JP2019531466A - ビーム拡大によるビームパワー測定 - Google Patents

ビーム拡大によるビームパワー測定 Download PDF

Info

Publication number
JP2019531466A
JP2019531466A JP2019506116A JP2019506116A JP2019531466A JP 2019531466 A JP2019531466 A JP 2019531466A JP 2019506116 A JP2019506116 A JP 2019506116A JP 2019506116 A JP2019506116 A JP 2019506116A JP 2019531466 A JP2019531466 A JP 2019531466A
Authority
JP
Japan
Prior art keywords
laser beam
sensor
expanding device
receiving surface
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019506116A
Other languages
English (en)
Inventor
クレーマー、ラインハルト
マルティン、オットー
ヴォルフ、シュテファン
ニードリッグ、ローマン
Original Assignee
プライムス・ゲーエムベーハー・メステヒニク・フュア・ディ・プロダクチオン・ミット・レーザーシュトラールング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムス・ゲーエムベーハー・メステヒニク・フュア・ディ・プロダクチオン・ミット・レーザーシュトラールング filed Critical プライムス・ゲーエムベーハー・メステヒニク・フュア・ディ・プロダクチオン・ミット・レーザーシュトラールング
Publication of JP2019531466A publication Critical patent/JP2019531466A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0252Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0403Mechanical elements; Supports for optical elements; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0414Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0474Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0878Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/46Radiation pyrometry, e.g. infrared or optical thermometry using radiation pressure or radiometer effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

【課題】レーザビームの焦点付近の領域であっても測定を可能にする、レーザビームのパワー及び/又はエネルギーの直接且つ正確な測定のための方法及び機器を提供する。【解決手段】機器は、放射光センサ、ビーム拡大装置、及び、支持マウントを含む。放射光センサは、受け面を有すると共に、レーザビームのパワー又はレーザビームのエネルギーに依存する電気信号を生成するように構成される。ビーム拡大装置及び放射光センサは、互いに距離を隔てて支持マウント上に配置される。ビーム拡大装置は、レーザビームの角度範囲を増大するように構成される。レーザビームは、角度範囲が増大して放射光センサに伝播する。受け面に伝播されたレーザビームの直径は、ビーム拡大装置の領域におけるレーザビームの直径よりも大きい。放射光センサの受け面は、伝播されるレーザビームの断面の少なくとも90%を受容する。【選択図】図1

