JP2020003013A - Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member - Google Patents

Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member Download PDF

Info

Publication number
JP2020003013A
JP2020003013A JP2018123344A JP2018123344A JP2020003013A JP 2020003013 A JP2020003013 A JP 2020003013A JP 2018123344 A JP2018123344 A JP 2018123344A JP 2018123344 A JP2018123344 A JP 2018123344A JP 2020003013 A JP2020003013 A JP 2020003013A
Authority
JP
Japan
Prior art keywords
flow path
radial
flow rate
axial
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018123344A
Other languages
Japanese (ja)
Inventor
恒範 田中
Tsunenori Tanaka
恒範 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018123344A priority Critical patent/JP2020003013A/en
Publication of JP2020003013A publication Critical patent/JP2020003013A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

To efficiently distribute a lubricant to an oil path in a radial direction from an oil path in an axial direction in a shaft.SOLUTION: A flow rate adjustment member 10 of a shaft 53 having a flow passage 40 in an axial direction and a plurality of flow passages 41, 42, 43 and 44 in a radial direction has a cylindrical main body part 11 which is inserted and arranged in the flow passage 40 in the axial direction in a state that its external peripheral face is in contact with an internal peripheral face of the flow passage 40 in the axial direction. A recess 14 recessed to the inside in the radial direction and partitioning a flow passage space in the flow passage 40 in the axial direction into a first flow passage space part A and a second flow passage space part B is formed at a cylinder part facing the flow passages 41, 42, 43 and 44 in the radial direction of the main body part 11, and insertion holes 20, 21 for making the first flow passage space part A and the second flow passage space part B communicate with each other are formed in the recess 14.SELECTED DRAWING: Figure 2

Description

本開示は、流量調整部材及び、流量調整部材を備えたギヤ装置の潤滑構造に関する。   The present disclosure relates to a flow rate adjusting member and a lubrication structure of a gear device including the flow rate adjusting member.

一般的に、変速機等のギヤ装置においては、噛合要素や摺動要素に発生する摩耗を低減するために、これら噛合要素や摺動要素に潤滑油を供給している。   Generally, in a gear device such as a transmission, lubricating oil is supplied to the meshing element and the sliding element in order to reduce wear generated on the meshing element and the sliding element.

例えば、特許文献1,2には、シャフトの内部に複数本の径方向油路及び、これら径方向油路と連通する軸方向油路を設け、軸方向油路から径方向油路を介して潤滑油を吐出させることにより、シャフトの周囲に配された噛合要素や摺動要素を潤滑するようにした構造が開示されている。   For example, in Patent Documents 1 and 2, a plurality of radial oil passages and an axial oil passage communicating with these radial oil passages are provided inside the shaft, and the axial oil passages are provided via the radial oil passages. There is disclosed a structure in which a meshing element and a sliding element disposed around a shaft are lubricated by discharging lubricating oil.

特開2018−40377号公報JP 2018-40377 A 特開2013−185600号公報JP 2013-185600 A

ところで、軸方向油路から各径方向油路に分配される潤滑油は、シャフトの回転に伴う遠心力の影響により、軸方向油路内の潤滑油流れ方向に対して上流側に位置する径方向油路ほど分配量が多くなる傾向がある。このため、下流側に位置する径方向油路に対しては、潤滑油の分配量が少なくなり、該下流側の径方向油路の周囲に配された摺動要素や摺動要素に対する潤滑油量が不足してしまう可能性がある。   By the way, the lubricating oil distributed from the axial oil passage to each radial oil passage has a diameter located upstream with respect to the lubricating oil flow direction in the axial oil passage due to the effect of centrifugal force accompanying the rotation of the shaft. The distribution amount tends to increase in the direction oil passage. For this reason, the distribution amount of the lubricating oil is reduced to the radial oil passage located on the downstream side, and the lubricating oil for the sliding element and the sliding element disposed around the downstream radial oil passage is reduced. The amount may be insufficient.

本開示の技術は、シャフト内の軸方向油路から径方向油路に対して、潤滑油を効果的に分配させることを目的とする。   An object of the technology of the present disclosure is to effectively distribute lubricating oil from an axial oil passage in a shaft to a radial oil passage.

