JP2020003288A - Degradation detection method and degradation detection device - Google Patents

Degradation detection method and degradation detection device Download PDF

Info

Publication number
JP2020003288A
JP2020003288A JP2018121744A JP2018121744A JP2020003288A JP 2020003288 A JP2020003288 A JP 2020003288A JP 2018121744 A JP2018121744 A JP 2018121744A JP 2018121744 A JP2018121744 A JP 2018121744A JP 2020003288 A JP2020003288 A JP 2020003288A
Authority
JP
Japan
Prior art keywords
detection
coil
conductor
excitation
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018121744A
Other languages
Japanese (ja)
Other versions
JP7204291B2 (en
Inventor
史也 神山
Fumiya Kamiyama
史也 神山
石橋 賢一
Kenichi Ishibashi
賢一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2018121744A priority Critical patent/JP7204291B2/en
Publication of JP2020003288A publication Critical patent/JP2020003288A/en
Application granted granted Critical
Publication of JP7204291B2 publication Critical patent/JP7204291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a degradation detection method and a degradation detection device designed to improve the accuracy of detecting degradation.SOLUTION: A control unit 17 sends an excitation signal to an excitation coil 11 causing an eddy current to be generated on an electric wire 2, and causes a detection signal corresponding to the eddy current to be outputted by a detection coil 12. The control unit 17 controls a motor 151 causing the excitation coil 11 and the detection coil 12 to be moved along a longitudinal direction D1, and obtains the output value of the detection signal for each movement and a phase difference between the excitation signal and the detection signal. The control unit 17 displays on a display unit 16 a graph in which a relationship between the output value of the obtained detection signal and the phase difference is mapped. An operator detects the corrosion state of the electric wire 2 on the basis of the graph displayed on the display unit 16.SELECTED DRAWING: Figure 1

Description

本発明は、劣化検出方法及び劣化検出装置に関する。   The present invention relates to a deterioration detection method and a deterioration detection device.

従来の劣化検出方法として、例えば、特許文献1に記載された異常検出装置が提案されている。特許文献1の異常検出装置は、変圧器のブッシングに接続している電線の錆(以下、腐食)を診断することを目的としている。励磁コイル、検出コイルを内蔵するクランプヘッドに電線を挟み、励磁コイルに励磁電流を流して電線に渦電流を発生させ、検出コイルから出力される渦電流に応じた検出出力に基づいて腐食を診断している。   As a conventional deterioration detection method, for example, an abnormality detection device described in Patent Document 1 has been proposed. The abnormality detection device of Patent Document 1 is intended to diagnose rust (hereinafter, corrosion) of an electric wire connected to a bushing of a transformer. An electric wire is sandwiched between clamp heads with built-in excitation coil and detection coil, and an excitation current is applied to the excitation coil to generate an eddy current in the electric wire. are doing.

しかしながら、従来の異常検出装置では、腐食の有無が検出できる程度の精度しかなく、どの程度の腐食(劣化)が生じているか検出することができない、という問題があった。   However, the conventional abnormality detection device has a problem that the accuracy is only high enough to detect the presence or absence of corrosion, and it is not possible to detect how much corrosion (deterioration) occurs.

特開2007−271607号公報JP 2007-271607 A

本発明は、以上の背景に鑑みてなされたものであり、劣化状態の検出精度向上を図った劣化検出方法及び劣化検出装置を提供することを目的としている。   The present invention has been made in view of the above background, and an object of the present invention is to provide a deterioration detection method and a deterioration detection device that improve detection accuracy of a deterioration state.

本発明の態様である劣化検出方法は、導体の劣化状態を検出するための劣化検出方法であって、励磁コイルに励磁信号を流して前記導体上に渦電流を発生させ、検出コイルを用いて前記渦電流に応じた検出信号を出力させる出力工程と、前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、に基づいて前記導体の劣化状態を検出する検出工程と、を備えたことを特徴とする。   A deterioration detection method according to an aspect of the present invention is a deterioration detection method for detecting a deterioration state of a conductor, in which an excitation signal is supplied to an excitation coil to generate an eddy current on the conductor, and a detection coil is used. An output step of outputting a detection signal corresponding to the eddy current, and a detection step of detecting a deterioration state of the conductor based on a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal. It is characterized by having.

また、前記導体が、電線の導体から構成され、前記出力工程において、前記励磁コイル及び前記検出コイルを前記導体に対して、その長手方向に沿って移動させ、前記検出工程において、前記励磁コイル及び前記検出コイルが移動する毎に得た前記検出信号の大きさと、前記位相差と、に基づいて前記導体の劣化状態を検出してもよい。   Further, the conductor is formed of a conductor of an electric wire, and in the output step, the excitation coil and the detection coil are moved along the longitudinal direction with respect to the conductor, and in the detection step, the excitation coil and the detection coil are moved. The deterioration state of the conductor may be detected based on the magnitude of the detection signal obtained each time the detection coil moves and the phase difference.

