JP2020003579A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2020003579A
JP2020003579A JP2018121337A JP2018121337A JP2020003579A JP 2020003579 A JP2020003579 A JP 2020003579A JP 2018121337 A JP2018121337 A JP 2018121337A JP 2018121337 A JP2018121337 A JP 2018121337A JP 2020003579 A JP2020003579 A JP 2020003579A
Authority
JP
Japan
Prior art keywords
primary transfer
transfer member
intermediate transfer
environment
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018121337A
Other languages
Japanese (ja)
Inventor
利彦 ▲高▼山
利彦 ▲高▼山
Toshihiko Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018121337A priority Critical patent/JP2020003579A/en
Publication of JP2020003579A publication Critical patent/JP2020003579A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an image forming apparatus capable of reducing a FPOT in a structure using an ion conductive intermediate transfer body.SOLUTION: In an image forming apparatus 100, a primary transfer voltage value supplied to a primary transfer member 13 by voltage supply means 51 is constant without depending on use environment, and the direction of change in electrical resistance to change in temperature and humidity is different between the primary transfer member 13 and an intermediate transfer body 30. When the electrical resistances of the intermediate transfer body and primary transfer member are RbNN and Rt1NN, respectively, in the normal temperature and humid environment, are RbHH and Rt1HH, respectively, in high temperature and high humidity environment and are RbLL and Rt1LL, respectively, in low humidity and temperature environment, and when the electrical resistance ratios thereof are ΔRbH=RbHH/RbNN, ΔRt1 H=Rt1HH/Rt1NN, ΔRbL=RbLL/RbNN and ΔRt1L=Rt1LL/Rt1 NN, and primary transfer currents having two levels are I1 and I2 (I1<I2), the following formula Rt1NN/RbNN>(ΔRbH×I2-ΔRbL×I1)/(ΔRt1L×I1-ΔRt1H×I2) is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、電子写真方式や静電記録方式を用いた複写機、プリンタ、ファクシミリ装置などの画像形成装置に関するものであり、特に、中間転写体を備えた画像形成装置に関するものである。   The present invention relates to an image forming apparatus such as a copying machine, a printer, and a facsimile apparatus using an electrophotographic method or an electrostatic recording method, and more particularly to an image forming apparatus having an intermediate transfer member.

従来、電子写真方式などを用いた画像形成装置として、複数色のトナー像を像担持体から中間転写体に順次1次転写し、中間転写体上に重ねられた複数色のトナー像を一括して記録材に2次転写する中間転写方式の画像形成装置がある。   2. Description of the Related Art Conventionally, as an image forming apparatus using an electrophotographic method or the like, a primary transfer of a plurality of color toner images from an image carrier to an intermediate transfer member is sequentially performed, and a plurality of color toner images superimposed on the intermediate transfer member are collectively collected. There is an image forming apparatus of an intermediate transfer type that performs secondary transfer to a recording material by using a secondary transfer method.

このような画像形成装置では、転写部材や中間転写体にイオン性物質を導電剤として添加した部材を用いる場合がある。一般的に、イオン導電性の(すなわち、導電形態がイオン導電である)部材は、周囲の環境の温湿度の影響を受けて電気抵抗値が変化しやすい。このような電気抵抗値の環境変動に対応するための制御として、次のようなATVC制御法(Active Transfer Voltage Control:以下、「ATVC」という)がある(特許文献1)。つまり、非画像形成時に転写電圧を予め設定された電流値で定電流制御し、その際の発生電圧値の変動により転写部(転写部材、中間転写体)の電気抵抗の変動を検知する。そして、画像形成時には、先の発生電圧値を演算処理した結果に基づいて転写電圧の定電圧制御を行う。   In such an image forming apparatus, a member obtained by adding an ionic substance as a conductive agent to a transfer member or an intermediate transfer member may be used. Generally, an ion-conductive member (that is, an ion-conductive member) tends to change its electrical resistance value under the influence of the temperature and humidity of the surrounding environment. As a control to cope with such environmental fluctuation of the electric resistance value, there is an ATVC control method (Active Transfer Voltage Control: hereinafter, referred to as "ATVC") (Patent Document 1). That is, at the time of non-image formation, the transfer voltage is controlled at a constant current with a preset current value, and the change in the generated voltage value at that time detects the change in the electrical resistance of the transfer section (transfer member, intermediate transfer body). At the time of image formation, constant voltage control of the transfer voltage is performed based on the result of the arithmetic processing of the generated voltage value.

特開2000―75694号公報JP 2000-75694 A

しかしながら、上記従来のATVCは、画像形成時の転写電圧を決定するために、典型的には画像形成の直前に、転写部の電気抵抗を検知するための時間を要する。そのため、画像形成はこの時間を待ってから開始する必要がある。これにより、その時間の分だけ、プリントが開始されてから1枚目の記録材に画像が形成されて出力されるまでの時間(First Print Out Time:以下、「FPOT」という)が長くなってしまう。   However, the conventional ATVC requires a time for detecting the electric resistance of the transfer portion, typically immediately before image formation, in order to determine a transfer voltage at the time of image formation. Therefore, it is necessary to start image formation after waiting for this time. As a result, the time from the start of printing to the time when an image is formed on the first recording material and output (First Print Out Time: hereinafter, referred to as “FPOT”) becomes longer by the time. I will.

近年、ユーザビリティの観点からFPOTの値は画像形成装置の性能を示す指標として非常に重要な指標となっており、FPOTを短くすることが望まれる。   In recent years, the value of FPOT has become a very important index as an index indicating the performance of an image forming apparatus from the viewpoint of usability, and it is desired to shorten the FPOT.

したがって、本発明の目的は、イオン導電性の中間転写体を用いた構成において、FPOTを短縮することを可能とする画像形成装置を提供することである。   Therefore, an object of the present invention is to provide an image forming apparatus that can shorten FPOT in a configuration using an ion-conductive intermediate transfer member.

上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、トナー像を担持する像担持体と、イオン導電性の中間転写体と、前記中間転写体に接触し、前記像担持体と前記中間転写体とが接触する1次転写部で前記像担持体から前記中間転写体にトナー像を転写させる1次転写部材と、前記1次転写部材に1次転写電圧を供給する電圧供給手段と、を有する画像形成装置において、前記電圧供給手段により前記1次転写部材に供給される1次転写電圧値は使用環境によらず一定であり、前記1次転写部材と前記中間転写体とで温湿度の増減に対する電気抵抗の増減方向が異なっており、常温常湿環境における前記中間転写体、前記1次転写部材の電気抵抗をそれぞれRbNN、Rt1NN、高温高湿環境における前記中間転写体、前記1次転写部材の電気抵抗値をそれぞれRbHH、Rt1HH、低温低湿環境における前記中間転写体、前記1次転写部材の電気抵抗値をそれぞれRbLL、Rt1LL、高温高湿環境と常温常湿環境との間での前記中間転写体、前記1次転写部材のそれぞれの電気抵抗比をそれぞれΔRbH=RbHH/RbNN、ΔRt1H=Rt1HH/Rt1NN、低温低湿環境と常温常湿環境との間での前記中間転写体、前記1次転写部材のそれぞれの電気抵抗比をそれぞれΔRbL=RbLL/RbNN、ΔRt1L=Rt1LL/Rt1NN、2水準の1次転写電流をI1、I2(I1<I2)としたとき、次式、Rt1NN/RbNN>(ΔRbH・I2−ΔRbL・I1)/(ΔRt1L・I1−ΔRt1H・I2)を満たすことを特徴とする画像形成装置である。   The above object is achieved by an image forming apparatus according to the present invention. In summary, the present invention relates to an image bearing member that carries a toner image, an ion-conductive intermediate transfer member, and a primary contact member that comes into contact with the intermediate transfer member and that makes contact with the image bearing member. An image forming apparatus comprising: a primary transfer member configured to transfer a toner image from the image carrier to the intermediate transfer member at a transfer unit; and a voltage supply unit configured to supply a primary transfer voltage to the primary transfer member. The primary transfer voltage value supplied to the primary transfer member by the voltage supply means is constant irrespective of the usage environment, and the direction of increase and decrease of the electric resistance between the primary transfer member and the intermediate transfer body with respect to the increase and decrease of temperature and humidity. The electrical resistances of the intermediate transfer member and the primary transfer member in a normal temperature and normal humidity environment are RbNN and Rt1NN, respectively, and the electrical resistance values of the intermediate transfer member and the primary transfer member in a high temperature and high humidity environment are respectively Rb H, Rt1HH, the electrical resistance values of the intermediate transfer member and the primary transfer member in a low-temperature and low-humidity environment are RbLL and Rt1LL, respectively. The electrical resistance ratio of each transfer member is ΔRbH = RbHH / RbNN, ΔRt1H = Rt1HH / Rt1NN, and the electrical resistance of the intermediate transfer member between the low-temperature and low-humidity environment and the normal temperature and normal humidity environment, respectively. When the ratios are ΔRbL = RbLL / RbNN, ΔRt1L = Rt1LL / Rt1NN, and the two-level primary transfer currents are I1 and I2 (I1 <I2), respectively, the following equation is used. ) / (ΔRt1L · I1−ΔRt1H · I2).

本発明によれば、イオン導電性の中間転写体を用いた構成において、FPOTを短縮することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to shorten FPOT in the structure using an ion-conductive intermediate transfer body.

画像形成装置の概略断面図である。FIG. 2 is a schematic sectional view of the image forming apparatus. 1次転写部の近傍の概略断面図である。FIG. 3 is a schematic sectional view near a primary transfer portion. 1次転写性能を説明するためのグラフ図である。FIG. 3 is a graph for explaining primary transfer performance. 1次転写部材の電気抵抗と1次転写電圧との関係を示すグラフ図である。FIG. 4 is a graph illustrating a relationship between an electric resistance of a primary transfer member and a primary transfer voltage. 他の例の画像形成装置の概略断面図である。FIG. 9 is a schematic sectional view of another example of an image forming apparatus.

以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。   Hereinafter, the image forming apparatus according to the present invention will be described in more detail with reference to the drawings.

[実施例1]
1.画像形成装置の全体的な構成及び動作
図1は、本実施例の画像形成装置100の概略断面図である。本実施例の画像形成装置100は、電子写真方式を用いてフルカラー画像を形成することが可能な、中間転写方式を採用したタンデム型のプリンタである。
[Example 1]
1. FIG. 1 is a schematic sectional view of an image forming apparatus 100 according to the present embodiment. The image forming apparatus 100 of the present embodiment is a tandem-type printer that employs an intermediate transfer method and can form a full-color image using an electrophotographic method.

画像形成装置100は、複数の画像形成部(ステーション)として、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の画像を形成する第1、第2、第3、第4の画像形成部1Y、1M、1C、1Kを有する。各画像形成部1Y、1M、1C、1Kにおける同一又は対応する機能あるいは構成を有する要素については、いずれかの色用の要素であることを示す符号の末尾のY、M、C、Kを省略して総括的に説明することがある。本実施例では、画像形成部1は、後述する感光ドラム9、帯電ローラ10、露光装置11、現像装置12、1次転写部材13、ドラムクリーニング装置14などを有して構成される。   The image forming apparatus 100 includes a plurality of image forming units (stations) that form yellow (Y), magenta (M), cyan (C), and black (K) images, respectively. It has fourth image forming units 1Y, 1M, 1C and 1K. Elements having the same or corresponding functions or configurations in each of the image forming units 1Y, 1M, 1C, and 1K are omitted from the reference characters Y, M, C, and K indicating that they are elements for any color. It may be explained comprehensively. In the present embodiment, the image forming unit 1 includes a photosensitive drum 9, a charging roller 10, an exposing device 11, a developing device 12, a primary transfer member 13, a drum cleaning device 14, and the like, which will be described later.