本開示の部材は、軸方向流路及び、該軸方向流路に連通する複数の径方向流路を有するシャフトの前記軸方向流路から前記径方向流路への流体流量を調整する流量調整部材であって、その外周面を前記軸方向流路の内周面に接した状態で前記軸方向流路内に挿入配置される筒状の本体部を有すると共に、該本体部の前記径方向流路に臨む筒部には、径方向内側に窪んで前記径方向流路から離間すると共に、前記軸方向流路内の流路空間を前記径方向流路とは反対側の第1流路空間部と、前記径方向流路側の第2流路空間部とに区画する凹部が設けられており、該凹部には、前記第1流路空間部と前記第2流路空間部とを連通させる貫通孔が設けられていることを特徴とする。   The member of the present disclosure is a flow rate adjusting device that adjusts a fluid flow rate from the axial flow path to the radial flow path of a shaft having an axial flow path and a plurality of radial flow paths communicating with the axial flow path. A member having a cylindrical main body inserted and disposed in the axial flow path with its outer peripheral surface in contact with the inner peripheral surface of the axial flow path, and the radial direction of the main body The cylindrical portion facing the flow path is depressed inward in the radial direction and is separated from the radial flow path, and the flow path space in the axial flow path is a first flow path opposite to the radial flow path. A concave portion is provided for partitioning into a space portion and a second channel space portion on the radial channel side, and the concave portion communicates the first channel space portion and the second channel space portion. Characterized in that a through hole to be provided is provided.

また、前記貫通孔は、前記第2流路空間部に臨む前記径方向流路の開口と対向する前記凹部の底部うち、前記径方向流路の流路軸心と重ならない部位に設けられていることが好ましい。   In addition, the through hole is provided in a portion of the bottom of the concave portion facing the opening of the radial flow channel facing the second flow channel space portion and not overlapping a flow channel axis of the radial flow channel. Is preferred.

また、前記貫通孔が筒軸方向に複数設けられると共に、前記軸方向流路の流体の流れ方向に対して下流側となる貫通孔の開口面積が上流側となる貫通孔の開口面積よりも大きく形成されていることが好ましい。   In addition, a plurality of the through holes are provided in the cylinder axis direction, and the opening area of the through hole on the downstream side with respect to the flow direction of the fluid in the axial flow path is larger than the opening area of the through hole on the upstream side. Preferably, it is formed.

また、前記本体部の前記凹部とは反対側の筒部に筒軸方向に延びるスリットが設けられていることが好ましい。   Further, it is preferable that a slit extending in the cylinder axis direction is provided in the cylinder portion of the main body opposite to the concave portion.

また、前記シャフトには、前記軸方向流路から径方向外側に窪むピン穴が設けられており、前記本体部には、径方向外側に突出して前記ピン穴と係合可能なピン突起が設けられていることが好ましい。   In addition, the shaft has a pin hole that is depressed radially outward from the axial flow path, and the main body has a pin protrusion that protrudes radially outward and can engage with the pin hole. Preferably, it is provided.

本開示の潤滑構造は、前記流量調整部材を備えるギヤ装置の潤滑構造であって、前記流体はギヤケース内に封入された潤滑油であり、前記シャフトには、ギヤがベアリングを介して相対回転可能に軸支されると共に、前記ギヤを前記シャフトに同期結合させる同期装置が設けられており、前記複数の径方向流路のうち、一部の径方向流路は前記ベアリングに潤滑油を供給し、他の径方向流路は前記同期装置に潤滑油を供給することを特徴とする。   The lubricating structure of the present disclosure is a lubricating structure of a gear device including the flow rate adjusting member, wherein the fluid is lubricating oil sealed in a gear case, and a gear is rotatable relative to the shaft via a bearing. And a synchronizing device that synchronously couples the gear to the shaft is provided, and some of the plurality of radial flow paths supply lubricating oil to the bearing. The other radial flow path supplies lubricating oil to the synchronizer.

本開示の技術によれば、シャフト内の軸方向油路から径方向油路に対して、潤滑油を効果的に分配させることがきる。   According to the technology of the present disclosure, lubricating oil can be effectively distributed from an axial oil passage in a shaft to a radial oil passage.

本実施形態に係るギヤ装置の一部を示す模式的な断面図である。It is a typical sectional view showing a part of gear device concerning this embodiment. (A)は、本実施形態に係る流量調整部材を示す模式的な斜視図であり、(B)は、本実施形態に係る流量調整部材及び、シャフトを軸方向に切り欠いて示す模式的な断面図である。(A) is a schematic perspective view showing a flow rate adjusting member according to the present embodiment, and (B) is a schematic flow rate adjusting member according to the present embodiment and a schematic diagram showing a shaft cut away in the axial direction. It is sectional drawing. 本実施形態に係る流量調整部材及び、シャフトを径方向に切り欠いて示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a flow rate adjustment member and a shaft according to the embodiment, which are cut out in a radial direction. 他の実施形態に係る流量調整部材を示す模式的な斜視図である。It is a typical perspective view showing the flow control member concerning other embodiments. 他の実施形態に係る流量調整部材及び、シャフトを径方向に切り欠いて示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view illustrating a flow rate adjustment member and a shaft cut away in a radial direction according to another embodiment. 他の実施形態に係る流量調整部材及び、シャフトを径方向に切り欠いて示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view illustrating a flow rate adjustment member and a shaft cut away in a radial direction according to another embodiment.