Description

本発明は、レーザビームのパワー又はエネルギーの測定のための方法及び機器に関する。本発明は、例えばレーザビーム集光領域で集光されたレーザビーム等の非常に高いパワー密度を有するレーザ放射の直接的な測定を可能にする。
レーザビームのエネルギー又はパワーの測定のための機器について、異なる動作原理を有する数多くの機器が知られている。レーザビームのパワー又はエネルギーの測定の実現例の1つとして、フォトダイオードの使用が挙げられる。一例として、フォトダイオードと電子回路とを有するレーザパワーエネルギー測定機器が開示される米国特許第3,687,558号明細書を参照されたい。そのようなタイプの機器は、特に、低放射パワーの測定に適している。より高いパワー密度では、フォトダイオードが急速に飽和される又はさらには破壊される可能性がある。
従って、より高いビームパワーの場合には、一般に、測定が間接的に行なわれる。すなわち、ビームは、検出器に直接に入射せず、或いは、その全体の断面を伴わない。間接的な測定のための1つの可能性は、まず、例えば独国特許出願公開第10012536号明細書に示されるように、レーザビームの減衰から成る。そこで提案される光ビームの強度の測定のための機器では、光吸収窓と光の散乱及び減衰のための装置とが検出器の前方に配置される。検出器は、ここでは、照射される光の小部分だけを測定するため、僅かな光吸収窓で検出される光ビームの位置及び角度の値の感度を維持するためにより多くの労力を費やさなければならない。加えて、減衰されたビームパワーは主に熱に変換され、そのため、精度に悪影響が及ぶ可能性がある。これは、半導体センサの感度が、一般に、例えば温度依存性の暗電流による等、温度に依存するからである。
間接的な測定のための1つの更なる一般的な方法は、測定のためのビームの小部分の分離である。このタイプの機器は独国特許発明第4336589号明細書で提起される。この特許には、高透過型ビームスプリッタがレーザビームの一部をセンサへと反射するレーザパワー測定機器が開示される。ここでは、レーザビームの偏光及び入射角度に対する反射率の依存性が問題であり、そのため、較正、従って正確な測定が困難である。偏光依存性の問題の解決のため、独国特許発明第4336589号明細書の第2の実施形態では、同じ仕様の2つのビームスプリッタを連続して位置させることが提案され、この場合、第1の偏向に対して垂直な平面内で第2の偏向が起こる。角度依存性の問題も依然として存在するが、このことから、該機器は、平行にされた放射光にのみ適しており、正確に位置合わせされなければならない。
独国特許発明第102012106779号明細書は、様々な平面内で幾つかの反射を伴う同様のタイプのさらに進展した機器を記述する。この特許に開示されるビーム測定のための光学素子では、偏光依存性を補償するために、加えて、反射の角度依存性を補償するために、3つの部分的に反射するミラーが使用され、これにより、発散放射下であっても、測定が可能である。しかしながら、この特許に開示される機器は、主に、幾何学的なビームデータの測定ため、すなわち、強度プロファイルの測定のため及びビームパラメータの決定のために提供され、ビームの全パワーの決定に殆ど適さない。
ビームが強く減衰される装置を用いた全放射パワーの測定は、その精度において常に制限される。一方では、測定精度を制限する複雑な較正が必要であり、他方では、関与する要素における僅かなパラメータ偏差でさえ、減衰係数に影響を与える可能性があると共に、高い減衰係数に起因して、測定機器の感度のかなりの変化をもたらす可能性がある。
従って、達成できる精度に関しては、直接的な測定方法が有利となり得る。高い精度は熱量測定方法を用いて達成でき、この熱量測定方法では、検出器に入射するレーザ放射光が本質的に熱に変換されて、温度が変化し、生じる温度勾配又は放散される熱流を測定できる。それにより、原則として、検出器の十分な冷却が行なわれれば、非常に高いパワーであっても測定できる。従って、例えば独国特許出願公開第102014012913号明細書には、エネルギービームパワー測定が開示され、この測定では、エネルギー放射が吸収体によって吸収され、静止流体流れによって吸収体が冷却される。ビームパワーは、電気加熱による流体の温度増加と比べた冷却流体の温度増加から決定される。それにより、非常に高いパワーを測定できるが、局所的な過熱及び吸収体の想定し得る損傷が起こらないように、パワーを吸収体内で分配しなければならない。従って、ビーム焦点の領域における測定が不可能である。
米国特許第5,678,924号明細書は、空冷式測定ヘッドを有するレーザパワー測定機器の一例を記述する。測定ヘッドは、ヒートシンクと熱接触するターゲットディスクを含む。ターゲットディスクの照射時、ターゲットディスクで温度勾配が生じ、この温度勾配は熱電素子の配列に伴って決定される。ヒートシンク及び換気装置による空冷に起因して、測定ヘッド装置が比較的大きく構成され、そのため、限られた空間条件では適用が難しい。ビーム焦点の領域における適用時には、ターゲットディスクが局所的に過熱して損傷される可能性がある。
熱量測定装置は、バリスティック原理に従って動作する場合には、かなりコンパクトに構成され得る。ここでは、積極的な冷却が省かれ、測定が短時間に制限される。ターゲット本体又は吸収体の温度増加からエネルギー又はパワーを決定することができる。独国特許出願公開第10253905号明細書及び米国特許第7,077,564号明細書は、そのようなクラスの測定装置の典型的な代表例を記述する。ここではビームが吸収体に直接に当たるため、高いパワーを有するレーザ放射光の測定をビーム焦点の領域で行なうことができない。これは、過熱によって吸収体を所々損傷させる可能性があるからである。
従って、高いパワー又は高いパワー密度を有するレーザ放射光の直接的な測定時、機器又はセンサを損傷させる可能性があるという問題が一般に存在する。従って、実際に、全ての既知の測定機器は、レーザビームが検出器で特定のパワー密度を超えないように注意しなければならない。このため、レーザビームは特定の最小直径を有さなければならず、その値は、いくつかあるポイントの中で特に、検出器の損傷閾値と、レーザビームのパワーとに依存する。この目的のため、測定機器は、通常、ビーム焦点から十分に大きい距離を隔てて発散ビーム中に位置される。これは、しばしば、実験室内の実験的構造に関する測定中に可能であり、セットアップ時の部分的な変化によって少なくとも達成できる。
レーザパワー測定機器の1つの重要な用途は、レーザ材料加工プラント内のレーザビームのパワー又はエネルギーの規則正しい間隔でのセットアップ及び検査又は監視である。ここでは、加工位置におけるビームのパワー又はエネルギーが対象であり、この加工位置ではビームが殆ど合焦され、結果として、特に高いパワー密度が現れる。従って、これにより、このポイントでは、一般的な市販の測定ヘッドを用いて測定を行なうことができず、また、レーザ材料加工装置では、レーザビームがその発散に起因して十分な直径まで拡大される他の測定位置に頻繁に接近できない。
その結果、ビーム焦点付近の領域であってもレーザビームのパワー及び/又はエネルギーの直接的で正確な測定を可能にする単純でコンパクトなレーザパワー測定機器の必要性が存在する。
この発明の課題は、レーザビームの集光領域においても、直接的で正確な測定に適したレーザビームのパワー及び/又はエネルギーの決定のための方法及び機器を利用可能にすることである。
課題の解決のため、放射光センサ、ビーム拡大装置、及び、支持マウントを含む、レーザビームのパワー及び/又はエネルギーの測定のための機器が提案される。放射光センサは、受け面を有すると共に、レーザビームのパワー又はレーザビームのエネルギーに依存する電気信号を生成するように構成される。ビーム拡大装置及び放射光センサは、レーザビームがビーム拡大装置と放射光センサとの間で伝播するように、互いに距離を隔てて支持マウント上に配置される。ビーム拡大装置は、レーザビームの角度範囲を増大するように構成される。放射光センサの受け面上に伝播されたレーザビームの直径は、ビーム拡大装置の領域におけるレーザビームの直径よりも大きい。さらに、放射光センサの受け面は、伝播されるレーザビームの断面の少なくとも90%を受容する。
ビーム拡大装置が発散レンズ又は収束レンズである機器の実施形態が提供される。
また、ビーム拡大装置は、レンズのアレイ又はレンズのマイクロアレイであってもよい。
1つの想定し得る実施形態では、ビーム拡大装置が光散乱構造又は光回折構造を有する。
また、ビーム拡大装置は、凸面鏡、凹面鏡、又は、分割鏡であってもよい。
更なる想定し得る実施形態において、支持マウントは、ビーム拡大装置と放射光センサとを収容し、ビーム拡大装置の方を向く開口を有するケーシングとして構成される。
放射光センサは、断面内において局所的に変化するレーザビームの強度を積分値として測定するように構成され得る。
放射光センサは、大面積フォトダイオード、大面積半導体センサ、焦電検出器、熱電対列、又は、パイロメータであってもよい。
機器の想定し得る実施形態では、放射光センサは、吸収体と温度センサとを備える。温度センサは、吸収体と熱的に結合される。
レーザビームの一部分又はレーザビームの散乱光部分を測定するように構成される光センサを機器が含む想定し得る実施形態も提供される。
機器の更なる想定し得る実施形態では、ビーム拡大装置と放射光センサとの間にコリメーション装置を配置させることができる。
コリメーション装置は、収束レンズ、複数のレンズを有する光学系、フレネルレンズ、屈折率分布型レンズ、又は、凹面鏡を備えてもよい。
機器の更なる他の想定し得る実施形態では、ビーム拡大装置と放射光センサとの間にビーム案内装置を配置させることができる。
ビーム案内装置は、導光プリズム、内筒鏡、内錐鏡、又は、万華鏡型の配置構成の鏡であってもよい。
また、課題の解決のために、以下のステップを伴うレーザビームのパワー及び/又はエネルギーの測定のための方法も提案される。ビーム拡大装置によってレーザビームの角度範囲が増大される。レーザビームは、ビーム拡大装置から受け面を有する放射光センサへ伝播し、この場合、ビーム拡大装置及び放射光センサは、互いに距離を隔てて支持マウント上に配置される。伝播されるレーザビームの断面の少なくとも90%が放射光センサの受け面によって測定され、受け面上における伝播されたレーザビームの直径は、ビーム拡大装置の領域におけるレーザビームの直径よりも大きい。レーザビームのパワー又はレーザビームのエネルギーに応じた電気信号が放射光センサによって生成される。
