JP2020002085A - Organic phosphorus compound - Google Patents

Organic phosphorus compound Download PDF

Info

Publication number
JP2020002085A
JP2020002085A JP2018124404A JP2018124404A JP2020002085A JP 2020002085 A JP2020002085 A JP 2020002085A JP 2018124404 A JP2018124404 A JP 2018124404A JP 2018124404 A JP2018124404 A JP 2018124404A JP 2020002085 A JP2020002085 A JP 2020002085A
Authority
JP
Japan
Prior art keywords
phosphorus compound
organic phosphorus
salt
pac12
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018124404A
Other languages
Japanese (ja)
Other versions
JP7065513B2 (en
Inventor
敏彰 平
Toshiaki Taira
敏彰 平
井村 知弘
Tomohiro Imura
知弘 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018124404A priority Critical patent/JP7065513B2/en
Publication of JP2020002085A publication Critical patent/JP2020002085A/en
Priority to JP2022046289A priority patent/JP7312489B2/en
Application granted granted Critical
Publication of JP7065513B2 publication Critical patent/JP7065513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To provide an organic phosphorus compound excellent in water solubility and a hollow particle spontaneously formed by the organic phosphorus compound at a room temperature.SOLUTION: An organic phosphorus compound has a hydrophilic group containing a phosphorus atom, and a hydrocarbon group, and has a chemical structure in which one phosphorus atom and one carbon atom constituting the hydrocarbon group are bound via -C=C-. The hollow particle mainly contains the organic phosphorus compound or an anion thereof. The hollow particle is manufactured by mixing the organic phosphorus compound or a salt thereof and a hydrophilic liquid.SELECTED DRAWING: Figure 3

Description

本発明は、界面活性を有し、中空状粒子を自己集合で形成する有機リン化合物に関するものである。   The present invention relates to an organic phosphorus compound having surface activity and forming hollow particles by self-assembly.

界面活性剤は、同一分子骨格内に親水基と疎水基の両方を有し、水溶液中でミセル、ベシクル、または液晶などの多様な分子集合体を形成する。このため、界面活性剤は、洗浄、分散、防錆、湿潤、浸透、気泡形成、乳化、可溶化、および帯電防止などの様々な作用を有することが知られている。親水基のリン原子とアルキル基の炭素原子が酸素原子を介して連結されている、すなわちP−O−C結合を有するリン酸エステル型の界面活性剤は、アニオン性界面活性剤の中で、帯電防止性が高いうえ、皮膚刺激性が低い安全性を有する。このため、リン酸エステル型の界面活性剤は、帯電防止剤、防腐剤、表面改質剤、潤滑剤、身体洗浄剤、および化粧品用乳化剤などに用いられている。   Surfactants have both hydrophilic and hydrophobic groups in the same molecular skeleton, and form various molecular aggregates such as micelles, vesicles, or liquid crystals in an aqueous solution. For this reason, surfactants are known to have various actions such as washing, dispersion, rust prevention, wetting, penetration, bubble formation, emulsification, solubilization, and antistatic. Phosphoric acid ester type surfactants in which a phosphorus atom of a hydrophilic group and a carbon atom of an alkyl group are linked via an oxygen atom, that is, a phosphate ester type surfactant having a P-O-C bond, among anionic surfactants, It has high antistatic properties and low skin irritation. For this reason, phosphate ester type surfactants are used in antistatic agents, preservatives, surface modifiers, lubricants, body cleansing agents, emulsifiers for cosmetics, and the like.

さらに、リン酸エステル基を含む脂質を構造中に有するリン酸エステル型の界面活性剤は、膜構造を備える球殻状の分子集合体(マイクロカプセル、ベシクル、またはリポソーム)が形成できる。この界面活性剤に水溶性高分子を配合し、マイクロカプセルを多重膜構造にして、膜形成効率と膜安定性を高めることが特許文献1に記載されている。一方、マイクロカプセルに、薬剤、農薬、および肥料などの種々の有効成分を内包させることが近年試みられている。しかしながら、P−O−C結合は、酸性やアルカリ性の条件下で加水分解することが知られている。したがって、P−O−C結合を有する界面活性剤が形成するマイクロカプセルは、酸性やアルカリ性で使用すると分解し、性能劣化を引き起こす。   Further, a phosphate-type surfactant having a lipid containing a phosphate ester group in its structure can form a spherical shell-like molecular assembly (microcapsule, vesicle, or liposome) having a membrane structure. Patent Literature 1 describes that a water-soluble polymer is blended with this surfactant to form a microcapsule with a multi-layer structure, thereby improving film formation efficiency and film stability. On the other hand, in recent years, attempts have been made to incorporate various active ingredients such as drugs, agricultural chemicals, and fertilizers into microcapsules. However, it is known that the POC bond hydrolyzes under acidic or alkaline conditions. Therefore, microcapsules formed by a surfactant having a P—O—C bond decompose when used under acidic or alkaline conditions, causing deterioration in performance.

有機リン化合物の一種であるホスホン酸は、リン酸エステルとは異なり、リン原子とアルキル基の炭素原子が直接連結しており、P−O−C結合を有するリン酸エステルと比べて、化学的および熱的に安定である。このため、ホスホノ基を分子骨格内に有する界面活性剤は、優れた耐酸性および耐アルカリ性を示す。ホスホノ基を分子骨格内に有する界面活性剤は、リン酸エステル型の界面活性剤の使用が困難な高い耐久性が求められる金属表面の修飾剤として、主に用いられている(特許文献2、非特許文献1、非特許文献2)。   Phosphonic acid, which is a kind of organic phosphorus compound, is different from a phosphoric acid ester, in which a phosphorus atom and a carbon atom of an alkyl group are directly connected to each other, and has a higher chemical resistance than a phosphoric acid ester having a POC bond. And thermally stable. Therefore, a surfactant having a phosphono group in the molecular skeleton exhibits excellent acid resistance and alkali resistance. Surfactants having a phosphono group in the molecular skeleton are mainly used as modifiers for metal surfaces that require high durability, which makes it difficult to use phosphate ester type surfactants (Patent Document 2, Non-patent document 1, non-patent document 2).

また、リン酸エステル型の界面活性剤が加水分解するようなpH条件下でも、ホスホノ基を分子骨格内に有する界面活性剤は、水中で界面活性を発揮することが報告されている。非特許文献3には、デシルホスホン酸が、酸性の水溶媒中で、一般的な球状のミセルではなく、ディスク状のミセルを形成することが記載されている。界面活性剤としてより一般的なドデシル基を有するホスホン酸は、水への溶解性が低下し、室温付近でワックス状の固体となるものの、加熱すると膜構造を有するマイクロカプセルやラメラ液晶に相転移することが報告されている(非特許文献4、非特許文献5)。   In addition, it has been reported that a surfactant having a phosphono group in the molecular skeleton exhibits surface activity in water even under a pH condition under which a phosphate ester type surfactant is hydrolyzed. Non-Patent Document 3 describes that decylphosphonic acid forms disc-shaped micelles in an acidic aqueous solvent, instead of general spherical micelles. Phosphonic acid having a dodecyl group, which is a more common surfactant, has low solubility in water and becomes a waxy solid at around room temperature, but when heated, it undergoes a phase transition to microcapsules and lamellar liquid crystals having a film structure (Non-Patent Documents 4 and 5).

ドデシル基を有するホスホン酸の特異な自己集合挙動は、ホスホノ基に働く分子間水素結合に起因するものと理解されている。すなわち、単純な長鎖アルキルとホスホノ基からなる従来の界面活性剤は、リン酸エステル型の界面活性剤と比べて、耐酸性および耐アルカリ性に優れ、水中でリン脂質のようなマイクロカプセルを形成する。しかし、この界面活性剤は、水への溶解性の低さから、室温での取扱いが容易ではなく、工業的な利用の妨げとなっている。   It is understood that the unique self-assembly behavior of a phosphonic acid having a dodecyl group results from an intermolecular hydrogen bond acting on the phosphono group. In other words, conventional surfactants consisting of simple long-chain alkyl and phosphono groups have better acid and alkali resistance than phosphate ester surfactants, and form microcapsules like phospholipids in water. I do. However, this surfactant is not easy to handle at room temperature because of its low solubility in water, hindering industrial use.

また、土壌や水圏に存在する一部の微生物は、リンが欠乏すると、ホスホン酸の強固なP−C結合を切断する酵素を生産し、ホスホン酸をリン酸にまで変換することが知られている(非特許文献6)。すなわち、ホスホノ基を有する界面活性剤およびこれが形成するマイクロカプセルは、工業利用のみならず、肥料、農薬、および展着剤等の農業用途での利用も想定され、植物の育成にも有意な効果を発揮することが期待される(特許文献3)。   It is also known that some microorganisms present in the soil and the hydrosphere produce enzymes that cleave the strong PC bond of phosphonic acid when phosphorus is deficient, and convert phosphonic acid to phosphoric acid. (Non-Patent Document 6). That is, the surfactant having a phosphono group and the microcapsules formed by the surfactant are expected to be used not only for industrial applications but also for agricultural uses such as fertilizers, agricultural chemicals, and spreading agents, and have a significant effect on plant growth. Is expected (Patent Document 3).