以下、添付図面に基づいて、本実施形態に係る流量調整部材及び、流量調整部材を備えたギヤ装置の潤滑構造について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a lubrication structure of a flow rate adjusting member and a gear device including the flow rate adjusting member according to the present embodiment will be described with reference to the accompanying drawings. The same components are denoted by the same reference numerals, and have the same names and functions. Therefore, detailed description thereof will not be repeated.

[全体構成]
図1は、本実施形態に係るギヤ装置50の一部を示す模式的な断面図である。同図に示すように、ギヤ装置50は、例えば変速機であって、変速機ケース51(ギヤケースの一例)には、テーパローラベアリング52を介してシャフト53が回転可能に軸支されている。
[overall structure]
FIG. 1 is a schematic sectional view showing a part of a gear device 50 according to the present embodiment. As shown in the figure, the gear device 50 is, for example, a transmission. A shaft 53 is rotatably supported on a transmission case 51 (an example of a gear case) via a tapered roller bearing 52.

シャフト53には、複数の変速ギヤ61,62,63,64,65が、例えば、ニードルベアリングB1,B2,B3,B4,B5(ベアリングの一例)を介して相対回転可能に軸支されている。また、各変速ギヤ61,62,63,64,65の間には、これらをシャフト53と選択的に同期結合させる同期装置70,80,90が設けられている。   A plurality of speed change gears 61, 62, 63, 64, 65 are rotatably supported on the shaft 53 via, for example, needle bearings B 1, B 2, B 3, B 4, B 5 (an example of a bearing). . Synchronizing devices 70, 80 and 90 are provided between the transmission gears 61, 62, 63, 64 and 65 for selectively synchronizing them with the shaft 53.

同期装置70,80,90は、シャフト53に一体回転可能に設けられたハブ71,81,91と、ハブ71,81,91の外周歯と常時噛合する内周歯を有するスリーブ72,82,92と、各変速ギヤ61,62,63,64,65に一体回転可能に設けられたドグギヤ73,84,85,94,95と、ハブ71,81,91とドグギヤ73,84,85,94,95との間に設けられたシンクロナイザリング74,86,87,96,97とを備えている。   Synchronizing devices 70, 80, and 90 are provided with hubs 71, 81, 91 provided on shaft 53 so as to be integrally rotatable, and sleeves 72, 82, having inner peripheral teeth always meshing with outer peripheral teeth of hubs 71, 81, 91. 92, dog gears 73, 84, 85, 94, 95 provided integrally rotatable with the transmission gears 61, 62, 63, 64, 65, hubs 71, 81, 91 and dog gears 73, 84, 85, 94. , 95 and synchronizer rings 74, 86, 87, 96, 97.

同期装置70,80,90は、スリーブ72,82,92のシフト移動に伴いシンクロナイザリング74,86,87,96,97が押圧されると、シンクロナイザリング74,86,87,96,97とドグギヤ73,84,85,94,95との間に同期荷重が生じる。スリーブ72,82,92とドグギヤ73,84,85,94,95との回転が同期すると、スリーブ72,82,92がさらにシフト移動してドグギヤ73,84,85,94,95と完全噛合することにより、各変速ギヤ61,62,63,64,65をシャフト53と選択的に同期結合(ギヤイン)させるように構成されている。   When the synchronizer rings 74, 86, 87, 96, 97 are pressed with the shift movement of the sleeves 72, 82, 92, the synchronizers 70, 80, 90 move to the synchronizer rings 74, 86, 87, 96, 97 and the dog gear. Synchronous loads are generated between 73, 84, 85, 94, and 95. When the rotation of the sleeves 72, 82, 92 and the dog gears 73, 84, 85, 94, 95 are synchronized, the sleeves 72, 82, 92 are further shifted to completely mesh with the dog gears 73, 84, 85, 94, 95. Thus, the transmission gears 61, 62, 63, 64, 65 are selectively and synchronously coupled (gear-in) with the shaft 53.

シャフト53には、シャフト53の軸心を軸方向に延びる1本の軸方向油路40(軸方向流路)及び、シャフト53内を軸方向油路40から径方向に延びてシャフト53の外周面に開口する複数本の径方向油路41,42,43,44,45,46(径方向流路)が形成されている。   The shaft 53 has one axial oil passage 40 (axial flow passage) extending in the axial direction of the axis of the shaft 53, and the outer periphery of the shaft 53 extending radially from the axial oil passage 40 in the shaft 53. A plurality of radial oil passages 41, 42, 43, 44, 45, 46 (radial flow passages) are formed on the surface.

