JP2019531700A5 - - Google Patents

Download PDF

Info

Publication number
JP2019531700A5
JP2019531700A5 JP2018568937A JP2018568937A JP2019531700A5 JP 2019531700 A5 JP2019531700 A5 JP 2019531700A5 JP 2018568937 A JP2018568937 A JP 2018568937A JP 2018568937 A JP2018568937 A JP 2018568937A JP 2019531700 A5 JP2019531700 A5 JP 2019531700A5
Authority
JP
Japan
Prior art keywords
multiparametric
item
fragment
genome
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018568937A
Other languages
English (en)
Other versions
JP7448310B2 (ja
JP2019531700A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2017/040986 external-priority patent/WO2018009723A1/en
Publication of JP2019531700A publication Critical patent/JP2019531700A/ja
Publication of JP2019531700A5 publication Critical patent/JP2019531700A5/ja
Priority to JP2021174556A priority Critical patent/JP2022025101A/ja
Application granted granted Critical
Publication of JP7448310B2 publication Critical patent/JP7448310B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

組織特異的選択的エクソン使用頻度とのブレイクポイント関連性をさらに検査することにより(図32Cに示されているように)、典型的な膜貫通型Mplバリアント、MPLK(全長)、およびMPLP(短縮)の特定が明らかになる。MPLPバリアントは、単球、B−リンパ球(lympocyte)、およびT細胞集団で検出されたが、単球、B細胞、およびT細胞でのMPLK mRNA発現は低かった。本発明者らは、ブレイクポイントが、より短い転写物の縁端と関連しており、より長い転写物と関連していた割合が少ない(つまり、シグナルがより低い)ことを観察した。より長い転写物が、免疫細胞タイプ集団で観察され、がん存在および/または侵襲性を示すことができる。これらの結果は、健康正常対照対象と比べて、高腫瘍量を有する対象は、MPLPシグネチャーが濃縮されているさらなるセルフリーDNA負荷を保持することを示す。そのようなシグネチャーは、がん存在および侵襲性に関連する免疫細胞タイプ存在を示す(例えば、[Different mutations of the human c−mpl gene indicate distinct hematopoietic diseases、Xin Heら、Journal of Hematology & Oncology20136:11]に記載されているように)。したがって、これらの結果は、フラグメントミクス(フラグメントームプロファイルの分析)が、その存在ががんと関連している免疫細胞タイプの存在または相対的増加量の検出および特定を可能にしたことを示す。
本発明は、例えば、以下の項目を提供する。
(項目1)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片における遺伝子異常の存在または非存在を決定するためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記DNA断片のマルチパラメトリック分布を構築するステップ、および
(b)第1の遺伝子座における各々の塩基位置の塩基同一性を考慮に入れることなく、前記マルチパラメトリック分布を使用するステップであって、前記対象の前記第1の遺伝子座における前記遺伝子異常の前記存在または非存在を決定するステップ
を含む方法。
(項目2)
前記遺伝子異常が、配列異常またはコピー数多様性(CNV)を含み、前記配列異常が、(i)一塩基バリアント(SNV)、(ii)挿入または欠失(インデル)、および(iii)遺伝子融合からなる群から選択される、項目1に記載の方法。
(項目3)
前記マルチパラメトリック分布が、(i)前記ゲノムの前記複数の塩基位置の各々と整列する前記DNA断片の長さ、(ii)前記ゲノムの前記複数の塩基位置の各々と整列する前記DNA断片の数、および(iii)前記ゲノムの前記複数の塩基位置の各々で開始または終止する前記DNA断片の数のうちの1つまたは複数を示すパラメータを含む、項目1に記載の方法。
(項目4)
分布スコアを決定するために、前記マルチパラメトリック分布を使用するステップであって、前記分布スコアが前記遺伝子異常の変異負荷を示すステップをさらに含む、項目1に記載の方法。
(項目5)
前記分布スコアが、ジヌクレオソーム保護を有する前記DNA断片の数、およびモノヌクレオソーム保護を有する前記DNA断片の数のうちの1つまたは複数を示す値を含む、項目4に記載の方法。
(項目6)
試験対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片を使用して前記試験対象における遺伝子異常を決定するためのコンピュータ実行分類器であって、
(a)複数の対象の各々から得た1つまたは複数のセルフリーDNA集団の各々に関する一組の分布スコアの入力であって、各々の分布スコアが、(i)ゲノムの複数の塩基位置の各々と整列する前記DNA断片の長さ、(ii)ゲノムの複数の塩基位置の各々と整列する前記DNA断片の数、および(iii)ゲノムの複数の塩基位置の各々で開始または終止する前記DNA断片の数のうちの少なくとも1つまたは複数に基づいて生成される、入力、ならびに
(b)前記試験対象における1つまたは複数の遺伝子異常の分類の出力
を含む分類器。
(項目7)
試験対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片を使用して、前記試験対象における遺伝子異常を決定するためのコンピュータ実行方法であって、
(a)試験対象から得たセルフリーDNAからのDNA断片を使用して、前記試験対象における遺伝子異常を決定するように構成されているコンピュータ実行分類器を提供するステップであって、前記分類器が訓練セットを使用して訓練される、ステップ、
(b)前記試験対象に関する一組の分布スコアを、前記分類器に入力として提供するステップであって、各々の分布スコアが、(i)ゲノムの複数の塩基位置の各々と整列する前記DNA断片の長さ、(ii)ゲノムの複数の塩基位置の各々と整列する前記DNA断片の数、および(iii)ゲノムの複数の塩基位置の各々で開始または終止する前記DNA断片の数のうちの1つまたは複数を示す、ステップ、ならびに(c)前記分類器を使用するステップであって、コンピュータによって、前記試験対象における遺伝子異常の分類を生成するステップ
を含む方法。
(項目8)
対象に由来するセルフリーデオキシリボ核酸(DNA)断片を解析するためのコンピュータ実行方法であって、
前記セルフリーDNA断片を表す配列情報を得るステップ、および
前記セルフリーDNA断片を表すマルチパラメトリックモデルを生成するために、前記配列情報を使用して、複数のデータセットについてマルチパラメトリック解析を実施するステップであって、前記マルチパラメトリックモデルが3つまたはそれより多くの次元を含む、ステップ
を含む方法。
(項目9)
前記データセットが、(a)シークエンシングしたDNA断片の開始位置、(b)シークエンシングしたDNA断片の終止位置、(c)マッピング可能な位置をカバーするユニークなシークエンシングしたDNA断片の数、(d)シークエンシングしたDNA断片の長さ、(e)マッピング可能な塩基対位置が、シークエンシングしたDNA断片の末端に出現する尤度、(f)マッピング可能な塩基対位置が、異なるヌクレオソーム占有の結果としてシークエンシングしたDNA断片内に出現する尤度、(g)シークエンシングしたDNA断片の配列モチーフ、(h)GC含有量、(i)シークエンシングしたDNA断片の長さの分布、および(j)メチル化ステータスからなる群から選択される、項目8に記載の方法。