レーザビームの角度範囲を増大させるステップが、発散レンズ、収束レンズ、レンズアレイ、マイクロレンズアレイ、光散乱構造、光回折構造、凸面鏡、凹面鏡、又は、分割鏡によって実行される方法も提供される。
1つの想定し得る方法では、断面内において局所的に変化するレーザビームの強度は積分値として測定される。
放射光センサが吸収体と温度センサとを含む方法がさらに提供される。レーザビームの断面の少なくとも90%を放射光センサの受け面によって測定するステップは、受け面に入射するレーザビームの主要部分の吸収体による吸収により、行なわれる。レーザビームのパワー又はエネルギーに応じた電気信号の生成は、吸収体と熱的に結合される温度センサによって行なわれる。
更なる想定し得る方法では、レーザビームの照射の終了後及びレーザビームの照射の開始前の吸収体の温度の差からレーザビームのエネルギー又はパワーを決定することが提供される。
レーザビームの一部分又はレーザビームの散乱光部分を光センサによって測定するステップがさらに提供される。
以下の更なる方法ステップを含む想定し得る方法も提供される。レーザビームの照射の終了後及びレーザビームの照射の開始前の吸収体の温度差からレーザビームのエネルギーが決定される。光センサの信号の推移からレーザビームの照射時間が決定される。最終的に、エネルギーと照射時間との除算によってレーザビームのパワーが決定される。
想定し得る更なる方法において、ビーム拡大装置から放射光センサへのレーザビームの伝播は、2つの区間で行なわれる。2つの区間の間で伝播するレーザビームの角度範囲は、ビーム拡大装置と放射光センサとの間に配置されるコリメーション装置によって減少される。
ビーム拡大装置と放射光センサとの間に配置されるビーム案内装置によって、伝播されるレーザビームを放射光センサの受け面上における中心に当てるステップをさらに含む方法も提供される。
本発明は、図示の実施形態及び例に限定されることなく、以下の図を用いてさらに詳細に描かれる。それどころか、異なって描かれる幾つかの特徴を組み合わせることができる実施形態も提供される。これらは以下を描く。
ビーム拡大装置及び放射光センサを伴う本発明の第1の実施形態の概略図である。 ビーム拡大装置、コリメーション装置、及び、放射光センサを伴う本発明の第2の実施形態の概略図である。 ビーム拡大装置が収束レンズとして構成される、本発明の第1の実施形態の1つの実施例の概略図である。 ビーム拡大装置が発散レンズとして構成されると共に、コリメーション装置が収束レンズとして構成される、本発明の第2の実施形態の1つの実施例の概略図である。 ビーム拡大装置としてのレンズアレイを伴う本発明の第1の実施形態の更なる実施例の図である。放射光センサは、一例として、温度センサを伴う吸収体として実現される。 ビーム拡大装置としてのレンズアレイを伴うと共に、コリメーション装置としての凹面鏡を伴う、本発明の第2の実施形態の更なる実施例の図である。 ビーム拡大装置としての凸面鏡を伴い、コリメーション装置としての凹面鏡を伴うと共に、ケーシングとして構成される支持マウントを伴う、本発明の第2の実施形態の更なる実施例の1つの更なる図である。 ビーム拡大装置がここでは分割鏡として構成される、図7に描かれる実施形態に類似する本発明の1つの実施例の図である。 支持マウントがケーシングとして構成されると共に、電子演算ユニット及びインタフェースがケーシングに組み込まれる、コンパクトな測定機器としての本発明の1つの実施例の図である。 図9に描かれる実施形態に類似するコンパクトな測定機器としての本発明の更なる実施例の図である。コリメーション装置はここでは幾つかの凸面レンズを伴う光学素子として実現される。ビーム拡大装置は、放射光の角度範囲を増大させるための光散乱構造を備える。 ビーム拡大装置、ビーム案内装置、及び、放射光センサを伴う本発明の第3の実施形態の概略図である。 ビーム案内装置によって放射光センサの受け面の中央領域へと偏向される斜めに入射するレンズビームを伴う、図11aの場合と同様の本発明の第3の実施形態の図である。 ビーム案内装置が、伝播するレーザビームの部分領域の偏向により、放射光の角度範囲を減少させる、本発明の第3の実施形態の更なる実施例の図である。 ビーム拡大装置がビーム案内装置として及びコリメーション装置として同時に構成される、本発明の第4の実施形態の概略図である。 放射光センサが円錐状の受け面を伴う中空体の形態を成す吸収体を備える、本発明の第1の実施形態の更なる実施例の図である。 放射光センサが中空シリンダの形態を成す吸収体を含むと共に、受け面の一部が反射態様で構成される、本発明の第1の実施形態の他の実施例の図である。 放射光センサが中空シリンダの形態を成す吸収体を含むと共に、放射光センサが冷却装置を備える、本発明の第1の実施形態の更なる例の1つの更なる図である。 放射光センサが冷却装置を備える、本発明の第2の実施形態の更なる実施例の図である。
図1は、本発明の想定し得る第1の実施形態を概略図で描く。レーザビーム10のエネルギー又はパワーの測定のため、放射光センサ40には受け面41が設けられる。放射光センサ40の前方には距離25を隔ててビーム拡大装置30が位置される。ビーム拡大装置30及び放射光センサ40は支持マウント20に取り付けられる。ビーム拡大装置30は、レーザビーム10の角度範囲を増大させる。ビーム拡大装置30を通過した後、レーザビーム11は、ビーム断面が拡大されて伝播し、直径14を伴って放射光センサ40の受け面41に入射する。受け面41は、伝播されるレーザビーム11の断面の少なくとも90%を受ける。受け面41上におけるレーザビーム11の直径14は、ここでは、ビーム拡大装置30の領域におけるレーザビーム10の直径13よりも大きい。ビーム拡大装置30がなければ、レーザビーム16は、断面が増大せず、従って、放射光センサ40の領域で非常に小さい直径17を有する。放射光センサ40は、レーザビーム10又は伝播されるレーザビーム11のパワーのエネルギーに依存する電気信号47を生成する。
本発明の想定し得る第2の実施形態が図2に概略的に描かれる。この実施形態は、図1に描かれる第1の実施形態の全ての要素及び特徴を備える。第2の実施形態では、ビーム拡大装置30と放射光センサ40との間に位置されるコリメーション装置36がさらに設けられる。コリメーション装置36も同様に支持マウント20に取り付けられる。ビーム拡大装置30及びコリメーション装置36は互いから距離26を隔てる。コリメーション装置36及び放射光センサ40は他方に対して距離27を隔てて位置される。コリメーション装置36は、伝播されるレーザビーム11の角度範囲を減少させる。レーザビーム12は、さらに伝播して、放射光センサ40の受け面41に入射する。その他の点に関し、機器の動作原理は、図1に描かれる第1の実施形態に対応する。
図3は、図1に描かれる第1の実施形態の一実施例を描く。ビーム拡大装置30は、この例では、非常に短い焦点距離を有する収束レンズとして実現される。レーザビーム10は、収束レンズによって合焦され、合焦後は、断面が非常に拡大されて伝播する。伝播されるレーザビーム11は、大きい直径14を伴って、放射光センサ40の受け面41に入射する。
図4は、図2に描かれる第2の実施形態の一実施例を描く。この例において、ビーム拡大装置30は、非常に短い焦点距離を有する発散レンズとして実装される。コリメーション装置36は収束レンズとして実装される。
図1に描かれる第1の実施形態の更なる実施例が図5に描かれる。ビーム拡大装置30は、この例では、レンズアレイとして構成される。レンズアレイの個々のレンズは、図に描かれるように、凸状形態を有することができる。さらに、図5は、放射光センサ40の構造の一例を描く。放射光センサ40は、ここでは、吸収体44と、吸収体44と熱的に結合される温度センサ46とを含む。受け面41は、吸収体44の表面であり、可能な限り高い吸収レベルを有する。レーザビーム10、11の入射時、ビームパワーは本質的に熱へと変換され、それにより、吸収体44の温度が上昇する。吸収体44の温度は温度センサ46によって測定される。温度センサ46は電気信号47を生成する。
本発明の第2の実施形態の他の実施例が図6に描かれる。図5と同様に、ビーム拡大装置30は、この例では、レンズアレイとして実現される。第2の実施形態はコリメーション装置36をさらに有する。コリメーション装置36は、この例では、凹面鏡として実現される。
図7は、第2の実施形態の他の例を描く。図6の場合と同様に、コリメーション装置36は凹面鏡として実現される。ビーム拡大装置30は、この例では、凸面鏡である。支持マウント20は、ビーム拡大装置30、コリメーション装置36、及び、放射光センサ40を取り囲むケーシングとして構成される。ケーシングは、ビーム拡大装置30のための開口を有し、この開口を通じてレーザビーム10がビーム拡大装置30に入射できる。
第2の実施形態の更なる他の例が図8に描かれる。この例は、図7に描かれるビーム拡大装置30の例に類似しており、この例において、ビーム拡大装置30は、凸面鏡ではなく、代わりに分割鏡である。分割鏡の個々のファセットは凸形状を有することができる。
図9は、本発明の第2の実施形態の一実施例を独立した測定機器として概略的に描く。ビーム拡大装置30は、この例では、レンズアレイとして実現される。レンズアレイの個々のレンズは、図9に示されるように、凹形状を有することができる。コリメーション装置36は収束レンズとして実現される。図5の実施例の場合と同様に、放射光センサ40は、吸収体44と、放射光センサ40の温度の検出のために吸収体44と熱的に結合される温度センサ46とを含む。放射光センサ40の環境内の第2の温度を測定する第2の温度センサ48が設けられる。この目的のため、第2の温度センサ48をケーシングと熱的に結合させることができる。さらに、放射光センサ40におけるレーザビーム10、11、12の一部分を記録する光センサ56が設けられる。描かれる実施例において、光センサ56は、横方向においてコリメーション装置36と放射光センサ40との間に位置され、従って、放射光センサ40の受け面41の少なくとも一部は、光センサ56の幾何光学的な検出範囲内に配置される。その結果、光センサ56は、受け面41から僅かな程度生じる散乱光を測定することができる。温度センサ46、及び、第2の温度センサ48、並びに、光センサ56の信号は、電子演算ユニット60で記録されて処理される。レーザビーム10のパワー及び/又はエネルギー等の電子演算ユニット60により演算されたデータは、インタフェース62によって供給される。支持マウント20は、ここでは、ビーム拡大装置30、コリメーション装置36、放射光センサ40、第2の温度センサ48、光センサ56、電子演算ユニット60、及び、インタフェース62を収容するケーシングとして実現される。ケーシングは開口を有し、該開口を通じてレーザビーム10がビーム拡大装置30へ向けて入射できる。