軸方向油路40は、シャフト53の一端部(図中左端)に開口部40Aを有する円形穴であって、この開口部40Aから供給される潤滑油が軸方向油路40内を他端側(図中右端側)に向けて流通するようになっている。シャフト53の開口部40Aが隣接する部位には、軸方向油路40内に臨んで開口する位置決め用穴47(ピン穴の一例)が径方向に貫通形成されている。   The axial oil passage 40 is a circular hole having an opening 40A at one end (the left end in the figure) of the shaft 53, and lubricating oil supplied from the opening 40A passes through the inside of the axial oil passage 40 at the other end. (Right end side in the figure). In a portion of the shaft 53 adjacent to the opening 40A, a positioning hole 47 (an example of a pin hole) that opens into the axial oil passage 40 is formed to penetrate in the radial direction.

各径方向油路41,42,43,44,45,46は、互いに径方向に並行に設けられている。言い換えれば、各径方向油路41,42,43,44,45,46は、シャフト軸方向に並列に配置されている。   The radial oil passages 41, 42, 43, 44, 45, 46 are provided in parallel with each other in the radial direction. In other words, the radial oil passages 41, 42, 43, 44, 45, 46 are arranged in parallel in the shaft axis direction.

各径方向油路41,42,43,44,45,46のうち、軸方向油路40内の潤滑油の流れ方向に対して最も上流側に位置する径方向油路41は、主として変速ギヤ61のニードルベアリングB1に潤滑油を供給する。上流側から2番目の径方向油路42は、主として変速ギヤ62のニードルベアリングB2に潤滑油を供給し、上流側から3番目の径方向油路43は、主として同期装置80に潤滑油を供給する。上流側から4番目の径方向油路44は、主として変速ギヤ63のニードルベアリングB3に潤滑油を供給し、上流側から5番目の径方向油路45は、主として変速ギヤ64のニードルベアリングB4に潤滑油を供給する。最も下流側の6番目の径方向油路46は、主として同期装置90に潤滑油を供給する。   Among the radial oil passages 41, 42, 43, 44, 45, 46, the radial oil passage 41 located on the most upstream side with respect to the flow direction of the lubricating oil in the axial oil passage 40 is mainly a transmission gear. The lubricating oil is supplied to the 61 needle bearing B1. The second radial oil passage 42 from the upstream supplies mainly lubricating oil to the needle bearing B2 of the transmission gear 62, and the third radial oil passage 43 from the upstream mainly supplies lubricating oil to the synchronizing device 80. I do. The fourth radial oil passage 44 from the upstream supplies lubricating oil mainly to the needle bearing B3 of the transmission gear 63, and the fifth radial oil passage 45 from the upstream mainly supplies the needle bearing B4 of the transmission gear 64 to the needle bearing B4. Supply lubricating oil. The sixth radial oil passage 46 on the most downstream side mainly supplies the lubricating oil to the synchronizer 90.

本実施形態において、軸方向油路40内には、各径方向油路41,42,43,44,45,46に対する潤滑油の分配量を調整する流量調整部材10が挿入されている。以下、流量調整部材10の詳細について説明する。   In the present embodiment, a flow rate adjusting member 10 that adjusts the amount of distribution of the lubricating oil to each of the radial oil paths 41, 42, 43, 44, 45, 46 is inserted into the axial oil path 40. Hereinafter, details of the flow rate adjusting member 10 will be described.

[流量調整部材]
図2(A)は、本実施形態に係る流量調整部材10を示す模式的な斜視図であり、図2(B)は、本実施形態に係る流量調整部材10及び、シャフト53を軸方向に切り欠いて示す模式的な断面図である。
[Flow rate adjusting member]
FIG. 2A is a schematic perspective view illustrating the flow rate adjusting member 10 according to the present embodiment, and FIG. 2B is a diagram illustrating the flow rate adjusting member 10 and the shaft 53 in the axial direction according to the present embodiment. It is a typical sectional view cut away and shown.

図2(A)に示すように、流量調整部材10は、略円筒体の本体部11に筒軸方向に延びるスリット12を設けることのより、断面視で略C字状に形成されたパイプ部材である。流量調整部材10は、本体部11の外径を軸方向油路40(図2(B)参照)の内径と略同径又は僅かに大径に形成されており、軸方向油路40内に嵌入固定される。流量調整部材10を軸方向油路40内に嵌入する際には、スリット12が収縮することにより、本体部11の外径と軸方向油路40の内径との寸法公差を効果的に吸収できるようになっている。   As shown in FIG. 2 (A), the flow rate adjusting member 10 is provided with a slit 12 extending in the cylinder axis direction in a main body 11 of a substantially cylindrical body. It is. The flow rate adjusting member 10 is formed such that the outer diameter of the main body 11 is substantially the same as or slightly larger than the inner diameter of the axial oil passage 40 (see FIG. 2B). It is fitted and fixed. When the flow rate adjusting member 10 is fitted into the oil passage 40 in the axial direction, the slit 12 contracts, so that the dimensional tolerance between the outer diameter of the main body 11 and the inner diameter of the oil passage 40 can be effectively absorbed. It has become.