(項目10)
前記マルチパラメトリック解析が、前記ゲノムの複数の塩基位置または領域の各々に、(i)ゲノムにおけるマッピング可能な位置をカバーする配列を含むユニークなセルフリーDNA断片の数の分布、
(ii)前記DNA断片が前記ゲノムにおける前記マッピング可能な位置をカバーする配列を含むように、前記セルフリーDNA断片の少なくとも一部の各々に関する断片長の分布、および
(iii)マッピング可能な塩基対位置が、シークエンシングしたDNA断片の末端に出現する尤度の分布
からなる群から選択される1つまたは複数の分布をマッピングすることを含む、項目8に記載の方法。
(項目11)
ゲノムの前記複数の塩基位置または領域が、表1に記載の遺伝子のうちの1つまたは複数に関連する少なくとも1つの塩基位置または領域を含む、項目10に記載の方法。
(項目12)
前記マッピングすることが、ゲノムの複数の塩基位置または領域の各々に、複数の前記データセットの各々からの複数の値をマッピングすることを含む、項目10に記載の方法。
(項目13)
前記複数の値のうちの少なくとも1つが、(a)シークエンシングしたDNA断片の開始位置、(b)シークエンシングしたDNA断片の終止位置、(c)マッピング可能な位置をカバーするユニークなシークエンシングしたDNA断片の数、(d)シークエンシングしたDNA断片の長さ、(e)マッピング可能な塩基対位置が、シークエンシングしたDNA断片の末端に出現する尤度、(f)マッピング可能な塩基対位置が、異なるヌクレオソーム占有の結果としてシークエンシングしたDNA断片内に出現する尤度、または(g)シークエンシングしたDNA断片の配列モチーフからなる群から選択されるデータセットである、項目12に記載の方法。
(項目14)
前記マルチパラメトリック解析が、前記マルチパラメトリックモデルを生成するために、コンピュータによって1つまたは複数の数学的変換を適用することを含む、項目8に記載の方法。
(項目15)
前記マルチパラメトリックモデルが、(a)シークエンシングしたDNA断片の開始位置、(b)シークエンシングしたDNA断片の終止位置、(c)マッピング可能な位置をカバーするユニークなシークエンシングしたDNA断片の数、(d)シークエンシングしたDNA断片の長さ、(e)マッピング可能な塩基対位置が、シークエンシングしたDNA断片の末端に出現する尤度、(f)マッピング可能な塩基対位置が、異なるヌクレオソーム占有の結果としてシークエンシングしたDNA断片内に出現する尤度、および(g)シークエンシングしたDNA断片の配列モチーフからなる群から選択される複数の変数の同時分布モデルである、項目8に記載の方法。
(項目16)
前記マルチパラメトリックモデルにおいて1つまたは複数のピークを同定するステップであって、各々のピークがピーク分布幅およびピークカバレッジを有する、ステップをさらに含む、項目8に記載の方法。
(項目17)
前記セルフリーDNA断片を表す前記マルチパラメトリックモデルと、参照マルチパラメトリックモデルとの間の1つまたは複数の逸脱を検出するステップをさらに含む、項目16に記載の方法。
(項目18)
前記逸脱が、
(i)ヌクレオソーム領域外でのリード数の増加、
(ii)ヌクレオソーム領域内でのリード数の増加、
(iii)マッピング可能なゲノム位置と比較してより広いピーク分布、
(iv)ピーク位置のシフト、
(v)新しいピークの同定、
(vi)ピークのカバレッジ深度の変化、
(vii)ピーク周囲の開始位置の変化、および
(viii)ピークに関連する断片サイズの変化
からなる群から選択される、項目17に記載の方法。
(項目19)
(i)セルフリーDNAの起源である細胞におけるアポトーシスプロセス、または(ii)前記セルフリーDNAの起源である細胞における壊死プロセスに起因する前記マルチパラメトリックモデルの寄与を決定するステップをさらに含む、項目8に記載の方法。
(項目20)
マルチパラメトリック解析を実施するステップであって、(i)前記セルフリーDNA断片のRNA発現を測定する、(ii)前記セルフリーDNA断片のメチル化を測定する、(iii)前記セルフリーDNA断片のヌクレオソームマッピングを測定する、または(iv)前記セルフリーDNA断片における1つもしくは複数の体細胞一塩基多型または前記セルフリーDNA断片における1つもしくは複数の生殖系列一塩基多型の存在を同定するステップをさらに含む、項目8に記載の方法。
(項目21)
ジヌクレオソーム保護を有する前記DNA断片の数、またはモノヌクレオソーム保護を有する前記DNA断片の数を示す値を含む分布スコアを生成するステップをさらに含む、項目8に記載の方法。
(項目22)
前記対象の変異負荷を推定するステップをさらに含む、項目8に記載の方法。
(項目23)
対象に由来するセルフリーデオキシリボ核酸(DNA)断片を解析するためのコンピュータ実行方法であって、
前記セルフリーDNA断片を表すマルチパラメトリックモデルを得るステップ、および
コンピュータによって統計分析を実施して、前記マルチパラメトリックモデルを、別個のコホートを表す1つまたは複数のヌクレオソーム占有プロファイルに関連していると分類するステップ
を含む方法。
(項目24)
訓練された分類器を作成するためのコンピュータ実行方法であって、
(a)複数の異なるクラスを提供するステップであって、各々のクラスが共有する特徴を有する一組の対象を表す、ステップ、
(b)前記クラスの各々から得た複数のセルフリーデオキシリボ核酸(DNA)集団の各々に関して、前記セルフリーDNA集団からのセルフリーデオキシリボ核酸(DNA)断片を表すマルチパラメトリックモデルを提供するステップであって、それによって訓練データセットを提供するステップ、および
(c)1つまたは複数の訓練された分類器を作成するために、コンピュータによって前記訓練データセットについて学習アルゴリズムを訓練するステップであって、各々の訓練された分類器が、試験対象のセルフリーDNAの試験集団を前記複数の異なるクラスのうちの1つまたは複数に分類するように構成されている、ステップ
を含む方法。
(項目25)
対象の試験試料を分類する方法であって、
(a)前記対象のセルフリーデオキシリボ核酸(DNA)の試験集団からのセルフリーDNA断片を表すマルチパラメトリックモデルを提供するステップ、および
(b)訓練された分類器を使用して、前記セルフリーDNAの試験集団を分類するステップ
を含む方法。
(項目26)
(a)コンピュータによって、対象のセルフリーDNA断片からの配列情報を生成するステップ、
(b)コンピュータによって、前記配列情報に基づいて前記セルフリーDNA断片を参照ゲノムにマッピングするステップ、ならびに
(c)コンピュータによって、前記マッピングされたセルフリーDNA断片を解析するステップであって、前記参照ゲノムの複数の塩基位置の各々で、
(i)前記塩基位置にマッピングするセルフリーDNA断片の数、
(ii)前記塩基位置にマッピングする各々のセルフリーDNA断片の長さ、
(iii)セルフリーDNA断片の長さの関数としての、前記塩基位置にマッピングする前記セルフリーDNA断片の数、
(iv)前記塩基位置で開始するセルフリーDNA断片の数、
(v)前記塩基位置で終止するセルフリーDNA断片の数、
(vi)長さの関数としての前記塩基位置で開始するセルフリーDNA断片の数、および
(vii)長さの関数としての前記塩基位置で終止するセルフリーDNA断片の数
からなる群から選択される複数の測定値を決定するステップ
を含む、コンピュータ実行方法。
(項目27)
対象に由来するセルフリーDNA断片を解析するコンピュータ実行方法であって、
(a)コンピュータによって、前記セルフリーDNA断片を表す配列情報を受信するステップ、ならびに
(b)マッピング可能な塩基位置またはゲノム位置毎に解析を実施するステップであって、
(i)前記塩基位置またはゲノム位置で開始または終止する配列断片の数、
(ii)前記塩基位置またはゲノム位置での配列または断片の長さ、
(iii)前記塩基位置またはゲノム位置での断片または配列のカバレッジ、および
(iv)前記塩基位置またはゲノム位置での配列モチーフ分布
のうちの複数を含むステップ
を含む方法。
(項目28)
対象が臨床的に重要な1つまたは複数のクラスに属する尤度を決定するための分類器を生成する方法であって、
a)前記臨床的に重要な1つまたは複数のクラスの各々に関して、臨床的に重要なクラスに属する種の複数の対象の各々のセルフリーDNA集団、および臨床的に重要なクラスに属さない種の複数の対象の各々のセルフリーDNA集団を含む訓練セットを提供するステップ、
b)複数のDNA配列を生成するために、前記セルフリーDNA集団からのセルフリーDNA断片をシークエンシングするステップ、