特開2008−094809号公報JP 2008-094809 A 特表2016−522325号公報JP 2006-522325 A 米国特許第5112380号明細書U.S. Pat. No. 5,112,380

Judit Telegdiら,Period. Polytech. Chem. Eng.,2016,60,165−168Judit Telegdi et al., Period. Polytech. Chem. Eng., 2016, 60, 165-168. T. Someyaら,App. Phys. Lett.,2009,95,203301−203303T. Someya et al., App. Phys. Lett., 2009, 95, 203301-203303. Pablo C. Schulzら,J. Phys. Chem. B,2013,117,6231−6240Pablo C. Schulz et al., J. Phys. Chem. B, 2013, 117, 6231-6240. Pablo C. Schulzら,Langmuir,1996,12,3082−3088Pablo C. Schulz et al., Langmuir, 1996, 12, 3082-3088. R. M. Minardiら,Colloid Polym. Sic. ,1996,274,1089-1093RM Minardi et al., Colloid Polym. Sic., 1996, 274, 1089-1093. David L. Zechelら,Chem. Rev.,2017,117,5704−5783David L. Zechel et al., Chem. Rev., 2017, 117, 5704-5783.

リン脂質などのP−O−C結合を有するリン酸エステル型の界面活性剤は膜構造を有する球殻状のマイクロカプセルを形成するため、化粧品や医薬品等の外用剤、肥料、農薬、展着剤等に利用されているが、その化学的安定性に課題があると言える。また、安定性に優れるP−C結合を有するホスホン酸系界面活性剤も、水中で界面活性を発揮し、マイクロカプセルを形成することが知られているが、水への溶解性が低く、室温付近で利用することが困難であるという課題があった。本発明は、このような事情に鑑みてなされたものであり、水溶解性に優れる有機リン化合物と、この有機リン化合物が室温で自発的に形成する中空状粒子を提供することを目的とする。   Phosphoric acid ester type surfactants having a P—O—C bond, such as phospholipids, form spherical shell microcapsules having a membrane structure, and are used externally for cosmetics and pharmaceuticals, fertilizers, agricultural chemicals, and spreading. Although it is used as an agent, it can be said that there is a problem in its chemical stability. Phosphonic acid-based surfactants having a PC bond having excellent stability are also known to exhibit surface activity in water and form microcapsules, but have low solubility in water and have a low room temperature. There was a problem that it was difficult to use it nearby. The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an organic phosphorus compound having excellent water solubility and hollow particles formed by the organic phosphorus compound spontaneously at room temperature. .

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ホスホノ基を親水基とする界面活性剤、特にP−C=C−C結合を有する界面活性剤が、室温かつ幅広いpHで自発的に中空状粒子を形成することを見出し、本発明を完成させた。   The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, a surfactant having a phosphono group as a hydrophilic group, particularly a surfactant having a PC = CC bond, is widely used at room temperature and in a wide range. The present inventors have found that hollow particles are spontaneously formed at pH, and have completed the present invention.

本発明の有機リン化合物またはその塩は、リン原子を含有する親水性基と、炭化水素基とを有し、1つのリン原子と、炭化水素基を構成する1つの炭素原子とが、−C=C−を介して結合されている化学構造を有する。本発明の混合物は、本発明の有機リン化合物またはその塩と、親水性液体とを有する。本発明の中空状粒子は、本発明の有機リン化合物またはその陰イオンを主成分とする。本発明の中空状粒子の製造方法は、本発明の有機リン化合物またはその塩と、親水性液体とを混合する混合工程を有する。本発明の肥料、農薬、展着剤、または表面処理剤は、本発明の中空状粒子を含有する。   The organic phosphorus compound of the present invention or a salt thereof has a hydrophilic group containing a phosphorus atom and a hydrocarbon group, and one phosphorus atom and one carbon atom constituting the hydrocarbon group are represented by -C = Has a chemical structure attached via C-. The mixture of the present invention has the organic phosphorus compound of the present invention or a salt thereof, and a hydrophilic liquid. The hollow particles of the present invention contain the organic phosphorus compound of the present invention or an anion thereof as a main component. The method for producing hollow particles of the present invention has a mixing step of mixing the organic phosphorus compound of the present invention or a salt thereof with a hydrophilic liquid. The fertilizer, pesticide, spreading agent or surface treating agent of the present invention contains the hollow particles of the present invention.

本発明によれば、室温の水中で、有機リン化合物の中空状粒子が得られる。   According to the present invention, hollow particles of an organic phosphorus compound are obtained in water at room temperature.

実施例5の中和滴定の測定結果を示すグラフ。9 is a graph showing measurement results of a neutralization titration in Example 5. 実施例6の有機リン化合物水溶液の各濃度における表面張力を示すグラフ。9 is a graph showing the surface tension at each concentration of the organic phosphorus compound aqueous solution of Example 6. 実施例8の中空状粒子のフリーズフラクチャー透過型電子顕微鏡画像。19 is a freeze-fracture transmission electron microscope image of the hollow particles of Example 8. 実施例9の有機リン化合物膜の偏光顕微鏡画像。19 is a polarization microscope image of the organic phosphorus compound film of Example 9. 実施例10の固体基板上の有機リン化合物膜の原子間力顕微鏡像。23 is an atomic force microscope image of the organic phosphorus compound film on the solid substrate of Example 10.

本発明の実施形態に係る有機リン化合物は、リン原子を含有する親水性基と、炭化水素基とを有し、1つのリン原子と、炭化水素基を構成する1つの炭素原子とが、−C=C−を介して結合されている化学構造を備えている。このような有機リン化合物としては、下記式(A)で表される有機リン化合物が例示できる。なお、式(A)中、R1は炭素数2以上20以下の炭化水素基を表している。R1は直鎖オクチレン基であることが好ましい。 The organic phosphorus compound according to the embodiment of the present invention has a hydrophilic group containing a phosphorus atom and a hydrocarbon group, and one phosphorus atom and one carbon atom constituting the hydrocarbon group are- It has a chemical structure linked via C = C-. As such an organic phosphorus compound, an organic phosphorus compound represented by the following formula (A) can be exemplified. In the formula (A), R 1 represents a hydrocarbon group having 2 to 20 carbon atoms. R 1 is preferably a straight-chain octylene group.

Figure 2020002085
Figure 2020002085

式(A)で表される有機リン化合物は、2つのホスホノ基を有する双頭型構造を備え、−C=C−を有する。このため、ホスホノ基部位が折れ曲がり、分子間の水素結合が抑制されると考えられる。したがって、式(A)で表される有機リン化合物は、室温の水中で中空状粒子を自発的に形成できる。   The organic phosphorus compound represented by the formula (A) has a double-headed structure having two phosphono groups, and has -C = C-. For this reason, it is considered that the phosphono group site is bent, and intermolecular hydrogen bonding is suppressed. Therefore, the organic phosphorus compound represented by the formula (A) can spontaneously form hollow particles in water at room temperature.

また、このような有機リン化合物としては、下記式(B)で表される有機リン化合物も例示できる。式(B)中、R2は炭素数2以上20以下の炭化水素基を表している。R2は、炭素数10以上16以下の直鎖アルキル基であることが好ましい。 Examples of such an organic phosphorus compound include an organic phosphorus compound represented by the following formula (B). In the formula (B), R 2 represents a hydrocarbon group having 2 to 20 carbon atoms. R 2 is preferably a straight-chain alkyl group having 10 to 16 carbon atoms.

Figure 2020002085
Figure 2020002085

式(A)で表される有機リン化合物の具体的な化合物としては、下記のBPAC12が例示できる。また、式(B)で表される有機リン化合物の具体的な化合物としては、下記のPAC12、PAC16、およびPAC18が例示できる。   Specific examples of the organic phosphorus compound represented by the formula (A) include the following BPAC12. Further, specific examples of the organic phosphorus compound represented by the formula (B) include the following PAC12, PAC16, and PAC18.

Figure 2020002085
Figure 2020002085

本実施形態の有機リン化合物の塩としては、有機リン化合物のアルカリ金属塩、アルカリ土類金属塩、および有機塩などが挙げられる。具体的には、1ナトリウム塩、2ナトリウム塩、1カリウム塩、2カリウム塩、カルシウム塩、1アンモニウム塩、2アンモニウム塩、1モノエタノールアミン塩、2モノエタノールアミン塩、1ジエタノールアミン塩、2ジエタノールアミン塩、1トリエタノールアミン塩、2トリエタノールアミン塩、1アルギニン塩、2アルギニン塩、1リジン塩、2リジン塩、1ヒスチジン塩、2ヒスチジン塩、またはこれらの2種類以上の混合物などが例示できる。   Examples of the salt of the organic phosphorus compound of the present embodiment include alkali metal salts, alkaline earth metal salts, and organic salts of the organic phosphorus compound. Specifically, 1 sodium salt, 2 sodium salt, 1 potassium salt, 2 potassium salt, calcium salt, 1 ammonium salt, 2 ammonium salt, 1 monoethanolamine salt, 2 monoethanolamine salt, 1 diethanolamine salt, 2 diethanolamine Salt, 1 triethanolamine salt, 2 triethanolamine salt, 1 arginine salt, 2 arginine salt, 1 lysine salt, 2 lysine salt, 1 histidine salt, 2 histidine salt, or a mixture of two or more of these can be exemplified. .

本発明の実施形態に係る混合物は、本実施形態の有機リン化合物またはその塩と、親水性液体とを有する。親水性液体としては、水、メタノール、エタノール、イソプロパノール、エチレングリコール、グリセリン等のプロトン性極性液体、アセトン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、テトラヒドロフラン等の非プロトン性極性液体、またはこれらの2種類以上の混合物が例示できる。   The mixture according to the embodiment of the present invention has the organic phosphorus compound of the present embodiment or a salt thereof, and a hydrophilic liquid. Examples of the hydrophilic liquid include protic polar liquids such as water, methanol, ethanol, isopropanol, ethylene glycol, and glycerin, acetone, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP). , Dimethyl sulfoxide (DMSO), tetrahydrofuran and other aprotic polar liquids, or a mixture of two or more thereof.