本体部11の筒軸方向の一端部11Aには、径方向外側に突出する位置決め用突起13(ピン突起の一例)が設けられている。この位置決め用突起13がシャフト53側の位置決め用孔47(図2(B)参照)と係合することにより、軸方向油路40内における流量調整部材10の位置決め、さらには回転が規制されるようになっている。   A positioning projection 13 (an example of a pin projection) that protrudes radially outward is provided at one end 11A of the main body 11 in the cylinder axis direction. The positioning projection 13 engages with the positioning hole 47 (see FIG. 2B) on the shaft 53 side, whereby the positioning and further rotation of the flow rate adjusting member 10 in the axial oil passage 40 are restricted. It has become.

本体部11の筒軸方向の一端部11Aと他端部11Bとの間には、筒軸心を挟んでスリット12と径方向に対向する筒部を径方向内側に窪ませることにより形成された凹部14が設けられている。   Between the one end portion 11A and the other end portion 11B in the cylinder axis direction of the main body portion 11, it is formed by depressing the cylinder portion radially opposed to the slit 12 across the cylinder axis inward in the radial direction. A recess 14 is provided.

凹部14は、筒軸方向に延びて凹部14の底部をなす略方形状の平面部15と、該平面部15と各端部11A,11Bとをそれぞれ繋ぐ略半円形状の一対の側面部16,17とを有している。   The concave portion 14 has a substantially rectangular flat portion 15 extending in the cylinder axis direction and forming the bottom of the concave portion 14, and a pair of substantially semicircular side portions 16 connecting the flat portion 15 and the ends 11 </ b> A and 11 </ b> B. , 17.

図2(B)に示すように、平面部15の筒軸方向の長さは、最も上流側の径方向油路41と4番目の径方向油路44との離間距離よりも長く形成されている。すなわち、流量調整部材10を軸方向油路40内の所定位置に挿入配置すると、平面部15が軸方向油路40内に臨む各径方向油路41,42,43,44の開口と離間して対向するようになっている。   As shown in FIG. 2B, the length of the flat portion 15 in the cylinder axis direction is formed to be longer than the separation distance between the most upstream radial oil passage 41 and the fourth radial oil passage 44. I have. That is, when the flow rate adjusting member 10 is inserted and arranged at a predetermined position in the axial oil passage 40, the flat portion 15 is separated from the openings of the radial oil passages 41, 42, 43 and 44 facing the axial oil passage 40. To face each other.

本実施形態において、平面部15には、一端部11A側の上流側油孔20(貫通孔の一例)と、他端部11B側の下流側油孔21(貫通孔の一例)とが貫通形成されている。なお、これら各油孔20,21の個数は、平面部15の長さや径方向油路41,42,43,44の本数に応じて適宜に設定すればよい。   In the present embodiment, an upstream oil hole 20 (an example of a through hole) on one end 11A side and a downstream oil hole 21 (an example of a through hole) on the other end 11B side are formed through the flat portion 15. Have been. The number of the oil holes 20 and 21 may be appropriately set according to the length of the flat portion 15 and the number of the radial oil passages 41, 42, 43 and 44.

上流側油孔20は、平面部15のうち、1番目の径方向油路41と2番目の径方向油路42との間に位置して設けられている。言い換えれば、上流側油孔20は、平面部15のうち、その孔軸心が各径方向油路41,42の流路軸心と一致しない部位に開口形成されている。   The upstream oil hole 20 is provided between the first radial oil passage 41 and the second radial oil passage 42 in the plane portion 15. In other words, the upstream oil hole 20 is formed in the plane portion 15 at a position where the hole axis does not coincide with the flow axis of each of the radial oil passages 41 and 42.

下流側油孔21は、平面部15のうち、3番目の径方向油路43と4番目の径方向油路44との間に位置して設けられている。言い換えれば、下流側油孔21は、平面部15のうち、その孔軸心が各径方向油路43,44の流路軸心と一致しない部位に開口形成されている。下流側油孔21は、好ましくは、筒軸方向に延びる長孔とされており、その開口面積は、上流側油孔20の開口面積よりも大きく形成されている。   The downstream oil hole 21 is provided between the third radial oil passage 43 and the fourth radial oil passage 44 in the plane portion 15. In other words, the downstream oil hole 21 is formed in the plane portion 15 at a position where the hole axis does not coincide with the flow axis of each of the radial oil passages 43 and 44. The downstream oil hole 21 is preferably a long hole extending in the cylinder axis direction, and the opening area thereof is formed larger than the opening area of the upstream oil hole 20.