独立した測定機器としての更なる実施例が図10に描かれる。図9とは異なり、例えば、ビーム拡大装置30は、この例では、レーザビーム10の角度範囲を増大させるための光散乱構造31を有する。コリメーション装置36は、2つの収束レンズ37から成る光学系として実現される。
図11a及び図11bは、本発明の想定し得る第3の実施形態を概略図で描く。この実施形態は、図1に描かれる第1の実施形態の全ての要素を備える。第3の実施形態では、ビーム拡大装置30と放射光センサ40との間に配置されるビーム案内装置33がさらに設けられる。ビーム案内装置33は例えばプリズムであってもよく、このプリズムの側面で、伝播するレーザビーム11の一部を全反射によって偏向させることができる。示された実施例において、ビーム案内装置33は、図11aに示されるように、レーザビーム10が軸方向に一直線に合わせられている場合にはビーム案内装置33が効果を示さないように寸法付けられる。図11bに描かれるように、レーザビームが斜めに照射される場合、すなわち、レーザビーム10が機器の光軸39に対して角度を成す場合には、伝播するレーザビーム11の一部が放射光センサ40の受け面41の方向へと偏向される。その結果、レーザビーム11は、ビーム案内装置33によって、受け面41上の中心に向けられる。その他の点に関し、機器の動作原理は、図1に描かれる第1の実施形態に対応する。
第3の実施形態の更なる例が図12に概略的に描かれる。この実施例において、ビーム案内装置33は、伝播するレーザビーム11の側方領域がビーム案内装置33の側面での反射によってビーム軸に対して大きい角度で偏向されるように寸法付けられる。
図13は、本発明の想定し得る第4の実施形態を概略図で描く。この実施形態において、ビーム拡大装置30は、幾つかの機能を1つの構成要素に組み込む。描かれた例において、ビーム拡大装置30は、該ビーム拡大装置30の前面に又はビーム入射面に光散乱構造31を有する。光散乱構造31は、レーザビーム10の角度範囲の増大をもたらす。ビーム拡大装置30の側面は勾配及び/又は曲率を有しており、それにより、側面で反射される伝播レーザビーム11の放射成分は放射光センサ40の受け面41へと偏向され、ビーム軸に対する偏向された放射成分の角度は減少する。その結果、この実施形態におけるビーム拡大装置30は、ビーム案内装置の機能と、少なくとも部分的にコリメーション装置の機能とを同時に果たす。その他の点に関し、機器の動作原理は、図1に描かれる第1の実施形態に対応する。
第1の実施形態の更なる実施例が図14に概略的に描かれる。この例において、放射光センサ40は、吸収体44と、該吸収体44と熱的に結合される温度センサ46とを含む。吸収体44は、中空空間アブソーバとして、この例では中空コーン又は内側コーンとして形成され、この場合、受け面41が増大され、伝播されるレーザビーム11の断面がより大きい表面上へと分散される。さらに、光センサ56が設けられ、この光センサ56は、受け面41で部分的に散乱されるレーザビーム11の一部を受ける。温度センサ46及び光センサ56の信号は、電子演算ユニットで記録されて処理される。外部表示ユニット又は外部装置とデータをやりとりするためにインタフェース62が設けられる。
図15は、第1の実施形態の更なる他の実施例を描く。図14と同様に、吸収体44は、中空空間アブソーバとして、この例では中空シリンダとして形成される。受け面41の部分領域42、ここでは中空シリンダの底面は、反射する又は部分的に反射するように構成される。そのようにして、この領域に入射する放射光は、円筒状の側面へと案内される。この目的のため、中空シリンダの底面には平坦な円錐形状が設けられる。インタフェースの代わりに、この例では、電子演算ユニット60により決定されるデータを表示できる表示装置64が設けられる。
レーザビーム10のパワーの連続測定にも適している第1の実施形態の一実施例が図16に描かれる。放射光センサ40は、一例として、図15に描かれる例と同様に構成される。吸収体44により吸収される熱を除去するために冷却装置70が設けられる。冷却材77が冷却材入口72を通じて冷却装置70内へと至らされ、この冷却材77は、放射光センサ40の吸収体44を通じて流れて、冷却材出口74を通じて排出される。冷却材77は、吸収体44の内側のパイプ、ボアホール、又は、チャネルを通じて案内されて、吸収体44の熱を吸収する。吸収体44と結合される温度センサ46は、加熱された冷却材が吸収体44から抜け出る冷却材流通方向に対して下流側に配置され、加熱された冷却材の温度を記録する。冷却材が吸収体44内へと案内される前の上流側に第2の温度センサ48が位置され、従って、この第2の温度センサ48は、冷却材77の入口温度を記録する。冷却材77の流量は、図示されない流量センサによって決定され得る。レーザビーム10のパワーは、温度センサ46と温度センサ48により測定される温度差と流量とから決定される。
図17は、第2の実施形態の連続測定のための一実施例を描く。冷却装置70は、図16に描かれる例に対応する。図16の場合のような中空空間アブソーバの代わりに、ここでは、単純な平坦吸収体44が設けられる。それにより、吸収体44は小さい熱質量を有し、この小さい熱質量により、温度変化の応答時間、ひいては温度センサ46の信号の応答時間が短くなる。放射光センサ40の温度センサ46は下流側で吸収体44の冷却材出口に配置され、また、第2の温度センサ48は上流側で吸収体の前方に配置される。受け面41における放射光の最適な吸収のため、放射光センサ40の前方にコリメーション装置36が設けられ、このコリメーション装置により、伝播されるレーザビーム11の角度範囲が減少される。コリメーション装置36は、この例では、伝播するレーザビーム11を平行にする収束レンズであり、それにより、伝播するレーザビーム12は受け面41に対して略垂直に当たる。この前に、レーザビーム10の角度範囲は、レーザビーム10をエキスパンドするためのビーム拡大装置30によって増大される。温度センサ46、48の信号は、電子演算ユニット60により記録されて処理される。演算されたデータは、インタフェースによって外部装置へと送信される。
前述の課題の解決手段は、ビーム焦点に近い領域においてさえ測定を可能にする、レーザビームのパワー及び/又はエネルギーの直接且つ正確な測定のための簡単な方法とコンパクトな機器とを提供することによって与えられる。
前述の課題の解決のために、支持マウント20、ビーム拡大装置30、及び、受け面41を有する放射光センサ40を含む機器が提案される。ビーム拡大装置30及び放射光センサ40は、支持マウント20を用いて、互いから距離25を隔てて位置される。機器はレーザビーム10を収集するように構成される。レーザビーム10は、まず、ビーム拡大装置30に当たる。レーザビーム10は、ビーム拡大装置30の領域では直径13を有する。ビーム拡大装置30は、レーザビーム10の角度範囲を増大させる。角度範囲という用語は、ここでは、ビーム軸に対するレーザビームの部分ビーム全ての角度の分散範囲を意味する。ビーム拡大装置30による角度範囲の増大後、レーザビーム10は、ビーム拡大装置30と放射光センサ40との間の参照数字11により示される領域を、拡大されたビーム断面で伝播する。伝播されるレーザビーム11は、放射光センサ40の受け面41に当たる。レーザビーム11は受け面41では直径14を有する。受け面41における直径14は、ビーム拡大装置30の領域におけるレーザビーム10の直径13よりも大きい。放射光センサ40の受け面41は、伝播されるレーザビーム11の断面の少なくとも90%を受け入れる。そのため、伝播されるレーザビーム10、11の円形ビーム断面に関して、受け面41の直径は、レーザビーム11の直径14の0.95倍よりも大きい或いは少なくとも0.95倍に等しい。従って、伝播されるレーザビーム11は、レーザビーム11の断面の最大で10%が受け面41の外側に当たるように受け面41上の中心に当たる。放射光センサ40は、レーザビーム10、11のパワー又はエネルギーに依存する電気信号47を生成する。レーザビーム10、11のパワー又はエネルギーの値は電気信号47から決定される。
レーザビーム10を合焦させ、また、本発明に係る機器をレーザビーム10の焦点領域に配置する。レーザビーム10は、該レーザビーム10が妨害されずに伝搬する場合には、すなわちビーム拡大装置が無い場合は、焦点領域で非常に小さい直径17を有する。ビーム拡大装置30を伴わないレーザビーム10の仮想伝播は例えば図1に参照数字16で破線によって示される。焦点領域における直径17は、例えば0.1mm程度の大きさに相当することができ、また、レーザビーム10のパワーは例えば1kWに相当し得る。このとき、パワー密度は約10MW/cm2程度の大きさにある。実質的には、全ての不透明材料は、そのようなパワー密度で直ちに溶融されるか或いは穿孔される。任意のタイプの検出器はそのようなパワー密度に耐えることができない。従って、ビーム拡大装置30が、放射光センサ40の前方に距離25を隔てて位置される。ビーム拡大装置30はレーザビーム10の角度範囲を増大させる。すなわち、ビーム軸に対するレーザビーム11の全ての部分ビームの角度の広がりの幅は、ビーム拡大装置30を通過した後、より大きくなる。平行になったビームは、例えば、ほぼゼロの角度範囲又は1°を遥かに下回る角度範囲を有する。処理光学系により合焦されたレーザビームは、一般に、数度の角度範囲を有する。ビーム拡大装置30は、例えば、±5°だけ、従って10°の広がり幅にわたって角度範囲を増大させるように構成可能であり、また、ビーム拡大装置30と放射光センサ40との間の距離25は例えば50mmに相当し得る。このとき、受け面におけるビーム直径14は辛うじて9mmの大きさであり、また、1kWにおけるパワー密度は2kW/cm2未満に相当する。従って、角度範囲の増大を伴わない焦点領域におけるビームの先の例と比べて、パワー密度は、略4桁程度の大きさだけ減少している。減少されたパワー密度は、多くの検出器により、少なくとも短期的には損傷なく、処理され得る。