本実施形態の混合物は、本実施形態の有機リン化合物またはその陰イオンが分解されなければ、他の成分を含有していてもよい。このような他の成分としては、水溶性、油溶性、または両親媒性の物質、例えば、油性成分、低級アルコール、保湿剤、抗酸化剤、キレート剤、ビタミン類、植物抽出物、もしくはその他の各種薬効成分、粉体、香料、もしくは色材などの化粧品や医薬品等の外用剤または洗浄剤用基材が挙げられる。また、本実施形態の混合物の表面処理用途での消泡添加剤および導電性塩として、酢酸塩、リン酸塩、ドデシル硫酸ナトリウムなどのアニオン性界面活性剤が挙げられる。   The mixture of the present embodiment may contain other components as long as the organic phosphorus compound of the present embodiment or the anion thereof is not decomposed. Such other ingredients include water-soluble, oil-soluble, or amphiphilic substances, such as oily ingredients, lower alcohols, humectants, antioxidants, chelating agents, vitamins, plant extracts, or other Examples include various medicinal ingredients, powders, fragrances, coloring materials, and other external agents for cosmetics and pharmaceuticals, and base materials for cleaning agents. In addition, examples of the antifoaming additive and the conductive salt for the surface treatment of the mixture of the present embodiment include anionic surfactants such as acetate, phosphate, and sodium dodecyl sulfate.

本発明の実施形態に係る中空状粒子は、本実施形態の有機リン化合物またはその陰イオンを主成分とする。本実施形態の中空状粒子は、本実施形態の有機リン化合物またはその陰イオンから構成されていてもよい。本実施形態の中空状粒子は、有機リン化合物またはその陰イオンがない空の領域を内部に備えている。この領域は、空洞であってもよいし、液体、溶液、または他の粒子などを含有していてもよい。したがって、本実施形態の中空状粒子は、各種有効成分を内包させることが可能である。   The hollow particles according to the embodiment of the present invention mainly contain the organic phosphorus compound of the present embodiment or an anion thereof. The hollow particles of the present embodiment may be composed of the organic phosphorus compound of the present embodiment or an anion thereof. The hollow particles of the present embodiment have an empty region free of an organic phosphorus compound or an anion thereof. This region may be hollow or contain liquids, solutions, or other particles and the like. Therefore, the hollow particles of the present embodiment can contain various active ingredients.

この各種有効成分としては、化粧成分、医薬成分、肥料成分、農薬成分、緑化成分、および基材の表面処理成分などが挙げられる。すなわち、本実施形態の中空状粒子は、化粧料、医薬剤、肥料、農薬、展着剤、または表面処理剤として利用できる。なお、本実施形態の中空状粒子が分解されなければ、本実施形態の中空状粒子は、本実施形態の有機リン化合物またはその陰イオン以外の成分を含有していてもよい。   Examples of the various active ingredients include a cosmetic ingredient, a pharmaceutical ingredient, a fertilizer ingredient, an agricultural chemical ingredient, a greening ingredient, and a surface treatment ingredient for a base material. That is, the hollow particles of the present embodiment can be used as cosmetics, pharmaceutical agents, fertilizers, agricultural chemicals, spreading agents, or surface treatment agents. If the hollow particles of the present embodiment are not decomposed, the hollow particles of the present embodiment may contain components other than the organic phosphorus compound of the present embodiment or an anion thereof.

本実施形態の肥料は、N、P、K,Ca、Mg等の供給源となる無機物または有機物を含んでいてもよい。このような無機物としては、硝酸アンモニウム、硝酸カリウム、硫酸アンモニウム、塩化アンモニウム、硝酸ソーダ、尿素、炭酸アンモニウム、リン酸カリウム、過リン酸石灰、熔成リン肥、硫酸カリム、塩化カリウム、硝酸石灰、消石灰炭酸石灰、硫酸マグネシウム等が挙げられる。有機物としては、鶏糞、牛糞、堆肥、アミノ酸、ペプチド、有機酸、脂肪酸等が挙げられる。本実施形態の農薬は、植物の育成に有意な効果を与えうる成分として、殺菌剤、殺虫剤、殺ダニ剤、除草剤、植物成長調整剤等を含んでいてもよい。   The fertilizer of the present embodiment may contain an inorganic or organic substance serving as a supply source of N, P, K, Ca, Mg and the like. Examples of such inorganic substances include ammonium nitrate, potassium nitrate, ammonium sulfate, ammonium chloride, sodium nitrate, urea, ammonium carbonate, potassium phosphate, lime perphosphate, molten phosphorus fertilizer, kalim sulfate, potassium chloride, nitrate lime, slaked lime carbonated lime , Magnesium sulfate and the like. Organic substances include chicken dung, cow dung, compost, amino acids, peptides, organic acids, fatty acids and the like. The pesticide of the present embodiment may contain a bactericide, an insecticide, an acaricide, a herbicide, a plant growth regulator, and the like as components capable of giving a significant effect on plant growth.

本実施形態の中空状粒子の製造方法は、本実施形態の有機リン化合物またはその塩と、親水性液体とを混合する混合工程を備えている。すなわち、本実施形態の有機リン化合物またはその塩と親水性液体を混合するという極めて簡便な方法で、本実施形態の中空状粒子が得られる。親水性液体は、純物質であってもよいし、混合物であってもよい。1つの親水基と1つの長鎖アルキル基からなる従来のリン酸エステル系界面活性剤やホスホン酸系界面活性剤も、水中でマイクロカプセルを形成することが知られている。   The method for producing hollow particles of the present embodiment includes a mixing step of mixing the organic phosphorus compound or the salt thereof of the present embodiment with a hydrophilic liquid. That is, the hollow particles of the present embodiment can be obtained by an extremely simple method of mixing the organic phosphorus compound or the salt thereof of the present embodiment with a hydrophilic liquid. The hydrophilic liquid may be a pure substance or a mixture. It is known that conventional phosphate ester-based surfactants and phosphonic acid-based surfactants comprising one hydrophilic group and one long-chain alkyl group also form microcapsules in water.

しかし、これらの界面活性剤は水溶解度が低く、マイクロカプセルの形成に加熱等が必要であった。これに対して、本実施形態の中空状粒子は、室温、例えば10〜30℃での水中という温和な環境で自発的に形成される。本実施形態の中空状粒子は、リン脂質が形成するマイクロカプセルのように、二重膜または多重膜構造を有する球殻状の中空構造体である。本実施形態の中空状粒子に有効成分を内包させる方法としては、例えば、本実施形態の有機リン化合物またはその塩と、親水性液体、有効成分を混合し、室温で撹拌してから静置する方法や、本実施形態の中空状粒子に有効成分の親水性溶液を添加して、静置する方法や、親水性液体中で調整した中空状粒子を凍結乾燥等により粉体とした後、この粉体に有効成分の親水性溶液を添加して室温で撹拌する方法が挙げられる。   However, these surfactants have low water solubility and require heating or the like to form microcapsules. On the other hand, the hollow particles of the present embodiment are spontaneously formed in a mild environment of water at room temperature, for example, at 10 to 30 ° C. The hollow particles of the present embodiment are spherical hollow structures having a double membrane or multiple membrane structure, such as microcapsules formed by phospholipids. As a method of encapsulating the active ingredient in the hollow particles of the present embodiment, for example, the organic phosphorus compound of the present embodiment or a salt thereof, a hydrophilic liquid, and the active ingredient are mixed, and the mixture is stirred at room temperature and left to stand. The method and the method of adding a hydrophilic solution of the active ingredient to the hollow particles of the present embodiment, a method of allowing to stand, and the method of freeze-drying the hollow particles adjusted in a hydrophilic liquid to obtain a powder, There is a method in which a hydrophilic solution of the active ingredient is added to the powder and the mixture is stirred at room temperature.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention can be appropriately modified without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples described below.

(実施例1:BPAC12の合成) (Example 1: Synthesis of BPAC12)

シュレンク管内に1,11−ドデカジエン1.99g(12.0mmol)とビニルホスホン酸2.63g(16.0mmol)を加え、減圧乾燥後、窒素ガスを充填した。このシュレンク管内に第2世代Grubbs触媒0.51g(0.6mmol)を加え、ジクロロメタン15mLに溶解した後、3時間還流した。反応後、溶媒を留去し、SiO2カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2→1:1(容量比)、Rf値0.28)で精製してBPAC12−Ethyl esterを得た(収量2.47g(6.2mmol)、収率52%)。 In a Schlenk tube, 1.99 g (12.0 mmol) of 1,11-dodecadiene and 2.63 g (16.0 mmol) of vinylphosphonic acid were added, dried under reduced pressure, and charged with nitrogen gas. 0.51 g (0.6 mmol) of the second-generation Grubbs catalyst was added to the Schlenk tube, dissolved in 15 mL of dichloromethane, and refluxed for 3 hours. After the reaction, the solvent was distilled off, and the residue was purified by SiO 2 column chromatography (ethyl acetate: hexane = 1: 2 → 1: 1 (volume ratio), Rf value 0.28) to obtain BPAC12-Ethyl ester ( 2.47 g (6.2 mmol), 52% yield).