図3は、本実施形態に係る流量調整部材10及び、シャフト53を径方向に切り欠いて示す模式的な断面図である。同図に示すように、平面部15の周方向の両端部には、その外周を軸方向油路40の内周と略同曲率で湾曲させた一対の円弧部18,19が残されている。これら各円弧部18,19の外周面は、流量調整部材10を軸方向油路40内に挿入配置すると、軸方向油路40の内周面に圧接されるようになっている。   FIG. 3 is a schematic cross-sectional view showing the flow rate adjusting member 10 and the shaft 53 according to the present embodiment cut off in the radial direction. As shown in the figure, a pair of circular arc portions 18 and 19 whose outer periphery is curved at substantially the same curvature as the inner periphery of the axial oil passage 40 are left at both ends in the circumferential direction of the flat portion 15. . When the flow rate adjusting member 10 is inserted and disposed in the axial oil passage 40, the outer peripheral surfaces of the arc portions 18 and 19 are pressed against the inner peripheral surface of the axial oil passage 40.

すなわち、凹部14の平面部15及び一対の側面部16,17によって、軸方向油路40の流路空間が、各径方向油路41,42,43,44とは反対側の主流路室A(第1流路空間部)と、各径方向油路41,42,43,44側の油分配室B(第2流路空間部)とに区画形成されるように構成されている。このように、軸方向油路40の流路空間を主流路室Aと油分配室Bとに区画することにより、主流路室A内を軸方向に流れる潤滑油は、各油孔20,21を経由して油分配室B内に流れ込み、油分配室B内にて一時的に貯留された後に、各径方向油路41,42,43,44に分配されるようになる。   That is, the flow path space of the axial oil passage 40 is defined by the flat portion 15 of the recess 14 and the pair of side surface portions 16 and 17 so that the main flow chamber A on the opposite side to the radial oil passages 41, 42, 43 and 44. (The first flow path space) and the oil distribution chamber B (the second flow path space) on the side of each of the radial oil passages 41, 42, 43, 44. As described above, by dividing the flow path space of the axial oil path 40 into the main flow path chamber A and the oil distribution chamber B, the lubricating oil flowing in the main flow path chamber A in the axial direction is supplied to each of the oil holes 20 and 21. , Flows into the oil distribution chamber B, and is temporarily stored in the oil distribution chamber B, and then distributed to the radial oil passages 41, 42, 43, and 44.

以上詳述した本実施形態によれば、流量調整部材10の凹部14によって軸方向油路40内を主流路室Aと油分配室Bとに区画すると共に、これら主流路室A及び油分配室Bを各径方向油路41,42,43,44とは軸心が一致しない油孔20,21によって連通させることにより、主流路室Aから油分配室B内に流れ込んだ潤滑油が油分配室B内にて一時的に貯留された後に、各径方向油路41,42,43,44に分配されるように構成されている。これにより、シャフト53の回転に伴う遠心力の影響で、潤滑油が上流側の径方向油路41,42に集中的に流れ込むことを防止することが可能となり、各径方向油路41,42,43,44に潤滑油を効果的に分配させることができる。   According to the present embodiment described in detail above, the inside of the axial oil passage 40 is divided into the main flow passage chamber A and the oil distribution chamber B by the concave portion 14 of the flow rate adjusting member 10, and the main flow passage chamber A and the oil distribution chamber B is communicated with the radial oil passages 41, 42, 43, 44 by oil holes 20, 21 whose axes do not coincide with each other. After being temporarily stored in the chamber B, it is configured to be distributed to the respective radial oil passages 41, 42, 43, 44. This makes it possible to prevent the lubricating oil from intensively flowing into the upstream-side radial oil passages 41 and 42 due to the influence of the centrifugal force accompanying the rotation of the shaft 53, and the respective radial oil passages 41 and 42 can be prevented. , 43, and 44 can be effectively distributed with the lubricating oil.

また、同期装置80に潤滑油を供給する径方向油路43に対応する下流側油孔21を、主としてニードルベアリングB1,B2に潤滑油を供給する径方向油路41,42に対応する上流側油孔20よりも大きく開口させることで、潤滑をより必要とする同期装置80に対しても、潤滑油量を安定的に確保することができる。   Further, the downstream oil holes 21 corresponding to the radial oil passages 43 for supplying the lubricating oil to the synchronizer 80 are provided mainly on the upstream side corresponding to the radial oil passages 41 and 42 for supplying the lubricating oil to the needle bearings B1 and B2. By making the opening larger than the oil hole 20, it is possible to stably secure the amount of lubricating oil even for the synchronizing device 80 that requires more lubrication.

また、流量調整部材10を軸方向油路40内に挿入配置するのみで、各径方向油路41,42,43,44に潤滑油を効果的に分配できるため、各径方向油路41,42,43,44の穴径や本数を調整するシャフト53の大幅な設計変更を行うことなく、ギヤ装置50の潤滑性能を確実に向上させることができる。   Further, the lubricating oil can be effectively distributed to the radial oil passages 41, 42, 43, 44 only by inserting the flow rate adjusting member 10 in the axial oil passage 40. The lubrication performance of the gear device 50 can be reliably improved without making significant design changes to the shaft 53 for adjusting the hole diameters and the number of holes 42, 43, and 44.

