JP2020001961A - Heater for hydrogen sulfide reactor and manufacturing method therefor - Google Patents

Heater for hydrogen sulfide reactor and manufacturing method therefor Download PDF

Info

Publication number
JP2020001961A
JP2020001961A JP2018122895A JP2018122895A JP2020001961A JP 2020001961 A JP2020001961 A JP 2020001961A JP 2018122895 A JP2018122895 A JP 2018122895A JP 2018122895 A JP2018122895 A JP 2018122895A JP 2020001961 A JP2020001961 A JP 2020001961A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
heater
sulfur
reactor
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018122895A
Other languages
Japanese (ja)
Other versions
JP7115064B2 (en
Inventor
玲生 中尾
Reo Nakao
玲生 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018122895A priority Critical patent/JP7115064B2/en
Publication of JP2020001961A publication Critical patent/JP2020001961A/en
Application granted granted Critical
Publication of JP7115064B2 publication Critical patent/JP7115064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a heater having enhanced corrosion resistance, usable even in a reactor exposed to high corrosion atmosphere, and a manufacturing method therefor.SOLUTION: There is provided a manufacturing method of a heater 12 used by impregnating the same into a melting sulfur S stored in a hydrogen sulfide reactor 10 for producing hydrogen sulfide by introducing a hydrogen gas to the melting sulfide S, for example consisting of an electric heater, in which a silicone acrylic coating containing an aluminum powder with a content of preferably 35 vol.% to 45 vol.% is applied to a surface of a stainless-made member, which becomes a liquid contact part with the melting sulfur S so that film thickness is preferably 40 μm to 50 μm, and then a galling coating is conducted by a heat treatment at suitably atmosphere temperature of 600°C or higher for 2 hrs. or longer.SELECTED DRAWING: None

Description

本発明は、硫化水素反応器内において溶融硫黄に浸漬する位置に設置されるヒーター及びその製造方法に関する。   The present invention relates to a heater installed at a position immersed in molten sulfur in a hydrogen sulfide reactor and a method for manufacturing the same.

硫化水素は工業的に重要な中間生成物であり、例えば特許文献1に記載のように、ニッケル酸化鉱石を湿式製錬法で処理するプラントにおいて、低ニッケル品位の酸化鉱石を酸浸出して得たニッケル及びコバルトを含む硫酸酸性溶液の硫化処理に硫化水素が用いられている。一般的には硫化水素は鉱油の水素化脱硫処理や天然ガスの酸性ガス除去処理から回収したり、硫黄と水素とを反応させたりすることで工業的に製造されている。   Hydrogen sulfide is an industrially important intermediate product. For example, as described in Patent Document 1, in a plant for treating nickel oxide ore by a hydrometallurgical process, low-grade nickel oxide ore is obtained by acid leaching. Hydrogen sulfide is used for the sulfurizing treatment of a sulfuric acid solution containing nickel and cobalt. Generally, hydrogen sulfide is industrially produced by recovering from hydrodesulfurization treatment of mineral oil or acid gas removal treatment of natural gas, or by reacting sulfur with hydrogen.

後者の硫黄と水素との反応による硫化水素の製造では、例えば特許文献2、3及び4に記載のように、溶融状態の硫黄中に水素ガスを導入することによって硫黄をガス化すると共に、該ガス化した硫黄と水素との気相中での発熱反応により硫化水素を生成することが一般的に行われている。   In the latter production of hydrogen sulfide by the reaction between sulfur and hydrogen, for example, as described in Patent Documents 2, 3, and 4, gaseous sulfur is introduced by introducing hydrogen gas into sulfur in a molten state. It is common practice to generate hydrogen sulfide by an exothermic reaction of gasified sulfur and hydrogen in the gas phase.

上記の硫黄と水素との反応速度を高めると共に硫化水素収率を高めるためには、標準条件よりも高い温度条件で反応を行うのが好ましく、また、生成した硫化水素の用途によっては、生成した硫化水素を例えば500kPaG以上の圧力で供給することが必要になる場合があり、この場合は当該500kPaG以上の圧力条件下で硫化水素を生成することで効率が良くなることがある。このように、高圧条件下で硫化水素を生成する場合は、当該高圧条件下においても溶融状態の硫黄のガス化が十分に進むように、硫黄の温度を高めに維持することになる。   In order to increase the rate of reaction between sulfur and hydrogen and increase the yield of hydrogen sulfide, it is preferable to carry out the reaction at a higher temperature condition than the standard condition, and, depending on the use of the generated hydrogen sulfide, In some cases, it is necessary to supply hydrogen sulfide at a pressure of, for example, 500 kPaG or more. In this case, efficiency may be improved by generating hydrogen sulfide under the pressure condition of 500 kPaG or more. As described above, when hydrogen sulfide is generated under high-pressure conditions, the temperature of sulfur is maintained at a high temperature so that gasification of sulfur in a molten state proceeds sufficiently even under the high-pressure conditions.

特開2010−126778号公報JP 2010-126778 A 特表2015−520111号公報Japanese Unexamined Patent Publication No. 2015-520111 国際公開第2013/027431号WO 2013/027431 特開2014−152090号公報JP 2014-152090 A

上記したような硫黄と水素との反応によって硫化水素を生成する場合は、その生成時の温度条件が450℃以上になると、生成した硫化水素による反応器の材料の腐食が顕著になることがあった。特に、反応器内において硫黄のガス化のための熱を供給するヒーターは、高温の溶融状態の硫黄に浸漬された状態で使用されるため、その表面は水素ガス及び硫化水素ガスを含んだ溶融状態の硫黄が常時接することになる。そのため、該ヒーターの表面の接液部の材質に耐腐食性材料であるステンレスを用いても、上記ガスを含んだ溶融硫黄による硫化反応等により腐食が進行することがあった。従って、高い反応速度を確保するために硫化水素反応槽等の反応器内を高温高圧の条件下に維持する場合であっても腐食しにくい反応器が求められていた。   In the case where hydrogen sulfide is generated by the reaction between sulfur and hydrogen as described above, if the temperature condition at the time of the generation becomes 450 ° C. or higher, corrosion of the material of the reactor due to the generated hydrogen sulfide may become remarkable. Was. In particular, the heater that supplies heat for gasification of sulfur in the reactor is used in a state of being immersed in high-temperature molten sulfur, so the surface of the heater contains hydrogen gas and hydrogen sulfide gas. State sulfur will be in constant contact. Therefore, even when stainless steel, which is a corrosion-resistant material, is used as the material of the liquid contact portion on the surface of the heater, corrosion sometimes progresses due to a sulfurization reaction or the like by molten sulfur containing the above gas. Accordingly, there has been a demand for a reactor which is resistant to corrosion even when the inside of a reactor such as a hydrogen sulfide reaction tank is maintained under high temperature and high pressure conditions in order to secure a high reaction rate.

従来、上記ヒーターの接液部の腐食を防止するため、ステンレス製の接液部の表面に硫化に対して耐性のあるアルミナ層を設けることがあった。具体的には、瀝青炭とアルミニウム粉末とを含む塗料をステンレス製の接液部の表面に塗布した後に約1000℃で熱処理を行う焼付塗装を行うことで、ステンレス表面にアルミナ層を設け、これによりステンレス表面の耐食性を高めることが行われていた。しかしながら、この方法は焼付塗装時の熱処理条件が約1000℃と極めて高いため、温度コントロールが非常に難しいという問題を有していた。また、焼付塗装時にSOxやNOxといった環境汚染物質が発生するという問題も有していた。本発明は上記した実情に鑑みてなされたものであり、常時高い腐食性雰囲気にさらされる硫化水素反応器の内部に設置しても腐食しにくいヒーターを提供することを目的とする。   Conventionally, in order to prevent corrosion of the liquid contact part of the heater, there has been a case where an alumina layer having resistance to sulfidation is provided on the surface of the stainless steel liquid contact part. Specifically, by applying a paint containing bituminous coal and aluminum powder to the surface of the wetted part made of stainless steel and then performing a bake coating that performs a heat treatment at about 1000 ° C., thereby providing an alumina layer on the stainless steel surface, Increasing the corrosion resistance of the stainless steel surface has been performed. However, this method has a problem that the temperature control is very difficult because the heat treatment conditions at the time of baking coating are as high as about 1000 ° C. There is also a problem that environmental pollutants such as SOx and NOx are generated during baking coating. The present invention has been made in view of the above circumstances, and has as its object to provide a heater which is hardly corroded even when installed inside a hydrogen sulfide reactor which is always exposed to a highly corrosive atmosphere.

上記目的を達成するため、本発明に係る硫化水素反応器用のヒーターの製造方法は、溶融硫黄に水素ガスを導入することで硫化水素の生成を行う硫化水素反応器の内部に貯留する該溶融硫黄に浸漬させて使用するヒーターの製造方法であって、該溶融硫黄との接液部となるステンレス製部材の表面にアルミニウム粉を含むシリコンアクリル塗料を焼付塗装することを特徴としている。   In order to achieve the above object, a method for producing a heater for a hydrogen sulfide reactor according to the present invention comprises the steps of: introducing hydrogen gas into molten sulfur to generate hydrogen sulfide; A method of manufacturing a heater to be immersed in a stainless steel member, characterized in that a silicon acrylic paint containing aluminum powder is baked on the surface of a stainless steel member to be in contact with the molten sulfur.

また、本発明に係る硫化水素反応器用のヒーターは、溶融硫黄に水素ガスを導入することで硫化水素の生成を行う硫化水素反応器の内部に貯留する該溶融硫黄に浸漬させて使用するヒーターであって、該溶融硫黄との接液部となるステンレス製部材の表面がアルミニウム粉を含有するシリコンアクリル塗料で焼付塗装されていることを特徴としている。   Further, the heater for the hydrogen sulfide reactor according to the present invention is a heater that is used by being immersed in the molten sulfur stored inside the hydrogen sulfide reactor that generates hydrogen sulfide by introducing hydrogen gas into the molten sulfur. The surface of the stainless steel member which is in contact with the molten sulfur is baked and coated with a silicon acrylic paint containing aluminum powder.

本発明によれば、高い腐食性環境にある硫化水素反応器内において溶融硫黄中に浸漬させてヒーターを使用する場合であってもその接液部の腐食を抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, even when it is immersed in molten sulfur in a hydrogen sulfide reactor in a highly corrosive environment, and a heater is used, corrosion of the liquid contact part can be suppressed.

本発明の実施形態のヒーターが好適に設置される硫化水素反応器を備えた硫化水素ガス製造プラントの概略構成図である。It is a schematic structure figure of a hydrogen sulfide gas manufacture plant provided with a hydrogen sulfide reactor where a heater of an embodiment of the present invention is installed suitably. 本発明の実施例で使用した焼付塗装後の半割り短管の外周面(a)及びこれを電気ヒーターに取り付けた時(b)の写真である。It is a photograph of the outer peripheral surface (a) of the half pipe | tube after baking coating used in the Example of this invention, and this when attached to an electric heater (b). 図2の半割り短管を取り付けた電気ヒーターを硫化水素反応器内で1年間に亘って使用した後の該短管の外周面の写真である。3 is a photograph of the outer peripheral surface of the short pipe after using the electric heater to which the short pipe of FIG. 2 is attached in a hydrogen sulfide reactor for one year.

以下、本発明の実施形態に係る硫化水素反応器用のヒーター及びその製造方法について説明する。先ず、本発明の実施形態のヒーターが設置される硫化水素反応器を備えた硫化水素ガス製造プラントについて図1を参照しながら説明する。硫化水素ガス製造プラントには、触媒が充填された反応器内で硫黄ガスと水素ガスとを反応させる触媒反応方式のものと、触媒のない気相部で硫黄ガスと水素ガスとを反応させる無触媒反応方式のものとに主に分類される。以下の説明では無触媒方式の硫化水素ガス製造プラントの反応器に本発明の実施形態のヒーターを採用する場合を例に挙げて説明するが、これに限定するものではなく、触媒反応方式のプラントに本発明のヒーターを採用してもよい。   Hereinafter, a heater for a hydrogen sulfide reactor and a method for manufacturing the same according to an embodiment of the present invention will be described. First, a hydrogen sulfide gas production plant including a hydrogen sulfide reactor provided with a heater according to an embodiment of the present invention will be described with reference to FIG. A hydrogen sulfide gas production plant has a catalytic reaction system in which sulfur gas and hydrogen gas are reacted in a reactor filled with a catalyst, and a non-catalytic reaction system in which sulfur gas and hydrogen gas are reacted in a gas phase part without catalyst. It is mainly classified into the catalytic reaction type. In the following description, an example in which the heater of the embodiment of the present invention is employed in a reactor of a non-catalytic hydrogen sulfide gas production plant will be described. However, the present invention is not limited thereto. The heater according to the present invention may be employed.

具体的に説明すると、図1に示す硫化水素ガス製造プラントは、触媒を用いずに高温高圧の反応条件下で硫黄ガスと水素ガスとから硫化水素ガスの生成を行う反応器10と、該反応器10の頂部から排出される硫化水素ガスを冷却水などの冷媒を用いて例えば50℃程度まで冷却する熱交換器などからなる冷却手段20a、20bと、該冷却手段20a、20bによって液化された硫黄を含む硫化水素ガスを導入して液滴状又は粒状の硫黄を重力により沈降させて硫化水素ガスから分離する例えばノックアウトドラムなどからなる分離手段30と、上記の冷却手段20a、20b及び分離手段30から抜き出された溶融状態の硫黄を一時的に受け入れるブローダウン手段40とで主に構成されている。なお、冷却手段20a、20bは同一の装置が並列して設けられており、これらを交互に切り替えて運転することで硫黄による閉塞を防ぐことが可能になる。   More specifically, the hydrogen sulfide gas production plant shown in FIG. 1 includes a reactor 10 for producing hydrogen sulfide gas from sulfur gas and hydrogen gas under high-temperature and high-pressure reaction conditions without using a catalyst; Cooling means 20a and 20b comprising a heat exchanger for cooling the hydrogen sulfide gas discharged from the top of the vessel 10 to, for example, about 50 ° C. using a coolant such as cooling water, and liquefied by the cooling means 20a and 20b A separating means 30 comprising, for example, a knockout drum or the like, for introducing a hydrogen sulfide gas containing sulfur to sediment droplet-shaped or granular sulfur by gravity and separating the sulfur from the hydrogen sulfide gas; and the cooling means 20a, 20b and the separating means And a blow-down means 40 for temporarily receiving the sulfur in a molten state extracted from the fuel cell 30. Note that the same devices are provided in parallel for the cooling means 20a and 20b, and by alternately operating them, it is possible to prevent clogging with sulfur.

上記の気液分離手段30で硫黄が分離された硫化水素ガスは、例えば前述したニッケル酸化鉱石を湿式製錬法で処理するプラントの脱亜鉛工程や硫化工程等に移送されて硫化剤として使用される。一方、冷却手段20a、20bや分離手段30で硫化水素ガスから分離された硫黄は底部で固化した状態で堆積するので、ノックアウトドラムの下側の外周部に設けられている例えばジャケットやコイルにスチームを導入することで硫黄を溶融してからブローダウン手段40に移送される。ブローダウン手段40に移送された溶融硫黄は、供給ポンプ41を用いて硫黄処理プラントに移送されてそこで処理される。なお、この溶融硫黄は例えば反応器10に供給して繰り返して使用してもよい。   The hydrogen sulfide gas from which sulfur has been separated by the gas-liquid separation means 30 is transferred to, for example, a dezincing step or a sulfurizing step of a plant for treating the above-described nickel oxide ore by a hydrometallurgical method, and is used as a sulfide agent. You. On the other hand, the sulfur separated from the hydrogen sulfide gas by the cooling means 20a, 20b and the separation means 30 is deposited in a solidified state at the bottom, so that, for example, a steam or a steam provided on the outer peripheral portion on the lower side of the knockout drum is provided. The sulfur is then melted by the introduction of the sulfur and then transferred to the blowdown means 40. The molten sulfur transferred to the blowdown means 40 is transferred to a sulfur treatment plant using a supply pump 41 and processed there. The molten sulfur may be supplied to the reactor 10 and used repeatedly, for example.

このように、冷却手段20a、20bや分離手段30によって反応器10にて生成した硫化水素ガスに同伴される硫黄の大部分を回収することができるので、生成した硫化水素ガスの供給先のプラント等においてコントロール弁やマニュアルバルブ等のバルブ類や、温度計や圧力計等の計器類に硫黄が付着して操業上大きな支障となる問題を防ぐことができる。反応器10の系内での熱バランスを調整するため、反応器10の底部から抜き出された高温の溶融硫黄は、硫黄冷却手段50に導入され、ここで例えば150℃程度に冷却された後、循環ポンプ51を介して反応器10の頂部に供給されるようになっている。なお、この冷却手段50で冷却された溶融硫黄は、必要に応じて上記のブローダウン手段40に移送される。   As described above, since most of the sulfur accompanying the hydrogen sulfide gas generated in the reactor 10 can be recovered by the cooling means 20a and 20b and the separation means 30, the plant to which the generated hydrogen sulfide gas is supplied can be recovered. In such a case, it is possible to prevent a problem that sulfur is attached to valves such as a control valve and a manual valve, and instruments such as a thermometer and a pressure gauge, which greatly hinders operation. In order to adjust the heat balance in the system of the reactor 10, the high-temperature molten sulfur extracted from the bottom of the reactor 10 is introduced into the sulfur cooling means 50, where it is cooled to, for example, about 150 ° C. Is supplied to the top of the reactor 10 via the circulation pump 51. The molten sulfur cooled by the cooling means 50 is transferred to the blow-down means 40 as needed.

上記した無触媒反応方式の硫化水素ガス製造プラントは、触媒の初期コスト及びその定期交換の費用や品質管理の費用を含めたメンテナンスコストが不要であるうえ、反応器10の系内の圧力制御の設定値を硫化水素ガスの供給先のプラントの運転圧よりも高めに設定することで、生成した硫化水素ガスを供給先のプラントに移送するためのコンプレッサーやチラー設備等が不要になる。よって、触媒反応方式に比べて操業コストを低減できるという利点を有している。   The hydrogen sulfide gas production plant of the non-catalytic reaction system described above does not require maintenance costs including initial costs for catalysts, costs for periodic replacement thereof, and costs for quality control, and also requires pressure control in the reactor 10 system. By setting the set value higher than the operating pressure of the plant to which the hydrogen sulfide gas is supplied, a compressor or a chiller facility for transferring the generated hydrogen sulfide gas to the plant to which the hydrogen sulfide gas is supplied becomes unnecessary. Therefore, there is an advantage that the operating cost can be reduced as compared with the catalytic reaction method.

次に、上記の反応器10に設置されるヒーターについて説明する。上記の硫化水素ガス製造プラントの反応器10は、溶融状態の硫黄Sを貯留する貯留部11と、該貯留部11の溶融硫黄Sに浸漬するようにして設置される電気ヒーター12と、該貯留部11の該溶融硫黄S内に吹き込まれる水素ガス及び上記電気ヒーターの加熱によって生ずる硫黄ガスを原料として硫化水素ガスの生成反応を行う気相部13と、該気相部13で生成した高温の硫化水素ガスを頂部から供給する150℃程度の溶融硫黄と接触させることで約150℃程度まで冷却するクエンチ部14とから主に構成されている。   Next, the heater installed in the reactor 10 will be described. The reactor 10 of the hydrogen sulfide gas production plant includes a storage unit 11 for storing sulfur S in a molten state, an electric heater 12 installed so as to be immersed in the molten sulfur S in the storage unit 11, A gas phase section 13 for producing hydrogen sulfide gas using hydrogen gas blown into the molten sulfur S of the section 11 and sulfur gas generated by heating of the electric heater as raw materials; The quenching unit 14 mainly cools down to about 150 ° C. by bringing hydrogen sulfide gas into contact with molten sulfur of about 150 ° C. supplied from the top.

なお、硫化水素ガスの生成反応は、貯留部11に導入した水素ガスが溶融硫黄S内を通過する間にもある程度進行する。また反応器10の頂部から供給される溶融硫黄は、生成した硫化水素の冷却と共に反応によって減少する反応器10の系内の硫黄を補充する役割を担っている。反応器10の頂部から排出される硫化水素ガスには、水素ガスが貯留部11内の溶融硫黄Sを通過する際や生成した硫化水素ガスがクエンチ部14を通過する際に同伴される溶融硫黄を含んでいる。   The hydrogen sulfide gas generation reaction proceeds to some extent while the hydrogen gas introduced into the storage unit 11 passes through the molten sulfur S. The molten sulfur supplied from the top of the reactor 10 has a role of replenishing the sulfur in the system of the reactor 10 which is reduced by the reaction with the cooling of the produced hydrogen sulfide. The hydrogen sulfide gas discharged from the top of the reactor 10 includes molten sulfur which is entrained when the hydrogen gas passes through the molten sulfur S in the storage unit 11 and when the generated hydrogen sulfide gas passes through the quench unit 14. Contains.

上記した構造の硫化水素ガス製造プラントの反応器10では、硫化水素ガスの生成反応条件として、例えば内部圧力800kPaG程度、内部温度470℃程度の高温高圧条件で運転される。上記の高温高圧条件下で生成される硫化水素ガスの原料となる硫黄ガスを貯留部11の溶融硫黄Sから発生させるため、呼び径50A〜100A程度のステンレスチューブの内側に電熱コイルが収容された構造の電気ヒーター12が、反応器10の貯留部11の壁部を貫通するようにして挿し込まれている。   The reactor 10 of the hydrogen sulfide gas production plant having the above-described structure is operated under a high-temperature and high-pressure condition of, for example, an internal pressure of about 800 kPaG and an internal temperature of about 470 ° C. as a reaction condition for generating hydrogen sulfide gas. An electric heating coil was housed inside a stainless steel tube having a nominal diameter of about 50A to 100A in order to generate, from the molten sulfur S in the storage section 11, sulfur gas which is a raw material of the hydrogen sulfide gas generated under the high temperature and high pressure conditions. An electric heater 12 having a structure is inserted so as to penetrate the wall of the storage unit 11 of the reactor 10.

上記構造の電気ヒーター12は、反応器10に設けた図示しない温度計で検出した温度が所定の温度範囲内になるようにCPUなどの制御部によって給電制御が行われる。なお、電気ヒーター12は、貯留部11において発生させる硫黄ガスの量に応じて複数基を設置してもよい。この電気ヒーター12は、上記ステンレスチューブのうち溶融硫黄Sに接する接液部の表面がアルミニウム粉を含むシリコンアクリル塗料で焼付塗装されている。これにより、硫化水素ガス及び水素ガスを含んだ高温の溶融硫黄Sに常時接する極めて過酷な腐食性条件下で使用しても、ほとんど腐食が生じなくなる。   The power supply of the electric heater 12 having the above structure is controlled by a control unit such as a CPU so that the temperature detected by a thermometer (not shown) provided in the reactor 10 is within a predetermined temperature range. Note that a plurality of electric heaters 12 may be installed according to the amount of sulfur gas generated in the storage unit 11. In the electric heater 12, the surface of the stainless steel tube in contact with the molten sulfur S is baked with a silicon acrylic paint containing aluminum powder. As a result, even when used under extremely severe corrosive conditions that are constantly in contact with high-temperature molten sulfur S containing hydrogen sulfide gas and hydrogen gas, almost no corrosion occurs.

上記の焼付塗装は、例えばJotun社製のSolvalitt Aluminumのような、シリコンアクリル系の塗料にアルミニウム粉が含まれた塗料を用意し、これを好ましくは塗装膜厚(wet)40〜50μm程度となるように好適にはスプレー塗装によりステンレスチューブの接液面に塗布した後、雰囲気温度600℃以上で2時間以上かけて加熱することで行うのが好ましい。600℃以上で2時間以上かけて加熱する理由は、この熱処理条件であれば表面にアルミナ層を析出させることができ、ステンレスチューブの接液面の防食性をより確実に高めることができるからである。この焼付塗装の熱処理時の雰囲気温度の上限は700℃が好ましく、650℃がより好ましい。700℃を超えると塗膜の性状が変化したり母材に悪影響を及ぼすおそれがあるからである。また、熱処理時間の上限は3時間が好ましい。3時間を超えて熱処理を行っても防食性能はほとんど変わることがなく、かえって熱処理コストがかかるからである。   For the baking coating, for example, a coating material containing aluminum powder in a silicone acrylic coating material such as Solvalitt Aluminum manufactured by Jotun is prepared, and the coating film thickness (wet) is preferably about 40 to 50 μm. As described above, it is preferable that the application is performed by applying the liquid to the surface of the stainless steel tube by spray coating, and then heating at an ambient temperature of 600 ° C. or higher for 2 hours or longer. The reason for heating at 600 ° C. or more for 2 hours or more is that under these heat treatment conditions, an alumina layer can be deposited on the surface, and the corrosion resistance of the wetted surface of the stainless steel tube can be more reliably increased. is there. The upper limit of the ambient temperature during the heat treatment of the baking coating is preferably 700 ° C, more preferably 650 ° C. If the temperature exceeds 700 ° C., the properties of the coating film may change or the base material may be adversely affected. The upper limit of the heat treatment time is preferably 3 hours. This is because even if the heat treatment is performed for more than 3 hours, the anticorrosion performance hardly changes, and the heat treatment cost is rather increased.

上記のように塗装膜厚(wet)を40〜50μmとする理由は、40μm未満では接液部の耐腐食性が不十分になるおそれがあるからであり、逆に50μmを超えてもそれ以上あまり耐腐食性が向上することはなく、かえってコストがかかるからである。なお、上記のアルミニウム粉を含むシリコンアクリル塗料は、焼付塗装の前後で膜厚がほとんど変化しないため、焼付塗装後の皮膜(dry)の好適な膜厚は40〜50μm程度となる。   The reason for setting the coating film thickness (wet) to 40 to 50 μm as described above is that if the coating thickness is less than 40 μm, the corrosion resistance of the wetted portion may be insufficient. This is because the corrosion resistance is not so much improved and the cost is rather increased. In addition, since the film thickness of the silicon acrylic paint containing the aluminum powder hardly changes before and after the baking coating, the preferable film thickness of the coating (dry) after the baking coating is about 40 to 50 μm.

この焼付塗装の前後の膜厚の測定法には特に限定はないが、塗装膜厚(wet)の膜厚は例えばISO 2808 Method 1Aのcomb gaugeを用いて測定するのが好ましく、焼付後の皮膜(dry)の膜厚は例えばSSPC PA2に準拠して測定するのが好ましい。また、上記の膜厚測定に加えて目視による外観検査を行うのが好ましい。   The method for measuring the film thickness before and after the baking coating is not particularly limited, but the coating film thickness (wet) is preferably measured using, for example, a comb gauge of ISO 2808 Method 1A, and the coating after baking is preferably used. The thickness of (dry) is preferably measured, for example, in accordance with SSPC PA2. In addition, it is preferable to perform a visual appearance inspection in addition to the above-described film thickness measurement.

上記のステンレスチューブの接液部の表面は、上記焼付塗装を行う前に例えばケレン1種の第1下地処理と、アルマイトコーティング(金属溶射)の第2下地処理とを施しておくのが好ましい。これら下地処理により塗装ムラや塗装不良等の問題が生じにくくなり、上記焼付塗装の効果を確実に発揮させることができる。また、上記焼付塗装に用いるアルミニウム粉を含むシリコンアクリル塗料は、該アルミニウム粉の含有量が35体積%以上45体積%以下であるのが好ましい。アルミニウム粉の含有量がこの範囲内であれば、焼付塗装後の皮膜に高い耐食性を付与することが可能になる。   It is preferable that the surface of the wetted portion of the stainless steel tube be subjected to, for example, a first undercoating of one kind of kelen and a second undercoating of alumite coating (metal spraying) before the baking coating. By such a base treatment, problems such as uneven coating and poor coating are unlikely to occur, and the effect of the baking coating can be reliably exhibited. Further, in the silicon acrylic paint containing aluminum powder used for the baking coating, the content of the aluminum powder is preferably 35% by volume or more and 45% by volume or less. When the content of the aluminum powder is within this range, it is possible to impart high corrosion resistance to the film after baking.

以上、本発明の実施形態の硫化水素反応器用のヒーター及びその製造方法について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の代替例や変更例等を含むことができる。例えば上記本発明の実施形態のヒーターは電気ヒーターを前提として説明したが、ステンレスチューブの内側に溶融硫黄よりも高温の熱媒体を流すことで加熱する熱交換方式のヒーターでもよい。すなわち、本発明の権利範囲は特許請求の範囲及びその均等の範囲に及ぶものである。   As described above, the heater for the hydrogen sulfide reactor and the method of manufacturing the same according to the embodiment of the present invention have been described. However, the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the spirit of the present invention. Alternatives and modifications may be included. For example, the heater according to the embodiment of the present invention has been described on the assumption that the heater is an electric heater. However, a heater of a heat exchange system in which a heating medium having a higher temperature than molten sulfur is caused to flow inside a stainless steel tube to heat the stainless steel tube may be used. That is, the scope of rights of the present invention covers the claims and their equivalents.

[実施例]
アルミニウム粉を含有するシリコンアクリル塗料を焼付塗装したステンレス部材が、図1に示すような構成の硫化水素ガス製造プラントにおける反応器10の電気ヒーター12の接液部とほぼ同様の条件下にさらされた時の耐腐食性を調べるため、電気ヒーター12の外周面に内周面側がほぼ全面的に当接するサイズのステンレスチューブを用意し、その外周面側を上記の塗料で焼付塗装してから半割りにして電気ヒーター12の外周面にボルトで固定した。この状態で1年間に亘って硫化水素ガス生成の運転を行った。
[Example]
A stainless steel member obtained by baking and coating a silicon acrylic paint containing aluminum powder is exposed under substantially the same conditions as the liquid contact portion of the electric heater 12 of the reactor 10 in the hydrogen sulfide gas production plant having the configuration shown in FIG. In order to examine the corrosion resistance of the electric heater 12, a stainless steel tube having a size in which the inner peripheral surface is almost entirely in contact with the outer peripheral surface of the electric heater 12 is prepared. It was divided and fixed to the outer peripheral surface of the electric heater 12 with bolts. In this state, a hydrogen sulfide gas generation operation was performed for one year.

具体的には、ステンレスチューブには呼び径50A(外径φ60.5mm、内径φ48.6mm)のSUS310Sからなる短管を用い、その外周面側をケレン1種(ブラスト処理:金属下地が露出する状態)の第1下地処理と、膜厚200μmのアルマイトコーティング(金属溶射)の第2下地処理とを行った。この第1及び第2の下地処理を行った外周面側に、Jotun社製のシリコンアクリル系アルミニウム塗料(型番Solvalitt Alu、アルミニウム粉末の含有量40±2vol%)を膜厚40μmとなるようにスプレー塗装により塗布した。この塗布後の短管を雰囲気温度600℃で2時間保持することで図2(a)に示すように焼付塗装した。   Specifically, a short tube made of SUS310S having a nominal diameter of 50 A (outer diameter φ60.5 mm, inner diameter φ48.6 mm) is used for the stainless steel tube, and the outer peripheral surface side is a type of keren (blasting: a metal base is exposed). 1) and a second undercoating of a 200 μm-thick alumite coating (metal spraying). On the outer peripheral surface side on which the first and second base treatments have been performed, a sprayable silicon acrylic aluminum paint (model number Solvalitt Alu, aluminum powder content: 40 ± 2 vol%) is sprayed to a film thickness of 40 μm. It was applied by painting. The short tube after the application was held at an ambient temperature of 600 ° C. for 2 hours to perform baking coating as shown in FIG. 2A.

焼付塗装後は、短管を半割りにして各々ボルト固定用座板を取り付け、図2(b)に示すように電気ヒーター12の接液部の外周面に内周面側がほぼ全面に亘って当接するように取り付けた。そして、硫化水素ガスの生成運転を行った。その際、該半割りのステンレスチューブの内周面側は電気ヒーター12によって約550℃に熱せられた。また、該半割りのステンレスチューブの外周面側は水素ガス及びHSガスを含む約450〜500℃の溶融硫黄にさらされた。 After the baking coating, the short pipe is halved, and a bolt fixing seat plate is attached to each half. As shown in FIG. 2 (b), the outer peripheral surface of the liquid contact portion of the electric heater 12 is almost entirely covered on the inner peripheral surface side. It was mounted so that it abuts. Then, a hydrogen sulfide gas generation operation was performed. At that time, the inner peripheral surface side of the half stainless steel tube was heated to about 550 ° C. by the electric heater 12. Further, the outer peripheral surface side of the half stainless steel tube was exposed to molten sulfur at about 450 to 500 ° C. containing hydrogen gas and H 2 S gas.