1H‐NMR、13C−NMR、および31P−NMR分析によって、得られた物質がBPAC12−Ethyl esterであることを確認した。
1H-NMR (400MHz, CDCl3, r.t.) δ(ppm): 6.78(ddt, 2H, J=6.4, 17.2 and 22.0Hz, CH), 5.64 (dd, 2H, J=16.8 and 19.6Hz, CH), 4.09 (m, 8H, CH2), 2.22 (m, 4H, CH2), 1.20-1.50 (12H, CH2).
13C-NMR (100MHz, CDCl3, r.t.) δ(ppm): 153.9, 116.8, 61.6, 34.1, 29.3, 29.1, 27.8, 16.4.
31P-NMR (CDCl3, 162MHz) δ(ppm): 18.9.
1 H-NMR, 13 C-NMR, and 31 P-NMR analysis confirmed that the obtained substance was BPAC12-Ethyl ester.
1 H-NMR (400MHz, CDCl 3 , rt) δ (ppm): 6.78 (ddt, 2H, J = 6.4, 17.2 and 22.0Hz, CH), 5.64 (dd, 2H, J = 16.8 and 19.6Hz, CH) , 4.09 (m, 8H, CH 2 ), 2.22 (m, 4H, CH 2 ), 1.20-1.50 (12H, CH 2 ).
13 C-NMR (100 MHz, CDCl 3 , rt) δ (ppm): 153.9, 116.8, 61.6, 34.1, 29.3, 29.1, 27.8, 16.4.
31 P-NMR (CDCl 3 , 162 MHz) δ (ppm): 18.9.

2つ口ナスフラスコ内でBPAC12−Ethyl ester2.00g(4.6mmol)とよう化カリウム9.03g(54.4mmol)を混合し、減圧乾燥後、窒素ガスを充填した。この2つ口ナスフラスコ内に、ジクロロメタン20mLとクロロトリメチルシラン5.91g(54.4mmol)を順次加え、40℃で12時間撹拌した。溶媒を留去した後、水10mLとエタノール20mLを加え、室温で12時間撹拌した。溶媒を留去した後、粗生成物を水に再度溶かし、水相をジエチルエーテルで洗浄した後、水を留去した。得られた粗生成物をエタノール200mLと水15mLで洗浄してBPAC12を得た(収量0.127g(0.39mmol)、収率8%)。   In a two-necked eggplant flask, 2.00 g (4.6 mmol) of BPAC12-Ethyl ester and 9.03 g (54.4 mmol) of potassium iodide were mixed, dried under reduced pressure, and charged with nitrogen gas. 20 mL of dichloromethane and 5.91 g (54.4 mmol) of chlorotrimethylsilane were sequentially added to the two-necked eggplant flask, followed by stirring at 40 ° C. for 12 hours. After the solvent was distilled off, 10 mL of water and 20 mL of ethanol were added, and the mixture was stirred at room temperature for 12 hours. After the solvent was distilled off, the crude product was redissolved in water, the aqueous phase was washed with diethyl ether, and then the water was distilled off. The obtained crude product was washed with 200 mL of ethanol and 15 mL of water to obtain BPAC12 (yield 0.127 g (0.39 mmol), yield 8%).

1H‐NMR、13C−NMR、および31P−NMR分析によって、得られた物質がBPAC12であることを確認した。
1H-NMR (400MHz, D2O) δ(ppm): 6.45 (ddt, 2H, J=6.4, 17.2 and 22.0Hz, CH), 5.70 (ddt, 2H, J=1.6, 13.2 and 17.2Hz, CH), 2.11 (m, 4H, CH2), 1.37 (m, 4H, CH2), 1.18-1.28 (8H, CH2).
13C-NMR (100MHz, D2O) δ(ppm): 151.0, 121.3, 42.6, 34.4, 29.3, 28.3.
31P-NMR (162MHz, D2O) δ(ppm): 15.5.
1 H-NMR, 13 C-NMR, and 31 P-NMR analysis confirmed that the obtained substance was BPAC12.
1 H-NMR (400MHz, D 2 O) δ (ppm): 6.45 (ddt, 2H, J = 6.4, 17.2 and 22.0Hz, CH), 5.70 (ddt, 2H, J = 1.6, 13.2 and 17.2Hz, CH ), 2.11 (m, 4H, CH 2 ), 1.37 (m, 4H, CH 2 ), 1.18-1.28 (8H, CH 2 ).
13 C-NMR (100 MHz, D 2 O) δ (ppm): 151.0, 121.3, 42.6, 34.4, 29.3, 28.3.
31 P-NMR (162 MHz, D 2 O) δ (ppm): 15.5.

(実施例2:PAC12の合成)
シュレンク管内に1−ドデセン2.52g(15.0mmol)とビニルホスホン酸1.85g(11.3mmol)を加え、減圧乾燥後、窒素ガスを充填した。このシュレンク管内に第2世代Grubbs触媒0.64g(0.80mmol)を加え、ジクロロメタン15mLに溶解した後、3時間還流した。反応後、溶媒を留去し、SiO2カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2→1:1(容量比)、Rf値0.28)で精製してPAC12−Ethyl esterを得た(収量3.20g(10.5mmol)、収率93%)。
(Example 2: Synthesis of PAC12)
In a Schlenk tube, 2.52 g (15.0 mmol) of 1-dodecene and 1.85 g (11.3 mmol) of vinylphosphonic acid were added, dried under reduced pressure, and charged with nitrogen gas. 0.64 g (0.80 mmol) of the second generation Grubbs catalyst was added to the Schlenk tube, dissolved in 15 mL of dichloromethane, and refluxed for 3 hours. After the reaction, the solvent was distilled off, and the residue was purified by SiO 2 column chromatography (ethyl acetate: hexane = 1: 2 → 1: 1 (volume ratio), Rf value 0.28) to obtain PAC12-Ethyl ester. 3.20 g (10.5 mmol), 93% yield).

1H‐NMR、13C−NMR、および31P−NMR分析によって、得られた物質がPAC12−Ethyl esterであることを確認した。
1H-NMR (400MHz, CDCl3) δ(ppm): 6.78 (ddt, 1H, J=6.4, 17.2 and 22.0Hz), 5.64 (ddt, 1H, J=1.6, 13.2 and 17.2Hz), 4.05 (ddq, 4H, J=0.8, 6.8 and 6.8Hz), 2.05-2.09 (br, 2H), 1.25-1.43 (m, 24H), 0.88 (t, 3H, J=6.4Hz).
13C-NMR (CDCl3, 100MHz) δ(ppm): 154.2, 116.6, 61.6, 34.2, 31.9, 30.0, 29.5, 29.4, 29.3, 29.1, 27.8, 22.7, 16.4, 14.2.
31P-NMR (CDCl3, 162MHz) δ(ppm): 19.0.
1 H-NMR, 13 C-NMR, and 31 P-NMR analysis confirmed that the obtained substance was PAC12-Ethyl ester.
1 H-NMR (400 MHz, CDCl 3 ) δ (ppm): 6.78 (ddt, 1H, J = 6.4, 17.2 and 22.0 Hz), 5.64 (ddt, 1H, J = 1.6, 13.2 and 17.2 Hz), 4.05 (ddq , 4H, J = 0.8, 6.8 and 6.8Hz), 2.05-2.09 (br, 2H), 1.25-1.43 (m, 24H), 0.88 (t, 3H, J = 6.4Hz).
13 C-NMR (CDCl 3 , 100 MHz) δ (ppm): 154.2, 116.6, 61.6, 34.2, 31.9, 30.0, 29.5, 29.4, 29.3, 29.1, 27.8, 22.7, 16.4, 14.2.
31 P-NMR (CDCl 3 , 162 MHz) δ (ppm): 19.0.

2つ口ナスフラスコ内でPAC12−Ethyl ester3.20g(10.5mmol)とよう化カリウム10.50g(63.3mmol)を混合し、減圧乾燥後、窒素ガスを充填した。この2つ口ナスフラスコ内に、アセトニトリル40mLとクロロトリメチルシラン6.88g(63.3mmol)を順次加え、室温で10時間撹拌した。溶媒を留去した後、水40mLを加え、室温で1時間撹拌した後、水を留去した。酢酸エチルで抽出してPAC12を得た(収量2.57g(1.56mmol)、収率:98%)。   In a two-necked eggplant flask, 3.20 g (10.5 mmol) of PAC12-Ethyl ester and 10.50 g (63.3 mmol) of potassium iodide were mixed, dried under reduced pressure, and charged with nitrogen gas. 40 mL of acetonitrile and 6.88 g (63.3 mmol) of chlorotrimethylsilane were sequentially added into the two-necked eggplant flask, followed by stirring at room temperature for 10 hours. After the solvent was distilled off, 40 mL of water was added, and the mixture was stirred at room temperature for 1 hour, and then the water was distilled off. Extraction with ethyl acetate gave PAC12 (yield 2.57 g (1.56 mmol), 98% yield).