また、前記検出工程において、前記励磁コイル及び前記検出コイルが移動する毎に得た前記検出信号の大きさと、前記位相差と、の関係をマッピングしたグラフを作成し、前記グラフに基づいて前記導体の劣化状態を検出してもよい。   In the detecting step, a graph is created by mapping a relationship between the magnitude of the detection signal obtained each time the excitation coil and the detection coil move, and the phase difference, and the conductor is formed based on the graph. May be detected.

また、本発明の態様である劣化検出装置は、導体に渦電流を発生させるための励磁コイルと、前記渦電流に応じた検出信号を出力するための検出コイルと、を備え、前記導体の劣化状態を検出するための劣化検出装置において、前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、を出力する出力部をさらに備えたことを特徴とする。   Further, a deterioration detection device according to an aspect of the present invention includes: an excitation coil for generating an eddy current in a conductor; and a detection coil for outputting a detection signal in accordance with the eddy current. The deterioration detection device for detecting a state further includes an output unit that outputs a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal.

また、本発明の態様である劣化検出装置は、導体に渦電流を発生させるための励磁コイルと、前記渦電流に応じた検出信号を出力するための検出コイルと、を備え、前記導体の劣化状態を検出するための劣化検出装置において、前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、に基づいて前記導体状態を検出する検出部をさらに備えたことを特徴とする。   Further, a deterioration detection device according to an aspect of the present invention includes: an excitation coil for generating an eddy current in a conductor; and a detection coil for outputting a detection signal in accordance with the eddy current. The deterioration detection device for detecting a state further includes a detection unit that detects the conductor state based on a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal. .

上述した態様によれば、検出信号の大きさと、励磁信号及び検出信号の位相差と、の双方に基づいて導体の劣化状態を検出しているので、劣化状態の検出精度向上を図ることができる。   According to the above aspect, since the deterioration state of the conductor is detected based on both the magnitude of the detection signal and the phase difference between the excitation signal and the detection signal, the detection accuracy of the deterioration state can be improved. .

本発明の劣化検出方法を実施した劣化検出装置の一実施形態を示すブロック図である。It is a block diagram showing one embodiment of a deterioration detection device which performed a deterioration detection method of the present invention. 電線と図1に示す劣化検出装置を構成する励磁コイル、検出コイルとの配置を示す正面図である。FIG. 2 is a front view showing an arrangement of electric wires, an excitation coil and a detection coil which constitute the deterioration detection device shown in FIG. 1. 電線と図1に示す劣化検出装置を構成する励磁コイル、検出コイルとの配置を示す側面図である。FIG. 2 is a side view showing an arrangement of electric wires, an excitation coil and a detection coil which constitute the deterioration detection device shown in FIG. 基準試料、試料A〜Gに対する検出信号の出力値の周波数特性を示すグラフである。9 is a graph showing frequency characteristics of output values of detection signals for a reference sample and samples A to G. 基準試料、試料A〜Gに対する検出信号及び励磁信号の位相差の周波数特性を示すグラフである。7 is a graph showing frequency characteristics of a phase difference between a detection signal and an excitation signal for a reference sample and samples A to G. 基準試料、試料A〜Gに対する検出信号の出力と、検出信号及び励磁信号の位相差と、の関係を示すグラフである。9 is a graph showing the relationship between the output of a detection signal for a reference sample and samples A to G, and the phase difference between the detection signal and the excitation signal. 図1に示す制御部の処理手順を示すフローチャートである。3 is a flowchart illustrating a processing procedure of a control unit illustrated in FIG. 1.

以下、本発明の一実施形態を図1に基づいて説明する。同図に示す劣化検出装置1は、電線2の導体22の劣化状態(=腐食状態)を検出する装置である。電線2は、図2に示すように、複数の素線21を撚り合わせた導体22と、この導体22を覆う被覆部23と、を備えている。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. The deterioration detection device 1 shown in FIG. 1 is a device that detects a deterioration state (= corrosion state) of the conductor 22 of the electric wire 2. As shown in FIG. 2, the electric wire 2 includes a conductor 22 in which a plurality of strands 21 are twisted, and a covering portion 23 that covers the conductor 22.

劣化検出装置1は、図1に示すように、励磁コイル11と、検出コイル12と、交流電源13と、検出部14と、コイル移動部15と、表示部16と、制御部17と、を備えている。   As illustrated in FIG. 1, the deterioration detection device 1 includes an excitation coil 11, a detection coil 12, an AC power supply 13, a detection unit 14, a coil moving unit 15, a display unit 16, and a control unit 17, Have.