c)各々のセルフリーDNA集団に関して、前記種の参照ゲノムの1つまたは複数のゲノム領域の各々に前記複数のDNA配列をマッピングするステップであって、各々のゲノム領域が複数の遺伝子座を含む、ステップ、
d)訓練セットを生じるために、前記複数の遺伝子座の各々に関して
(i)前記遺伝子座にマッピングするDNA配列、(ii)前記遺伝子座で開始するDNA配列、および(iii)前記遺伝子座で終止するDNA配列
から選択される少なくとも1つの特徴の定量的測定値を示す値を含むデータセットを、各々のセルフリーDNA集団に関して提供するステップ、ならびに
e)前記訓練セットについてコンピュータベースの機械学習システムを訓練するステップであって、それによって前記対象が臨床的に重要な1つまたは複数のクラスに属する尤度を決定するための分類器を生成するステップ
を含む方法。
(項目29)
対象における異常な生物学的状況を決定する方法であって、
a)DNA配列を生成するために、前記対象のセルフリーDNAからのセルフリーDNA断片をシークエンシングするステップ、
b)前記対象の種の参照ゲノムの1つまたは複数のゲノム領域の各々に前記DNA配列をマッピングするステップであって、各々のゲノム領域が複数の遺伝子座を含む、ステップ、
c)前記複数の遺伝子座の各々に関して、
(i)前記遺伝子座にマッピングするDNA配列、(ii)前記遺伝子座で開始するDNA配列、および(iii)前記遺伝子座で終止するDNA配列
から選択される少なくとも1つの特色の定量的測定値を示す値を含むデータセットを提供するステップ、ならびに
d)前記データセットに基づいて、前記異常な生物学的状況の尤度を決定するステップ
を含む方法。
(項目30)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片における遺伝子異常の存在または非存在を示す出力を生成するためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記セルフリーDNAからの前記DNA断片の分布を構築するステップ、ならびに
(b)1つまたは複数の遺伝子座の各々に関して、コンピュータによって、(1)前記1つまたは複数の遺伝子座からの遺伝子座に関連するジヌクレオソーム保護を有する前記DNA断片の数、および(2)前記遺伝子座に関連するモノヌクレオソーム保護を有する前記DNA断片の数の比率、またはその逆を示す定量的測定値を計算するステップ、ならびに
(c)前記1つまたは複数の遺伝子座の各々に関する前記定量的測定値を使用して、前記対象における前記1つまたは複数の遺伝子座における前記遺伝子異常の存在または非存在を示す前記出力を決定するステップ
を含む方法。
(項目31)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片における遺伝子異常の存在または非存在を示す出力を生成するためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記セルフリーDNAからの前記DNA断片の分布を構築するステップ、ならびに
(b)前記対象における前記遺伝子異常の存在または非存在を示す前記出力を決定するために、前記分布を使用するステップであって、前記存在または非存在が、(i)前記DNA断片の前記分布を、前記対象のゲノムに対して外部の起源からの参照分布と比較することなく、(ii)前記DNA断片の前記分布に由来するパラメータを参照パラメータと比較することなく、および(iii)前記DNA断片の前記分布を、前記対象の対照からの参照分布と比較することなく、決定される、ステップ
を含む方法。
(項目32)
前記遺伝子異常が、コピー数多様性(CNV)または一塩基バリアント(SNV)を含む、項目31に記載の方法。
(項目33)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片の分布をデコンボリューションするためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記セルフリーDNAからの前記DNA断片のカバレッジの分布を構築するステップ、ならびに
(b)1つまたは複数の遺伝子座の各々に関して、コンピュータによって、前記カバレッジの前記分布をデコンボリューションするステップであって、それによってコピー数(CN)構成要素、細胞クリアランス構成要素、および遺伝子発現構成要素からなる群から選択される1つまたは複数のメンバーに関連する分画寄与度を生成するステップ
を含む方法。
(項目34)
前記分画寄与度の一部に少なくとも基づいて遺伝子異常の存在または非存在を示す出力を生成するステップをさらに含む、項目33に記載の方法。
(項目35)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片における遺伝子異常の存在または非存在を示す出力を生成するためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記セルフリーDNAからの前記DNA断片の分布を構築するステップ、
(b)コンピュータによって、前記DNA断片の前記分布における前記複数の塩基位置のうちの1つまたは複数の塩基位置で1つまたは複数のピークを同定するステップであって、各々のピークがピーク値およびピーク分布幅を含むステップ、ならびに
(c)コンピュータによって、(i)前記1つまたは複数の塩基位置、(ii)前記ピーク値、および(iii)前記ピーク分布幅に少なくとも基づいて、前記対象における前記遺伝子異常の前記存在または非存在を決定するステップ
を含む方法。
(項目36)
前記1つまたは複数のピークが、ジヌクレオソームピークまたはモノヌクレオソームピークを含む、項目35に記載の方法。
(項目37)
前記遺伝子異常の存在または非存在を示す前記出力が、前記ジヌクレオソームピークに関連する第1のピーク値と、前記モノヌクレオソームピークに関連する第2のピーク値の比率、またはその逆を示す定量的測定値に少なくとも基づいて決定される、項目36に記載の方法。
(項目38)
対象から得たセルフリーDNAからのデオキシリボ核酸(DNA)断片における遺伝子異常の存在または非存在を示す出力を生成するためのコンピュータ実行方法であって、
(a)コンピュータによって、ゲノムの複数の塩基位置での前記セルフリーDNAからの前記DNA断片の分布を構築するステップ、
(b)コンピュータによって、1つまたは複数の遺伝子座での前記DNA断片の前記分布を解析するステップであって、前記DNA断片の前記分布と、(i)健康な対照の1つまたは複数のコホートに関連する1つまたは複数の健康参照分布、および(ii)疾患を有する対象の1つまたは複数のコホートに関連する1つまたは複数の疾患参照分布から選択される複数の参照分布との間の逸脱を検出することを含むステップ、ならびに
(c)コンピュータによって、(b)において検出された前記逸脱に少なくとも基づいて、前記対象における前記遺伝子異常の存在または非存在を示す前記出力を決定するステップ
を含む方法。
(項目39)
解析するステップが、1つまたは複数のデルタシグナルを計算することであって、各々のデルタシグナルが、前記DNA断片の前記分布と前記複数の参照分布の参照分布との間の差異を含む、ことを含む、項目38に記載の方法。
(項目40)
対象の生物試料を処理するための方法であって、
(a)前記対象の前記生物試料を得るステップであって、前記生物試料がデオキシリボ核酸(DNA)断片を含む、ステップ、
(b)前記生物試料をアッセイするステップであって、(i)1つまたは複数の遺伝子座からの遺伝子座に関連するジヌクレオソーム保護、および(ii)前記遺伝子座に関連するモノヌクレオソーム保護を有するDNA断片の存在または非存在を示すシグナルを生成するステップ、ならびに
(c)前記シグナルを使用するステップであって、(i)1つまたは複数の遺伝子座からの遺伝子座に関連するジヌクレオソーム保護、および(ii)前記遺伝子座に関連するモノヌクレオソーム保護を有するDNA断片の前記存在または非存在を示す出力を生成するステップ
を含む方法。
(項目41)
アッセイするステップが、(i)一組の1つもしくは複数の遺伝子座のDNA断片に関して前記生物試料を濃縮するステップ、または(ii)前記生物試料の前記DNA断片をシークエンシングするステップを含む、項目40に記載の方法。
(項目42)
対象に由来するセルフリーDNA断片を含む生物試料を分析するための方法であって、モノヌクレオソーム保護およびジヌクレオソーム保護の各々に対応する同じ遺伝子座からのDNA断片を検出するステップを含む方法。
(項目43)
対象に由来するセルフリーDNA断片を含む生物試料を分析するための方法であって、遺伝子座に関連するジヌクレオソーム保護を有するDNA断片を検出するステップを含む方法。
(項目44)
前記遺伝子座が、ERBB2、TP53、またはNF1を含む、項目43に記載の方法。