1H‐NMR、13C−NMR、31P−NMR、およびIR分析によって、得られた物質がPAC12であることを確認した。
1H-NMR (400MHz, CDCl3) δ(ppm): 8.68 (s, 2H, -OH), 6.72 (ddt, 1H, J=4.0, 16.8 and 23.2Hz), 5.71 (dd, 1H, J=16.8 and 19.6Hz), 2.17-2.18 (br, 2H), 1.26-1.42 (m, 18H), 0.88 (t, 3H, J=6.4Hz).
13C-NMR (100MHz, CDCl3) δ(ppm): 153.4, 115.9, 34.0, 31.9, 29.6, 29.5, 29.4, 29.3, 29.1, 27.6, 22.9, 14.1.
31P-NMR (162 MHz, CDCl3) δ(ppm): 22.3.
IR (ATR): 1645, 1150 and 944cm-1.
1 H-NMR, 13 C-NMR, 31 P-NMR, and IR analysis confirmed that the obtained substance was PAC12.
1 H-NMR (400 MHz, CDCl 3 ) δ (ppm): 8.68 (s, 2H, -OH), 6.72 (ddt, 1H, J = 4.0, 16.8 and 23.2 Hz), 5.71 (dd, 1H, J = 16.8 and 19.6Hz), 2.17-2.18 (br, 2H), 1.26-1.42 (m, 18H), 0.88 (t, 3H, J = 6.4Hz).
13 C-NMR (100 MHz, CDCl 3 ) δ (ppm): 153.4, 115.9, 34.0, 31.9, 29.6, 29.5, 29.4, 29.3, 29.1, 27.6, 22.9, 14.1.
31 P-NMR (162 MHz, CDCl 3 ) δ (ppm): 22.3.
IR (ATR): 1645, 1150 and 944cm -1 .

(実施例3:PAC16の合成)
シュレンク管内に1−ヘキサデセン0.45g(2.0mmol)とビニルホスホン酸0.25g(1.5mmol)を加え、減圧乾燥後、窒素ガスを充填した。このシュレンク管内に第2世代Grubbs触媒0.32g(0.1mmol)を加え、ジクロロメタン5mLに溶解した後、3時間還流した。反応後、溶媒を留去し、SiO2カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3(容量比)、Rf値0.20)で精製してPAC16−Ethyl esterを得た(収量0.46g(1.28mmol)、収率85%)。
(Example 3: Synthesis of PAC16)
0.45 g (2.0 mmol) of 1-hexadecene and 0.25 g (1.5 mmol) of vinylphosphonic acid were added into a Schlenk tube, dried under reduced pressure, and charged with nitrogen gas. 0.32 g (0.1 mmol) of the second-generation Grubbs catalyst was added to the Schlenk tube, dissolved in 5 mL of dichloromethane, and refluxed for 3 hours. After the reaction, the solvent was distilled off, and the residue was purified by SiO 2 column chromatography (ethyl acetate: hexane = 1: 3 (volume ratio), Rf value 0.20) to obtain PAC16-Ethyl ester (yield 0.46 g). (1.28 mmol), 85% yield).

1H‐NMR、13C−NMR、および31P−NMR分析によって、得られた物質がPAC16−Ethyl esterであることを確認した。
1H-NMR(400MHz, acetone-d6) δ(ppm): 6.68 (ddt, 1H, J=6.4, 17.2 and 22.0Hz, CH), 5.71 (ddt, 1H, J=1.6, 13.2 and 17.2Hz, CH), 3.99 (ddq, 4H, J=0.8, 6.8 and 6.8Hz, CH2), 2.25 (m, 2H, CH2), 1.47 (m, 2H, CH2), 1.25-1.43 (m, 18H), 1.24 (m, 6H, CH3), 0.88 (t, 3H, J=6.4Hz).
13C-NMR (100MHz, acetone-d6) δ(ppm): 154.5, 119.7, 62.6, 35.4, 33.5, 31.1, 31.1, 30.9, 30.7, 30.5, 30.4, 30.2, 29.6, 24.2, 17.6, 15.2.
31P-NMR (162MHz, acetone-d6) δ(ppm): 17.6.
1 H-NMR, 13 C-NMR, and 31 P-NMR analysis confirmed that the obtained substance was PAC16-Ethyl ester.
1 H-NMR (400 MHz, acetone-d 6 ) δ (ppm): 6.68 (ddt, 1H, J = 6.4, 17.2 and 22.0 Hz, CH), 5.71 (ddt, 1H, J = 1.6, 13.2 and 17.2 Hz, CH), 3.99 (ddq, 4H , J = 0.8, 6.8 and 6.8Hz, CH 2), 2.25 (m, 2H, CH 2), 1.47 (m, 2H, CH 2), 1.25-1.43 (m, 18H) , 1.24 (m, 6H, CH 3 ), 0.88 (t, 3H, J = 6.4Hz).
13 C-NMR (100 MHz, acetone-d 6 ) δ (ppm): 154.5, 119.7, 62.6, 35.4, 33.5, 31.1, 31.1, 30.9, 30.7, 30.5, 30.4, 30.2, 29.6, 24.2, 17.6, 15.2.
31 P-NMR (162 MHz, acetone-d 6 ) δ (ppm): 17.6.

2つ口ナスフラスコ内でPAC16−Ethyl ester0.19g(0.54mmol)とよう化カリウム0.27g(1.3mmol)を混合し、減圧乾燥後、窒素ガスを充填した。この2つ口ナスフラスコ内に、アセトニトリル40mLとクロロトリメチルシラン0.15g(1.3mmol)を順次加え、室温で12時間撹拌した。溶媒を留去した後、メタノール5mLと水40mLを加え、室温で3時間撹拌した。反応後に析出した固体をろ過によって回収し、水で洗浄してPAC16を得た(収量0.16g(0.53mmol)、収率:99%)。   In a two-necked eggplant flask, 0.19 g (0.54 mmol) of PAC16-Ethyl ester and 0.27 g (1.3 mmol) of potassium iodide were mixed, dried under reduced pressure, and charged with nitrogen gas. 40 mL of acetonitrile and 0.15 g (1.3 mmol) of chlorotrimethylsilane were sequentially added into the two-necked eggplant flask, followed by stirring at room temperature for 12 hours. After the solvent was distilled off, 5 mL of methanol and 40 mL of water were added, and the mixture was stirred at room temperature for 3 hours. The solid precipitated after the reaction was collected by filtration and washed with water to obtain PAC16 (yield 0.16 g (0.53 mmol), yield: 99%).

1H‐NMRおよび31P−NMR分析によって、得られた物質がPAC16であることを確認した。
1H-NMR (400MHz, D2O) δ(ppm): 6.33 (br, 1H), 5.65 (br, 1H), 2.08 (br, 2H), 1.25-1.43 (20H), 0.76 (t, 3H, J=6.4Hz).
31P-NMR (162MHz, D2O) δ(ppm): 13.4.
1H-NMR (400MHz, D2O, pH11) δ(ppm): 6.06 (br, 1H), 5.57 (br, 1H), 1.92 (br, 2H), 1.10-1.27 (20H), 0.73 (br, 3H).
31P-NMR (162MHz,D2O, pH11) δ(ppm): 11.4.
1 H-NMR and 31 P-NMR analysis confirmed that the obtained substance was PAC16.
1 H-NMR (400 MHz, D 2 O) δ (ppm): 6.33 (br, 1H), 5.65 (br, 1H), 2.08 (br, 2H), 1.25-1.43 (20H), 0.76 (t, 3H, J = 6.4Hz).
31 P-NMR (162 MHz, D 2 O) δ (ppm): 13.4.
1 H-NMR (400 MHz, D 2 O, pH11) δ (ppm): 6.06 (br, 1H), 5.57 (br, 1H), 1.92 (br, 2H), 1.10-1.27 (20H), 0.73 (br, 3H).
31 P-NMR (162 MHz, D 2 O, pH 11) δ (ppm): 11.4.

(実施例4:PAC18の合成)
シュレンク管内に1−オクタデセン1.89g(7.5mmol)とビニルホスホン酸(0.91g,5.1mmol)を加え、減圧乾燥後、窒素ガスを充填した。このシュレンク管内に第2世代Grubbs触媒0.21g(0.26mmol)を加え、ジクロロメタン7mLに溶解した後、2時間還流した。反応後、溶媒を留去し、SiO2カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2→2:1(容量比)、Rf値0.33)で精製してPAC18−Ethyl esterを得た(収量:1.44g(3.7mmol)、収率72%)。
(Example 4: Synthesis of PAC18)
1.89 g (7.5 mmol) of 1-octadecene and 0.91 g (5.1 mmol) of vinylphosphonic acid were added to a Schlenk tube, dried under reduced pressure, and charged with nitrogen gas. 0.21 g (0.26 mmol) of the second-generation Grubbs catalyst was added to the Schlenk tube, dissolved in 7 mL of dichloromethane, and refluxed for 2 hours. After the reaction, the solvent was distilled off, and the residue was purified by SiO 2 column chromatography (ethyl acetate: hexane = 1: 2 → 2: 1 (volume ratio), Rf value: 0.33) to obtain PAC18-Ethyl ester ( Yield: 1.44 g (3.7 mmol), 72% yield).