励磁コイル11及び検出コイル12は各々、巻線を、例えば、らせん状に巻回して構成されている。励磁コイル11は、励磁信号(交流電流)を流して電線2の表面に渦電流を誘導させるためのコイルである。検出コイル12は、渦電流による磁束変化により誘導電流が流れるコイルである。交流電源13は、励磁コイル11に励磁信号を流す電源である。検出部14は、検出コイル12に流れる誘導電流を検出して、検出信号として出力する。即ち、検出信号は渦電流に応じた信号である。   Each of the excitation coil 11 and the detection coil 12 is configured by winding a winding, for example, in a spiral shape. The excitation coil 11 is a coil for flowing an excitation signal (AC current) to induce an eddy current on the surface of the electric wire 2. The detection coil 12 is a coil through which an induced current flows due to a magnetic flux change due to an eddy current. The AC power supply 13 is a power supply that supplies an excitation signal to the excitation coil 11. The detection unit 14 detects an induced current flowing through the detection coil 12, and outputs the detection current as a detection signal. That is, the detection signal is a signal corresponding to the eddy current.

コイル移動部15は、上記励磁コイル11及び検出コイル12を、電線2の長手方向D1に沿って移動させる。コイル移動部15は、励磁コイル11及び検出コイル12が取り付けられ、内部に電線2が通される図示しない本体部と、この本体部を長手方向D1に沿って移動させるための図1に示すモータ151と、を備えている。   The coil moving unit 15 moves the excitation coil 11 and the detection coil 12 along the longitudinal direction D1 of the electric wire 2. The coil moving unit 15 includes a main body (not shown) to which the excitation coil 11 and the detection coil 12 are attached and through which the electric wire 2 passes, and a motor shown in FIG. 1 for moving the main body along the longitudinal direction D1. 151.

図示しない本体部には、その内側に例えば走行コロなどの回転体が設けられ、電線2に対して長手方向D1に沿って移動自在になっている。上記励磁コイル11及び検出コイル12は、図2に示すように、その中心軸Aが電線2の径方向D2に沿うように本体部に取り付けられている。また、励磁コイル11及び検出コイル12は、図3に示すように、長手方向D1に沿って並べられ、一部が重なるように配置されている。   The main body (not shown) is provided with a rotating body such as a running roller inside the main body, and is movable along the longitudinal direction D1 with respect to the electric wire 2. As shown in FIG. 2, the excitation coil 11 and the detection coil 12 are attached to the main body so that the center axis A is along the radial direction D2 of the electric wire 2. Further, as shown in FIG. 3, the exciting coil 11 and the detecting coil 12 are arranged along the longitudinal direction D1, and are arranged so as to partially overlap each other.

出力部としての表示部16は、検出信号の出力値(振幅の大きさ)と、検出信号及び励磁信号の位相差と、の関係を示すグラフを表示するためのものである。   The display unit 16 as an output unit is for displaying a graph showing a relationship between an output value (magnitude of amplitude) of the detection signal and a phase difference between the detection signal and the excitation signal.

制御部17は、CPU、ROM、RAMなどを内蔵したマイクロコンピュータから構成され、劣化検出装置1全体の制御を司る。制御部17は、交流電源13に接続され、交流電源13のオンオフを制御する。制御部17は、モータ151に接続され、モータ151を駆動することにより、励磁コイル11及び検出コイル12を長手方向D1に沿って移動させる。   The control unit 17 includes a microcomputer having a built-in CPU, ROM, RAM, and the like, and controls the entire deterioration detection device 1. The control unit 17 is connected to the AC power supply 13 and controls on / off of the AC power supply 13. The control unit 17 is connected to the motor 151, and drives the motor 151 to move the excitation coil 11 and the detection coil 12 along the longitudinal direction D1.

制御部17は、検出部14に接続され、検出部14から出力された検出信号が入力される。制御部17は、励磁コイル11及び検出コイル12が移動する毎に検出した検出信号の出力値と位相差とを求める。また、制御部17は、求めた検出信号の出力値と位相差とをプロットしたグラフ(図6参照)を作成し、表示部16に表示させる。   The control unit 17 is connected to the detection unit 14, and receives the detection signal output from the detection unit 14. The control unit 17 obtains an output value and a phase difference of a detection signal detected each time the excitation coil 11 and the detection coil 12 move. In addition, the control unit 17 creates a graph (see FIG. 6) in which the obtained output value of the detection signal and the phase difference are plotted, and causes the display unit 16 to display the graph.