画像形成が開始されると、像担持体としての回転可能なドラム型(円筒形)の感光体(電子写真感光体)である感光ドラム9、後述する中間転写ベルト30などの回転が開始される。感光ドラム9は、図中矢印R1方向に回転する。中間転写ベルト30は、感光ドラム9に接触しながら図中矢印R2方向に回転する。回転する感光ドラム9の表面は、帯電手段としてのローラ状の帯電部材である帯電ローラ10によって、所定の極性(本実施例では負極性)の所定の帯電電位に帯電処理される。帯電工程時に、帯電ローラ2には、負極性の直流成分を含む帯電電圧が印加される。帯電処理された感光ドラム9の表面は、露光手段としての露光装置11により画像情報に基づいて走査露光され、感光ドラム9上に静電像(静電潜像)が形成される。感光ドラム9上に形成された静電像は、現像手段としての現像装置12によって、現像剤としてのトナーが供給されて現像(可視化)され、感光ドラム9上にトナー像が形成される。本実施例では、帯電処理された後に画像情報に基づいて露光されることで電位の絶対値が低下した感光ドラム9上の露光部(イメージ部)に、感光ドラム9の帯電極性と同極性(本実施例では負極性)に帯電したトナーが付着する。本実施例では、現像時のトナーの帯電極性であるトナーの正規の帯電極性は負極性である。   When image formation is started, rotation of a photosensitive drum 9 which is a rotatable drum-type (cylindrical) photosensitive member (electrophotographic photosensitive member) as an image carrier, an intermediate transfer belt 30 described later, and the like are started. . The photosensitive drum 9 rotates in the direction of arrow R1 in the figure. The intermediate transfer belt 30 rotates in the direction of arrow R2 in the figure while contacting the photosensitive drum 9. The surface of the rotating photosensitive drum 9 is charged to a predetermined charging potential of a predetermined polarity (negative in this embodiment) by a charging roller 10 which is a roller-shaped charging member as charging means. During the charging step, a charging voltage including a negative DC component is applied to the charging roller 2. The charged surface of the photosensitive drum 9 is scanned and exposed on the basis of image information by an exposure device 11 as an exposure unit, and an electrostatic image (electrostatic latent image) is formed on the photosensitive drum 9. The electrostatic image formed on the photosensitive drum 9 is developed (visualized) by supplying toner as a developer by a developing device 12 as a developing unit, and a toner image is formed on the photosensitive drum 9. In the present embodiment, the exposed portion (image portion) on the photosensitive drum 9 where the absolute value of the potential is reduced by being exposed based on the image information after the charging process is applied to the exposed portion (image portion) having the same polarity as the charged polarity of the photosensitive drum 9 ( In this embodiment, the negatively charged toner adheres. In this embodiment, the normal charge polarity of the toner, which is the charge polarity of the toner during development, is negative.

各感光ドラム9に対向するように、中間転写体としての移動可能(回転可能)な無端状のベルトで構成された中間転写ベルト30が配置されている。中間転写ベルト30は、複数の張架ローラ(支持ローラ)としてのテンションローラ31、2次転写対向ローラ32、及び駆動ローラ33に架け渡されて、所定の張力で張架されている。中間転写ベルト30の内周面側には、各感光ドラム9に対応して、1次転写手段としてのブラシ状の1次転写部材(ブラシ部材、1次転写ブラシ)13が配置されている。1次転写部材13は、中間転写ベルト30を介して感光ドラム9に向けて押圧され、感光ドラム9と中間転写ベルト30とが接触する1次転写部N1を形成する。上述のように感光ドラム9上に形成されたトナー像は、1次転写部N1において、1次転写部材13の作用により、回転している中間転写ベルト30上に静電的に1次転写される。1次転写工程時に、1次転写部材13には、1次転写電源51により、トナーの正規の帯電極性とは逆極性(本実施例では正極性)の直流電圧である1次転写電圧(1次転写バイアス)が印加される。例えばフルカラー画像の形成時には、各感光ドラム9上に形成されたイエロー、マゼンタ、シアン、ブラックの各色のトナー像が、各1次転写部N1において、重ね合わされるようにして中間転写ベルト30上に順次1次転写される。   An intermediate transfer belt 30 composed of a movable (rotatable) endless belt as an intermediate transfer member is disposed so as to face each photosensitive drum 9. The intermediate transfer belt 30 is stretched around a tension roller 31 as a plurality of stretching rollers (supporting rollers), a secondary transfer facing roller 32, and a driving roller 33, and is stretched with a predetermined tension. A brush-like primary transfer member (brush member, primary transfer brush) 13 as primary transfer means is arranged on the inner peripheral surface side of the intermediate transfer belt 30 so as to correspond to each photosensitive drum 9. The primary transfer member 13 is pressed toward the photosensitive drum 9 via the intermediate transfer belt 30 to form a primary transfer portion N1 where the photosensitive drum 9 and the intermediate transfer belt 30 come into contact. The toner image formed on the photosensitive drum 9 as described above is primary-electrostatically transferred onto the rotating intermediate transfer belt 30 by the operation of the primary transfer member 13 in the primary transfer portion N1. You. In the primary transfer step, the primary transfer power supply 51 supplies the primary transfer member 13 with a primary transfer voltage (1) which is a DC voltage having a polarity opposite to the normal charge polarity of the toner (positive in this embodiment). Next transfer bias) is applied. For example, at the time of forming a full-color image, the yellow, magenta, cyan, and black toner images formed on the respective photosensitive drums 9 are superimposed on the intermediate transfer belt 30 at the respective primary transfer portions N1. The primary transfer is performed sequentially.

中間転写ベルト30の外周面側において、2次転写対向ローラ32に対向する位置には、2次転写手段としてのローラ状の2次転写部材である2次転写ローラ34が配置されている。2次転写ローラ34は、中間転写ベルト30を介して2次転写対向ローラ32に向けて押圧され、中間転写ベルト30と2次転写ローラ34とが接触する2次転写部N2を形成する。上述のように中間転写ベルト30上に形成されたトナー像は、2次転写部N2において、2次転写ローラ34の作用により、中間転写ベルト30と2次転写ローラ34とに挟持されて搬送される紙(用紙)などの記録材(シート)P上に静電的に2次転写される。2次転写工程時に、2次転写ローラ34には、2次転写電源35により、トナーの正規の帯電極性とは逆極性(本実施例では正極性)の直流電圧である2次転写電圧(2次転写バイアス)が印加される。記録材Pは、給送装置(図示せず)によって、中間転写ベルト30上のトナー像とタイミングが合わされて2次転写部N2に供給される。   A secondary transfer roller 34 which is a roller-shaped secondary transfer member as secondary transfer means is disposed at a position facing the secondary transfer opposing roller 32 on the outer peripheral surface side of the intermediate transfer belt 30. The secondary transfer roller 34 is pressed toward the secondary transfer opposing roller 32 via the intermediate transfer belt 30 to form a secondary transfer portion N2 where the intermediate transfer belt 30 and the secondary transfer roller 34 come into contact. The toner image formed on the intermediate transfer belt 30 as described above is conveyed while being sandwiched between the intermediate transfer belt 30 and the secondary transfer roller 34 by the action of the secondary transfer roller 34 in the secondary transfer portion N2. Is secondarily electrostatically transferred onto a recording material (sheet) P such as paper (paper). At the time of the secondary transfer step, the secondary transfer power supply 35 supplies the secondary transfer roller 34 with a secondary transfer voltage (2) which is a DC voltage having a polarity opposite to the normal charge polarity of the toner (positive in this embodiment). Next transfer bias) is applied. The recording material P is supplied to the secondary transfer portion N2 by a feeding device (not shown) at the same timing as the toner image on the intermediate transfer belt 30.

トナー像が転写された記録材Pは、定着手段としての定着装置15に搬送される。定着装置15は、未定着のトナー像を担持した記録材Pを加熱及び加圧することによってトナー像を記録材P上に定着(溶融、固着)させる。トナー像が定着された記録材Pは、画像形成装置100の装置本体の外部に排出(出力)される。   The recording material P to which the toner image has been transferred is conveyed to a fixing device 15 as fixing means. The fixing device 15 fixes (melts and fixes) the toner image on the recording material P by heating and pressing the recording material P carrying the unfixed toner image. The recording material P on which the toner image is fixed is discharged (output) outside the apparatus main body of the image forming apparatus 100.

1次転写工程時に中間転写ベルト30に転写されずに感光ドラム9の表面に残ったトナー(1次転写残トナー)は、感光体クリーニング手段としてのドラムクリーニング装置14によって感光ドラム9の表面から除去され、廃トナー容器に回収される。また、中間転写ベルト30の外周面側において、駆動ローラ33に対向する位置には、中間転写ベルト30に接触するようにトナー帯電部材としてのクリーニングローラ17が配置されている。クリーニングローラ17には、トナー帯電電源18により、トナーの正規の帯電極性とは逆極性(本実施例では正極性)の直流電圧であるクリーニング電圧(クリーニングバイアス)が印加される。2次転写工程時に記録材Pに転写されずに中間転写ベルト30の表面に残ったトナー(2次転写残トナー)は、クリーニングローラ17を通過する際に正極性に帯電させられ、1次転写部N1で感光ドラム9に逆転写される。その後、このトナーは、ドラムクリーニング装置14によって感光ドラム9の表面から除去され、廃トナー容器に回収される。   Toner remaining on the surface of the photosensitive drum 9 without being transferred to the intermediate transfer belt 30 during the primary transfer process (primary transfer residual toner) is removed from the surface of the photosensitive drum 9 by a drum cleaning device 14 as a photosensitive member cleaning unit. And collected in a waste toner container. Further, on the outer peripheral surface side of the intermediate transfer belt 30, at a position facing the drive roller 33, a cleaning roller 17 as a toner charging member is arranged so as to contact the intermediate transfer belt 30. A cleaning voltage (cleaning bias), which is a DC voltage having a polarity opposite to the normal charge polarity of the toner (positive in this embodiment), is applied to the cleaning roller 17 by a toner charging power supply 18. The toner (secondary transfer residual toner) remaining on the surface of the intermediate transfer belt 30 without being transferred to the recording material P during the secondary transfer process is charged to a positive polarity when passing through the cleaning roller 17, and is subjected to primary transfer. The image is reverse-transferred to the photosensitive drum 9 in the portion N1. Thereafter, the toner is removed from the surface of the photosensitive drum 9 by the drum cleaning device 14 and collected in a waste toner container.

本実施例では、各画像形成部1において、感光ドラム9と、感光ドラム9に作用するプロセス手段としての帯電ローラ10、現像装置12及びドラムクリーニング装置14とは、一体的にカートリッジ8を構成している。このカートリッジ8は、画像形成装置100の装置本体に対して着脱可能に構成されている。そして、カートリッジ8は、例えば感光ドラム9が寿命に達した場合に、画像形成装置100の装置本体から取り出されて新品と交換される。   In this embodiment, in each image forming section 1, the photosensitive drum 9, and the charging roller 10, the developing device 12, and the drum cleaning device 14 as process means acting on the photosensitive drum 9, constitute a cartridge 8 integrally. ing. The cartridge 8 is configured to be detachable from an apparatus main body of the image forming apparatus 100. Then, for example, when the photosensitive drum 9 reaches the end of its life, the cartridge 8 is removed from the apparatus main body of the image forming apparatus 100 and is replaced with a new one.