想定し得る実施形態では、ビーム拡大装置30と放射光センサ40との間の距離25が10mm〜200mmの範囲内となるようにされる。特に、距離25は20mm〜100mmである。
ビーム拡大装置30による角度範囲の増大は、±1°〜±50°の範囲内である。特に、角度範囲の増大は±2°〜±30°の範囲内である。
ビーム拡大装置30を様々な方法で構成することができる。角度範囲の増大は、屈折、反射、回折、又は、散乱によって実行され得る。レーザビーム10の強度分布、ビームプロファイル、又は、ビームパラメータ積を維持する必要はないが、ビームの断面にわたって積分される全パワー又は全エネルギーだけは本質的に維持されなければならない。レーザビーム10が減衰を殆ど伴わずにビーム拡大装置30を通過することは、ビーム拡大装置30の全ての実施形態に共通している。ビーム拡大装置30の吸収レベルは1%未満である。ビーム拡大装置30が透過光学素子である場合、その透過レベルは、90%を上回り、好ましくは99%を上回る。この目的のため、ビーム拡大装置30のビーム入射面及び出射面に反射防止コーティングを設けることができる。ビーム拡大装置30が反射光学素子である場合、反射率は99%を上回る。
ビーム拡大装置30が例えば光学レンズであってもよい。光学レンズの焦点距離は、ビーム拡大装置30と放射光センサ40との間の距離25の一部分である。光学レンズの焦点距離の大きさは距離25の最大で1/3に相当するようになっている。光学レンズは凹面レンズ又は凸面レンズである。すなわち、発散レンズ又は収束レンズであってもよい。発散レンズの利点としては、レンズの焦点距離が同じ大きさであるときに、距離25を幾分短くなるように選択して、受け面41におけるビーム直径14を同等に増大させることができるということが挙げられる。図3は、収束レンズとしてのビーム拡大装置30の一実施形態に関する一例を描き、一方、発散レンズは、図4にビーム拡大装置30として描かれる。
ビーム拡大装置30は、レンズのアレイ又はレンズのマイクロアレイであってもよく、すなわち、ビーム拡大装置30は、この実施形態では、互いに隣り合って位置される複数のレンズ素子を備える。レンズのアレイをビーム拡大装置30として使用することにおける特徴としては、それにより角度範囲の増大を達成することができ、レンズのアレイの個々のレンズ素子の横寸法が十分小さくなるように選択されれば、角度広がりの幅がビーム拡大装置30の領域におけるレーザビーム10の直径13に依存しないということが挙げられる。これを達成するために、個々のレンズ素子の横寸法又は幅は、ビーム拡大装置30の領域におけるレーザビーム10の直径13よりも小さくなる又は最大でも直径13に等しくなるように選択される。個々のレンズ素子の幅は例えば0.1mm〜5mmの範囲内となり得る。個々のレンズ素子の焦点距離の大きさは、0.3mm〜20mmの範囲内となり得る。個々のレンズ素子の幅に対する個々のレンズ素子の焦点距離の大きさの比は、例えば2〜30の範囲内となり得る。レンズのアレイの個々のレンズ素子は、プラス又はマイナスの屈折力を有することができる。すなわち、個々のレンズ素子の表面を凸状に又は凹状に湾曲させることができる。レンズの凸状アレイに関する実施例が図5及び図6に描かれ、一方、ビーム拡大装置30は、図9及び図14〜図17では、レンズの凹状アレイとして実現される。
また、ビーム拡大装置30は光散乱構造31を有することもできる。光散乱構造31は、レーザビーム10の放射光を限られた角度範囲で前方へと広げる。光散乱構造31は、例えば、所定のレベルの粗さ又は波状を伴う透明材料の境界面として実現され得る。放射光は、粗い又は波状の境界面の凹凸で様々な角度の屈折により偏向される。また、光散乱構造31は、例えば、屈折率が局所的に変化する構造であってもよい。
ビーム拡大装置30による角度範囲の増大を回折によって達成することもできる。この目的のため、ビーム拡大装置30は光回折構造を有する。光回折構造は、例えば、リソグラフィックプロセスによってビーム拡大装置30の境界面に適用可能である。
また、ビーム拡大装置30は拡散器であってもよい。入射する放射光を統計的に分布するように様々な角度へと偏向させる光学素子が一般に拡散器と称される。これは、既に説明したように、例えば、光散乱構造31によって又は光回折構造によって達成され得る。
ビーム拡大装置30は曲面鏡又は凹面鏡又は凸面鏡であってもよい。光学レンズの使用との違いとしては、ビーム経路が折り曲げられるということが挙げられる。凹面鏡又は凸面鏡の曲率半径の絶対値がビーム拡大装置30と放射光センサ40との間の距離25の最大で2/3に相当するようにする。ビーム拡大装置30としての凸面鏡に関する実施例が図7に描かれる。
ビーム拡大装置30が分割鏡であってもよい。分割鏡では、幾つかの個々のファセットが互いに隣り合って位置される。分割鏡の個々のファセットを凸状に又は凹状に湾曲させることができる。レンズのアレイと同様に、角度範囲の増大をビーム拡大装置30としての分割鏡を用いて達成することができ、分割鏡の個々のファセットの横寸法が十分小さく選択されれば、角度広がりの幅は、ビーム拡大装置30の領域におけるレーザビーム10の直径13に依存しない。図8は、分割鏡がビーム拡大装置30として使用される実施例を描く。
様々な検出器を放射光センサ40として使用することができる。放射光センサ40は受け面41を有する。受け面41は、レーザビーム10、11、12の全ビーム断面又は受け面41のレーザビームの断面の少なくとも90%が測定されるように十分に大きい。レーザビームの断面内では、通常、放射光の強度が位置に依存する。多くのレーザビームはほぼガウス強度分布を有する。伝播するレーザビーム11における強度分布をビーム拡大装置30によって変えることができる。放射光センサ40は、ビームの全断面又は少なくとも略全断面を測定し、従って、強度分布の積分値に対応する信号値を生成する。強度分布の積分値は、受け面にわたって積分されるレーザビーム10、11、12の強度である。従って、信号値は、レーザビームの全パワー又は全エネルギーに依存する。信号値は電気信号47として出力される。
放射光センサ40は、例えば、大面積フォトダイオード又は大面積半導体センサであってもよい。また、放射光センサ40は、焦電検出器又はパイロメータであってもよい。また、放射光センサ40は、いわゆる熱電対列、すなわち、吸収層と結合される熱電対列又は熱電対鎖であってもよい。
放射光センサ40を熱量センサとして構成することもできる。この目的のため、放射光センサ40は吸収体44と温度センサ46とを備える。温度センサ46は、吸収体44の温度を測定するために吸収体44と熱的に結合される。ここでは、受け面41が吸収体44の表面である。受け面41は高い吸収率を有する。この目的のため、受け面を黒く或いは吸収性を有するようにコーティングすることができる。また、受け面41は、例えば、溝状パターン等の構造を有することもできる。受け面41に入射するレーザビーム10、11、12は、大部分が吸収されて熱へと変換される。それにより、吸収体44の温度が高められ、温度センサ46によって記録される。温度センサ46は電気信号47を生成する。放射光センサ40又は吸収体44は、支持マウント20に、或いは、ケーシングとして構成された支持マウント20に、熱的に絶縁された態様で取り付けられる。この目的のため、放射光センサ40又は吸収体44と接続される支持マウント要素は、例えば、熱伝導性が低い材料から製造される。熱的に絶縁された取り付けにより、測定の精度を低下させる可能性のある吸収体44から環境への制御されない熱流を減少させることができる。
多くの検出器において、生成される信号のレベルは、僅かな程度で、検出器におけるビームの位置と、検出器に対するビームの入射角とに依存する。高い測定精度を得るため、ビームが、できるだけ検出器に対して軸対称に又は中心に入射すると共に、入射角が垂直入射から可能な限り逸脱しないことを確実にしなければならない。
従って、測定精度の更なる改善のため、本発明の想定し得る他の実施形態では、図2に概略的に描かれるように、ビーム拡大装置30と放射光センサ40との間にコリメーション装置36が位置される。コリメーション装置36はビーム拡大装置30から距離26を隔てて位置される。コリメーション装置36は、この前にビーム拡大装置30により増大された伝播するレーザビーム11の角度範囲を減少させる。それにより、ビーム軸に対するレーザビームの全ての部分ビームの角度はコリメーション装置36を通過した後に可能な限り小さくなる。従って、図2に参照符号12で示される領域において、コリメーション装置36の後方に伝播するレーザビームは、その断面又は直径をほぼ一定に保つ。すなわち、コリメーション装置36の領域におけるレーザビーム11の直径は、受け面41におけるレーザビーム11、12の直径14にほぼ等しい。そのため、コリメーション装置36の後方に伝播するレーザビーム12の部分ビームは、放射光センサ40の受け面41にほぼ垂直に入射する。
コリメーション装置36は、例えば、収束レンズ又は凸面レンズ、フレネルレンズ、屈折率分布型レンズ、幾つかのレンズから成る光学系、或いは、凹面鏡であってもよい。コリメーション装置はプラスの焦点距離fkを有する。本発明の1つの想定し得る実施形態では、コリメーション装置36の焦点距離は、以下のように、ビーム拡大装置30とコリメーション装置36との間の距離26以上である。
k ≧ dAK
ここで、fkは、コリメーション装置36の焦点距離であり、また、dAKは、ビーム拡大装置30とコリメーション装置36との間の距離26である。ここでは、距離dAK26がビーム拡大装置30からコリメーション装置36の主平面(又は主表面)までの距離によって規定されることが考慮に入れられるべきである。
さらに、コリメーション装置36の焦点距離fkは、下に示す値以下である。