次に、上記劣化検出装置1を用いた劣化検出方法の原理について図4〜図6を参照して説明する。上述した劣化検出装置1を用いて、試料A〜Cの電線2に対して1kHz〜100kHzの励磁信号を励磁コイル11に流して、検出コイル12の検出信号の出力値及び位相差を測定した結果を図4及び図5に示す。なお、励磁コイル11及び検出コイル12としては、内径が30[mm]、ターン数300[T]のものを用いた。   Next, the principle of a deterioration detection method using the deterioration detection device 1 will be described with reference to FIGS. Results of measuring the output value and phase difference of the detection signal of the detection coil 12 by flowing an excitation signal of 1 kHz to 100 kHz to the excitation coil 11 with respect to the electric wires 2 of the samples A to C using the deterioration detection device 1 described above. Are shown in FIG. 4 and FIG. As the exciting coil 11 and the detecting coil 12, those having an inner diameter of 30 [mm] and a number of turns of 300 [T] were used.

なお、試料Aが、腐食していない試料である。また、試料Bは、各素線21が接点以外が腐食した状態であり、中レベルの腐食が発生している試料である。また、試料Cは、素線21が一様に腐食した状態であり、大レベルの腐食が発生している試料である。   Note that Sample A is a sample that has not corroded. Sample B is a sample in which each element wire 21 is corroded except at the contact points, and medium-level corrosion has occurred. The sample C is a sample in which the wires 21 are uniformly corroded and a large level of corrosion has occurred.

図4及び図5に示すように、腐食が発生している電線2は、腐食が発生していない電線2に比べて検出信号の出力値が低下し、位相が遅れる。検出信号の出力値が低下する理由は以下の通りである。腐食している電線2は、導体22表面の抵抗が腐食していない電線2に比べて大きく、導体22表面に発生する渦電流が抑制され、これに伴い出力値が低下する。位相が遅れる理由は以下の通りである。素線21表面に腐食が発生する場合、各素線21(電極)間の腐食が絶縁体となり、各素線21が疑似的なコンデンサとなる。このコンデンサの容量成分により位相遅れが発生する。   As shown in FIGS. 4 and 5, the output value of the detection signal of the corroded electric wire 2 is lower than that of the corroded electric wire 2, and the phase is delayed. The reason why the output value of the detection signal decreases is as follows. The corroded electric wire 2 has a larger resistance on the surface of the conductor 22 than the non-corroded electric wire 2, so that the eddy current generated on the surface of the conductor 22 is suppressed, and the output value decreases accordingly. The reason why the phase is delayed is as follows. When corrosion occurs on the surface of the wire 21, the corrosion between the wires 21 (electrodes) becomes an insulator, and each wire 21 becomes a pseudo capacitor. A phase delay occurs due to the capacitance component of the capacitor.

図4に示すように、約10[kHz]以下では、腐食が発生していない試料Aと、中レベルの腐食が発生している試料Bと、における検出信号の出力値の差は、ある程度大きい。しかしながら、中レベルの腐食が発生している試料Bと、大レベルの腐食が発生している試料Cと、における検出信号の出力値の差は小さい。約10[kHz]以上では、逆に、中レベルの腐食が発生している試料Bと、大レベルの腐食が発生している試料Cと、における検出信号の出力値差は、ある程度大きいが、腐食が発生していない試料Aと、中レベルの腐食が発生している試料Bと、における検出信号の出力値の差は、小さい。このため、検出信号の出力値だけでは、腐食の程度まで精度よく診断するのは難しい。   As shown in FIG. 4, at about 10 kHz or less, the difference between the output values of the detection signals between the sample A where no corrosion has occurred and the sample B where the medium level corrosion has occurred is somewhat large. . However, the difference in the output value of the detection signal between the sample B in which the medium level corrosion has occurred and the sample C in which the large level corrosion has occurred is small. Above about 10 [kHz], on the contrary, the output value difference of the detection signal between the sample B in which the medium level corrosion has occurred and the sample C in which the large level corrosion has occurred is somewhat large, The difference in the output value of the detection signal between the sample A in which corrosion has not occurred and the sample B in which medium-level corrosion has occurred is small. For this reason, it is difficult to diagnose accurately the degree of corrosion using only the output value of the detection signal.

また、図5に示すように、中レベルの腐食が発生している試料Bと、大レベルの腐食が発生している試料Cと、における位相差の差は、ある程度大きい。しかしながら、中レベルの腐食が発生している試料Bと、腐食が発生していない試料Aと、における位相差の差は、ほとんどなく、腐食の程度まで精度よく検出するのは難しい。   Further, as shown in FIG. 5, the difference in phase difference between sample B in which medium-level corrosion has occurred and sample C in which large-level corrosion has occurred is somewhat large. However, there is almost no difference in the phase difference between the sample B in which medium-level corrosion has occurred and the sample A in which no corrosion has occurred, and it is difficult to accurately detect the degree of corrosion.