1H‐NMR、13C−NMR、および31P−NMR分析によって、得られた物質がPAC18−Ethyl esterであることを確認した。
1H-NMR (CDCl3, 400MHz) δ(ppm): 6.77 (ddt, 1H, J=7.2, 16.8 and 22Hz, CH), 5.62 (ddt, 1H, J=1.6, 17.2 and 21.2Hz, CH), 4.07 (m, 4H, CH2), 2.20 (br, 2H, CH2), 1.33 (6H, CH3), 1.24-1.48, (28H, CH2), 0.88 (t, 3H, J=7.2Hz).
13C-NMR (CDCl3, 100MHz) δ(ppm): 154.1, 116.6, 61.6, 34.2, 31.9, 29.7 (4C), 29.6 (2C), 29.5 (2C), 29.4 (2C), 29.1, 27.8, 22.7, 16.4, 14.1.
31P-NMR (CDCl3, 162MHz) δ(ppm): 19.0.
1 H-NMR, 13 C-NMR, and 31 P-NMR analysis confirmed that the obtained substance was PAC18-Ethyl ester.
1 H-NMR (CDCl 3 , 400MHz) δ (ppm): 6.77 (ddt, 1H, J = 7.2, 16.8 and 22Hz, CH), 5.62 (ddt, 1H, J = 1.6, 17.2 and 21.2Hz, CH), 4.07 (m, 4H, CH 2 ), 2.20 (br, 2H, CH 2), 1.33 (6H, CH 3), 1.24-1.48, (28H, CH 2), 0.88 (t, 3H, J = 7.2Hz) .
13 C-NMR (CDCl 3 , 100 MHz) δ (ppm): 154.1, 116.6, 61.6, 34.2, 31.9, 29.7 (4C), 29.6 (2C), 29.5 (2C), 29.4 (2C), 29.1, 27.8, 22.7 , 16.4, 14.1.
31 P-NMR (CDCl 3 , 162 MHz) δ (ppm): 19.0.

シュレンク管内でPAC18−Ethyl ester1.00g(2.6mmol)とよう化カリウム2.55g(15.4mmol)を混合し、減圧乾燥後、窒素ガスを充填した。このシュレンク管内に、アセトニトリル15mLとクロロトリメチルシラン1.67g(15.4mmol)を順次加え、室温で3時間撹拌した。溶媒を留去した後、アセトニトリル15mLと水15mLを加え、室温で1時間撹拌した後、未溶固体をろ過で除去した。溶媒を留去した後、クロロホルムで抽出してPAC18を得た(収量1.44g(1.56mmol)、収率:95%)。   In a Schlenk tube, 1.00 g (2.6 mmol) of PAC18-Ethyl ester and 2.55 g (15.4 mmol) of potassium iodide were mixed, dried under reduced pressure, and charged with nitrogen gas. Into this Schlenk tube, 15 mL of acetonitrile and 1.67 g (15.4 mmol) of chlorotrimethylsilane were sequentially added, followed by stirring at room temperature for 3 hours. After the solvent was distilled off, 15 mL of acetonitrile and 15 mL of water were added, and the mixture was stirred at room temperature for 1 hour, and then the undissolved solid was removed by filtration. After evaporating the solvent, the residue was extracted with chloroform to obtain PAC18 (yield 1.44 g (1.56 mmol), yield: 95%).

1H‐NMR、13C−NMR、31P−NMR、およびIR分析によって、得られた物質がPAC18であることを確認した。
1H-NMR (400MHz,D2O, pH11) δ(ppm): 6.17 (ddt, 1H, J=6.4, 17.2 and 18.4Hz), 5.62 (ddt, 1H, J=17.2, 17.2Hz), 2.05-2.09 (m, 2H), 1.25-1.43 (m, 28H), 0.88 (t, 3H, J=6.4Hz).
13C-NMR (100MHz,D2O, pH11) δ(ppm): 141.7, 127.3, 34.2, 32.0, 30.0, 29.9, 29.7 (6C), 29.6, 29.5 (2C), 28.7, 22.7, 13.8.
31P-NMR (162MHz, D2O, pH11) δ(ppm): 11.4.
IR (ATR): 1645, 1224 and 946cm-1.
1 H-NMR, 13 C-NMR, 31 P-NMR, and IR analysis confirmed that the obtained substance was PAC18.
1 H-NMR (400MHz, D 2 O, pH11) δ (ppm): 6.17 (ddt, 1H, J = 6.4, 17.2 and 18.4Hz), 5.62 (ddt, 1H, J = 17.2, 17.2Hz), 2.05- 2.09 (m, 2H), 1.25-1.43 (m, 28H), 0.88 (t, 3H, J = 6.4Hz).
13 C-NMR (100 MHz, D 2 O, pH 11) δ (ppm): 141.7, 127.3, 34.2, 32.0, 30.0, 29.9, 29.7 (6C), 29.6, 29.5 (2C), 28.7, 22.7, 13.8.
31 P-NMR (162MHz, D 2 O, pH11) δ (ppm): 11.4.
IR (ATR): 1645, 1224 and 946cm -1 .

(実施例5:中和滴定)
バイアル瓶内で、エタノール:水=2:1(容量比)の混合液に、PAC12を溶解して9mMのPAC12溶液を得た。このバイアル瓶内に50mM水酸化ナトリウム水溶液を定量滴下していき、各濃度におけるpHをpH測定装置(堀場社製、製品名「F−74pHメーター」)で測定した。その結果を図1に示す。図1に示すように、2価の酸であるPAC12は2段階で中和された。PAC12の見かけのpK1およびpK2を、それぞれ4.22および9.41と算出した。
(Example 5: Neutralization titration)
In a vial, PAC12 was dissolved in a mixture of ethanol: water = 2: 1 (volume ratio) to obtain a 9 mM PAC12 solution. A 50 mM sodium hydroxide aqueous solution was dropped dropwise into the vial, and the pH at each concentration was measured with a pH measuring device (product name “F-74 pH meter” manufactured by Horiba). The result is shown in FIG. As shown in FIG. 1, PAC12, a divalent acid, was neutralized in two stages. PAC12 of the pK 1 and pK 2 of apparent was calculated respectively 4.22 and 9.41.

(実施例6:界面活性の評価)
バイアル瓶内で、種々の濃度となるようにBPAC12を水に溶解した。各濃度の水溶液をシャーレに移し、ウィルヘルミー法による表面張力測定装置(協和界面科学社製、製品名「DY−500」)を用いて、水に対するBPAC12の表面張力を測定した。この結果を図2(a)に示す。図2(a)に示すように、BPAC12は、室温の水中において、沈殿を伴うことなく水に良好に分散・溶解して表面張力を低下させた、すなわち界面活性を示した。また、図2(a)のグラフで表面張力が一定値となる濃度から、臨界ミセル濃度(CMC)を決定した。
(Example 6: Evaluation of surface activity)
BPAC12 was dissolved in water to various concentrations in vials. The aqueous solution of each concentration was transferred to a petri dish, and the surface tension of BPAC12 with respect to water was measured using a surface tension measuring device by Wilhelmy method (product name “DY-500” manufactured by Kyowa Interface Science Co., Ltd.). The result is shown in FIG. As shown in FIG. 2A, BPAC12 was dispersed and dissolved well in water at room temperature without precipitation and reduced the surface tension, that is, BPAC12 exhibited surface activity. Further, the critical micelle concentration (CMC) was determined from the concentration at which the surface tension became a constant value in the graph of FIG.

同様の方法でPAC12の表面張力を測定した。この結果を図2(b)に示す。図2(b)に示すように、PAC12は、室温の水中において、沈殿を伴うことなく良好に分散・溶解し、BPAC12と比べてより低濃度で優れた表面張力低下能を発揮した。PAC12の界面活性に対する解離度の影響を明らかにするため、同様の方法で、PAC12−1ナトリウム塩(以下、「PAC12−1Na」と記載することがある)、およびPAC12−2ナトリウム塩(以下、「PAC12−2Na」と記載することがある)の表面張力を測定した。その結果を図2(b)に示す。なお、PAC12−1NaおよびPAC12−2Naは、PAC12に対して、1当量および2当量の水酸化ナトリウムをそれぞれ加えることにより調製した。   The surface tension of PAC12 was measured in the same manner. The result is shown in FIG. As shown in FIG. 2B, PAC12 dispersed and dissolved well in water at room temperature without precipitation, and exhibited excellent surface tension lowering ability at a lower concentration than BPAC12. In order to clarify the influence of the degree of dissociation on the surface activity of PAC12, PAC12-1 sodium salt (hereinafter sometimes referred to as "PAC12-1Na") and PAC12-2 sodium salt (hereinafter referred to as "PAC12-1Na") are similarly used. (Sometimes referred to as "PAC12-2Na"). The result is shown in FIG. PAC12-1Na and PAC12-2Na were prepared by adding 1 equivalent and 2 equivalents of sodium hydroxide to PAC12, respectively.

BPAC12、PAC12、PAC12−1Na、およびPAC12−2Naの臨界ミセル濃度と、このときの表面張力(γCMC)を表1に示す。BPAC12、PAC12、PAC12−1Na、およびPAC12−2Naは、いずれも界面活性を示すことが明らかになった。 Table 1 shows the critical micelle concentrations of BPAC12, PAC12, PAC12-1Na, and PAC12-2Na, and the surface tension (γ CMC ) at this time. It was revealed that BPAC12, PAC12, PAC12-1Na, and PAC12-2Na all show surface activity.