2.中間転写ベルト
本実施例では、中間転写ベルト30として、樹脂材料としてのポリエチレンナフタレートにイオン導電剤を添加したイオン導電性のベルト部材を用いた。本実施例では、イオン導電剤としては、脂肪族スルホン酸塩を用いた。本実施例では、中間転写ベルト30の厚さは70μmである。また、本実施例では、中間転写ベルト30は、常温常湿環境(23℃/50%RH:以下、「NN環境」という)における体積抵抗率は1010.4Ωcmである。
2. Intermediate Transfer Belt In the present embodiment, an ionic conductive belt member obtained by adding an ionic conductive agent to polyethylene naphthalate as a resin material was used as the intermediate transfer belt 30. In this example, an aliphatic sulfonic acid salt was used as the ion conductive agent. In this embodiment, the thickness of the intermediate transfer belt 30 is 70 μm. In this embodiment, the volume resistivity of the intermediate transfer belt 30 in a normal temperature and normal humidity environment (23 ° C./50% RH; hereinafter, referred to as “NN environment”) is 10 10.4 Ωcm.

中間転写ベルト30の体積抵抗率は、高抵抗抵抗率計Hiresta−UP(MCP−HT450)(三菱化学製)を用いて測定した。測定用プローブとしての金属製のUR100プローブ(MCP−HTP16)を中間転写ベルト30の表面に押し当てて使用し、対向板としては金属面(接地面)を使用した。印加電圧500V、測定時間10s、体積抵抗率測定モードの条件で、金属プローブによる中間転写ベルト30の体積抵抗率(単位はΩ・cm)を測定した。   The volume resistivity of the intermediate transfer belt 30 was measured using a high resistivity meter Hiresta-UP (MCP-HT450) (manufactured by Mitsubishi Chemical Corporation). A metal UR100 probe (MCP-HTP16) as a measurement probe was pressed against the surface of the intermediate transfer belt 30, and a metal surface (ground surface) was used as the opposing plate. Under the conditions of an applied voltage of 500 V, a measurement time of 10 s, and a volume resistivity measurement mode, the volume resistivity (unit: Ω · cm) of the intermediate transfer belt 30 was measured with a metal probe.

本実施例の中間転写ベルト30では、電離したイオンがキャリアとなって移動することにより導電性が発現する。イオンの移動は高温高湿環境ほどイオンの移動が活性化されるため、本実施例の中間転写ベルト30の体積抵抗率は高温高湿環境ほど低くなる。本実施例の中間転写ベルト30の体積抵抗率を、低温低湿環境(15℃/10%RH:以下、「LL環境」という)と、高温高湿環境(30℃/80%RH:以下、「HH環境」という)と、で測定した。その結果、LL環境における体積抵抗率は1010.8Ωcm、HH環境における体積抵抗率は109.8Ωcmであった。 In the intermediate transfer belt 30 of the present embodiment, conductivity is exhibited by the ionized ions moving as carriers. Since the movement of ions is activated in a high-temperature and high-humidity environment, the volume resistivity of the intermediate transfer belt 30 of the present embodiment is lower in a high-temperature and high-humidity environment. The volume resistivity of the intermediate transfer belt 30 of the present embodiment is set to a low-temperature and low-humidity environment (15 ° C./10% RH: hereinafter referred to as “LL environment”) and a high-temperature and high-humidity environment (30 ° C./80% RH: hereinafter). HH environment "). As a result, the volume resistivity in the LL environment was 10 10.8 Ωcm, and the volume resistivity in the HH environment was 10 9.8 Ωcm.

図2は、1次転写部N1の近傍の模式的な断面図(感光ドラム9の回転軸線方向と略直交する断面)である。本実施例では、感光ドラム9と中間転写ベルト30との接触部の中間転写ベルト30の移動方向における幅(短手幅)は2mm、中間転写ベルト30の移動方向と略直交する方向の幅(長手幅)は220mmである。この場合、上述の中間転写ベルト30の体積抵抗率から、NN環境における中間転写ベルト30の厚さ方向の電気抵抗値(以下、単に「電気抵抗」ともいう。)RbNNは40MΩとなる。また、HH環境とLL環境との間での中間転写ベルト30の厚さ方向の電気抵抗値の環境変動幅は約1桁(10〜100MΩ)となる。なお、これらの設定は、第1、第2、第3、第4の画像形成部1Y、1M、1C、1Kの全ての1次転写部N1で実質的に同じである。なお、中間転写ベルト30の厚さ方向の電気抵抗値は、1次転写部N1において1次転写電流が流れる方向の中間転写ベルト30の電気抵抗値である。   FIG. 2 is a schematic cross-sectional view near the primary transfer portion N1 (cross-section substantially orthogonal to the rotation axis direction of the photosensitive drum 9). In the present embodiment, the width (short width) of the contact portion between the photosensitive drum 9 and the intermediate transfer belt 30 in the moving direction of the intermediate transfer belt 30 is 2 mm, and the width in the direction substantially orthogonal to the moving direction of the intermediate transfer belt 30 ( The longitudinal width is 220 mm. In this case, from the volume resistivity of the intermediate transfer belt 30 described above, the electrical resistance value RbNN in the thickness direction of the intermediate transfer belt 30 in the NN environment (hereinafter, also simply referred to as “electrical resistance”) RbNN is 40 MΩ. Further, the environmental fluctuation width of the electric resistance value in the thickness direction of the intermediate transfer belt 30 between the HH environment and the LL environment is about one digit (10 to 100 MΩ). Note that these settings are substantially the same in all the primary transfer units N1 of the first, second, third, and fourth image forming units 1Y, 1M, 1C, and 1K. Note that the electric resistance value of the intermediate transfer belt 30 in the thickness direction is the electric resistance value of the intermediate transfer belt 30 in the direction in which the primary transfer current flows in the primary transfer portion N1.

また、本実施例では、中間転写ベルト30は、駆動ローラ33により140mm/secの周速度(プロセススピードに対応)で駆動回転される。   In this embodiment, the intermediate transfer belt 30 is driven and rotated by the driving roller 33 at a peripheral speed of 140 mm / sec (corresponding to the process speed).

3.1次転写部材
本実施例では、1次転写部材13として、カーボン粉末を均一に分散した導電ナイロン繊維で形成されたブラシ繊維を備えたブラシ部材を用いた。導電ナイロン繊維の一本一本は基布上に密に配列されており、これを導電性接着剤などによって、金属製の板状部材(板金)で形成された基材である基板上に接着することで、ブラシ部材が構成されている。本実施例では、導電ナイロン繊維としては、繊度が170dtex/30F、体積抵抗率がNN環境において107.8〜108.3Ωcmのものを用いた。また、本実施例では、ブラシ部材の繊維密度は200kF/inchである。また、本実施例では、図2に示すように、ブラシ部材の起毛部の中間転写ベルト30の移動方向と略直交する方向の幅(長手幅)は220mm、中間転写ベルト30の移動方向の幅(短手幅)は4mmである。また、本実施例では、ブラシ繊維の長さは5mmであり、ブラシ繊維は基板に対して垂直方向に起毛しており、ブラシ部材は中間転写ベルト30の面(内周面)に対してブラシ繊維が1mm侵入するように固定されている。
3. Primary Transfer Member In this embodiment, as the primary transfer member 13, a brush member provided with brush fibers formed of conductive nylon fibers in which carbon powder is uniformly dispersed was used. Each of the conductive nylon fibers is densely arranged on a base cloth and bonded to a substrate, which is a substrate made of a metal plate-like member (sheet metal), using a conductive adhesive or the like. By doing so, a brush member is configured. In this embodiment, as the conductive nylon fiber, fineness of 170dtex / 30F, volume resistivity was used in 10 7.8 to 10 8.3 [Omega] cm in NN environments. In this embodiment, the fiber density of the brush member is 200 kF / inch 2 . Further, in the present embodiment, as shown in FIG. 2, the width (longitudinal width) of the raised portion of the brush member in a direction substantially perpendicular to the moving direction of the intermediate transfer belt 30 is 220 mm, and the width in the moving direction of the intermediate transfer belt 30. (Short width) is 4 mm. Further, in this embodiment, the length of the brush fiber is 5 mm, the brush fiber is raised in a direction perpendicular to the substrate, and the brush member is brushed against the surface (inner peripheral surface) of the intermediate transfer belt 30. The fiber is fixed so as to penetrate 1 mm.

ブラシ部材のナイロン繊維は、吸水性が高く、高温高湿環境ほど吸水して寸法が膨張する。寸法が膨張すると導電剤としてのカーボン粒子の距離が遠ざかるため電気抵抗が高くなる。NN環境において体積抵抗率が108.1Ωcmの導電ナイロン繊維の体積抵抗率をLL環境とHH環境とで測定した。その結果、LL環境における体積抵抗率は107.8Ωcm、HH環境における体積抵抗率は108.4Ωcmであり、環境変動は約0.6桁であった。 The nylon fiber of the brush member has high water absorption, and expands in size by absorbing water in a high-temperature and high-humidity environment. When the size expands, the distance between the carbon particles as the conductive agent increases and the electrical resistance increases. The volume resistivity of the conductive nylon fiber having a volume resistivity of 108.1 Ωcm in the NN environment was measured in the LL environment and the HH environment. As a result, the volume resistivity in the LL environment was 107.8 Ωcm, the volume resistivity in the HH environment was 108.4 Ωcm, and the environmental fluctuation was about 0.6 digits.

本実施例では、NN環境におけるブラシ部材としての電気抵抗値(以下、単に「電気抵抗」ともいう。)Rt1NNは約40MΩであった。本実施例では、ブラシ部材の電気抵抗値の製造上のばらつきを0.5桁として、NN環境における電気抵抗値Rt1NNが22〜71MΩの範囲のブラシ部材を用いた。本実施例では、ブラシ部材としての電気抵抗値の環境変動は約0.6桁であった。なお、1次転写部材13の電気抵抗値は、1次転写部N1において1次転写電流が流れる際に1次転写部材13にかかる電気抵抗である。   In the present embodiment, the electric resistance value (hereinafter, also simply referred to as “electric resistance”) Rt1NN of the brush member in the NN environment was about 40 MΩ. In this embodiment, a brush member having an electrical resistance Rt1NN in the NN environment of 22 to 71 MΩ is used, with the manufacturing variation of the electrical resistance of the brush member being 0.5 digits. In this embodiment, the environmental fluctuation of the electric resistance value of the brush member was about 0.6 digits. The electric resistance value of the primary transfer member 13 is an electric resistance applied to the primary transfer member 13 when a primary transfer current flows in the primary transfer portion N1.

ブラシ部材としての電気抵抗値は、絶縁抵抗計IR4055(HIOKI)を用いて測定した。ブラシ部材に1mm侵入する形で対向電極を押し当て、測定用端子をブラシ部材の基板と対向電極とに接続して使用した。印加電圧500V、測定時間10sの条件で、ブラシ部材の電気抵抗値(単位はMΩ)を測定した。   The electric resistance value of the brush member was measured using an insulation resistance meter IR4055 (HIOKI). The counter electrode was pressed in such a manner as to penetrate the brush member by 1 mm, and the measuring terminal was used by connecting to the substrate of the brush member and the counter electrode. The electric resistance (unit: MΩ) of the brush member was measured under the conditions of an applied voltage of 500 V and a measurement time of 10 s.