次に、発明者らは、励磁コイル11及び検出コイル12が移動する毎に求めた複数の検出信号の出力値と、位相差と、の関係をマッピングしたグラフを作成した。結果を図6に示す。なお、周波数は、検出信号の出力値の差及び位相差の差が最も大きくなる3[kHz]の間に設定されている。同図に示すように、腐食が発生していない試料Aと、中レベルの腐食が発生している試料Bと、は、検出信号の出力値の差がある程度大きい。このため、両者を区別して診断することができる。一方、中レベルの腐食が発生している試料Bと、大レベルの腐食が発生している試料Cと、は、位相差の差がある程度あるため、両者を区別して診断することができる。このため、検出信号の出力値及び位相差の双方に基づいて腐食の検出を行うことにより、腐食の程度まで精度よく検出できる。   Next, the inventors have created a graph in which the relationship between the output values of a plurality of detection signals obtained each time the excitation coil 11 and the detection coil 12 move and the phase difference is mapped. FIG. 6 shows the results. The frequency is set between 3 [kHz] at which the difference between the output value of the detection signal and the difference between the phase differences is largest. As shown in the figure, the difference between the output values of the detection signals is large to some extent between sample A in which no corrosion has occurred and sample B in which medium-level corrosion has occurred. Therefore, the diagnosis can be made by distinguishing the two. On the other hand, the sample B in which the medium level corrosion has occurred and the sample C in which the large level corrosion has occurred have a certain difference in the phase difference. Therefore, by detecting the corrosion based on both the output value of the detection signal and the phase difference, it is possible to accurately detect the degree of corrosion.

次に、上記概略で説明した劣化検出装置1の動作について図7を参照して説明する。まず、作業員が、励磁コイル11及び検出コイル12を取り付けた図示しない本体部内に電線2を挿入する。これにより、図2及び図3に示すように、電線2上に励磁コイル11及び検出コイル12を配置することができる。次に、作業員が図示しない操作部を操作すると、制御部17は、図7に示す処理を実行する。   Next, the operation of the deterioration detection device 1 described above in brief will be described with reference to FIG. First, a worker inserts the electric wire 2 into a main body (not shown) to which the excitation coil 11 and the detection coil 12 are attached. Thereby, as shown in FIGS. 2 and 3, the excitation coil 11 and the detection coil 12 can be arranged on the electric wire 2. Next, when the operator operates an operation unit (not shown), the control unit 17 executes the processing shown in FIG.

まず、制御部17は、交流電源13をオンする(ステップS1)。これにより、励磁コイル11に励磁信号が流れて、電流2の導体表面に渦電流が誘導される。本実施形態では、励磁信号の周波数は、1〜100kHzに設定されている。図4及び図5に示すように、励磁信号の周波数を1〜100kHzとすることにより、試料Aと試料Bとにおける検出信号の出力差を大きくし、試料Bと試料Cとにおける位相差の差を大きくすることができる。ただし、出力値や位相差の差が大きくなる周波数は、励磁コイル11、検出コイル12の設計に応じて変動するため、この限りではない。   First, the control unit 17 turns on the AC power supply 13 (step S1). As a result, an excitation signal flows through the excitation coil 11 and an eddy current is induced on the conductor surface of the current 2. In the present embodiment, the frequency of the excitation signal is set to 1 to 100 kHz. As shown in FIGS. 4 and 5, by setting the frequency of the excitation signal to 1 to 100 kHz, the output difference of the detection signal between the sample A and the sample B is increased, and the phase difference between the sample B and the sample C is increased. Can be increased. However, the frequency at which the difference between the output value and the phase difference becomes large varies depending on the design of the excitation coil 11 and the detection coil 12, and is not limited to this.

次に、制御部17は、検出部14から出力される検出信号を取り込む(ステップS2)。次に、制御部17は、取り込んだ検出信号の出力値及び位相差を求めて、RAM等の記憶部に記憶させる(ステップS3)。   Next, the control unit 17 captures the detection signal output from the detection unit 14 (Step S2). Next, the control unit 17 obtains the output value and the phase difference of the captured detection signal and stores them in a storage unit such as a RAM (step S3).

その後、制御部17は、作業員によって終了操作が行われたか否かを判定する(ステップS4)。終了操作が行われていなければ(ステップS4でN)、制御部17は、モータ151を駆動して励磁コイル11及び検出コイル12を電線2の長手方向D1に沿って所定距離移動させた後(ステップS5)、ステップS2に戻る。これにより、RAMには、励磁コイル11及び検出コイル12が移動する毎に、検出信号の出力値及び位相差が記憶される。   Thereafter, the control unit 17 determines whether or not a termination operation has been performed by the worker (Step S4). If the end operation has not been performed (N in step S4), the control unit 17 drives the motor 151 to move the excitation coil 11 and the detection coil 12 by a predetermined distance along the longitudinal direction D1 of the electric wire 2 ( Step S5), and return to step S2. Accordingly, the output value and the phase difference of the detection signal are stored in the RAM every time the excitation coil 11 and the detection coil 12 move.