k ≦ dAKφSE/(φSE−φSA
ここで、φSAは、ビーム拡大装置30の領域におけるレーザビーム10の直径13であり、また、φSEは、受け面41上における又はコリメーション装置36の領域におけるレーザビーム11、12の直径である。
図4及び図9は、コリメーション装置36としての収束レンズを伴う例を描く。図10には、2つの凸面レンズ37から成る光学系がコリメーション装置36として描かれる。図6、図7、及び、図8は、コリメーション装置36としての凹面鏡の一例を描く。
本発明の1つの更なる想定し得る実施形態では、ビーム拡大装置30と放射光センサ40との間に位置されるビーム案内装置33が設けられる。ビーム案内装置33によって、所望の断面内でレーザビーム11が保持されるため、受け面41に対するビームスポットの入射位置が最適化される。
ビーム案内装置33は、例えば、導光プリズムとして、従って、透明材料から形成されるプリズムとして構成され得る。プリズムは、ビーム入射面、ビーム出射面、及び、側面を有する。プリズムの側面で、軸に対して非常に大きい角度を有するレーザビーム11の部分ビームが反射され、従って、この部分ビームは、放射光センサ40の中央領域の方向に偏向される。プリズムの側面での反射は全反射によって起こり得る。また、プリズムの側面に反射コーティングを設けることもできる。また、ビーム案内装置33が万華鏡のような配置の鏡であってもよい。図11a、図11b、及び、図12は、ビーム案内装置33を伴う本発明の実施例を示す。ビーム案内装置33の形状は、例えば、円柱ロッド又は円錐ロッド、或いは、三角形、正方形、五角形、六角形、又は、八角形の断面を有するロッドであってもよい。側面を軸に対して傾けることができる。すなわち、ビーム出射面の断面は、ビーム入射面の断面よりも大きくなり得る。側面の傾斜により、側面で反射されるレーザビーム11の部分ビームの軸に対する角度が減少される。それにより、ビーム案内装置33は、コリメーション装置36と同様に、レーザビーム11の角度範囲の減少をもたらすことができる。図13に一例として示すように、ビーム案内装置による角度スペクトルの減少は、側面が傾斜しており、さらに曲率を有することによって最適化することができる。
本発明の更なる他の付加的な実施形態が図13に描かれ、この実施形態では、ビーム拡大装置30とビーム案内装置33とが1つの部品として統合される。その目的のため、ビーム案内装置33の入射面をビーム拡大装置30として構成することができる。入射面は、例えば、凹状に湾曲可能であり、アレイとして配列されるレンズファセットを伴う表面を有することができ、或いは、光散乱構造31を有することができる。
本発明は、最新技術と比べて以下の多くの利点を有する。
・本発明は、ビーム減衰を伴わないレーザビームのパワー又はエネルギーの直接測定を可能にし、それにより、高い精度を得ることができる。
・放射光センサにおける放射光のパワー及び/又はエネルギー密度は大きく減らされる。
・従来の測定機器は検出器への損傷を回避するために焦点領域のはるか外側に配置されなければならないが、本発明は集束レーザビームの焦点領域における測定を可能にし、従って従来の測定機器よりもはるかに広い応用範囲を有する。
・放射光センサの受光面への放射光の入射角は、レーザビームの入射角に関係なくほぼ一定に保ち、垂直入射に近づけることができ、従って特に正確で再現可能な測定が可能になる。
・レーザビームの入射角及び入射位置とは無関係に、放射光センサの受け面におけるビーム断面の入射位置を狭い範囲内に且つ放射光センサの中央付近に保つことができ、それにより、測定の精度及び再現性をさらに向上させることができる。
・本発明に係る機器を非常にコンパクトに構成できる。
本発明の範囲及び課題から離れることなく、以下に挙げられる実施形態及び付加的に挙げられる特徴に対応して、最も変化に富む態様で有利に本発明をさらに進展させることができる。本発明の更なる実施形態は、全ての想定し得る実施形態が記載されない又は図に描かれない場合であっても、記載される特徴の異なる組み合わせによって与えられる。
放射光センサ40を熱量センサとして実装する場合、吸収体44は多くの異なる方法で構成することができる。吸収体は例えば中空空間アブソーバであってもよい。中空空間を様々な方法で形成できる。図14に描かれるように、吸収体44を円錐状に又はテーパ状に構成することができる。また、吸収体44は、凹状に湾曲された受け面を有することもできる。
吸収体44は、図15及び図16に示されるように、一方側が開口される中空円筒であってもよい。中空円筒の円筒状の内面で放射光を主に吸収するようにすることができる。この目的のため、受け面41の部分領域42は、反射するように構成される。反射部分領域42は、中空円筒の底面又は底面領域にあってもよい。中空円筒の底面又は底面領域は、そこに入射する放射光を円筒状の内面へと反射するために扁平な円錐形状を有することができる。
熱量センサとして実現される放射光センサ40は冷却装置70を備えることもできる。冷却装置70では、冷却材入口72を通じて冷却材77が供給され、冷却材出口74を通じて冷却材77が排出される。冷却材入口72と冷却材出口74との間で、冷却材77は、吸収体44と少なくとも部分的に熱接触する或いは吸収体44を貫通するパイプ、ボアホール、チャネル、又は、他の中空キャビティのシステムを通じて案内される。その結果、冷却材77は、吸収体44の熱を吸収してその熱を放散する。温度センサ46は、冷却材77が吸収体44から運び出されるポイントに位置され、その結果、加熱された冷却材の温度を記録する。
本発明は第2の温度センサ48をさらに含むことができる。第2の温度センサ48は、放射光センサ40の近傍に位置され、吸収体44と熱的に結合されない。その結果、第2の温度センサ48は、放射光センサ40又は吸収体44の近傍の第2の温度を測定する。この目的のため、第2の温度センサ48を支持マウント20に或いは図9に描かれるようにケーシングとして実現される支持マウント20に又はこの支持マウント20内に取り付けることができる。第2の温度の検出によって、吸収体44の温度増加を正確に決定することができ、この温度増加からレーザビームのパワー又はエネルギーが演算される。加えて、第2の温度の検出により、環境内への吸収体44の制御されない熱流の大きさを推定でき、それにより、レーザビームのパワー又はエネルギーの演算の精度を向上させることができる。
放射光センサ40が冷却装置70を備える場合には、冷却材が吸収体44へと案内される前の冷却材供給ポイントに第2の温度センサ48を位置させることができる。その結果、第2の温度センサ48は冷却材77の基準温度又は入口温度を測定する。そのため、温度センサ46と第2の温度センサ48との間の温度差から、放散熱、従ってレーザビーム10、11、12のパワーを決定できる。図16及び図17は対応する実施例を描く。
本発明に係る機器は光センサ56をさらに備えることができる。光センサ56は、レーザビーム10、11、12により形成される僅かな放射光成分を検出するように構成される。僅かな放射光成分は、例えば、レーザビーム10、11、12が受け面41に入射する場合に放射光センサ40の受け面41上の小部分で生成される散乱光19を含み得る。光センサ56は、受け面41が光センサ56の幾何光学的な光検出範囲内に少なくとも部分的に位置するように位置決めされ得る。その目的のため、光センサ56をビーム拡大装置30と放射光センサ40との間の領域で支持マウント20に又はケーシング内に取り付けることができる。
光センサ56の信号は、入射レーザビーム10のパワーにほぼ比例する。例えば、フォトダイオードを光センサ56として使用することができる。フォトダイオードは、非常に短い信号立ち上がり時間を有し、その結果、非常に高い時間分解能を有する信号を与える。光センサ56の信号を用いて、パルスの開始と終了すなわちレーザビーム10の照射時間を非常に正確に記録することができる。それにより、レーザビーム10のパワーをさらに高い精度で決定することができる。
機器は電子演算ユニット60を備えることができる。電子演算ユニット60は、放射光センサ40の電気信号47を処理する。電子演算ユニットは、必要に応じて、第2の温度センサ48の信号並びに光センサ56の信号が提供されていれば、それらの信号を処理することもできる。信号の処理は、例えば、信号のA/D変換及び記憶及び/又はレーザビーム10のパワー又はエネルギーの演算を含むことができる。
機器は、表示装置64をさらに備えることもできる。演算されたデータ、従ってレーザビーム10のパワー又はエネルギーを表示装置によって表示することができる。
また、機器はインタフェース62を備えることもできる。インタフェース62により、例えば、演算されたデータ、従ってレーザビームのパワー又はエネルギー、又は、記録された信号を外部装置へ送信できる。インタフェース62を介して機器と外部装置との間で制御コマンドをやりとりすることもできる。インタフェース62は、例えば、USBインタフェース等のプラグコネクタを有する電気インタフェースであってもよい。また、インタフェース62は、例えば、いわゆるブルートゥースインタフェース等の無線信号によってデータ送信を可能にする無線インタフェースであってもよい。
10…レーザビーム
11…角度範囲が増大して伝播するレーザビーム
12…角度範囲が減少して伝播するレーザビーム
13…ビーム拡大装置の領域におけるレーザビームの直径
14…受け面におけるレーザビームの直径
16…ビーム拡大装置を伴わないレーザビームの仮想経路
17…ビーム拡大装置を伴わない仮想レーザビームの直径
19…散乱光
20…支持マウント
25…ビーム拡大装置と放射光センサとの間の距離
26…ビーム拡大装置とコリメーション装置との間の距離
27…コリメーション装置と放射光センサとの間の距離
30…ビーム拡大装置
31…光散乱構造
33…ビーム案内装置
36…コリメーション装置
37…収束レンズ
39…ビーム拡大装置及び放射光センサの光軸
40…放射光センサ
41…受け面
42…受け面の部分領域
44…吸収体
46…温度センサ
47…電気信号
48…第2の温度センサ
56…光センサ
60…電子演算ユニット
62…インタフェース
64…表示装置
70…冷却装置
72…冷却材入口
74…冷却材出口
77…冷却材