Figure 2020002085
Figure 2020002085

(実施例7:中空状粒子形成能の評価)
BPAC12、PAC12、PAC12−1Na、およびPAC12−2Naの中空状粒子形成能を、動的光散乱測定により評価した。バイアル瓶内で10mMのBPAC12水溶液を調製し一晩静置した。開口径0.45μmのPVDFシリンジフィルターでこの溶液を濾過して不純物を除去した後、光散乱光度計(大塚電子社製、製品名「DLS−7000」)を用いて動的光散乱測定を行った。この測定では、光源にArレーザー(波長488nm)を用い、散乱角度を90°に設定した。同様の方法で、20mMのPAC12、PAC12−1Na、およびPAC12−2Naのそれぞれの動的光散乱測定を行った。その結果を表2に示す。
(Example 7: Evaluation of hollow particle forming ability)
The ability of BPAC12, PAC12, PAC12-1Na, and PAC12-2Na to form hollow particles was evaluated by dynamic light scattering measurement. A 10 mM aqueous solution of BPAC12 was prepared in a vial and allowed to stand overnight. After filtering this solution through a PVDF syringe filter with an opening diameter of 0.45 μm to remove impurities, dynamic light scattering measurement was performed using a light scattering photometer (manufactured by Otsuka Electronics Co., Ltd., product name “DLS-7000”). Was. In this measurement, an Ar laser (wavelength: 488 nm) was used as a light source, and the scattering angle was set to 90 °. In the same manner, dynamic light scattering measurement of each of 20 mM PAC12, PAC12-1Na, and PAC12-2Na was performed. Table 2 shows the results.

Figure 2020002085
Figure 2020002085

表2に示すように、BPAC12は、平均粒子径71.5±14.8nmの巨大会合体を形成することが確認された。PAC12も、平均粒子径71.6±24.3nmの巨大会合体を形成した。PAC12は、解離度が増加する、すなわちナトリウム原子に置換されている水素原子数が増加するに従って、平均粒子径が31.1±5.2nm、27.6±5.5nmと小さくなることがわかった。いずれも、一般的な界面活性剤が水中で形成する粒子径数nmのミセルではなく、中空の巨大会合体が観測された。   As shown in Table 2, it was confirmed that BPAC12 formed a large aggregate having an average particle diameter of 71.5 ± 14.8 nm. PAC12 also formed a large aggregate having an average particle size of 71.6 ± 24.3 nm. It is found that the average particle diameter of PAC12 decreases as 31.1 ± 5.2 nm and 27.6 ± 5.5 nm as the degree of dissociation increases, that is, as the number of hydrogen atoms replaced with sodium atoms increases. Was. In each case, a large hollow aggregate was observed instead of a micelle having a particle size of several nm formed by a general surfactant in water.

(実施例8:透過型電子顕微鏡による中空状粒子の観察)
10%メタノール水溶液にPAC12を溶解して、50mMのPAC12溶液を調製した。開口径0.45μmのPVDFシリンジフィルターでこの溶液を濾過して不純物を除去した。スラッシュ窒素を用いてこの濾液を浸漬凍結させた。凍結割断レプリカ作製装置内で、冷却ナイフを用いて中空状粒子を切断して観察面を得た。この観察面に白金を蒸着し、さらにカーボンコーティング処理をしてレプリカ膜を得た。
(Example 8: Observation of hollow particles with a transmission electron microscope)
PAC12 was dissolved in a 10% aqueous methanol solution to prepare a 50 mM PAC12 solution. This solution was filtered with a PVDF syringe filter having an opening diameter of 0.45 μm to remove impurities. The filtrate was immersed and frozen using slush nitrogen. The hollow particles were cut using a cooling knife in a freeze-fracture replica manufacturing apparatus to obtain an observation surface. Platinum was vapor-deposited on the observation surface, and further subjected to a carbon coating treatment to obtain a replica film.

フリーズフラクチャー透過型電子顕微鏡(日本電子株式会社製、製品名「JEM−1010」)を用いて、加速電圧を100kVに設定して、このレプリカ膜を観察した。この結果を図3に示す。図3に示すように、直径約180nmの球状の粒子が観測されたことから、PAC12が水中で形成する巨大会合体は、球状の中空状粒子であることが明らかとなった。   Using a freeze-fracture transmission electron microscope (manufactured by JEOL Ltd., product name “JEM-1010”), the acceleration voltage was set to 100 kV, and the replica film was observed. The result is shown in FIG. As shown in FIG. 3, spherical particles having a diameter of about 180 nm were observed, which revealed that the giant aggregate formed by the PAC 12 in water was spherical hollow particles.

(実施例9:膜形成能の評価)
7.5wt%のPAC12水溶液を調製し、ヒートガンを用いた加熱とボルテックスミキサーによる撹拌を繰り返した。この水溶液を室温で1時間静置した後、ガラス基板上に塗布した。この塗布物の上に偏光フィルターを設置して、光学顕微鏡(OLYMPUS社製、製品名「BX41」)で観察した。この結果を図4(a)に示す。図4(a)に示すように、ガラス基板上に塗布したPAC12は、ラメラ液晶に特有のテクスチャーが観測された。これより、PAC12は基板上で膜構造を形成しやすいことが明らかとなった。
(Example 9: Evaluation of film forming ability)
A 7.5 wt% aqueous solution of PAC12 was prepared, and heating with a heat gun and stirring with a vortex mixer were repeated. This aqueous solution was allowed to stand at room temperature for 1 hour, and then applied on a glass substrate. A polarizing filter was placed on the coated material, and observed with an optical microscope (manufactured by OLYMPUS, product name “BX41”). This result is shown in FIG. As shown in FIG. 4A, in PAC12 applied on a glass substrate, a texture unique to lamella liquid crystal was observed. From this, it became clear that PAC12 easily formed a film structure on the substrate.

同様の方法で、ガラス基板上に塗布したPAC12−1NaおよびPAC12−2Naを光学顕微鏡で観察した。PAC12−1Naの観察結果を図4(b)に、PAC12−2Naの観察結果を図4(c)にそれぞれ示す。図4(b)に示すように、PAC12−1Naはラメラ液晶を形成するものの、図4(c)に示すように、PAC12−2Naはラメラ液晶を形成しないことがわかった。   In a similar manner, PAC12-1Na and PAC12-2Na applied on the glass substrate were observed with an optical microscope. FIG. 4B shows the observation results of PAC12-1Na, and FIG. 4C shows the observation results of PAC12-2Na. As shown in FIG. 4B, PAC12-1Na forms lamellar liquid crystals, but as shown in FIG. 4C, PAC12-2Na does not form lamellar liquid crystals.

(実施例10:固体基板上における被膜形成)
1mLのエタノールにPAC12を溶解して5mMのPAC12溶液を調製した。この溶液にマイカ基板(1cm×1cm)を5時間浸漬させた。その後、5mLのエタノールでこのマイカ基板表面を洗浄することにより、マイカ基板上の未反応のPAC12を除去した。得られたマイカ基板の表面形状を原子間力顕微鏡(セイコーインスツル社製「SPI4000」)を用い、タッピングモードによって観察した。
(Example 10: film formation on solid substrate)
PAC12 was dissolved in 1 mL of ethanol to prepare a 5 mM PAC12 solution. A mica substrate (1 cm × 1 cm) was immersed in this solution for 5 hours. Thereafter, the mica substrate surface was washed with 5 mL of ethanol to remove unreacted PAC12 on the mica substrate. The surface shape of the obtained mica substrate was observed in an tapping mode using an atomic force microscope ("SPI4000" manufactured by Seiko Instruments Inc.).

PAC12で処理する前とPAC12で処理した後のマイカ基板表面の原子間力顕微鏡写真を、図5(a)と図5(b)にそれぞれに示す。なお、それぞれの表面写真の下方に示す数値と色は、基板表面からの高さとその高さを表す色を示している。図5(a)に示すように、PAC12で処理する前のマイカ基板の表面は、凹凸のない平坦な表面であることが確認できる。これに対して、図5(b)に示すように、PAC12で処理した後のマイカ基板には高さ数nmのドメインが認められ、マイカ基板にPAC12被膜が形成されていることが観察された。   Atomic force micrographs of the surface of the mica substrate before and after treatment with PAC12 are shown in FIGS. 5A and 5B, respectively. In addition, the numerical value and color shown below each surface photograph indicate the height from the substrate surface and the color indicating the height. As shown in FIG. 5A, it can be confirmed that the surface of the mica substrate before the treatment with the PAC 12 is a flat surface without any irregularities. On the other hand, as shown in FIG. 5B, a domain having a height of several nm was observed on the mica substrate after the treatment with PAC12, and it was observed that a PAC12 film was formed on the mica substrate. .

本発明の有機リン化合物は、室温の水中で中空状粒子を形成する。この中空状粒子は、保存安定性に優れているので、化粧品や医薬品等の外用剤、肥料、農薬、展着剤、および表面処理剤等として利用できる。   The organic phosphorus compound of the present invention forms hollow particles in water at room temperature. Since the hollow particles have excellent storage stability, they can be used as external preparations for cosmetics and pharmaceuticals, fertilizers, agricultural chemicals, spreading agents, surface treatment agents, and the like.