一方、終了操作が行われていれば(ステップS4でY)、制御部17は、RAM内に記憶された複数の検出信号の出力値と、位相差と、の関係をマッピングしたグラフを作成し、表示部16に表示して(ステップS5)、処理を終了する。作業員は、表示部16に表示されたグラフから電線2の腐食を診断する。   On the other hand, if the end operation has been performed (Y in step S4), the control unit 17 creates a graph mapping the relationship between the output values of the plurality of detection signals stored in the RAM and the phase difference. Is displayed on the display unit 16 (step S5), and the process ends. The operator diagnoses the corrosion of the electric wire 2 from the graph displayed on the display unit 16.

制御部17は、図6に示すように、大レベルの腐食を示す領域と、中レベルの腐食を示す領域と、腐食がない領域と、がグラフ上、識別できるように表示されている。詳しくは、大レベルの腐食を示す領域と中レベルの腐食を示す領域との境界に境界ラインL2を表示し、中レベルの腐食を示す領域と腐食がない領域との境界に境界ラインL1を表示している。作業員は、グラフ上にプロットされた点がどの領域に位置するかによって腐食レベルを検出することができる。   As shown in FIG. 6, the control unit 17 displays a region showing a large level of corrosion, a region showing a medium level of corrosion, and a region without corrosion on a graph so as to be distinguishable. Specifically, a boundary line L2 is displayed at a boundary between a region showing a large level of corrosion and a region showing a medium level of corrosion, and a boundary line L1 is displayed at a boundary between a region showing a medium level of corrosion and a region showing no corrosion. are doing. The worker can detect the corrosion level based on the area where the point plotted on the graph is located.

なお、上述した大レベルの腐食を示す領域と、中レベルの腐食を示す領域と、腐食がない領域と、は、事前に腐食が発生していない電線2を励磁コイル11及び検出コイル12により走査し、そのときの検出信号に基づいて定められる。   Note that the above-mentioned region showing a large level of corrosion, the region showing a medium level of corrosion, and the region without corrosion are scanned by the exciting coil 11 and the detection coil 12 on the wire 2 on which no corrosion has occurred in advance. It is determined based on the detection signal at that time.

上述した実施形態によれば、制御部17が、励磁コイル11に励磁信号を流して電線2上に渦電流を発生させ、検出コイル12に渦電流に応じた検出信号を出力させる。そして、作業員が、表示部16に表示されたグラフ上にプロットされている検出信号の出力と、励磁信号及び検出信号の位相差と、に基づいて電線2の腐食レベルを検出している。このように、検出信号の大きさと、励磁信号及び検出信号の位相差と、の双方に基づいて電線2の腐食レベルを検出しているので、腐食レベルの検出精度向上を図ることができる。また、電線2の腐食の度合いがわかるため、電線2の寿命が分かり、電線2の管理がしやすくなる。   According to the above-described embodiment, the control unit 17 causes an excitation signal to flow through the excitation coil 11 to generate an eddy current on the electric wire 2, and causes the detection coil 12 to output a detection signal corresponding to the eddy current. Then, the worker detects the corrosion level of the electric wire 2 based on the output of the detection signal plotted on the graph displayed on the display unit 16 and the phase difference between the excitation signal and the detection signal. As described above, since the corrosion level of the electric wire 2 is detected based on both the magnitude of the detection signal and the phase difference between the excitation signal and the detection signal, the detection accuracy of the corrosion level can be improved. Further, since the degree of corrosion of the electric wire 2 is known, the life of the electric wire 2 is known, and the management of the electric wire 2 becomes easy.

上述した実施形態によれば、制御部17は、励磁コイル11及び検出コイル12を電線2の長手方向D1に沿って移動させ、励磁コイル11及び検出コイル12が移動する毎に得た検出信号の出力値と、励磁信号及び励磁信号の位相差と、をグラフ上にプロットして表示する。このように、励磁コイル11及び検出コイル12を用いて電線2上を走査することにより、電線2全体の腐食検出を行うことができる。   According to the above-described embodiment, the control unit 17 moves the excitation coil 11 and the detection coil 12 along the longitudinal direction D1 of the electric wire 2 and outputs a detection signal of the detection signal obtained each time the excitation coil 11 and the detection coil 12 move. The output value, the excitation signal and the phase difference between the excitation signals are plotted and displayed on a graph. As described above, by scanning the electric wire 2 using the excitation coil 11 and the detection coil 12, it is possible to detect corrosion of the entire electric wire 2.