Claims (23)

  1. 放射光センサ(40)、ビーム拡大装置(30)、及び、支持マウント(20)を備える、レーザビーム(10)のパワー及び/又はエネルギーの測定のための機器であって、
    前記放射光センサ(40)は、受け面(41)を有すると共に、前記レーザビーム(10)のパワー又は前記レーザビーム(10)のエネルギーに依存する電気信号(47)を生成するように構成され、
    前記ビーム拡大装置(30)及び前記放射光センサ(40)は、前記ビーム拡大装置(30)と前記放射光センサ(40)との間で伝播するレーザビーム(11)を形成するために、互いに距離(25)を隔てて前記支持マウント(20)上に配置され、
    前記ビーム拡大装置(30)は、前記レーザビーム(10)の角度範囲を増大するように構成され、
    前記受け面(41)上に伝播されたレーザビーム(11、12)の直径は、前記ビーム拡大装置(30)の領域における前記レーザビーム(10)の直径よりも大きく、前記放射光センサ(40)の前記受け面(41)は、伝播されるレーザビーム(11、12)の断面の少なくとも90%を受容する、
    機器。
  2. 請求項1記載の機器において、
    前記ビーム拡大装置(30)は、発散レンズ又は収束レンズである、
    機器。
  3. 請求項1記載の機器において、
    前記ビーム拡大装置(30)は、レンズのアレイ又はレンズのマイクロアレイである、
    機器。
  4. 請求項1記載の機器において、
    前記ビーム拡大装置(30)は、光散乱構造(31)又は光回折構造を有する、
    機器。
  5. 請求項1記載の機器において、
    前記ビーム拡大装置(30)は、凸面鏡、凹面鏡、又は、分割鏡である、
    機器。
  6. 請求項1〜5のいずれか1項に記載の機器において、
    前記支持マウント(20)は、ケーシングとして構成され、前記ケーシングは、前記ビーム拡大装置(30)と前記放射光センサ(40)とを収容し、前記ビーム拡大装置(30)の方を向く開口を有する、
    機器。
  7. 請求項1〜6のいずれか1項に記載の機器において、
    前記放射光センサ(40)は、断面内において局所的に変化する前記レーザビーム(10)の強度を積分値として測定するように構成される、
    機器。
  8. 請求項1〜7のいずれか1項に記載の機器において、
    前記放射光センサ(40)は、大面積フォトダイオード、大面積半導体センサ、焦電検出器、熱電対列、又は、パイロメータである、
    機器。
  9. 請求項1〜7のいずれか1項に記載の機器において、
    前記放射光センサ(40)は、吸収体(44)と温度センサ(46)とを備え、前記温度センサ(46)は、前記吸収体(44)と熱的に結合される、
    機器。
  10. 請求項1〜9のいずれか1項に記載の機器において、
    前記レーザビーム(10、11、12)の一部分又は前記レーザビーム(10、11、12)の散乱光部分を測定するように構成される光センサ(56)をさらに備える、
    機器。
  11. 請求項1〜10のいずれか1項に記載の機器において、
    前記ビーム拡大装置(30)と前記放射光センサ(40)との間にコリメーション装置(36)が配置される、
    機器。
  12. 請求項11記載の機器において、
    前記コリメーション装置(36)は、収束レンズ、複数のレンズを有する光学系、フレネルレンズ、屈折率分布型レンズ、又は、凹面鏡を備える、
    機器。
  13. 請求項1〜12のいずれか1項に記載の機器において、
    前記ビーム拡大装置(30)と前記放射光センサ(40)との間にビーム案内装置(33)が配置される、
    機器。
  14. 請求項13記載の機器において、
    前記ビーム案内装置(33)は、導光プリズム、内筒鏡、内錐鏡、又は、万華鏡型の配置構成の鏡である、
    機器。
  15. レーザビーム(10)のパワー及び/又はエネルギーの測定のための方法であって、該方法は、
    ビーム拡大装置(30)によって前記レーザビーム(10)の角度範囲を増大させるステップと、
    前記ビーム拡大装置(30)から、受け面(41)を有する放射光センサ(40)へ前記レーザビーム(10)を伝播させるステップであって、前記ビーム拡大装置(30)及び前記放射光センサ(40)は互いに距離(25)を隔てて支持マウント(20)上に配置される、ステップと、
    伝播される前記レーザビーム(11、12)の断面の少なくとも90%を、前記放射光センサ(40)の前記受け面(41)によって測定するステップであって、前記受け面(41)における伝播される前記レーザビーム(11、12)の直径は、前記ビーム拡大装置(30)の領域における前記レーザビーム(10)の直径よりも大きい、ステップと、
    前記レーザビーム(10)のパワー又は前記レーザビーム(10)のエネルギーに応じた電気信号(47)を前記放射光センサ(40)によって生成するステップと、
    を含む方法。
  16. 請求項15記載の方法において、
    前記レーザビーム(10)の角度範囲を増大させる前記ステップは、発散レンズ、収束レンズ、レンズアレイ、マイクロレンズアレイ、光散乱構造(31)、光回折構造、凸面鏡、凹面鏡、又は、分割鏡によって実行される、
    方法。
  17. 請求項15又は16記載の方法において、
    断面内において局所的に変化する前記レーザビーム(10)の強度は、積分値として測定される、
    方法。
  18. 請求項15〜17のいずれか1項に記載の方法において、
    前記放射光センサ(40)は、吸収体(44)と温度センサ(46)とを備え、
    前記レーザビーム(11、12)の断面の少なくとも90%を前記放射光センサ(40)の前記受け面(41)によって測定する前記ステップは、前記受け面(41)に入射する前記レーザビーム(11、12)の主要部分の前記吸収体(44)による吸収により、実行され、前記レーザビーム(10)のパワー又はエネルギーに応じた前記電気信号(47)を生成する前記ステップは、前記吸収体(44)と熱的に結合される前記温度センサ(46)により、実行される、
    方法。
  19. 請求項18記載の方法において、
    前記レーザビーム(10)の照射の終了後及び前記レーザビーム(10)の照射の開始前の前記吸収体(44)の温度の差から前記レーザビーム(10)のエネルギー又はパワーを決定するステップ、
    をさらに含む、
    方法。
  20. 請求項15〜19のいずれか1項に記載の方法において、
    前記レーザビーム(10、11、12)の一部分又は前記レーザビーム(10、11、12)の散乱光部分を、光センサ(56)によって測定するステップ、
    をさらに含む、
    方法。
  21. 請求項20記載の方法において、
    前記レーザビーム(10)の照射の終了後及び前記レーザビーム(10)の照射の開始前の前記吸収体(44)の温度の差から前記レーザビーム(10)のエネルギーを決定するステップと、
    前記光センサ(56)の信号の推移から前記レーザビーム(10)の照射時間を決定するステップと、
    前記エネルギーと前記照射時間との除算によって前記レーザビーム(10)のパワーを決定するステップと、
    をさらに含む、
    方法。
  22. 請求項15〜21のいずれか1項に記載の方法において、
    前記レーザビーム(10)を伝播させる前記ステップは、前記ビーム拡大装置(30)から前記放射光センサ(40)まで2つの区間で行なわれ、伝播する前記レーザビーム(11)の角度範囲は、前記ビーム拡大装置(30)と前記放射光センサ(40)との間に配置されるコリメーション装置(36)によって、前記2つの区間の間で減少される、
    方法。
  23. 請求項15〜22のいずれか1項に記載の方法において、
    前記ビーム拡大装置(30)と前記放射光センサ(40)との間に配置されるビーム案内装置(33)によって、伝播される前記レーザビーム(11、12)を前記放射光センサ(40)の前記受け面(41)上における中心に当てるステップ、
    をさらに含む、
    方法。
JP2019506116A 2016-08-05 2017-07-11 ビーム拡大によるビームパワー測定 Pending JP2019531466A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016009475.3A DE102016009475B4 (de) 2016-08-05 2016-08-05 Strahlleistungsmessung mit Aufweitung
DE102016009475.3 2016-08-05
PCT/DE2017/000205 WO2018024268A1 (de) 2016-08-05 2017-07-11 Strahlleistungsmessung mit aufweitung