Claims (13)

  1. コンピュータで対象に由来するセルフリーデオキシリボ核酸(cfDNA)断片を解析するための方法を実行するためのプログラムであって、
    前記方法が、
    (a)前記cfDNA断片にライブラリ調製およびハイスループットシークエンシングを行うことにより生成された、前記対象からのcfDNA断片を表すシークエンシング情報を、参照配列と整列させるステップであって、ここで
    (i)前記cfDNA断片が、ユニークまたは非ユニーク分子タグによって、タグ付けされ、
    (ii)前記タグ付けされたcfDNA断片が、増幅され、および
    (iii)子孫配列が、前記タグの追跡により追跡される、
    ステップ、
    (b)前記整列させた配列情報のマルチパラメトリック解析を実施し、それによって前記cfDNA断片を表すマルチパラメトリックモデルを生成するステップであって、ここで前記マルチパラメトリックモデルが(i)ゲノムの複数の塩基位置の各々と整列する前記cfDNA断片の長さ、(ii)ゲノムの複数の塩基位置の各々と整列する前記cfDNA断片の数、および(iii)ゲノムの複数の塩基位置の各々で開始または終止する前記cfDNA断片の数、を示すパラメータから選択される、2つまたはそれより多くのパラメータを含む、ステップ、ならびに
    (c)前記マルチパラメトリックモデルを、別個のコホートを表す1つまたは複数のヌクレオソーム占有プロファイルに関連していると分類するために、訓練された分類器で統計分析を前記コンピュータによって実施するステップであって、ここで前記ヌクレオソーム占有プロファイルのうちの少なくとも1つは、腫瘍の指標、がんの早期検出、腫瘍タイプ、腫瘍の重症度、腫瘍の侵襲性、処置に対する腫瘍の抵抗性、腫瘍のクローン性、腫瘍のドラッガビリティ、腫瘍の進行、および血漿中調節異常スコアからなる群から選択される1つまたは複数の評価に関連する、ステップ、
    を含むプログラム。
  2. 前記統計分析が、さらなる解析のために目的の遺伝子を表す関連するゲノム範囲を記載する1つまたは複数のゲノム分割マップを提供することを含む、請求項1に記載のプログラム。
  3. 前記統計分析が、前記ゲノム分割マップに基づいて一組の1つまたは複数の局在化ゲノム領域を選択することをさらに含む、請求項2に記載のプログラム。
  4. 前記統計分析が、前記一組における1つまたは複数の局在化ゲノム領域を解析して、一組の1つまたは複数のヌクレオソームマップ破壊を得ることをさらに含む、請求項2または請求項3に記載のプログラム。
  5. 前記ヌクレオソームマップ破壊のうちの少なくとも1つが、前記マルチパラメトリックモデルを、別個のコホートを表す1つまたは複数のヌクレオソーム占有プロファイルに関連していると分類するために使用される、請求項4に記載のプログラム。
  6. 前記ゲノム分割マップが
    a)前記ゲノム分割マップに基づいて一組の1つまたは複数の局在化ゲノム領域を選択すること、
    b)試料の各々に関するマルチパラメトリックモデルを生成するために、cfDNA集団の各々のマルチパラメトリック解析を実施すること、および
    c)1つまたは複数の局在化ゲノム領域を同定するために、前記マルチパラメトリックモデルを解析すること、
    によって構築される、請求項2から5のいずれか一項に記載のプログラム。
  7. 前記1つまたは複数の局在化ゲノム領域を解析することが、cfDNA断片を表すマルチパラメトリックモデルと、
    (i)健康な対照の1つまたは複数のコホートに関連する1つまたは複数の健康参照マルチパラメトリックモデル、および
    (ii)疾患を有する対象の1つまたは複数のコホートに関連する1つまたは複数の疾患参照マルチパラメトリックモデル
    から選択される1つまたは複数の参照マルチパラメトリックモデルとの間の1つまたは複数の逸脱を検出するステップを含む、請求項3から6のいずれか一項に記載のプログラム。
  8. 前記局在化ゲノム領域の少なくとも1つは、約2〜約200塩基対の範囲の短いDNA領域であり、前記領域は、有意な構造多様性のパターンを含む、請求項3から7のいずれか一項に記載のプログラム。
  9. 前記方法が、疾患の疾患スコアを決定するステップであって、前記疾患スコアが、
    (i)前記疾患に関連する1つまたは複数のヌクレオソーム占有プロファイル、
    (ii)前記疾患を有しないコホートに関連する1つまたは複数の健康参照マルチパラメトリックモデル、および
    (iii)前記疾患を有するコホートに関連する1つまたは複数の疾患参照マルチパラメトリックモデル
    のうちの1つまたは複数の関数として決定される、ステップをさらに含む、請求項1から8のいずれか一項に記載のプログラム。
  10. 前記cfDNA断片が、前記対象からの血液試料に由来する、請求項1から9のいずれか一項に記載のプログラム。
  11. 前記cfDNA断片の冗長な配列を使用して、各cfDNA断片のコンセンサス配列が生成される、請求項1から10のいずれか一項に記載のプログラム。
  12. 前記マルチパラメトリックモデルが、ヒートマップである、請求項1から11のいずれか一項に記載のプログラム。
  13. 前記方法が、前記対象の処置を検出、モニター、および/または決定するために使用され、前記対象が、がんを有するまたは有することが疑われる、請求項1から12のいずれか一項に記載のプログラム。
JP2018568937A 2016-07-06 2017-07-06 セルフリー核酸のフラグメントームプロファイリングのための方法 Active JP7448310B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021174556A JP2022025101A (ja) 2016-07-06 2021-10-26 セルフリー核酸のフラグメントームプロファイリングのための方法

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201662359151P 2016-07-06 2016-07-06
US62/359,151 2016-07-06
US201662420167P 2016-11-10 2016-11-10
US62/420,167 2016-11-10
US201662437172P 2016-12-21 2016-12-21
US62/437,172 2016-12-21
US201762489399P 2017-04-24 2017-04-24
US62/489,399 2017-04-24
PCT/US2017/040986 WO2018009723A1 (en) 2016-07-06 2017-07-06 Methods for fragmentome profiling of cell-free nucleic acids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021174556A Division JP2022025101A (ja) 2016-07-06 2021-10-26 セルフリー核酸のフラグメントームプロファイリングのための方法

Publications (3)

Publication Number Publication Date
JP2019531700A JP2019531700A (ja) 2019-11-07
JP2019531700A5 true JP2019531700A5 (ja) 2020-08-13
JP7448310B2 JP7448310B2 (ja) 2024-03-12

Family

ID=60913158

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018568937A Active JP7448310B2 (ja) 2016-07-06 2017-07-06 セルフリー核酸のフラグメントームプロファイリングのための方法
JP2021174556A Pending JP2022025101A (ja) 2016-07-06 2021-10-26 セルフリー核酸のフラグメントームプロファイリングのための方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021174556A Pending JP2022025101A (ja) 2016-07-06 2021-10-26 セルフリー核酸のフラグメントームプロファイリングのための方法

Country Status (11)

Country Link
EP (2) EP3481966B1 (ja)
JP (2) JP7448310B2 (ja)
KR (1) KR102610098B1 (ja)
CN (1) CN109689891A (ja)
AU (1) AU2017292854B2 (ja)
BR (1) BR112019000296A2 (ja)
CA (1) CA3030038A1 (ja)
ES (1) ES2967443T3 (ja)
MX (1) MX2019000037A (ja)
SG (1) SG11201811556RA (ja)
WO (1) WO2018009723A1 (ja)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
EP2572003A4 (en) 2010-05-18 2016-01-13 Natera Inc METHOD FOR NONINVASIVE PRANATAL PLOIDIE ASSIGNMENT
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
PL2697397T3 (pl) 2011-04-15 2017-08-31 The Johns Hopkins University System bezpiecznego sekwencjonowania
US11525163B2 (en) 2012-10-29 2022-12-13 The Johns Hopkins University Papanicolaou test for ovarian and endometrial cancers
CN106460070B (zh) 2014-04-21 2021-10-08 纳特拉公司 检测染色体片段中的突变和倍性
WO2016183106A1 (en) 2015-05-11 2016-11-17 Natera, Inc. Methods and compositions for determining ploidy
HUE064231T2 (hu) 2015-07-23 2024-02-28 Univ Hong Kong Chinese Sejtmentes DNS fragmentációs mintázatának elemzése
WO2017027653A1 (en) 2015-08-11 2017-02-16 The Johns Hopkins University Assaying ovarian cyst fluid
JP6743268B2 (ja) 2016-03-25 2020-08-19 カリウス・インコーポレイテッド 合成核酸スパイクイン
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
IL302912A (en) 2016-12-22 2023-07-01 Guardant Health Inc Methods and systems for analyzing nucleic acid molecules
TW202348802A (zh) 2017-01-25 2023-12-16 香港中文大學 使用核酸片段之診斷應用
WO2019016353A1 (en) * 2017-07-21 2019-01-24 F. Hoffmann-La Roche Ag CLASSIFICATION OF SOMATIC MUTATIONS FROM A HETEROGENEOUS SAMPLE
JP7232476B2 (ja) 2017-08-07 2023-03-08 ザ ジョンズ ホプキンス ユニバーシティ がんを評価及び治療するための方法及び物質
WO2019060716A1 (en) 2017-09-25 2019-03-28 Freenome Holdings, Inc. SAMPLE EXTRACTION METHODS AND SYSTEMS
EP3743518A4 (en) * 2018-01-24 2021-09-29 Freenome Holdings, Inc. METHODS AND SYSTEMS FOR DETECTING ANOMALY IN PATTERNS OF NUCLEIC ACIDS
WO2019173552A1 (en) 2018-03-08 2019-09-12 St. John's University Circulating serum cell-free dna biomarkers and methods
EP3765633A4 (en) * 2018-03-13 2021-12-01 Grail, Inc. PROCESS AND SYSTEM FOR THE SELECTION, ADMINISTRATION AND ANALYSIS OF HIGH DIMENSIONAL DATA
WO2019178563A1 (en) * 2018-03-15 2019-09-19 The Board Of Trustees Of Leland Stanford Junior University Methods using nucleic acid signals for revealing biological attributes
EP3776555A2 (en) * 2018-04-13 2021-02-17 Grail, Inc. Multi-assay prediction model for cancer detection
SG11202009696WA (en) * 2018-04-13 2020-10-29 Freenome Holdings Inc Machine learning implementation for multi-analyte assay of biological samples
EP3801623A4 (en) 2018-06-01 2022-03-23 Grail, LLC NEURAL CONVOLUTIONAL NETWORK SYSTEMS AND DATA CLASSIFICATION METHODS
WO2020006369A1 (en) * 2018-06-29 2020-01-02 Guardant Health, Inc. Methods and systems for analysis of ctcf binding regions in cell-free dna
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
EP3815005A4 (en) * 2018-10-08 2022-03-30 Freenome Holdings, Inc. PROFILE OF TRANSCRIPTION FACTORS
GB201818159D0 (en) * 2018-11-07 2018-12-19 Cancer Research Tech Ltd Enhanced detection of target dna by fragment size analysis
EP3884087A4 (en) * 2018-11-21 2022-09-07 Karius Inc. DETECTION AND PREDICTION OF INFECTIOUS DISEASES
US10468141B1 (en) * 2018-11-28 2019-11-05 Asia Genomics Pte. Ltd. Ancestry-specific genetic risk scores
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
ES2968457T3 (es) * 2018-12-19 2024-05-09 Univ Hong Kong Chinese Características de los extremos del ADN extracelular circulante
JP7332695B2 (ja) * 2018-12-21 2023-08-23 エフ. ホフマン-ラ ロシュ アーゲー 循環核酸からの全ゲノム配列データにおける包括的配列特徴の同定
CA3122109A1 (en) * 2018-12-21 2020-06-25 Grail, Inc. Systems and methods for using fragment lengths as a predictor of cancer
WO2020150258A1 (en) * 2019-01-15 2020-07-23 Luminist, Inc. Methods and systems for detecting liver disease
BR112020026133A2 (pt) * 2019-01-24 2021-07-27 Illumina, Inc. métodos e sistemas para monitorar a saúde e as doenças dos órgãos
AU2020216438A1 (en) 2019-01-31 2021-07-29 Guardant Health, Inc. Compositions and methods for isolating cell-free DNA
WO2020168016A1 (en) 2019-02-12 2020-08-20 Tempus Labs, Inc. Detection of human leukocyte antigen loss of heterozygosity
US11475978B2 (en) 2019-02-12 2022-10-18 Tempus Labs, Inc. Detection of human leukocyte antigen loss of heterozygosity
WO2020176659A1 (en) * 2019-02-27 2020-09-03 Guardant Health, Inc. Methods and systems for determining the cellular origin of cell-free dna
WO2020214547A1 (en) * 2019-04-15 2020-10-22 Natera, Inc. Improved liquid biopsy using size selection
WO2020237184A1 (en) * 2019-05-22 2020-11-26 Grail, Inc. Systems and methods for determining whether a subject has a cancer condition using transfer learning
WO2020243722A1 (en) 2019-05-31 2020-12-03 Guardant Health, Inc. Methods and systems for improving patient monitoring after surgery
US20220259647A1 (en) * 2019-07-09 2022-08-18 The Translational Genomics Research Institute METHODS OF DETECTING DISEASE AND TREATMENT RESPONSE IN cfDNA
WO2021041968A1 (en) * 2019-08-28 2021-03-04 Grail, Inc. Systems and methods for predicting and monitoring treatment response from cell-free nucleic acids
CN110706749B (zh) * 2019-09-10 2022-06-10 至本医疗科技(上海)有限公司 一种基于组织器官分化层次关系的癌症类型预测系统和方法
WO2021067484A1 (en) 2019-09-30 2021-04-08 Guardant Health, Inc. Compositions and methods for analyzing cell-free dna in methylation partitioning assays
EP4041888A4 (en) * 2019-10-11 2023-11-01 Guardant Health, Inc. USE OF CELL-FREE BACTERIAL NUCLEIC ACIDS FOR CANCER DETECTION
US20210214800A1 (en) 2019-11-26 2021-07-15 Guardant Health, Inc. Methods, compositions and systems for improving the binding of methylated polynucleotides
WO2021127208A1 (en) * 2019-12-20 2021-06-24 Accuragen Holdings Limited Methods and systems for disease detection
US20230042332A1 (en) * 2019-12-24 2023-02-09 Vib Vzw Disease Detection in Liquid Biopsies
EP4143338A1 (en) 2020-04-30 2023-03-08 Guardant Health, Inc. Methods for sequence determination using partitioned nucleic acids
WO2023282916A1 (en) 2021-07-09 2023-01-12 Guardant Health, Inc. Methods of detecting genomic rearrangements using cell free nucleic acids
WO2022026761A1 (en) 2020-07-30 2022-02-03 Guardant Health, Inc. Methods for isolating cell-free dna
EP4205126A1 (en) 2020-08-25 2023-07-05 Guardant Health, Inc. Methods and systems for predicting an origin of a variant
EP4214329A1 (en) * 2020-09-17 2023-07-26 The Regents of the University of Colorado, a body corporate Signatures in cell-free dna to detect disease, track treatment response, and inform treatment decisions
US20220154285A1 (en) 2020-09-30 2022-05-19 Guardant Health, Inc. Analysis of methylated dna comprising methylation-sensitive or methylation-dependent restrictions
EP4232599A1 (en) 2020-10-23 2023-08-30 Guardant Health, Inc. Compositions and methods for analyzing dna using partitioning and base conversion
EP4251765A1 (en) 2020-11-30 2023-10-04 Guardant Health, Inc. Compositions and methods for enriching methylated polynucleotides
CN114634982A (zh) * 2020-12-15 2022-06-17 广州市基准医疗有限责任公司 一种检测多核苷酸变异的方法
EP4015650A1 (en) * 2020-12-18 2022-06-22 Nipd Genetics Biotech Limited Methods for classifying a sample into clinically relevant categories
WO2022140629A1 (en) 2020-12-23 2022-06-30 Guardant Health, Inc. Methods and systems for analyzing methylated polynucleotides
EP4291679A1 (en) 2021-02-12 2023-12-20 Guardant Health, Inc. Methods and compositions for detecting nucleic acid variants
EP4314329A1 (en) 2021-03-25 2024-02-07 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
EP4347884A1 (en) * 2021-05-24 2024-04-10 University of Essex Enterprises Limited Method and system for identifying genomic regions with condition sensitive occupancy/positioning of nucleosomes and/or chromatin
CN113838533B (zh) * 2021-08-17 2024-03-12 福建和瑞基因科技有限公司 一种癌症检测模型及其构建方法和试剂盒
CA3236814A1 (en) * 2021-11-17 2023-05-25 Maximilian Diehn Systems and methods for gene expression and tissue of origin inference from cell-free dna
WO2023197004A1 (en) 2022-04-07 2023-10-12 Guardant Health, Inc. Detecting the presence of a tumor based on methylation status of cell-free nucleic acid molecules
WO2023235379A1 (en) * 2022-06-02 2023-12-07 The Board Of Trustees Of The Leland Stanford Junior University Single molecule sequencing and methylation profiling of cell-free dna
WO2024006908A1 (en) 2022-06-30 2024-01-04 Guardant Health, Inc. Enrichment of aberrantly methylated dna
US20240043935A1 (en) * 2022-07-29 2024-02-08 Centre For Novostics Limited Epigenetics analysis of cell-free dna
WO2024073508A2 (en) 2022-09-27 2024-04-04 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
CN116052768A (zh) * 2022-10-08 2023-05-02 南京世和基因生物技术股份有限公司 恶性肺结节筛查基因标志物、筛查模型的构建方法和检测装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0920069A8 (pt) * 2008-10-30 2017-10-03 Centre De Rech Public De La Sante Biomarcadores
CN101901345B (zh) * 2009-05-27 2013-02-27 复旦大学 一种差异蛋白质组学的分类方法
US11322224B2 (en) * 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
EP2426217A1 (en) * 2010-09-03 2012-03-07 Centre National de la Recherche Scientifique (CNRS) Analytical methods for cell free nucleic acids and applications
EP2563937A1 (en) * 2011-07-26 2013-03-06 Verinata Health, Inc Method for determining the presence or absence of different aneuploidies in a sample
EP3922731A3 (en) * 2011-10-06 2022-01-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) * 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA2866587C (en) * 2012-02-16 2022-07-26 Oxford Nanopore Technologies Limited Analysis of measurements of a polymer
EP3573066B1 (en) * 2012-03-13 2023-09-27 The Chinese University Of Hong Kong Methods for analyzing massively parallel sequencing data for noninvasive prenatal diagnosis
CN108485940B (zh) * 2012-04-12 2022-01-28 维里纳塔健康公司 拷贝数变异的检测和分类
US10497461B2 (en) * 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
IL305303A (en) 2012-09-04 2023-10-01 Guardant Health Inc Systems and methods for detecting rare mutations and changes in number of copies
US20130309666A1 (en) * 2013-01-25 2013-11-21 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
GB2528205B (en) * 2013-03-15 2020-06-03 Guardant Health Inc Systems and methods to detect rare mutations and copy number variation
EP3543354B1 (en) * 2013-06-17 2022-01-19 Verinata Health, Inc. Method for generating a masked reference sequence of the y chromosome
WO2015048535A1 (en) * 2013-09-27 2015-04-02 Natera, Inc. Prenatal diagnostic resting standards
JP6571665B2 (ja) 2013-12-28 2019-09-04 ガーダント ヘルス, インコーポレイテッド 遺伝的バリアントを検出するための方法およびシステム
CA2950596C (en) * 2014-05-30 2023-10-31 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies and copy number variations
AU2015292311B2 (en) * 2014-07-25 2022-01-20 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free DNA, and methods of identifying a disease or disorder using same
EP3502273B1 (en) * 2014-12-12 2020-07-08 Verinata Health, Inc. Cell-free dna fragment