また、図6に示すように、検出信号の出力値と、励磁信号及び励磁信号の位相差と、の関係をマッピングしたグラフを表示することにより、腐食の度合いが視覚的に分かりやすくなるため、腐食検出しやすい。   In addition, as shown in FIG. 6, by displaying a graph in which the relationship between the output value of the detection signal, the excitation signal, and the phase difference between the excitation signals is mapped, the degree of corrosion can be visually easily understood. Easy to detect corrosion.

なお、上述した実施形態によれば、制御部17は、検出信号の出力値と、励磁信号及び励磁信号の位相差と、の関係を示すグラフを表示させていたが、これに限ったものではない。制御部17は、検出信号の出力値と、励磁信号及び励磁信号の位相差と、を表示するだけでもよい。   In addition, according to the above-described embodiment, the control unit 17 displays the graph indicating the relationship between the output value of the detection signal, the excitation signal, and the phase difference between the excitation signals, but is not limited thereto. Absent. The control unit 17 may simply display the output value of the detection signal, the excitation signal, and the phase difference between the excitation signals.

また、上述した実施形態によれば、作業員が、検出信号の出力値と、励磁信号及び励磁信号の位相差と、の関係を示すグラフを見て腐食レベルを検出していたが、これに限ったものではない。制御部17が、検出部として機能し、検出信号の出力値と、励磁信号及び励磁信号の位相差と、から腐食状態を判断し、その旨を表示部16に表示させるようにしてもよい。   According to the above-described embodiment, the worker detects the corrosion level by looking at the graph showing the relationship between the output value of the detection signal, the excitation signal, and the phase difference between the excitation signals. It is not limited. The control unit 17 may function as a detection unit, determine the corrosion state from the output value of the detection signal, the excitation signal and the phase difference between the excitation signals, and display the fact on the display unit 16.

また、上述した実施形態によれば、励磁コイル11、検出コイル12を移動させて、励磁コイル11、検出コイル12を電線2に対して移動させていたが、これに限ったものではない。電線2を長手方向D1に沿って移動させて、励磁コイル11、検出コイル12を電線2に対して移動させるようにしてもよい。   Further, according to the above-described embodiment, the excitation coil 11 and the detection coil 12 are moved to move the excitation coil 11 and the detection coil 12 with respect to the electric wire 2, but the present invention is not limited to this. The excitation coil 11 and the detection coil 12 may be moved with respect to the electric wire 2 by moving the electric wire 2 along the longitudinal direction D1.

また、上述した実施形態によれば、電線2の導体の劣化を検出していたが、これに限ったものではない。電線2の導体でなくてもよい。   Further, according to the above-described embodiment, the deterioration of the conductor of the electric wire 2 is detected, but the present invention is not limited to this. The conductor may not be the conductor of the electric wire 2.

なお、本発明は上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Note that the present invention is not limited to the above embodiment. That is, various modifications can be made without departing from the gist of the present invention.

2 電線
11 励磁コイル
12 検出コイル
16 表示部(出力部)
17 制御部(検出部)
22 導体
D1 長手方向
2 Electric wire 11 Excitation coil 12 Detection coil 16 Display unit (output unit)
17 control unit (detection unit)
22 conductor D1 longitudinal direction

Claims (5)