Publications (1)

Publication Number Publication Date
JP2019531466A true JP2019531466A (ja) 2019-10-31

Family

ID=59592779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506116A Pending JP2019531466A (ja) 2016-08-05 2017-07-11 ビーム拡大によるビームパワー測定

Country Status (4)

Country Link
US (1) US11255723B2 (ja)
JP (1) JP2019531466A (ja)
DE (1) DE102016009475B4 (ja)
WO (1) WO2018024268A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD919955S1 (en) * 2019-02-20 2021-05-25 Amiram Kohen Umbrella base weight bag
USD934554S1 (en) 2019-02-20 2021-11-02 Aksimo Distribution Ltd. Umbrella base weight bag
USD919282S1 (en) * 2019-02-21 2021-05-18 Amiram Kohen Umbrella base weight bag set
DE102019203350A1 (de) * 2019-03-12 2020-09-17 Trumpf Laser- Und Systemtechnik Gmbh Hairpin-Schweißverfahren und -vorrichtung
TWI759757B (zh) * 2020-06-05 2022-04-01 揚明光學股份有限公司 光學特性檢測裝置及其製造方法
CN115769100A (zh) * 2020-06-19 2023-03-07 Ams-欧司朗有限公司 用于显示器的装置
CN113899531A (zh) * 2020-06-22 2022-01-07 扬明光学股份有限公司 光学特性检测装置及其制造方法
WO2022002371A1 (en) * 2020-06-30 2022-01-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for controlling an evaporation rate of source material, detector for measuring electromagnetic radiation reflected on a source surface and system for thermal evaporation with electromagnetic radiation
CN117388366B (zh) * 2023-12-11 2024-04-09 国网浙江省电力有限公司宁波供电公司 用于输电线路检测的激光定位装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944628A (ja) * 1982-09-07 1984-03-13 Konishiroku Photo Ind Co Ltd レ−ザビ−ム径測定装置
JPH0314435U (ja) * 1989-06-23 1991-02-14
JPH0466541U (ja) * 1990-10-19 1992-06-11
JPH07174620A (ja) * 1993-12-20 1995-07-14 Mitsubishi Heavy Ind Ltd レーザパワー計測装置
US5805277A (en) * 1997-08-06 1998-09-08 Coherent, Inc. Portable laser power measuring apparatus
JPH1144574A (ja) * 1997-07-24 1999-02-16 Yunitatsuku:Kk レーザー出力測定装置
US20030012252A1 (en) * 2000-08-16 2003-01-16 Eliyahu Bender Fast response optical power meter
JP2013016588A (ja) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led発光装置
WO2014050859A1 (ja) * 2012-09-27 2014-04-03 三菱電機株式会社 パワーダンパー、レーザ出力計、レーザ出力測定方法、およびレーザ出力監視システム
US20150129750A1 (en) * 2013-11-13 2015-05-14 Medtronic, Inc. System for continuous laser beam monitoring and analysis

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687558A (en) 1971-07-16 1972-08-29 Us Air Force Laser power-energy meter
JPS5632126A (en) * 1979-08-24 1981-04-01 Canon Inc Ttl type focus detector for lens interchangeable type camera
DE3820619A1 (de) * 1988-06-17 1989-12-21 Fraunhofer Ges Forschung Vorrichtung zur messung der strahlungsleistung von lasern
DE8906627U1 (de) * 1989-05-30 1989-08-03 Lambda Physik Forschungs- und Entwicklungsgesellschaft mbH, 37079 Göttingen Vorrichtung zum Messen der Energie eines Laserstrahls
DE3919571A1 (de) 1989-06-15 1990-12-20 Diehl Gmbh & Co Vorrichtung zur messung des intensitaetsprofils eines laserstrahls
US5409314A (en) * 1993-06-17 1995-04-25 Synrad Pocket size laser power meter
DE4336589C1 (de) 1993-10-27 1994-12-08 Deutsche Aerospace Laserleistungsmeßgerät
US5678924A (en) 1995-09-25 1997-10-21 Coherent Inc. Power meter head for laser power measurement apparatus
US5629765A (en) 1995-12-15 1997-05-13 Adaptive Optics Associates, Inc. Wavefront measuring system with integral geometric reference (IGR)
US5936720A (en) 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
GB2347998A (en) 1999-03-16 2000-09-20 Litron Optical Limited Method and apparatus for measuring the intensity of a beam of light
DE10149823A1 (de) * 2001-10-09 2003-04-10 Metrolux Optische Messtechnik Laserstrahlanalysator
ITMI20012475A1 (it) 2001-11-23 2003-05-23 Luigi Argenti Strumento per la misura della potenza della radiazione emessa da una sorgente laser nonche' procedimento attuato per la misura della potenza
US7077564B2 (en) 2003-06-18 2006-07-18 Coherent, Inc. Laser power meter
US7538890B2 (en) * 2004-06-07 2009-05-26 Fujinon Corporation Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
ES2333369T3 (es) * 2007-09-13 2010-02-19 Wavelight Ag Aparato de medicion para medir un rayo laser.
CN101285712B (zh) 2008-05-22 2012-01-04 中国科学院光电技术研究所 基于分立光强测量器件的线性相位反演波前传感器
GB2469993A (en) * 2009-04-28 2010-11-10 Sec Dep For Innovation Univers Measuring the propagation properties of a light beam using a variable focus lens
JP5836668B2 (ja) 2011-07-01 2015-12-24 キヤノン株式会社 面発光レーザ、面発光レーザの製造方法、画像形成装置
WO2013098887A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 レーザ出力測定装置
DE102012106779B4 (de) 2012-07-25 2014-04-03 Highyag Lasertechnologie Gmbh Optik für Strahlvermessung
CN103389157B (zh) 2013-07-26 2015-05-20 西北核技术研究所 一种高能激光扩束吸收装置
DE102014010667B4 (de) * 2014-07-18 2017-07-13 Berliner Glas Kgaa Herbert Kubatz Gmbh & Co Verfahren und Vorrichtung zur Messung der Form einer Wellenfront eines optischen Strahlungsfeldes
DE102014012913B4 (de) 2014-09-05 2016-05-19 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Energiestrahl-Leistungsmessung
DE202016004373U1 (de) * 2016-07-18 2016-08-25 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Strahlleistungs-Messvorrichtung (PRI-2016-002)

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944628A (ja) * 1982-09-07 1984-03-13 Konishiroku Photo Ind Co Ltd レ−ザビ−ム径測定装置
JPH0314435U (ja) * 1989-06-23 1991-02-14
JPH0466541U (ja) * 1990-10-19 1992-06-11
JPH07174620A (ja) * 1993-12-20 1995-07-14 Mitsubishi Heavy Ind Ltd レーザパワー計測装置
JPH1144574A (ja) * 1997-07-24 1999-02-16 Yunitatsuku:Kk レーザー出力測定装置
US5805277A (en) * 1997-08-06 1998-09-08 Coherent, Inc. Portable laser power measuring apparatus
US20030012252A1 (en) * 2000-08-16 2003-01-16 Eliyahu Bender Fast response optical power meter
JP2013016588A (ja) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led発光装置
WO2014050859A1 (ja) * 2012-09-27 2014-04-03 三菱電機株式会社 パワーダンパー、レーザ出力計、レーザ出力測定方法、およびレーザ出力監視システム
US20150129750A1 (en) * 2013-11-13 2015-05-14 Medtronic, Inc. System for continuous laser beam monitoring and analysis

Also Published As

Publication number Publication date
WO2018024268A1 (de) 2018-02-08
DE102016009475A1 (de) 2018-02-08
US20200025608A1 (en) 2020-01-23
DE102016009475B4 (de) 2019-06-19
US11255723B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP2019531466A (ja) ビーム拡大によるビームパワー測定
CN111670345B (zh) 用于检测激光射束的焦点位置的方法和设备
EP2185913B1 (en) Photoacoustic joulemeter utilizing beam deflection technique
JP6462140B2 (ja) 溶接シームの深さをリアルタイムで測定するための装置
JP5558629B2 (ja) レーザ加工装置
US20090323048A1 (en) Optical transit time velocimeter
US20160290861A1 (en) Beam profiler
JPH03206927A (ja) 高温センサー
KR100809924B1 (ko) 광섬유 접속 수단에서의 광출력 손실을 측정하는 방법 및 장치
Alsultanny Laser beam analysis using image processing
JP6915905B2 (ja) 温熱治療器
JP2005531037A (ja) レーザ光線の自動センタリング装置及びこの装置の製造方法
JP2920122B2 (ja) 管内検査方法及び管内検査装置
JPH08184499A (ja) 放射高温計
Vinokurov et al. Visualization of radiation from a high-power terahertz free electron laser with a thermosensitive interferometer
Herwig et al. Aberrations induced by high brightness lasers
Mahdieh et al. Time-resolved optical probing of nanosecond laser-induced breakdown plasma in polymethyl methacrylate (PMMA)
US7852472B1 (en) Systems and methods for spectroscopy using opposing laser beams
Plass et al. Calibrated CO2-laser power calorimeter
RU2658512C1 (ru) Эталонная установка единицы мощности лазерного излучения и световод для нее
DE102016015843B3 (de) Strahlleistungsmessung mit Aufweitung mittels Linsen-Array
Neumeier et al. Online condition measurement of high power solid state laser cutting optics using ultrasound signals
JPH0354421A (ja) レーザ光集束スポット径の測定方法
JP2715326B2 (ja) 光学測定方法
Leong et al. