップ作成処理のステップS22において、入力ベクトルを提示する一般グリッドbgは、一般2次元グリッドである必要はなく、3次元以上の多次元グリッドであってもよい。
また、上記実施形態では、解析対象をパイプPとした場合を例に挙げて説明したが、解析対象が特に限定されないことは勿論である。
また、メッシュデータは3次元でなく2次元のものでもよい。
1 解析装置
13 記憶部
14 CPU
130 形状学習プログラム
131 SOMマップ作成プログラム
132 解析プログラム
133 形状学習モデル
134 SOMマップ
135 物理量データベース
Fb ベース形状
Fc 比較形状

Claims (6)

  1. 基本形状データの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータを複数作成するデータ作成手段と、
    前記データ作成手段により作成された複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデルを作成するモデル作成手段と、
    を備えることを特徴とする解析装置。
  2. 前記データ作成手段は、
    実験計画法に基づいて、前記基本形状データの主要寸法をパラメータとしてその数値を複数設定し、
    前記基本形状データの主要寸法を設定された数値に変更しつつメッシュ生成して、複数のメッシュデータを作成することを特徴とする請求項1に記載の解析装置。
  3. 前記データ作成手段は、
    前記基本形状データの主要寸法をパラメータとしてその数値を複数設定し、
    CADのパラメトリック機能を用いて、前記基本形状データの主要寸法を設定された数値に変更しつつメッシュ生成して、複数のメッシュデータを作成することを特徴とする請求項1又は2に記載の解析装置。
  4. 前記データ作成手段は3次元メッシュデータを作成することを特徴とする請求項1〜3のいずれか一項に記載の解析装置。
  5. 解析装置が、
    基本形状データの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータを複数作成するデータ作成工程と、
    前記データ作成工程で作成された複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデルを作成するモデル作成工程と、
    を実行することを特徴とする解析方法。
  6. コンピュータを、
    基本形状データの寸法を変更しつつメッシュ生成して、寸法が明らかなメッシュデータを複数作成するデータ作成手段、
    前記データ作成手段により作成された複数のメッシュデータを用い、機械学習により、メッシュデータと寸法との相関を表す形状学習モデルを作成するモデル作成手段、
    として機能させることを特徴とする解析プログラム。
JP2018125744A 2018-07-02 2018-07-02 解析装置、解析方法及び解析プログラム Pending JP2020004311A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125744A JP2020004311A (ja) 2018-07-02 2018-07-02 解析装置、解析方法及び解析プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125744A JP2020004311A (ja) 2018-07-02 2018-07-02 解析装置、解析方法及び解析プログラム

Publications (1)

Publication Number Publication Date
JP2020004311A true JP2020004311A (ja) 2020-01-09

Family

ID=69100188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125744A Pending JP2020004311A (ja) 2018-07-02 2018-07-02 解析装置、解析方法及び解析プログラム

Country Status (1)

Country Link
JP (1) JP2020004311A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027921A (zh) * 2021-02-09 2021-06-25 太原重工股份有限公司 获取静动压轴承油膜压力分布的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027921A (zh) * 2021-02-09 2021-06-25 太原重工股份有限公司 获取静动压轴承油膜压力分布的方法和装置

Similar Documents

Publication Publication Date Title
CN107067473A (zh) 对3d建模对象进行重构
CN108073682A (zh) 基于参数视图函数查询数据库
JP2019045894A (ja) 検索プログラム、検索方法、及び、検索プログラムが動作する情報処理装置
US11568098B2 (en) Designing convective cooling channels
Sieger et al. On shape deformation techniques for simulation-based design optimization
CN109886297A (zh) 一种用于从二维图像识别三维模型对象的方法
EP4226269A1 (en) Computer architecture for generating footwear digital asset
Amoiralis et al. Freeform deformation versus B-spline representation in inverse airfoil design
Dommaraju et al. Evaluation of geometric similarity metrics for structural clusters generated using topology optimization
CN107016732A (zh) 使用描述符的3d对象定位
JP6253053B2 (ja) データ探索装置、データ探索装置の制御方法およびデータ探索装置の制御プログラム
JP2020004311A (ja) 解析装置、解析方法及び解析プログラム
EP2992466A1 (en) Generating a cad model from a finite element mesh
CN107567641B (zh) 用于识别复制品的系统和方法
CN107066926A (zh) 使用描述符的3d对象定位
Zhang et al. Design patterns of soft products using surface flattening
JP2020004310A (ja) 解析装置、解析方法及び解析プログラム
Song et al. Fitting and manipulating freeform shapes using templates
JP3807911B2 (ja) 解析装置、解析方法および解析プログラムを記録した記録媒体
JP2014006787A (ja) 特徴点決定装置、特徴点決定方法、及びプログラム
JP2014059621A (ja) 解析装置、及び、解析方法
JP5083992B1 (ja) 把持姿勢生成装置、把持姿勢生成方法及び把持姿勢生成プログラム
Takashima et al. Shape descriptor-based similar feature extraction for finite element meshing
Kim et al. Inference of relevant BIM objects using CNN for visual-input based auto-modeling
Gandotra et al. TOOLS AND TECHNIQUES FOR CONCEPTUAL DESIGN IN VIRTUAL REALITY ENVIRONMENT.