[比較例]
比較のため、上記シリコンアクリル系アルミニウム塗料の焼付塗装に代えて、Sulzer Metco社製の瀝青炭とアルミニウム粉末とを含む塗料(型番Metco Seal M)をスプレー塗装により塗布した後、雰囲気温度1000℃で2時間かけて熱処理することで焼付塗装した以外は上記実施例と同様にして耐腐食性を調べた。なお、この比較例で用いた塗料の組成は、アルミニウム粉末が25%、瀝青質のコールタールからなる溶媒が75%であり、これをMetco System11に従って塗布した。
[Comparative example]
For comparison, instead of the above-mentioned baking coating of the silicon acrylic aluminum coating, a coating containing bituminous coal and aluminum powder (manufactured by Sulzer Metco) (model number Metco Seal M) was applied by spray coating. The corrosion resistance was examined in the same manner as in the above example, except that the coating was baked by heat treatment over time. The composition of the paint used in this comparative example was such that aluminum powder was 25% and bituminous coal tar solvent was 75%, and this was applied according to Metco System11.

上記実施例及び比較例の焼付塗装された半割り短管を電気ヒーター12とほぼ同様の腐食性環境に1年間さらした後に取り出した結果、実施例の半割り短管の焼付塗装面は比較例の焼付塗装面と比べて何ら遜色がなく、図3に示す通り腐食による損傷が生じておらず、塗膜は健全な状態が保たれていることを目視にて確認できた。更に実施例の半割り短管の焼付塗装をはがして塗膜内部の金属表面を目視にて確認したところ、腐食等は見られず良好な状態を維持していた。上記の結果より、本発明の実施例の焼付塗装されたステンレスチューブは、硫化水素ガスの生成反応が行われる高い腐食環境の反応器のヒーターの接液部に用いても従来のものと同程度の優れた防食効果あることが分かる。   As a result of exposing the baking-coated short pipes of the above-described Examples and Comparative Examples to a corrosive environment substantially similar to that of the electric heater 12 for one year, the baking-coated surfaces of the half-pipe short pipes of the Examples are comparative examples. Compared with the baked painted surface, no damage was caused by corrosion as shown in FIG. 3, and it was visually confirmed that the coating film was kept in a healthy state. Further, when the baking coating of the half-split short tube of the example was peeled off and the metal surface inside the coating film was visually observed, no corrosion or the like was observed, and a favorable state was maintained. From the above results, the baking-coated stainless steel tube of the example of the present invention is almost the same as the conventional one even when used for a heater of a reactor in a highly corrosive environment where a hydrogen sulfide gas generation reaction is performed. It can be seen that there is an excellent anticorrosion effect.

10 反応器
11 貯留部
12 電気ヒーター
13 気相部
14 クエンチ部
20a、20b 冷却手段
30 分離手段
40 ブローダウン手段
41 供給ポンプ
50 硫黄冷却手段
51 循環ポンプ
S 溶融硫黄
DESCRIPTION OF SYMBOLS 10 Reactor 11 Storage part 12 Electric heater 13 Gas phase part 14 Quench part 20a, 20b Cooling means 30 Separation means 40 Blow-down means 41 Supply pump 50 Sulfur cooling means 51 Circulation pump S Molten sulfur

Claims (6)

溶融硫黄に水素ガスを導入することで硫化水素の生成を行う硫化水素反応器の内部に貯留する該溶融硫黄に浸漬させて使用するヒーターの製造方法であって、該溶融硫黄との接液部となるステンレス製部材の表面にアルミニウム粉を含むシリコンアクリル塗料を焼付塗装することを特徴とする硫化水素反応器用のヒーターの製造方法。   A method for producing a heater which is immersed and used in the molten sulfur stored in a hydrogen sulfide reactor for generating hydrogen sulfide by introducing hydrogen gas into the molten sulfur, wherein the liquid contact portion with the molten sulfur is used. A method for manufacturing a heater for a hydrogen sulfide reactor, comprising baking a silicon acrylic paint containing aluminum powder on the surface of a stainless steel member to be formed. 前記アルミニウム粉を含むシリコンアクリル塗料は、該アルミニウム粉の含有量が35体積%以上45体積%以下であることを特徴とする、請求項1記載の硫化水素反応器用のヒーターの製造方法。   The method for manufacturing a heater for a hydrogen sulfide reactor according to claim 1, wherein the silicon acrylic paint containing the aluminum powder has a content of the aluminum powder of 35% by volume or more and 45% by volume or less. 前記アルミニウム粉を含むシリコンアクリル塗料を膜厚40μm以上50μm以下となるように塗布した後、前記焼付塗装を行うことを特徴とする、請求項1又は2に記載の硫化水素反応器用のヒーターの製造方法。   The heater for a hydrogen sulfide reactor according to claim 1 or 2, wherein the baking coating is performed after the silicon acrylic paint containing the aluminum powder is applied so as to have a film thickness of 40 µm or more and 50 µm or less. Method. 前記焼付塗装は、前記アルミニウム粉を含むシリコンアクリル塗料が塗布されたステンレス製部材を雰囲気温度600℃以上で2時間以上かけて熱処理することで施されることを特徴とする、請求項1から3のいずれか1項に記載の硫化水素反応器用のヒーターの製造方法。   The baking coating is performed by subjecting a stainless steel member coated with the silicon acrylic paint containing the aluminum powder to a heat treatment at an ambient temperature of 600 ° C. or more for 2 hours or more, wherein the baking coating is performed. The method for producing a heater for a hydrogen sulfide reactor according to any one of the above. 溶融硫黄に水素ガスを導入することで硫化水素の生成を行う硫化水素反応器の内部に貯留する該溶融硫黄に浸漬させて使用するヒーターであって、該溶融硫黄との接液部となるステンレス製部材の表面がアルミニウム粉を含有するシリコンアクリル塗料で焼付塗装されていることを特徴とする硫化水素反応器用のヒーター。   A heater that is used by being immersed in the molten sulfur stored in a hydrogen sulfide reactor that generates hydrogen sulfide by introducing hydrogen gas into the molten sulfur, and is used as a liquid contact part with the molten sulfur. A heater for a hydrogen sulfide reactor, wherein a surface of a member made of a material is baked with a silicon acrylic paint containing aluminum powder. 前記ステンレス製部材が、内側に伝熱コイルを収容する電気ヒーターのチューブであることを特徴とする、請求項5に記載の硫化水素反応器用のヒーター。   The heater for a hydrogen sulfide reactor according to claim 5, wherein the stainless steel member is a tube of an electric heater accommodating a heat transfer coil inside.
JP2018122895A 2018-06-28 2018-06-28 Heater for hydrogen sulfide reactor and manufacturing method thereof Active JP7115064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122895A JP7115064B2 (en) 2018-06-28 2018-06-28 Heater for hydrogen sulfide reactor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122895A JP7115064B2 (en) 2018-06-28 2018-06-28 Heater for hydrogen sulfide reactor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020001961A true JP2020001961A (en) 2020-01-09
JP7115064B2 JP7115064B2 (en) 2022-08-09