なお、本実施例では、上述の体積抵抗率の繊維及びブラシ寸法のブラシ部材を用いたが、これに限定されるものではない。例えば、導電ナイロン繊維の体積抵抗率を高くして、ブラシ長さを短くしたり繊維密度を低くしたりするなどして、ブラシ部材としての電気抵抗値を調整してもよい。   In this embodiment, the fibers having the above-described volume resistivity and the brush member having the brush size are used, but the present invention is not limited to this. For example, the electrical resistance value of the brush member may be adjusted by increasing the volume resistivity of the conductive nylon fiber, shortening the brush length or decreasing the fiber density.

4.1次転写電流の条件
次に、1次転写性能として必要な1次転写電流の条件について説明する。ここで説明する1次転写に関する画像不良は、多次色の転写不良及び単色の再転写による画像濃度の低下である。なお、1次転写に関して上流、下流は、特に言及しない場合も中間転写ベルト30の移動方向(回転方向)における上流、下流を言うものとする。
4. Conditions for Primary Transfer Current Next, conditions for the primary transfer current necessary for the primary transfer performance will be described. The image defects related to the primary transfer described here are a transfer defect of a multi-color and a decrease in image density due to re-transfer of a single color. Note that upstream and downstream with respect to the primary transfer mean upstream and downstream in the moving direction (rotation direction) of the intermediate transfer belt 30 even if not particularly mentioned.

多次色の転写不良とは、上流側の画像形成部1の1次転写部N1で1次転写された中間転写ベルト30上トナー像の上に、下流側の画像形成部1の感光ドラム9上のトナー像を1次転写する際に、感光ドラム9上に1次転写残トナーが残る転写不良を指す。1次転写部N1において、1次転写部材13に印加されるプラスの電圧と、マイナスに帯電したと感光ドラム9上のトナーと、の間にマイナスに帯電した中間転写ベルト30上のトナーが介在して電流が流れにくくなった場合に、転写効率が低下する。多次色の転写不良は、特に、1次転写電流が低い場合に発生し、2色目以降の色のトナーが許容範囲以上に薄くなると画像不良として顕在化する。   Multi-color transfer failure means that the photosensitive drum 9 of the downstream image forming unit 1 is placed on the toner image on the intermediate transfer belt 30 that has been primarily transferred by the primary transfer unit N1 of the upstream image forming unit 1. When primary transfer of the upper toner image is performed, it indicates a transfer failure in which primary transfer residual toner remains on the photosensitive drum 9. In the primary transfer section N1, a negatively charged toner on the intermediate transfer belt 30 is interposed between a positive voltage applied to the primary transfer member 13 and a negatively charged toner on the photosensitive drum 9. When the current becomes difficult to flow, the transfer efficiency is reduced. The transfer failure of the multicolor occurs particularly when the primary transfer current is low. When the toner of the second and subsequent colors becomes thinner than an allowable range, the transfer failure becomes apparent as an image failure.

一方、単色の再転写とは、上流側の画像形成部1の1次転写部N1で1次転写された中間転写ベルト30上のトナーが、下流側の画像形成部1の1次転写部N1で感光ドラム9上の非画像部との対向部を通過する際に、中間転写ベルト30上のトナーの一部が下流側の画像形成部1の感光ドラム9上に転移してしまうことを指す。1次転写電圧と感光ドラム9上の非画像部電位との間の電位差がトナーの放電閾値を超えた場合に、放電によりマイナスからプラスに極性が反転した中間転写ベルト30上のトナーが、マイナスに帯電している感光ドラム9上の非画像部に再転写してしまう。単色の再転写は、特に、1次転写電流が高い場合に発生し、1次転写電圧が許容範囲以上に高すぎると濃度が著しく低下して画像不良として顕在化する。   On the other hand, the re-transfer of a single color means that the toner on the intermediate transfer belt 30 that has been primarily transferred by the primary transfer unit N1 of the image forming unit 1 on the upstream side is transferred to the primary transfer unit N1 on the image forming unit 1 on the downstream side. Indicates that a part of the toner on the intermediate transfer belt 30 is transferred onto the photosensitive drum 9 of the image forming unit 1 on the downstream side when passing through the portion of the photosensitive drum 9 facing the non-image portion. . When the potential difference between the primary transfer voltage and the non-image portion potential on the photosensitive drum 9 exceeds the discharge threshold of the toner, the toner on the intermediate transfer belt 30 whose polarity has been inverted from minus to plus due to the discharge becomes minus. The image is retransferred to a non-image area on the photosensitive drum 9 which is charged to a negative polarity. Monochromatic retransfer occurs especially when the primary transfer current is high, and when the primary transfer voltage is too high beyond an allowable range, the density is remarkably reduced and the image becomes apparent as an image defect.

図3は、本実施例における2次色の転写不良と単色の再転写との関係を示す。横軸は、感光ドラム9の非画像部電位(本実施例では−500V)に対する単一の画像形成部1あたりの1次転写電流値を示す。縦軸は、1次転写残トナー重量及び再転写トナー重量と相関する指標値である光学濃度値を示す。この光学濃度値は、次のようにして求めた。つまり、感光ドラム9上の1次転写残トナー又は再転写トナーをテープで採取し、紙上に貼り付けて、光学濃度計で測定した。そして、その測定値から、テープだけを紙上に貼り付けた場合の光学濃度計の測定値を差し引いて光学濃度値とした。この方法により測定される光学濃度値は、1次転写残トナー重量や再転写トナー重量とほぼ比例関係を示す。光学濃度値が小さいほど、良好に1次転写されていること、あるいは再転写が抑制されていることを示す。   FIG. 3 shows the relationship between transfer failure of a secondary color and retransfer of a single color in the present embodiment. The horizontal axis indicates the primary transfer current value per single image forming unit 1 with respect to the non-image portion potential of the photosensitive drum 9 (−500 V in this embodiment). The vertical axis indicates an optical density value which is an index value correlated with the weight of the primary transfer residual toner and the weight of the retransferred toner. This optical density value was obtained as follows. That is, the primary transfer residual toner or the retransferred toner on the photosensitive drum 9 was collected with a tape, attached to paper, and measured with an optical densitometer. Then, the measured value of the optical densitometer when only the tape was stuck on the paper was subtracted from the measured value to obtain an optical density value. The optical density value measured by this method shows a substantially proportional relationship with the weight of the primary transfer residual toner and the weight of the retransferred toner. The smaller the optical density value, the better the primary transfer is, or the more retransfer is suppressed.

本実施例では、光学濃度値0.1、0.2、0.3が、それぞれ感光ドラム9上のトナー重量に対する1次転写残トナー重量又は再転写トナー重量が5%、10%、15%であることに相当する。本実施例では、光学濃度値が0.2以下であれば、2次色の転写不良及び単色の再転写のレベルは目視にて良好であり、そのときの1次転写電流は使用環境によらず3〜10μAであった。   In this embodiment, the optical density values of 0.1, 0.2, and 0.3 are respectively 5%, 10%, and 15% of the weight of the primary transfer residual toner or the weight of the retransferred toner relative to the weight of the toner on the photosensitive drum 9. Is equivalent to In this embodiment, if the optical density value is 0.2 or less, the level of poor transfer of the secondary color and the level of retransfer of the single color are visually good, and the primary transfer current at that time depends on the use environment. 3 to 10 μA.

本実施例では、FPOTを短縮するために、使用環境によらず1次転写電圧値を一定の電圧値で制御する。つまり、本実施例では、使用環境によらず一定の1次転写電圧値で1次転写電流を前述の1次転写電流の範囲(3〜10μA)に制御することが必要である。   In this embodiment, in order to shorten FPOT, the primary transfer voltage value is controlled at a constant voltage value regardless of the use environment. That is, in this embodiment, it is necessary to control the primary transfer current within the above-described range of the primary transfer current (3 to 10 μA) at a constant primary transfer voltage value regardless of the use environment.

5.比較例
本発明の理解を容易とするために、比較例(比較例1、2)の構成における課題を明らかにする。ここで、比較例における中間転写ベルトは、本実施例における中間転写ベルトと実質的に同じものである。また、特に言及しない場合は、比較例のその他の構成も本実施例の構成と実質的に同じである。
5. Comparative Example In order to facilitate understanding of the present invention, problems in the configuration of the comparative example (Comparative Examples 1 and 2) will be clarified. Here, the intermediate transfer belt in the comparative example is substantially the same as the intermediate transfer belt in the present embodiment. Unless otherwise specified, other configurations of the comparative example are substantially the same as the configuration of the present embodiment.

<比較例1>
比較例1では、1次転写部材としてローラ部材を用いる。比較例1のローラ部材としては、外径5mmの芯金の外周を、厚み4.5mmに調整したNBR(ニトリルブタジエンゴム)の発泡スポンジ体で形成された弾性層で覆った、外径14mmの弾性体ローラを用いた。発泡スポンジ体には、導電性を付与するためにイオン導電剤が添加されている。発泡スポンジ体の体積抵抗率は、NN環境において105.5Ωcm、HH環境において10Ωcm、LL環境において10Ωcmであり、ローラ部材としての電気抵抗値の環境変動は約1桁である。
<Comparative Example 1>
In Comparative Example 1, a roller member is used as a primary transfer member. As the roller member of Comparative Example 1, the outer circumference of a core metal having an outer diameter of 5 mm was covered with an elastic layer formed of a foamed sponge body of NBR (nitrile butadiene rubber) adjusted to a thickness of 4.5 mm. An elastic roller was used. An ionic conductive agent is added to the foamed sponge body in order to impart conductivity. The volume resistivity of the foamed sponge body, 10 5.5 [Omega] cm in NN environment 10 5 [Omega] cm at HH environment are 10 6 [Omega] cm in LL environment, environmental variation in the electrical resistance of the roller member is about one order of magnitude .

比較例1では、ローラ部材と中間転写ベルトとの接触部の中間転写ベルトの移動方向における幅(短手幅)は2mm、中間転写ベルトの移動方向と略直交する方向の幅(長手幅)は220mmである。この場合、上述の体積抵抗率から、ローラ部材の弾性層の厚さ方向の電気抵抗値(以下、単に「電気抵抗」ともいう。)は、HH環境では0.1MΩ、NN環境では0.3MΩ、LL環境では1MΩとなる。比較例1に関し、各環境における中間転写ベルトの電気抵抗値、ローラ部材の電気抵抗値、及び両者を合計した総抵抗を表1に示す。   In Comparative Example 1, the width (short width) of the contact portion between the roller member and the intermediate transfer belt in the moving direction of the intermediate transfer belt was 2 mm, and the width (longitudinal width) in a direction substantially perpendicular to the moving direction of the intermediate transfer belt was 220 mm. In this case, from the above-mentioned volume resistivity, the electric resistance value in the thickness direction of the elastic layer of the roller member (hereinafter, also simply referred to as “electric resistance”) is 0.1 MΩ in the HH environment and 0.3 MΩ in the NN environment. , 1MΩ in the LL environment. Table 1 shows the electrical resistance value of the intermediate transfer belt, the electrical resistance value of the roller member, and the total resistance obtained by adding both values in Comparative Example 1 in each environment.

Figure 2020003579
Figure 2020003579

表1から、比較例1では、1次転写電流が流れにくいのはLL環境であり、流れやすいのはHH環境であることがわかる。LL環境で1次転写電流を3μA以上にするのに必要な1次転写電圧VLLは303V以上(VLL≧303V)となる。また、HH環境で1次転写電流を10μA以下にするのに必要な1次転写電圧VHHは101V以下(VHH≦101V)となる。そのため、比較例1では、LL環境とHH環境とにおける1次転写性能を満足する一定の1次転写電圧値を設定することができない。   From Table 1, it can be seen that in Comparative Example 1, the LL environment makes it difficult for the primary transfer current to flow, and the HH environment makes it easy to flow. The primary transfer voltage VLL required to make the primary transfer current 3 μA or more in the LL environment is 303 V or more (VLL ≧ 303 V). Further, the primary transfer voltage VHH required to reduce the primary transfer current to 10 μA or less in the HH environment is 101 V or less (VHH ≦ 101 V). Therefore, in Comparative Example 1, a constant primary transfer voltage value that satisfies the primary transfer performance in the LL environment and the HH environment cannot be set.

なお、比較例1では、1転写部材として、温湿度の増減に対する電気抵抗の増減方向が中間転写ベルトと同じであるイオン導電性のローラ部材を用いた。1次転写部材として、電気抵抗の環境変動がほぼ無視できる、例えばニッケルメッキされたSUS丸棒などで構成された金属ローラを用いた場合も、1次転写性能を満足する一定の1次転写電圧値を設定することはできないという上記同様の結果となる。   In Comparative Example 1, as the one transfer member, an ion-conductive roller member in which the direction of increase and decrease in electric resistance with respect to increase and decrease in temperature and humidity was the same as that of the intermediate transfer belt was used. A constant primary transfer voltage that satisfies the primary transfer performance even when a metal roller composed of, for example, a nickel-plated SUS round bar or the like is used as the primary transfer member, in which environmental changes in electrical resistance can be almost ignored. The result is similar to the above in that the value cannot be set.

<比較例2>
比較例2では、1次転写部材としてブラシ部材を用いる。比較例2は、1次転写部材と中間転写ベルトとで温湿度の増減に対する電気抵抗の増減方向が異なっている点が比較例1と相違する。また、比較例2は、ブラシ部材の電気抵抗値が本実施例と相違する。
<Comparative Example 2>
In Comparative Example 2, a brush member is used as a primary transfer member. Comparative Example 2 differs from Comparative Example 1 in that the primary transfer member and the intermediate transfer belt differ in the direction in which the electric resistance increases or decreases with respect to the temperature and humidity. In Comparative Example 2, the electric resistance value of the brush member is different from that of the present embodiment.

従来、1次転写部材に用いられるブラシ部材は、1次転写電源の電極として用いられるため、その電気抵抗値は、例えば本実施例の中間転写ベルトと比較すると2桁以上低い。比較例2では、このような従来のブラシ部材を用いている。比較例2では、ブラシ部材として、NN環境における体積抵抗率が10Ωcmの導電ナイロン繊維が用いられており、ブラシ部材としての電気抵抗値が0.3MΩであるものを用いた。比較例1のブラシ部材としての電気抵抗値の環境変動は、本実施例と同様、約0.6桁である。比較例2に関し、各環境における中間転写ベルトの電気抵抗値、ブラシ部材の電気抵抗値、及び両者を合計した総抵抗を表2に示す。 Conventionally, a brush member used for a primary transfer member is used as an electrode of a primary transfer power source, and thus has an electrical resistance value that is two orders of magnitude lower than that of the intermediate transfer belt of this embodiment, for example. In Comparative Example 2, such a conventional brush member is used. In Comparative Example 2, a conductive nylon fiber having a volume resistivity of 10 6 Ωcm in an NN environment was used as a brush member, and a brush member having an electric resistance of 0.3 MΩ was used. The environmental variation of the electric resistance value of the brush member of Comparative Example 1 is about 0.6 digits as in the present embodiment. Table 2 shows the electrical resistance of the intermediate transfer belt, the electrical resistance of the brush member, and the total resistance obtained by summing the electrical resistance of the intermediate transfer belt in each environment.

Figure 2020003579
Figure 2020003579

表2から、比較例2では、1次転写電流が流れにくいのはLL環境であり、流れやすいのはHH環境であることがわかる。LL環境で1次転写電流を3μA以上にするのに必要な1次転写電圧VLLは300.6V以上(VLL≧300.6V)となる。また、HH環境で1次転写電流を10μA以下にするのに必要な1次転写電圧VHHは108V以下(VHH≦108V)となる。そのため、比較例2では、LL環境とHH環境とにおける1次転写性能を満足する一定の1次転写電圧値を設定することができない。   Table 2 shows that, in Comparative Example 2, the LL environment makes it difficult for the primary transfer current to flow, and the HH environment makes it easy for the primary transfer current to flow. The primary transfer voltage VLL required to make the primary transfer current 3 μA or more in the LL environment is 300.6 V or more (VLL ≧ 300.6 V). In addition, the primary transfer voltage VHH required to reduce the primary transfer current to 10 μA or less in an HH environment is 108 V or less (VHH ≦ 108 V). Therefore, in Comparative Example 2, a constant primary transfer voltage value that satisfies the primary transfer performance in the LL environment and the HH environment cannot be set.

6.本実施例の構成の詳細
<1次転写電圧の設定>
次に、本実施例における1次転写電圧の設定について説明する。本実施例に関し、各環境における中間転写ベルトの電気抵抗値、ブラシ部材の電気抵抗値、及び両者を合計した総抵抗を表3に示す。
6. Details of the configuration of the present embodiment <Setting of primary transfer voltage>
Next, the setting of the primary transfer voltage in this embodiment will be described. Table 3 shows the electrical resistance value of the intermediate transfer belt, the electrical resistance value of the brush member, and the total resistance obtained by summing the electrical resistance values of the intermediate transfer belt in each environment.

Figure 2020003579
Figure 2020003579

まず、ブラシ部材の電気抵抗値が製造上のばらつきの中心の場合について説明する。表3から、1次転写電流が流れにくいのはLL環境であり、流れやすいのはNN環境であることがわかる。LL環境で1次転写電流を3μA以上にするのに必要な1次転写電圧VLLは360V以上(VLL≧360V)となる。また、NN環境で1次転写電流を10μA以下にするのに必要な1次転写電圧VNNは800V以下(VNN≦800V)となる。そのため、この場合、使用環境によらずに1次転写性能を満足するためには、1次転写電圧を360〜800Vの間に設定すればよい。   First, the case where the electric resistance value of the brush member is the center of the manufacturing variation will be described. Table 3 shows that the LL environment makes it difficult for the primary transfer current to flow and the NN environment makes it easy to flow. The primary transfer voltage VLL required to make the primary transfer current 3 μA or more in the LL environment is 360 V or more (VLL ≧ 360 V). Further, the primary transfer voltage VNN required to reduce the primary transfer current to 10 μA or less in the NN environment is 800 V or less (VNN ≦ 800 V). Therefore, in this case, in order to satisfy the primary transfer performance irrespective of the use environment, the primary transfer voltage may be set between 360 and 800V.

次に、ブラシ部材の電気抵抗値が製造上のばらつきの下限の場合について説明する。表3から、1次転写電流が流れにくいのはLL環境であり、流れやすいのはHH環境であることがわかる。LL環境で1次転写電流を3μA以上にするのに必要な1次転写電圧VLLは333V以上(VLL≧333V)となる。また、HH環境で1次転写電流を10μA以下にするのに必要な1次転写電圧VHHは540V以下(VHH≦540V)となる。そのため、この場合、使用環境によらずに1次転写性能を満足するためには、1次転写電圧を333〜540Vの間に設定すればよい。   Next, the case where the electric resistance value of the brush member is at the lower limit of the manufacturing variation will be described. From Table 3, it can be seen that the primary transfer current hardly flows in the LL environment, and the primary transfer current easily flows in the HH environment. The primary transfer voltage VLL required to make the primary transfer current 3 μA or more in the LL environment is 333 V or more (VLL ≧ 333 V). Further, the primary transfer voltage VHH required to reduce the primary transfer current to 10 μA or less in the HH environment is 540 V or less (VHH ≦ 540 V). Therefore, in this case, in order to satisfy the primary transfer performance irrespective of the use environment, the primary transfer voltage may be set between 333 and 540V.

次に、ブラシ部材の電気抵抗値が製造上のばらつきの上限の場合について説明する。表3から、1次転写電流が流れにくいのはHH環境であり、流れやすいのはNN環境であることがわかる。HH環境で1次転写電流を3μA以上にするのに必要な1次転写電圧VHHは456V以上(VHH≧456V)となる。また、NN環境で1次転写電流を10μA以下にするのに必要な1次転写電圧VNNは1110V以下(VNN≦1110V)となる。そのため、この場合、使用環境によらずに1次転写性能を満足するためには、1次転写電圧を456〜1110Vの間に設定すればよい。   Next, the case where the electric resistance value of the brush member is the upper limit of the variation in manufacturing will be described. Table 3 shows that the primary transfer current hardly flows in the HH environment, and the primary transfer current easily flows in the NN environment. The primary transfer voltage VHH required to make the primary transfer current 3 μA or more in the HH environment becomes 456 V or more (VHH ≧ 456 V). Further, the primary transfer voltage VNN required to reduce the primary transfer current to 10 μA or less in the NN environment is 1110 V or less (VNN ≦ 1110 V). Therefore, in this case, in order to satisfy the primary transfer performance irrespective of the use environment, the primary transfer voltage may be set between 456 and 1110V.

以上より、本実施例では、ブラシ部材の電気抵抗値の製造上のばらつきと、環境変動と、を含めて、使用環境によらずに1次転写性を満足するためには、1次転写電圧は、456〜540Vの間に設定すればよく、例えば500Vに設定すればよい。   As described above, in the present embodiment, in order to satisfy the primary transfer property regardless of the use environment, including the manufacturing variation of the electrical resistance value of the brush member and the environmental fluctuation, the primary transfer voltage May be set between 456 and 540 V, for example, 500 V.

<1次転写電圧値を一定にできる条件>
次に、本実施例のように1次転写電圧値を一定にできる条件について説明する。
<Conditions for Maintaining Primary Transfer Voltage Value>
Next, the conditions under which the primary transfer voltage value can be kept constant as in this embodiment will be described.

図4は、表3に示すNN環境における中間転写ベルトの電気抵抗値RbNNとブラシ部材の電気抵抗値Rt1NNとの比率(Rt1NN/RbNN)を横軸にとり、その比率における「3μA電圧」と「10μA電圧」とをプロットしたグラフ図である。ここで、「3μA電圧」は、LL環境、NN環境、HH環境のうち1次転写電流が最も流れにくい使用環境で3μAの1次転写電流を流すために必要な電圧である。また、「10μA電圧」は、LL環境、NN環境、HH環境のうち1次転写電流が最も流れやすい使用環境で10μAの1次転写電流が流れる際の電圧である。   FIG. 4 shows the ratio (Rt1NN / RbNN) between the electric resistance value RbNN of the intermediate transfer belt and the electric resistance value Rt1NN of the brush member in the NN environment shown in Table 3 on the horizontal axis, and shows “3 μA voltage” and “10 μA” in the ratio. FIG. 5 is a graph plotting “voltage”. Here, the “3 μA voltage” is a voltage necessary to supply a primary transfer current of 3 μA in an environment in which the primary transfer current hardly flows among the LL environment, the NN environment, and the HH environment. The “10 μA voltage” is a voltage at which a primary transfer current of 10 μA flows in a usage environment where the primary transfer current flows most easily among the LL environment, the NN environment, and the HH environment.

図4における3μA電圧についてのプロットを結ぶ線と10μA電圧についてのプロットを結ぶ線との「交点A」は、次の場合に存在する。つまり、本実施例のように中間転写ベルトと1次転写部材とで温湿度の増減に対する電気抵抗の増減方向が異なっている(すなわち、中間転写ベルトと1次転写部材とでの環境抵抗変動が相反する)構成の場合に存在する。1次転写部材としてのブラシ部材の電気抵抗が低い比較例2のような構成の場合(すなわち、図4の交点Aより左側の場合)、3μA電圧>10μA電圧となり、使用環境によらず1次転写性能を満足する一定の1次転写電圧値を設定することができない。一方、本実施例のように1次転写部材としてのブラシ部材の電気抵抗が高い構成の場合(すなわち、図4の交点Aより右側の場合)、3μA電圧<10μA電圧となり、使用環境によらず1次転写性能を満足する一定の1次転写電圧値を設定することができる。   The “intersection A” between the line connecting the plots for the 3 μA voltage and the line connecting the plots for the 10 μA voltage in FIG. 4 exists in the following cases. That is, as in the present embodiment, the direction of increase or decrease in the electrical resistance with respect to the increase or decrease in temperature and humidity is different between the intermediate transfer belt and the primary transfer member (that is, the environmental resistance change between the intermediate transfer belt and the primary transfer member is different). Present in the case of a conflicting configuration. In the case of the configuration as in Comparative Example 2 in which the electrical resistance of the brush member as the primary transfer member is low (that is, the case on the left side of the intersection A in FIG. 4), the voltage of 3 μA> 10 μA, and the primary voltage is independent of the usage environment. A fixed primary transfer voltage value that satisfies transfer performance cannot be set. On the other hand, in the case of a configuration in which the brush member as the primary transfer member has a high electrical resistance as in the present embodiment (that is, the case where the brush member is on the right side of the intersection A in FIG. 4), the voltage is 3 μA <10 μA, regardless of the usage environment. A constant primary transfer voltage value that satisfies the primary transfer performance can be set.

つまり、1次転写部の電気抵抗の環境変動は、中間転写ベルトの電気抵抗値に対してブラシ部材の電気抵抗値が低い比較例2のような構成の場合は、中間転写ベルトの電気抵抗値の環境変動が支配的である。一方、中間転写ベルトの電気抵抗とブラシ部材の電気抵抗値とが同程度である本実施例のような構成の場合は、ブラシ部材の電気抵抗値の環境変動が中間転写ベルトの電気抵抗値の環境変動を相殺する効果が発現し始める。   That is, the environmental fluctuation of the electric resistance of the primary transfer portion is caused by the electric resistance value of the intermediate transfer belt in the case of Comparative Example 2 in which the electric resistance value of the brush member is lower than the electric resistance value of the intermediate transfer belt. Environmental change is dominant. On the other hand, in the case of the configuration according to the present embodiment in which the electric resistance of the intermediate transfer belt and the electric resistance of the brush member are substantially the same, environmental fluctuation of the electric resistance of the brush The effect of offsetting environmental change starts to appear.

<交点A>
次に、交点Aの決定方法について説明する。
<Intersection A>
Next, a method for determining the intersection A will be described.

図4の傾き(1)の直線は、LL環境における3μA電圧であり、傾き(2)の直線はHH環境における10μA電圧である。   The straight line with the slope (1) in FIG. 4 is the 3 μA voltage in the LL environment, and the straight line with the slope (2) is the 10 μA voltage in the HH environment.

まず、Vminを3μA電圧、Imin=3μAとする。また、Rt1LLをLL環境でのブラシ部材の電気抵抗、RbLLをLL環境での中間転写ベルトの電気抵抗とする。また、Rt1NNをNN環境でのブラシ部材の電気抵抗、RbNNをNN環境での中間転写ベルトの電気抵抗とする。また、LL環境とNN環境との間での中間転写ベルトの電気抵抗の環境変動(電気抵抗比)ΔRbLをΔRbL=RbLL/RbNN、NN環境とLL環境との間でのブラシ部材の電気抵抗の環境変動(電気抵抗比)ΔRt1LをΔRt1L=Rt1LL/Rt1NNとする。また、NN環境における中間転写ベルトの電気抵抗値RbNNと1次転写部材の電気抵抗値Rt1NNとの比率XをX=Rt1NN/RbNNとする。このとき、Vminは次式で表される。
Vmin=(Rt1LL+RbLL)・Imin
=RbNN・(ΔRt1L・X+ΔRbL)・Imin
First, let Vmin be 3 μA voltage and Imin = 3 μA. Further, Rt1LL is the electric resistance of the brush member in the LL environment, and RbLL is the electric resistance of the intermediate transfer belt in the LL environment. Further, Rt1NN is the electrical resistance of the brush member in the NN environment, and RbNN is the electrical resistance of the intermediate transfer belt in the NN environment. Further, the environmental change (electric resistance ratio) ΔRbL of the electric resistance of the intermediate transfer belt between the LL environment and the NN environment is represented by ΔRbL = RbLL / RbNN, and the electric resistance of the brush member between the NN environment and the LL environment is calculated. Environmental fluctuation (electric resistance ratio) ΔRt1L is defined as ΔRt1L = Rt1LL / Rt1NN. Further, the ratio X between the electric resistance value RbNN of the intermediate transfer belt and the electric resistance value Rt1NN of the primary transfer member in the NN environment is defined as X = Rt1NN / RbNN. At this time, Vmin is represented by the following equation.
Vmin = (Rt1LL + RbLL) · Imin
= RbNN · (ΔRt1L · X + ΔRbL) · Imin

次に、Vmaxを10μA電圧、Imax=10μAとする。また、Rt1HHをHH環境でのブラシ部材の電気抵抗、RbHHをHH環境での中間転写ベルトの電気抵抗とする。また、HH環境とNN環境との間での中間転写ベルトの電気抵抗の環境変動(電気抵抗比)ΔRbHをΔRbH=RbHH/RbNN、HH環境とNN環境との間でのブラシ部材の電気抵抗の環境変動(電気抵抗比)ΔRt1HをΔRt1H=Rt1HH/Rt1NNとする。このとき、Vmaxは次式で表される。
Vmax=(Rt1HH+RbHH)・Imax
=RbNN・(ΔRt1H・X+ΔRbH)・Imax
Next, Vmax is set to a voltage of 10 μA, and Imax is set to 10 μA. Also, Rt1HH is the electric resistance of the brush member in the HH environment, and RbHH is the electric resistance of the intermediate transfer belt in the HH environment. Further, the environmental change (electrical resistance ratio) ΔRbH of the electric resistance of the intermediate transfer belt between the HH environment and the NN environment is represented by ΔRbH = RbHH / RbNN, and the electric resistance of the brush member between the HH environment and the NN environment. The environmental fluctuation (electric resistance ratio) ΔRt1H is defined as ΔRt1H = Rt1HH / Rt1NN. At this time, Vmax is expressed by the following equation.
Vmax = (Rt1HH + RbHH) · Imax
= RbNN · (ΔRt1H · X + ΔRbH) · Imax

以上の2式から、交点AではVmin=Vmaxとなるので、交点AにおけるXをXAとすると、XAは、次式で表される。
XA=(ΔRbH・Imax−ΔRbL・Imin)/(ΔRt1L・Imin−ΔRt1H・Imax)
From the above two equations, Vmin = Vmax at the intersection A, so that X at the intersection A is XA, and XA is expressed by the following equation.
XA = (ΔRbH · Imax−ΔRbL · Imin) / (ΔRt1L · Imin−ΔRt1H · Imax)

ここで、
Imin=3μA、
Imax=10μA、
ΔRbH=10−0.6
ΔRbL=10+0.4
ΔRt1L=10−0.3
ΔRt1H=10+0.3
より、
XA=Rt1NN/RbNN=0.272
となる。
here,
Imin = 3 μA,
Imax = 10 μA,
ΔRbH = 10 −0.6 ,
ΔRbL = 10 +0.4,
ΔRt1L = 10 −0.3 ,
ΔRt1H = 10 + 0.3
Than,
XA = Rt1NN / RbNN = 0.272
Becomes

つまり、使用環境によらず一定の1次転写電圧値で1次転写電流を3〜10μAとするためには、X>XA=0.272を満たすことが必要である。   That is, in order to set the primary transfer current to 3 to 10 μA at a constant primary transfer voltage value regardless of the use environment, it is necessary to satisfy X> XA = 0.272.

<本実施例と比較例との対比>
比較例2では、表2よりX=0.3/40=0.0075<0.272であり、一定の1次転写電圧値では使用環境によらず1次転写性能を満足することができない。そのため、比較例2では、ATVCを実施して使用環境に応じて1次転写電圧値を変更する必要がある。したがって、比較例2の構成のような、従来のイオン導電性の中間転写ベルトを用いた画像形成装置の場合、次のようなATVCを実施する必要がある。つまり、画像形成前の非画像時に、ブラシ部材に接続された1次転写電源及び1次転写電流検知回路を用いて、予め設定された1次転写電流値で定電流制御する。そして、このときの発生電圧値の変動により1次転写部の電気抵抗の変動を検知し、画像形成時には先の発生電圧値を演算処理した結果で定電圧制御を行う。そのため、このような画像形成装置では、1次転写部の電気抵抗の検知のために要する時間の分だけFPOTが長くなる。
<Comparison between Example and Comparative Example>
In Comparative Example 2, from Table 2, X = 0.3 / 40 = 0.0075 <0.272, and the primary transfer performance cannot be satisfied at a constant primary transfer voltage regardless of the use environment. Therefore, in Comparative Example 2, it is necessary to perform the ATVC and change the primary transfer voltage value according to the use environment. Therefore, in the case of the image forming apparatus using the conventional ion-conductive intermediate transfer belt as in the configuration of Comparative Example 2, it is necessary to perform the following ATVC. That is, during non-image formation before image formation, constant current control is performed at a preset primary transfer current value using a primary transfer power supply and a primary transfer current detection circuit connected to the brush member. Then, the fluctuation of the electric resistance of the primary transfer portion is detected based on the fluctuation of the generated voltage value at this time, and the constant voltage control is performed based on the result of the arithmetic processing of the generated voltage value at the time of image formation. Therefore, in such an image forming apparatus, the FPOT becomes longer by the time required for detecting the electric resistance of the primary transfer portion.

これに対し、本実施例では、表3よりX=22/40=0.55>0.272であり、一定の1次転写電圧値で使用環境によらず1次転写性能を満足することができる。そのため、比較例2の場合のようにATVCを実施する必要はなく、その分FPOTを短縮することができる。また、本実施例では、1次転写電流を検知する必要もないので電流検知回路も不要となる。さらに、本実施例では、ブラシ部材の電気抵抗値の製造上のばらつきも考慮している。図4の(3)(10μA電圧のプロットを結ぶ線と3μA電圧のプロットを結ぶ線との間の幅)が、ブラシ部材の電気抵抗値の製造上のばらつきの幅を示している。つまり、本実施例では、ブラシ部材の電気抵抗値が一意に決まらずばらつきを持った場合においても、一定の1次転写電圧値で使用環境によらず1次転写性能を満足することができる。   On the other hand, in the present embodiment, X = 22/40 = 0.55> 0.272 according to Table 3, which means that the primary transfer performance can be satisfied at a constant primary transfer voltage value regardless of the use environment. it can. Therefore, there is no need to perform ATVC as in the case of Comparative Example 2, and FPOT can be shortened accordingly. Further, in this embodiment, there is no need to detect the primary transfer current, so that a current detection circuit is not required. Further, in the present embodiment, a variation in the electrical resistance value of the brush member in manufacturing is also taken into consideration. (3) (the width between the line connecting the plots of the 10 μA voltage and the line connecting the plots of the 3 μA voltage) in FIG. 4 indicates the width of the manufacturing variation of the electrical resistance value of the brush member. That is, in the present embodiment, even when the electric resistance value of the brush member is not uniquely determined and varies, the primary transfer performance can be satisfied with a constant primary transfer voltage value regardless of the use environment.

このように、本実施例の画像形成装置100は、トナー像を担持する像担持体9と、イオン導電性の中間転写体30と、を有する。また、本実施例の画像形成装置100は、中間転写体30に接触し、像担持体9と中間転写体30とが接触する1次転写部N1で像担持体9から中間転写体30にトナー像を転写させる1次転写部材13を有する。また、本実施例の画像形成装置100は、1次転写部材13に1次転写電圧を供給する電圧供給手段(1次転写電源)51を有する。本実施例の画像形成装置100では、電圧供給手段51により1次転写部材13に供給される1次転写電圧値は使用環境によらず一定である。ここで、1次転写電圧値が一定であるとは、1次転写電圧値の設定が使用環境によらず一定(すなわち、1次転写電圧値の設定が使用環境に応じて意図して変更されない構成)であればよく、許容し得る誤差範囲程度の変動があってもよい。また、本実施例の画像形成装置100では、1次転写部材13と中間転写体30とで温湿度の増減に対する電気抵抗の増減方向が異なっている。ここで、常温常湿環境における中間転写体30、1次転写部材13の電気抵抗をそれぞれRbNN、Rt1NNとする。また、高温高湿環境における中間転写体30、1次転写部材13の電気抵抗値をそれぞれRbHH、Rt1HHとする。また、低温低湿環境における中間転写体30、1次転写部材13の電気抵抗値をそれぞれRbLL、Rt1LLとする。また、高温高湿環境と常温常湿環境との間での中間転写体30、1次転写部材13のそれぞれの電気抵抗比をそれぞれΔRbH=RbHH/RbNN、ΔRt1H=Rt1HH/Rt1NNとする。また、低温低湿環境と常温常湿環境との間での中間転写体30、1次転写部材13のそれぞれの電気抵抗比をそれぞれΔRbL=RbLL/RbNN、ΔRt1L=Rt1LL/Rt1NNとする。また、2水準の1次転写電流をI1、I2(I1<I2)とする。このとき、本実施例の画像形成装置100は、次式、Rt1NN/RbNN>(ΔRbH・I2−ΔRbL・I1)/(ΔRt1L・I1−ΔRt1H・I2)を満たす。ここで、2水準の1次転写電流I1、I2(I1<I2)は、典型的にはI1=Imin、I2=Imaxである。Imin、Imaxは、典型的には、それぞれ多次色の転写不良や単色の再転写などの画像不良を十分に抑制できるように予め求められた1次転写電流値の下限値、上限値である。本実施例では、Imin=3μA、Imax=10μAである。本実施例では、1次転写部材13は、導電ナイロン繊維で形成されたブラシ繊維を備えたブラシ部材である。また、本実施例では、中間転写体30は、無端状のベルトで形成されている。   As described above, the image forming apparatus 100 of the present embodiment includes the image carrier 9 that carries the toner image and the ion-conductive intermediate transfer body 30. Further, the image forming apparatus 100 according to the present embodiment is configured such that the toner is transferred from the image carrier 9 to the intermediate transfer body 30 at the primary transfer portion N1 where the image carrier 9 and the intermediate transfer body 30 come into contact with each other. It has a primary transfer member 13 for transferring an image. Further, the image forming apparatus 100 of this embodiment has a voltage supply unit (primary transfer power supply) 51 for supplying a primary transfer voltage to the primary transfer member 13. In the image forming apparatus 100 according to the present embodiment, the primary transfer voltage value supplied to the primary transfer member 13 by the voltage supply unit 51 is constant regardless of the use environment. Here, that the primary transfer voltage value is constant means that the setting of the primary transfer voltage value is constant irrespective of the use environment (that is, the setting of the primary transfer voltage value is not intentionally changed according to the use environment). Configuration), and there may be a variation within an allowable error range. Further, in the image forming apparatus 100 according to the present embodiment, the primary transfer member 13 and the intermediate transfer body 30 differ in the direction in which the electrical resistance increases or decreases with respect to the increase or decrease in temperature and humidity. Here, the electrical resistances of the intermediate transfer member 30 and the primary transfer member 13 in a normal temperature and normal humidity environment are RbNN and Rt1NN, respectively. The electrical resistances of the intermediate transfer member 30 and the primary transfer member 13 in a high-temperature and high-humidity environment are RbHH and Rt1HH, respectively. The electrical resistances of the intermediate transfer member 30 and the primary transfer member 13 in a low-temperature and low-humidity environment are RbLL and Rt1LL, respectively. Further, the respective electrical resistance ratios of the intermediate transfer member 30 and the primary transfer member 13 between the high-temperature and high-humidity environment and the normal temperature and normal humidity environment are represented by ΔRbH = RbHH / RbNN and ΔRt1H = Rt1HH / Rt1NN, respectively. The electrical resistance ratios of the intermediate transfer member 30 and the primary transfer member 13 between the low-temperature and low-humidity environment and the normal temperature and normal humidity environment are ΔRbL = RbLL / RbNN and ΔRt1L = Rt1LL / Rt1NN, respectively. Further, two-level primary transfer currents are defined as I1 and I2 (I1 <I2). At this time, the image forming apparatus 100 of the present embodiment satisfies the following equation: Rt1NN / RbNN> (ΔRbH · I2-ΔRbL · I1) / (ΔRt1L · I1-ΔRt1H · I2). Here, the two-level primary transfer currents I1 and I2 (I1 <I2) are typically I1 = Imin and I2 = Imax. Imin and Imax are typically the lower limit and upper limit of the primary transfer current value, respectively, determined in advance so that image defects such as multicolor transfer defects and single-color retransfer can be sufficiently suppressed. . In this embodiment, Imin = 3 μA and Imax = 10 μA. In the present embodiment, the primary transfer member 13 is a brush member having brush fibers formed of conductive nylon fibers. In this embodiment, the intermediate transfer body 30 is formed by an endless belt.

以上のように、本実施例によれば、イオン導電性の中間転写ベルト30の電気抵抗値と1次転写部材13の電気抵抗値との関係を規定することで、1次転写部N1のATVCを実施する必要なく、画像品質を維持したまま、FPOTを短縮することができる。   As described above, according to the present embodiment, by defining the relationship between the electric resistance of the ion-conductive intermediate transfer belt 30 and the electric resistance of the primary transfer member 13, the ATVC of the primary transfer portion N1 is defined. FPOT can be shortened without maintaining the image quality.

[実施例2]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置の基本的な構成及び動作は、実施例1のものと同じである。したがって、本実施例の画像形成装置において、実施例1の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1と同一の符号を付して詳しい説明は省略する。
[Example 2]
Next, another embodiment of the present invention will be described. The basic configuration and operation of the image forming apparatus of the present embodiment are the same as those of the first embodiment. Therefore, in the image forming apparatus according to the present embodiment, elements having the same or corresponding functions or configurations as those of the image forming apparatus according to the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description is omitted. .

図5は、本実施例の画像形成装置100の概略断面図である。本実施例では、2次転写対向ローラ32と駆動ローラ33とが、電圧維持素子52を介して電気的に接地(グランドに接続)されている。さらに、本実施例では、駆動ローラ33と2次転写対向ローラ32との間に配置された各1次転写部材13も、電圧維持素子52を介して接地されている。電圧維持素子52は、電流供給部材から中間転写ベルト30を介して電圧維持素子52に電流が流れることで、被接続部材(2次転写対向ローラ32、駆動ローラ33、各1次転写部材13)の電位を所定電位に維持する素子である。   FIG. 5 is a schematic sectional view of the image forming apparatus 100 of the present embodiment. In this embodiment, the secondary transfer facing roller 32 and the driving roller 33 are electrically grounded (connected to ground) via the voltage maintaining element 52. Further, in this embodiment, each primary transfer member 13 disposed between the drive roller 33 and the secondary transfer opposing roller 32 is also grounded via the voltage maintaining element 52. The voltage maintaining element 52 is a member to be connected (secondary transfer opposing roller 32, drive roller 33, each primary transfer member 13) when a current flows from the current supply member to the voltage maintaining element 52 via the intermediate transfer belt 30. Is an element for maintaining the potential of the pixel at a predetermined potential.

本実施例では、電圧維持素子52が維持する所定電位は、各1次転写部N1で所望の転写効率を得ることができる1次転写電位を維持できるように設定された電位である。本実施例では電圧維持素子52として、定電圧素子であるツェナーダイオードを使用している。ツェナーダイオードに一定以上の電流が流れた際にカソード側が維持する電圧をツェナー電圧と定義する。   In this embodiment, the predetermined potential maintained by the voltage maintaining element 52 is a potential set so as to maintain a primary transfer potential at which a desired transfer efficiency can be obtained in each primary transfer unit N1. In this embodiment, a Zener diode, which is a constant voltage element, is used as the voltage maintaining element 52. The voltage maintained on the cathode side when a certain amount of current or more flows through the Zener diode is defined as Zener voltage.

電圧維持素子52としてツェナーダイオードを使用する場合は、ツェナーダイオードが上述のように所定電位を維持できるようにツェナー電圧を設定すればよい。本実施例では、ツェナー電圧は、実施例1と同様の所望の転写効率を得ることができるように500Vと設定した。   When a Zener diode is used as the voltage maintaining element 52, the Zener voltage may be set so that the Zener diode can maintain the predetermined potential as described above. In this embodiment, the Zener voltage is set to 500 V so that the same desired transfer efficiency as in the first embodiment can be obtained.

本実施例では、2次転写電源35とトナー帯電電源18とから、それぞれ2次転写ローラ34とクリーニングローラ17とに電圧が印加される。これにより、電流供給部材としての2次転写ローラ34とクリーニングローラ17とから、それぞれ2次転写対向ローラ32と駆動ローラ33とを介して、接地されているツェナーダイオード52に電流が流れる。ツェナーダイオード52がツェナー電位を維持する状態になると、ツェナーダイオード52のカソード側に接続されている2次転写ローラ34及び駆動ローラ33の電位はツェナー電位である500Vに維持される。また、各1次転写部材13もツェナーダイオード52に接続されているため、各1次転写部材13の電位も2次転写対向ローラ32及び駆動ローラ33と同様に、ツェナー電位である500Vに維持される。   In this embodiment, a voltage is applied to the secondary transfer roller 34 and the cleaning roller 17 from the secondary transfer power supply 35 and the toner charging power supply 18, respectively. As a result, current flows from the secondary transfer roller 34 and the cleaning roller 17 as current supply members to the grounded Zener diode 52 via the secondary transfer opposing roller 32 and the drive roller 33, respectively. When the Zener diode 52 maintains the Zener potential, the potentials of the secondary transfer roller 34 and the drive roller 33 connected to the cathode side of the Zener diode 52 are maintained at the Zener potential of 500V. Further, since each primary transfer member 13 is also connected to the Zener diode 52, the potential of each primary transfer member 13 is also maintained at the Zener potential of 500 V, similarly to the secondary transfer facing roller 32 and the driving roller 33. You.

そして、本実施例では、実施例1と同様にX>Xaを満たす構成とされているため、ツェナーダイオード52によって維持される一定の1次転写電圧値(1次転写部材13の電位)で、使用環境によらず1次転写性能を満足することできる。   In the present embodiment, since X> Xa is satisfied as in the first embodiment, a constant primary transfer voltage value (potential of the primary transfer member 13) maintained by the Zener diode 52 is used. The primary transfer performance can be satisfied regardless of the use environment.

このように、本実施例では、電圧供給手段は、中間転写体30に接触し中間転写体30に電流を供給する電流供給部材(2次転写ローラ34、クリーニングローラ17)を有する。また、本実施例では、電圧供給手段は、1次転写部材13に接続され1次転写部材13を所定電位に維持する電圧維持素子52を有する。本実施例では、電圧維持素子52は、無端状のベルトで形成された中間転写体30を張架する複数の張架部材のうち、少なくとも1つの電流供給部材と対向する少なくとも1つの張架部材にも接続されている。そして、電圧維持素子52は、その張架部材を上記所定電位に維持する。本実施例では、上記少なくとも1つの電流供給部材は2次転写ローラ34、クリーニングローラ17であり、上記少なくとも1つの張架部材は2次転写対向ローラ32、駆動ローラ33である。   As described above, in the present embodiment, the voltage supply unit includes the current supply members (the secondary transfer roller 34 and the cleaning roller 17) that contact the intermediate transfer body 30 and supply the current to the intermediate transfer body 30. Further, in this embodiment, the voltage supply means has a voltage maintaining element 52 connected to the primary transfer member 13 and maintaining the primary transfer member 13 at a predetermined potential. In the present embodiment, the voltage maintaining element 52 includes at least one tension member facing at least one current supply member among a plurality of tension members that stretch the intermediate transfer body 30 formed by an endless belt. Is also connected. Then, the voltage maintaining element 52 maintains the tension member at the predetermined potential. In this embodiment, the at least one current supply member is the secondary transfer roller 34 and the cleaning roller 17, and the at least one stretching member is the secondary transfer opposing roller 32 and the drive roller 33.

以上のように、本実施例によれば、イオン導電性の中間転写ベルト30の電気抵抗値と1次転写部材13の電気抵抗値との関係を実施例1と同様に規定することで、実施例1と同様の効果を得ることができる。また、本実施例では、1次転写電圧値は1次転写部材13を電圧維持素子52に接続することで維持されるので、1次転写専用の電源を用いる必要がなく、画像形成装置100の構成の簡易化、小型化、低コスト化などを図ることができる。   As described above, according to the present embodiment, the relationship between the electric resistance of the ion-conductive intermediate transfer belt 30 and the electric resistance of the primary transfer member 13 is defined in the same manner as in the first embodiment. The same effects as in Example 1 can be obtained. Further, in the present embodiment, the primary transfer voltage value is maintained by connecting the primary transfer member 13 to the voltage maintaining element 52, so that it is not necessary to use a power supply dedicated to the primary transfer, and The configuration can be simplified, reduced in size, and reduced in cost.

[その他]
以上、本発明を具体的な実施例に即して説明したが、本発明は上述の実施例に限定されるものではない。
[Others]
As described above, the present invention has been described with reference to the specific embodiments, but the present invention is not limited to the above embodiments.

例えば、1次転写部材は、ブラシ状の部材に限定されるものではなく、例えばローラ状、パッド状、シート状(フィルム状)の部材などであってもよい。   For example, the primary transfer member is not limited to a brush-like member, but may be a roller-like, pad-like, sheet-like (film-like) member, or the like.

また、中間転写体は無端状のベルトで形成されることに限定されるものではなく、例えば枠体にシートが張設されて形成されたドラム状のものなどであってもよい。   Further, the intermediate transfer member is not limited to being formed by an endless belt, but may be a drum-shaped member formed by stretching a sheet on a frame, for example.

また、電流供給部材は、ローラ状の部材に限定されるものではなく、例えばブラシ状、パッド状、シート状(フィルム状)の部材などであってもよい。   Further, the current supply member is not limited to a roller-shaped member, and may be, for example, a brush-shaped, pad-shaped, sheet-shaped (film-shaped) member, or the like.

また、電圧維持素子は、定電圧素子であるツェナーダイオードに限定されるものではなく、例えばバリスタなどの他の任意の素子を用いることができる。   Further, the voltage maintaining element is not limited to a Zener diode which is a constant voltage element, and any other element such as a varistor can be used.

9 感光ドラム
13 1次転写部材
30 中間転写ベルト
51 1次転写電源
52 ツェナーダイオード
9 Photosensitive drum 13 Primary transfer member 30 Intermediate transfer belt 51 Primary transfer power supply 52 Zener diode

Claims (4)

トナー像を担持する像担持体と、
イオン導電性の中間転写体と、
前記中間転写体に接触し、前記像担持体と前記中間転写体とが接触する1次転写部で前記像担持体から前記中間転写体にトナー像を転写させる1次転写部材と、
前記1次転写部材に1次転写電圧を供給する電圧供給手段と、
を有する画像形成装置において、
前記電圧供給手段により前記1次転写部材に供給される1次転写電圧値は使用環境によらず一定であり、
前記1次転写部材と前記中間転写体とで温湿度の増減に対する電気抵抗の増減方向が異なっており、
常温常湿環境における前記中間転写体、前記1次転写部材の電気抵抗をそれぞれRbNN、Rt1NN、高温高湿環境における前記中間転写体、前記1次転写部材の電気抵抗値をそれぞれRbHH、Rt1HH、低温低湿環境における前記中間転写体、前記1次転写部材の電気抵抗値をそれぞれRbLL、Rt1LL、高温高湿環境と常温常湿環境との間での前記中間転写体、前記1次転写部材のそれぞれの電気抵抗比をそれぞれΔRbH=RbHH/RbNN、ΔRt1H=Rt1HH/Rt1NN、低温低湿環境と常温常湿環境との間での前記中間転写体、前記1次転写部材のそれぞれの電気抵抗比をそれぞれΔRbL=RbLL/RbNN、ΔRt1L=Rt1LL/Rt1NN、2水準の1次転写電流をI1、I2(I1<I2)としたとき、次式、
Rt1NN/RbNN>(ΔRbH・I2−ΔRbL・I1)/(ΔRt1L・I1−ΔRt1H・I2)
を満たすことを特徴とする画像形成装置。
An image carrier for carrying a toner image;
An ion-conductive intermediate transfer member,
A primary transfer member that contacts the intermediate transfer member and transfers a toner image from the image carrier to the intermediate transfer member at a primary transfer portion where the image carrier and the intermediate transfer member are in contact with each other;
Voltage supply means for supplying a primary transfer voltage to the primary transfer member;
In the image forming apparatus having
A primary transfer voltage value supplied to the primary transfer member by the voltage supply unit is constant regardless of a use environment;
The primary transfer member and the intermediate transfer body have different directions of increase and decrease in electrical resistance with respect to increase and decrease in temperature and humidity,
The electrical resistances of the intermediate transfer member and the primary transfer member in a normal temperature and normal humidity environment are RbNN and Rt1NN, respectively, and the electrical resistance values of the intermediate transfer member and the primary transfer member in a high temperature and high humidity environment are RbHH and Rt1HH, respectively. The electrical resistance values of the intermediate transfer body and the primary transfer member in a low humidity environment are respectively RbLL and Rt1LL, and the electrical resistance values of the intermediate transfer body and the primary transfer member between a high temperature and high humidity environment and a normal temperature and normal humidity environment, respectively. The electric resistance ratios are ΔRbH = RbHH / RbNN, ΔRt1H = Rt1HH / Rt1NN, and the electric resistance ratios of the intermediate transfer member and the primary transfer member between a low-temperature low-humidity environment and a normal temperature normal humidity environment are ΔRbL = RbLL / RbNN, ΔRt1L = Rt1LL / Rt1NN, and let the primary transfer currents of two levels be I1 and I2 (I1 <I2). When, the following equation,
Rt1NN / RbNN> (ΔRbH · I2-ΔRbL · I1) / (ΔRt1L · I1-ΔRt1H · I2)
An image forming apparatus characterized by satisfying the following.
前記1次転写部材は、導電ナイロン繊維で形成されたブラシ繊維を備えたブラシ部材であることを特徴とする請求項1に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the primary transfer member is a brush member including brush fibers formed of conductive nylon fibers. 前記電圧供給手段は、前記中間転写体に接触し前記中間転写体に電流を供給する電流供給部材と、前記1次転写部材に接続され前記1次転写部材を所定電位に維持する電圧維持素子と、を有することを特徴とする請求項1又は2に記載の画像形成装置。   A voltage supply unit configured to contact the intermediate transfer member and supply a current to the intermediate transfer member; a voltage maintaining element connected to the primary transfer member to maintain the primary transfer member at a predetermined potential; The image forming apparatus according to claim 1, further comprising: 前記中間転写体は、無端状のベルトで形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the intermediate transfer member is formed by an endless belt.
JP2018121337A 2018-06-26 2018-06-26 Image forming apparatus Pending JP2020003579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018121337A JP2020003579A (en) 2018-06-26 2018-06-26 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121337A JP2020003579A (en) 2018-06-26 2018-06-26 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2020003579A true JP2020003579A (en) 2020-01-09

Family

ID=69099866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121337A Pending JP2020003579A (en) 2018-06-26 2018-06-26 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2020003579A (en)

Similar Documents

Publication Publication Date Title
KR101802670B1 (en) Image forming apparatus
JP2014119464A (en) Image forming apparatus
CN111381477A (en) Image forming apparatus with a toner supply device
US9507295B2 (en) Image forming apparatus
US11099504B2 (en) Image forming apparatus
JP2019086596A (en) Image forming apparatus
JP2015222404A (en) Image forming apparatus
JP2004117509A (en) Image forming apparatus
JP2020003579A (en) Image forming apparatus
JP2007101755A (en) Image forming apparatus
JP2006106667A (en) Transfer device and image forming apparatus
US10423115B2 (en) Image forming apparatus
US10649388B2 (en) Image forming apparatus
US20150286164A1 (en) Image forming apparatus
US10289056B2 (en) Image forming apparatus
JP2016057639A (en) Image forming apparatus
JP5298628B2 (en) Image forming apparatus and image forming method using the same
US20180292767A1 (en) Image forming apparatus
US11934117B2 (en) Image forming apparatus
JP2004191842A (en) Image forming apparatus
JP2013231916A (en) Image forming apparatus
JP2023133119A (en) Image forming apparatus
CN112424700B (en) Image forming apparatus having a plurality of image forming units
JP2006138891A (en) Image forming apparatus
JP6906964B2 (en) Image forming device