Similar Documents

Publication Publication Date Title
JP2019531700A5 (ja)
JP6392904B2 (ja) Dnaのサイズに基づく解析
CN109767810B (zh) 高通量测序数据分析方法及装置
JP2022025101A (ja) セルフリー核酸のフラグメントームプロファイリングのための方法
CN107423534B (zh) 基因组拷贝数变异的检测方法和系统
KR102638152B1 (ko) 서열 변이체 호출을 위한 검증 방법 및 시스템
TWI670495B (zh) 一種鑑定樣本中腫瘤負荷的方法和系統
AU2012347522B2 (en) MDM2-containing double minute chromosomes and methods therefore
CN104662168A (zh) 用于癌症检测的血浆dna突变分析
DE202013012824U1 (de) Systeme zum Erfassen von seltenen Mutationen und einer Kopienzahlvariation
CN112289376B (zh) 一种检测体细胞突变的方法及装置
WO2021139716A1 (en) Biterminal dna fragment types in cell-free samples and uses thereof
CN113674803A (zh) 一种拷贝数变异的检测方法及其应用
JP2015089364A (ja) 体細胞多重変異によるがん診断方法、がん医薬開発方法及びがん診断装置
CN109461473B (zh) 胎儿游离dna浓度获取方法和装置
US20190139627A1 (en) System for Increasing the Accuracy of Non Invasive Prenatal Diagnostics and Liquid Biopsy by Observed Loci Bias Correction at Single Base Resolution
JP6564053B2 (ja) 細胞間または細胞群間の同一人かどうか、他人かどうか、親子かどうか、または血縁関係かどうかの判定方法
EP3988672B1 (en) Use of off-target sequences for dna analysis
JP7064215B2 (ja) 落屑症候群又は落屑緑内障の発症リスクの判定方法
WO2018186687A1 (ko) 생물학적 시료의 핵산 품질을 결정하는 방법
US20230054019A1 (en) Calculation method for base methylation degree and program
Park Segmentation-free inference of cell types from in situ transcriptomics data
KR20200085144A (ko) 모체 시료 중 태아 분획을 결정하는 방법
KR20200137875A (ko) 2단계 Z-score에 기반한 비침습적 산전 검사 방법 및 장치
WO2018003523A1 (ja) 広義原発開放隅角緑内障の発症リスクの判定方法