[その他]
なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜に変形して実施することが可能である。
[Others]
Note that the present disclosure is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.

例えば、図4に示すように、流量調整部材10の本体部11に、凹部14を筒軸方向に複数(図示例では2個)設けるように構成してもよい。   For example, as shown in FIG. 4, a plurality of recesses 14 (two in the illustrated example) may be provided in the main body 11 of the flow rate adjusting member 10 in the cylinder axis direction.

また、図5に示すように、シャフト53が径方向油路41,42,43,44をそれぞれ2本有する場合には、これらに応じて凹部14を周方向に2個設けてもよい。或いは、図6に示すように、シャフト53が径方向油路41,42,43,44をそれぞれ3本有する場合には、これらに応じて凹部14を周方向に3個設けてもよい。これら何れの場合も上記実施形態と同様の作用効果を奏することができる。   Further, as shown in FIG. 5, when the shaft 53 has two radial oil passages 41, 42, 43, and 44, two concave portions 14 may be provided in the circumferential direction according to these. Alternatively, as shown in FIG. 6, when the shaft 53 has three radial oil passages 41, 42, 43, and 44, three concave portions 14 may be provided in the circumferential direction in accordance with these. In any of these cases, the same operation and effect as the above embodiment can be obtained.

また、本実施形態の適用は、変速機50に限定されず、例えば、デファレンシャル装置等、潤滑油や流体を封入するギヤケースを備える他のギヤ装置にも広く適用することが可能である。   In addition, the application of the present embodiment is not limited to the transmission 50, and can be widely applied to other gear devices including a gear case for sealing lubricating oil or fluid, such as a differential device.

10 流量調整部材
11 本体部
12 スリット
13 位置決め用突起(ピン突起)
14 凹部
15 平面部(底部)
16,17 側面部
18,19 円弧部
20 上流側油孔(貫通孔)
21 下流側油孔(貫通孔)
40 軸方向油路(軸方向流路)
41,42,43,44 径方向油路(径方向流路)
47 位置決め用穴(ピン穴)
50 変速機(ギヤ装置)
51 変速機ケース(ギヤケース)
61,62,63,64,65 変速ギヤ(ギヤ)
B1,B2,B3,B4,B5 ニードルベアリング(ベアリング)
70,80,90 同期装置
Reference Signs List 10 Flow rate adjusting member 11 Body part 12 Slit 13 Positioning projection (pin projection)
14 recess 15 flat part (bottom part)
16, 17 Side part 18, 19 Circular part 20 Upstream oil hole (through hole)
21 Downstream oil hole (through hole)
40 Axial oil passage (axial passage)
41, 42, 43, 44 Radial oil path (radial flow path)
47 Positioning hole (pin hole)
50 Transmission (gear device)
51 Transmission case (gear case)
61, 62, 63, 64, 65 Transmission gear (gear)
B1, B2, B3, B4, B5 Needle bearings (bearings)
70,80,90 Synchronizer

Claims (6)

軸方向流路及び、該軸方向流路に連通する複数の径方向流路を有するシャフトの前記軸方向流路から前記径方向流路への流体流量を調整する流量調整部材であって、
その外周面を前記軸方向流路の内周面に接した状態で前記軸方向流路内に挿入配置される筒状の本体部を有すると共に、該本体部の前記径方向流路に臨む筒部には、径方向内側に窪んで前記径方向流路から離間すると共に、前記軸方向流路内の流路空間を前記径方向流路とは反対側の第1流路空間部と、前記径方向流路側の第2流路空間部とに区画する凹部が設けられており、該凹部には、前記第1流路空間部と前記第2流路空間部とを連通させる貫通孔が設けられている
ことを特徴とする流量調整部材。
An axial flow path, and a flow rate adjusting member that adjusts a fluid flow rate from the axial flow path to the radial flow path of the shaft having a plurality of radial flow paths communicating with the axial flow path,
A cylindrical body having a cylindrical main body inserted and arranged in the axial flow path with its outer peripheral surface in contact with the inner circumferential surface of the axial flow path, and a cylinder facing the radial flow path of the main body. In the portion, while being depressed radially inward and separated from the radial flow path, a first flow path space portion on the opposite side to the radial flow path, the flow path space in the axial flow path, A concave portion is provided for partitioning into a second flow path space portion on the radial flow path side, and a through hole for communicating the first flow path space portion and the second flow path space portion is provided in the concave portion. A flow regulating member, characterized in that it is made.
前記貫通孔は、前記第2流路空間部に臨む前記径方向流路の開口と対向する前記凹部の底部うち、前記径方向流路の流路軸心と重ならない部位に設けられている
請求項1に記載の流量調整部材。
The through hole is provided in a portion of the bottom of the concave portion facing the opening of the radial flow channel facing the second flow channel space portion and not overlapping a flow channel axis of the radial flow channel. Item 2. The flow rate adjusting member according to Item 1.
前記貫通孔が筒軸方向に複数設けられると共に、前記軸方向流路の流体の流れ方向に対して下流側となる貫通孔の開口面積が上流側となる貫通孔の開口面積よりも大きく形成されている
請求項1又は2に記載の流量調整部材。
A plurality of the through holes are provided in the cylinder axis direction, and the opening area of the through hole on the downstream side with respect to the flow direction of the fluid in the axial flow path is formed larger than the opening area of the through hole on the upstream side. The flow rate adjusting member according to claim 1 or 2.
前記本体部の前記凹部とは反対側の筒部に筒軸方向に延びるスリットが設けられている
請求項1から3の何れか一項に記載の流量調整部材。
The flow rate adjusting member according to any one of claims 1 to 3, wherein a slit extending in a cylinder axis direction is provided in a cylinder portion of the main body opposite to the concave portion.
前記シャフトには、前記軸方向流路から径方向外側に窪むピン穴が設けられており、前記本体部には、径方向外側に突出して前記ピン穴と係合可能なピン突起が設けられている
請求項1から4の何れか一項に記載の流量調整部材。
The shaft is provided with a pin hole that is depressed radially outward from the axial flow path, and the main body portion is provided with a pin protrusion that protrudes radially outward and can engage with the pin hole. The flow rate adjusting member according to any one of claims 1 to 4.
請求項1から5の何れか一項に記載の流量調整部材を備えるギヤ装置の潤滑構造であって、
前記流体はギヤケース内に封入された潤滑油であり、
前記シャフトには、ギヤがベアリングを介して相対回転可能に軸支されると共に、前記ギヤを前記シャフトに同期結合させる同期装置が設けられており、
前記複数の径方向流路のうち、一部の径方向流路は前記ベアリングに潤滑油を供給し、他の径方向流路は前記同期装置に潤滑油を供給する
ことを特徴とするギヤ装置の潤滑構造。
A lubrication structure for a gear device comprising the flow rate adjusting member according to any one of claims 1 to 5,
The fluid is a lubricating oil sealed in a gear case,
A gear is rotatably supported on the shaft via a bearing so as to be relatively rotatable, and a synchronizing device for synchronizing the gear with the shaft is provided.
A gear device wherein a part of the plurality of radial passages supplies lubricating oil to the bearing, and the other radial passages supplies lubricating oil to the synchronizer. Lubrication structure.
JP2018123344A 2018-06-28 2018-06-28 Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member Pending JP2020003013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123344A JP2020003013A (en) 2018-06-28 2018-06-28 Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123344A JP2020003013A (en) 2018-06-28 2018-06-28 Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member

Publications (1)

Publication Number Publication Date
JP2020003013A true JP2020003013A (en) 2020-01-09

Family

ID=69099269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123344A Pending JP2020003013A (en) 2018-06-28 2018-06-28 Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member

Country Status (1)

Country Link
JP (1) JP2020003013A (en)

Similar Documents

Publication Publication Date Title
WO2013179591A1 (en) Lubrication structure for transmission
CA2494737C (en) Integrated oil transfer sleeve and bearing
CN106801739B (en) Oil feeder of manual transmission
EP2423521A1 (en) Needle bearing and needle bearing device
WO2017014077A1 (en) Transmission and lubricating structure for transmission
EP3001052B1 (en) Double-row roller bearing
JP2018194111A (en) Lubricating device of transmission
JP2020003013A (en) Flow rate adjustment member and lubrication structure of gear device having flow rate adjustment member
JP2015190545A (en) thrust roller bearing device
JPWO2014162636A1 (en) Power transmission device
JPWO2007034620A1 (en) transmission
KR200455933Y1 (en) Pilot Bearing Sleeve of Transmission
JP2021156359A (en) Lubrication structure
JP2009068586A (en) Device for supplying lubricating oil into rotary shaft in transmission
JP6627523B2 (en) Transmission lubrication structure
JP2022149706A (en) Resin-made cage, roller with resin-made cage and planetary gear support structure
JP2007177986A (en) Transmission
JP6848675B2 (en) Transmission lubricator
JP2019163795A (en) Lubrication structure
JP2015206410A (en) rolling bearing
JP7047644B2 (en) Lubrication structure
JP2000230562A (en) Rolling bearing
JP2006002904A (en) Roller with retainer assembly
JP6349681B2 (en) Radial roller bearing cage and radial roller bearing
JP2018159421A (en) bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210409