Family

ID=69098574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122895A Active JP7115064B2 (en) 2018-06-28 2018-06-28 Heater for hydrogen sulfide reactor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7115064B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323975A (en) * 1986-07-16 1988-02-01 Kansai Paint Co Ltd Heat-resistant paint composition
JPS63234069A (en) * 1987-03-20 1988-09-29 Showa Electric Wire & Cable Co Ltd Heat-resistant coating
JPH01104670A (en) * 1987-10-19 1989-04-21 Showa Electric Wire & Cable Co Ltd Heat-resistant paint
JPH061952A (en) * 1992-06-17 1994-01-11 Kubota Corp Heat-resistant coating
JP2000265116A (en) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd Heat-resistant coating material
WO2013027431A1 (en) * 2011-08-23 2013-02-28 日揮株式会社 Hydrogen sulfide synthesis reactor, device for producing hydrogen sulfide, device for producing sodium bisulfide, and methods thereof
US20170166447A1 (en) * 2015-12-10 2017-06-15 Chevron Phillips Chemical Company Lp Hydrogen Sulfide Production Process and Related Reactor Vessels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323975A (en) * 1986-07-16 1988-02-01 Kansai Paint Co Ltd Heat-resistant paint composition
JPS63234069A (en) * 1987-03-20 1988-09-29 Showa Electric Wire & Cable Co Ltd Heat-resistant coating
JPH01104670A (en) * 1987-10-19 1989-04-21 Showa Electric Wire & Cable Co Ltd Heat-resistant paint
JPH061952A (en) * 1992-06-17 1994-01-11 Kubota Corp Heat-resistant coating
JP2000265116A (en) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd Heat-resistant coating material
WO2013027431A1 (en) * 2011-08-23 2013-02-28 日揮株式会社 Hydrogen sulfide synthesis reactor, device for producing hydrogen sulfide, device for producing sodium bisulfide, and methods thereof
US20170166447A1 (en) * 2015-12-10 2017-06-15 Chevron Phillips Chemical Company Lp Hydrogen Sulfide Production Process and Related Reactor Vessels

Also Published As

Publication number Publication date
JP7115064B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
CN102250648B (en) System for protecting gasifier surfaces from corrosion
ES2206492T3 (en) PROTECTIVE COAT FOR A STEEL PORTION OF A REACTOR SYSTEM FOR THE TREATMENT OF HYDROCARBONS.
CN208747627U (en) Reformer tube and reburner
PL130430B1 (en) Process for generation gaseous mixture containing hydrogen and carbon monoxide,from hydrocarbons
Panchenko et al. Thermophysical processes in the burden zone of submerged arc furnaces
CN106778008B (en) A kind of method for being used to optimize hydrocracking process reaction condition
KR102356206B1 (en) Corrosion resistant reformer tube with internal heat exchange
JP2020001961A (en) Heater for hydrogen sulfide reactor and manufacturing method therefor
Zhang et al. Effect of sulfide on corrosion behavior of stainless steel 316SS and Hastelloy C276 in sub/supercritical water
JPS5844646B2 (en) methanation reactor
JP2014535002A (en) Method and apparatus for treating hydrocarbon streams
Nategh et al. A review on crude oil fouling and mitigation methods in pre-heat trains of Iranian oil refineries
JPS59157494A (en) Device for pyrolyzing hydrocarbon and shell-tube type heat exchanger used for said device and manufacture thereof
KR100857240B1 (en) Method and Apparatus for Decomposing SO3 for Producing Nuclear Hydrogen
JP2010042934A (en) Nano-carbon production furnace
US20060182888A1 (en) Modifying steel surfaces to mitigate fouling and corrosion
US1969422A (en) Treatment of coals, tars, mineral oils, and the like
DK1608723T3 (en) Use of a heat recovery boiler
KR20220111253A (en) Molten Salt Reactor Improvements
Demin et al. Economic evaluation of use of heat exchange equipment diagnostic software at diesel hydrotreating unit
CN109695033A (en) Valve plate surface corrosion-resistant loses processing method
CN114618380B (en) Online cleaning method and device for carbon deposit in melamine bayonet tube reactor
RU124889U1 (en) TRICHLOROSILANE SYNTHESIS REACTOR
Jha et al. Development of an advanced continuous mild gasification process for the production of coproducts
Nijhawan et al. Experimental process for material testing in molten salt environments for hydrogen production processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7115064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150