Claims (9)

リン原子を含有する親水性基と、炭化水素基とを有し、1つの前記リン原子と、前記炭化水素基を構成する1つの炭素原子とが、−C=C−を介して結合されている化学構造を有する有機リン化合物またはその塩。   A phosphorus atom-containing hydrophilic group and a hydrocarbon group, wherein one phosphorus atom and one carbon atom constituting the hydrocarbon group are bonded via -C = C- Organic phosphorus compound having a chemical structure or a salt thereof. 請求項1において、
下記式(A)で表される有機リン化合物またはその塩。
Figure 2020002085
(式(A)中、R1は炭素数2以上20以下の炭化水素基を表す。)
In claim 1,
An organic phosphorus compound represented by the following formula (A) or a salt thereof.
Figure 2020002085
(In the formula (A), R 1 represents a hydrocarbon group having 2 to 20 carbon atoms.)
請求項2において、
前記R1が直鎖オクチレン基である有機リン化合物またはその塩。
In claim 2,
An organic phosphorus compound or a salt thereof, wherein R 1 is a straight-chain octylene group.
請求項1において、
下記式(B)で表される有機リン化合物またはその塩。
Figure 2020002085
(式(B)中、R2は炭素数2以上20以下の炭化水素基を表す。)
In claim 1,
An organic phosphorus compound represented by the following formula (B) or a salt thereof.
Figure 2020002085
(In the formula (B), R 2 represents a hydrocarbon group having 2 to 20 carbon atoms.)
請求項4において、
前記R2が炭素数10以上16以下の直鎖アルキル基である有機リン化合物またはその塩。
In claim 4,
The organic phosphorus compound or a salt thereof, wherein R 2 is a linear alkyl group having 10 to 16 carbon atoms.
請求項2から5のいずれかの有機リン化合物またはその塩と、親水性液体とを有する混合物。   A mixture comprising the organic phosphorus compound according to any one of claims 2 to 5 or a salt thereof, and a hydrophilic liquid. 請求項2から5のいずれかの有機リン化合物またはその陰イオンを主成分とする中空状粒子。   6. Hollow particles mainly comprising the organic phosphorus compound according to claim 2 or an anion thereof. 請求項2から5のいずれかの有機リン化合物またはその塩と、親水性液体とを混合する混合工程を有する請求項6の中空状粒子の製造方法。   The method for producing hollow particles according to claim 6, comprising a mixing step of mixing the organic phosphorus compound or a salt thereof according to any one of claims 2 to 5 with a hydrophilic liquid. 請求項7の中空状粒子を含有する化粧料、肥料、農薬、展着剤、または表面処理剤。   A cosmetic, a fertilizer, a pesticide, a spreading agent, or a surface treatment agent containing the hollow particles according to claim 7.
JP2018124404A 2018-06-29 2018-06-29 Organophosphorus compounds Active JP7065513B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018124404A JP7065513B2 (en) 2018-06-29 2018-06-29 Organophosphorus compounds
JP2022046289A JP7312489B2 (en) 2018-06-29 2022-03-23 organophosphorus compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124404A JP7065513B2 (en) 2018-06-29 2018-06-29 Organophosphorus compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022046289A Division JP7312489B2 (en) 2018-06-29 2022-03-23 organophosphorus compounds

Publications (2)

Publication Number Publication Date
JP2020002085A true JP2020002085A (en) 2020-01-09
JP7065513B2 JP7065513B2 (en) 2022-05-12

Family

ID=69098605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124404A Active JP7065513B2 (en) 2018-06-29 2018-06-29 Organophosphorus compounds

Country Status (1)

Country Link
JP (1) JP7065513B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283858A (en) * 1986-05-30 1987-12-09 株式会社東芝 Organic binder for ceramic
JP2005511748A (en) * 2001-12-11 2005-04-28 ラボラトワール マヨリー スピンドレ Phosphonates useful as modulators of T-gamma-9-delta-2 lymphocyte activity
JP2007051104A (en) * 2005-08-19 2007-03-01 National Institute Of Advanced Industrial & Technology Method for producing epoxy-group-containing phosphorus compound
JP2010526081A (en) * 2007-04-30 2010-07-29 コルゲート・パーモリブ・カンパニー Oral care composition for reducing or eliminating dental sensitivity
WO2011130370A1 (en) * 2010-04-14 2011-10-20 Isp Investments Inc. Polymers having acid and amide moieties, and uses thereof
JP2018086699A (en) * 2016-11-29 2018-06-07 東洋インキScホールディングス株式会社 Quantum dot and quantum dot-containing composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283858A (en) * 1986-05-30 1987-12-09 株式会社東芝 Organic binder for ceramic
JP2005511748A (en) * 2001-12-11 2005-04-28 ラボラトワール マヨリー スピンドレ Phosphonates useful as modulators of T-gamma-9-delta-2 lymphocyte activity
JP2007051104A (en) * 2005-08-19 2007-03-01 National Institute Of Advanced Industrial & Technology Method for producing epoxy-group-containing phosphorus compound
JP2010526081A (en) * 2007-04-30 2010-07-29 コルゲート・パーモリブ・カンパニー Oral care composition for reducing or eliminating dental sensitivity
WO2011130370A1 (en) * 2010-04-14 2011-10-20 Isp Investments Inc. Polymers having acid and amide moieties, and uses thereof
JP2018086699A (en) * 2016-11-29 2018-06-07 東洋インキScホールディングス株式会社 Quantum dot and quantum dot-containing composition

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HAGMEYER, DANIEL; GANESAN, KATHIRVEL; RUESING, JOHANNES; SCHUNK, DANIEL; MAYER, CHRISTIAN; DEY, A: "Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acid", JOURNAL OF MATERIALS CHEMISTRY, vol. 21(25),, JPN7022000353, 2011, pages 9219 - 9223, ISSN: 0004691306 *
KIM, BO-SEUNG; KIM, BEOM-TAE; HWANG, KI-JUN: "A practical method to cleave diphenyl phosphonate esters to their corresponding phosphonic acids i", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 30(6),, JPN6022003118, 2009, pages 1391 - 1393, ISSN: 0004691304 *
MAFUNDA, BROWNLEE G.; MODRO, AGNES M.; MODRO, TOMASZ A.; STRAUSS, ERICK; STRYDOM, CHRISTIEN A.: "Thermal fragmentation of 2-chloropentylphosphonic salts in the solid state. Counter-ion effects on r", HETEROATOM CHEMISTRY, vol. 8(5),, JPN6022003119, 1997, pages 421 - 428, ISSN: 0004691305 *
NGO, HELEN L.; HU, AIGUO; LIN, WENBIN: "Molecular building block approaches to chiral porous zirconium phosphonates for asymmetric catalysis", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 215(1-2),, JPN6022003117, 2004, pages 177 - 186, ISSN: 0004691303 *
OKAMOTO, YOSHIKI; NITTA, TSUTOMU; SAKURAI, HIROSHI: "Preparation of long-chain alkenephosphonic acid derivatives. II. Preparation by the addition of pho", 油化学, vol. 18(12),, JPN6022003115, 1969, pages 882 - 5, ISSN: 0004691302 *
SEN, UNAL; ERKARTAL, MUSTAFA; KUNG, CHUNG-WEI; RAMANI, VIJAY; HUPP, JOSEPH T.; FARHA, OMAR K.: "Proton Conducting Self-Assembled Metal-Organic Framework/Polyelectrolyte Hollow Hybrid Nanostruct", ACS APPLIED MATERIALS & INTERFACES, vol. 8(35),, JPN6022003121, 2016, pages 23015 - 23021, ISSN: 0004691307 *

Also Published As

Publication number Publication date
JP7065513B2 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP2009242423A (en) Coated particle, its production method and using method
BE1021290B1 (en) NEW AGRICULTURAL AND DETERGENT COMPOSITIONS CONTAINING A TERTIARY AMIDE AS A SUBSTANCE OR A SURFACE-ACTIVE SUBSTANCE
Das et al. Synthesis of two biofriendly anionic surfactants (Nn-decanoyl-L-valine and Nn-decanoyl-L-leucine) and their mixed micellization with nonionic surfactant Mega-10 in Tris-buffer medium at pH 9
Nyuta et al. Adsorption and aggregation properties of heterogemini surfactants containing a quaternary ammonium salt and a sugar moiety
CN108779065A (en) The aqueous solution of N- acyl-amino acids
JP7065513B2 (en) Organophosphorus compounds
JP7312489B2 (en) organophosphorus compounds
Rub et al. Aggregation and surface phenomena of amitriptyline hydrochloride and cationic benzethonium chloride surfactant mixture in different media
Adalder et al. Molecular and crystal engineering approaches towards the design of functional supramolecular gelators
US5370877A (en) Method for improving delivery and reducing toxicity of biologically active substances using novel α-amino dicarboxylic acid derivatives
TW201741280A (en) N-alkyldiamide compounds and gels comprising the same
Jia et al. Green synthesis, surface activity, micellar aggregation, and foam properties of amide quaternary ammonium surfactants
BRPI0715012A2 (en) pesticide formulation with flow birefringence
Panda et al. Formation of mixed micelles of the environmentally acceptable oxy-diester-linked gemini surfactants with Brij 58
CN1372438A (en) Hybrid ionic phosphorus surfactant adjuvants for bioactive compositions
JP2009195885A (en) Method of preparing aqueous emulsion by using surface-active organic compound as emulsifier
JP5881042B2 (en) Method for producing hydrophilic nanoparticles for producing emulsion
Jaeger et al. Quaternary ammonium O, O′-dialkylphosphorodithioate surfactants and their reactions with 2-chloroethyl phenyl sulfide, a mustard simulant
Al-Ali et al. New catanionic amphiphiles derived from the associative systems (α-hydroxyalkyl)-phosphinic or (α-hydroxyalkyl)-phosphonic acid/cetyltrimethylammonium hydroxide. preparation, characterization, and self-organization properties
US2789044A (en) Method of destroying vegetation
RU2356229C2 (en) Herbicidal agent and method of its preparation
Yu et al. Synthesis of Novel Zwitterionic Heterogemini Surfactants Derived from Fatty Acid and Investigation of Their Behavior at the Air-Water Interface
JPWO2015022944A1 (en) Method for reducing interface free energy and composition with reduced interface free energy
JPS63502827A (en) Alkali metal glyphosate dry method
Lin et al. Oxypropylene chain length affects the physicochemical properties of ortho ester-based gemini surfactants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

R150 Certificate of patent or registration of utility model

Ref document number: 7065513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150