導体の劣化状態を検出するための劣化検出方法であって、
励磁コイルに励磁信号を流して前記導体上に渦電流を発生させ、検出コイルを用いて前記渦電流に応じた検出信号を出力させる出力工程と、
前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、に基づいて前記導体の劣化状態を検出する検出工程と、を備えたことを特徴とする劣化検出方法。
A deterioration detection method for detecting a deterioration state of a conductor,
An output step of causing an excitation signal to flow through an excitation coil to generate an eddy current on the conductor, and using a detection coil to output a detection signal corresponding to the eddy current;
A deterioration detection method for detecting a deterioration state of the conductor based on a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal.
前記導体が、電線の導体から構成され、
前記出力工程において、前記励磁コイル及び前記検出コイルを前記導体に対して、その長手方向に沿って移動させ、
前記検出工程において、前記励磁コイル及び前記検出コイルが移動する毎に得た前記検出信号の大きさと、前記位相差と、に基づいて前記導体の劣化状態を検出することを特徴とする請求項1に記載の劣化検出方法。
The conductor is composed of a conductor of an electric wire,
In the output step, the exciting coil and the detecting coil are moved along the longitudinal direction with respect to the conductor,
2. The detection step according to claim 1, wherein the deterioration state of the conductor is detected based on the magnitude of the detection signal obtained each time the excitation coil and the detection coil move, and the phase difference. The deterioration detection method described in 1.
前記検出工程において、前記励磁コイル及び前記検出コイルが移動する毎に得た前記検出信号の大きさと、前記位相差と、の関係をマッピングしたグラフを作成し、前記グラフに基づいて前記導体の劣化状態を検出することを特徴とする請求項2に記載の劣化検出方法。   In the detection step, a graph is created in which the relationship between the magnitude of the detection signal obtained each time the excitation coil and the detection coil moves and the phase difference is mapped, and the deterioration of the conductor is determined based on the graph. 3. The method according to claim 2, wherein the state is detected. 導体に渦電流を発生させるための励磁コイルと、前記渦電流に応じた検出信号を出力するための検出コイルと、を備え、前記導体の劣化状態を検出するための劣化検出装置において、
前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、を出力する出力部をさらに備えたことを特徴とする劣化検出装置。
An excitation coil for generating an eddy current in the conductor, and a detection coil for outputting a detection signal according to the eddy current, a deterioration detection device for detecting a deterioration state of the conductor,
A deterioration detection device, further comprising an output unit that outputs a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal.
導体に渦電流を発生させるための励磁コイルと、前記渦電流に応じた検出信号を出力するための検出コイルと、を備え、前記導体の劣化状態を検出するための劣化検出装置において、
前記検出信号の大きさと、前記励磁信号及び前記検出信号の位相差と、に基づいて前記導体状態を検出する検出部をさらに備えたことを特徴とする劣化検出装置。
An excitation coil for generating an eddy current in the conductor, and a detection coil for outputting a detection signal according to the eddy current, a deterioration detection device for detecting a deterioration state of the conductor,
The degradation detection device further comprising a detection unit that detects the conductor state based on a magnitude of the detection signal and a phase difference between the excitation signal and the detection signal.
JP2018121744A 2018-06-27 2018-06-27 Deterioration detection method and deterioration detection device Active JP7204291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018121744A JP7204291B2 (en) 2018-06-27 2018-06-27 Deterioration detection method and deterioration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121744A JP7204291B2 (en) 2018-06-27 2018-06-27 Deterioration detection method and deterioration detection device

Publications (2)

Publication Number Publication Date
JP2020003288A true JP2020003288A (en) 2020-01-09
JP7204291B2 JP7204291B2 (en) 2023-01-16

Family

ID=69099516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121744A Active JP7204291B2 (en) 2018-06-27 2018-06-27 Deterioration detection method and deterioration detection device

Country Status (1)

Country Link
JP (1) JP7204291B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071350A (en) * 2004-08-31 2006-03-16 Tohoku Electric Power Co Inc Method and apparatus for diagnosing deterioration of insulated covered wire
JP2007127600A (en) * 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2014102197A (en) * 2012-11-21 2014-06-05 Meielec:Kk Magnetic induction rail flow detection method, and magnetic induction rail flow detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071350A (en) * 2004-08-31 2006-03-16 Tohoku Electric Power Co Inc Method and apparatus for diagnosing deterioration of insulated covered wire
JP2007127600A (en) * 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2014102197A (en) * 2012-11-21 2014-06-05 Meielec:Kk Magnetic induction rail flow detection method, and magnetic induction rail flow detection device

Also Published As

Publication number Publication date
JP7204291B2 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
JP5315814B2 (en) Insulation coated conductor inspection method and apparatus
JP6180831B2 (en) Eddy current flaw detector, eddy current flaw detection method, and eddy current flaw detection program
JP2020034432A (en) Conductor degradation detecting device
JP4988796B2 (en) Motor status inspection method
JP7112157B2 (en) Winding test equipment
US10058944B2 (en) Wire electric discharge machine determining whether or not electrical discharge machining of workpiece can be performed
JP5629971B2 (en) Stator winding inspection device and inspection method
JP2020003288A (en) Degradation detection method and degradation detection device
JP6158057B2 (en) Electrode type liquid level detection device and electrode type liquid level detection method
JP5286127B2 (en) Shield member abnormality detection method and shield member abnormality detection device
JP6988696B2 (en) Material tester
JP6984975B2 (en) Corrosion diagnosis method and corrosion diagnosis device
JP7339881B2 (en) Partial discharge detection device and partial discharge detection method
JP6007923B2 (en) Thinning detection device
JP7196297B2 (en) Winding short-circuit diagnostic device and winding short-circuit diagnostic method
JP2017515120A (en) Apparatus and method for detecting an inter-turn defect and electric machine
RU67284U1 (en) DEVICE INDICATOR INDICATOR OF DC COLLECTOR ELECTRIC MACHINES WITH CUTTING BRUSHES
JP2020003289A (en) Degradation detection device and degradation detection method
JP5903029B2 (en) Insulation inspection equipment
WO2022145269A1 (en) Coating defect detection device, coating defect detection method, and method for manufacturing rotating electrical machine
JP6608234B2 (en) Contact determination device and measurement device
JP6018011B2 (en) Insulation inspection equipment for rotating electrical machines
JP2020038072A5 (en)
JP2011112549A (en) Device and method for detecting abnormality of electric wiring
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7204291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350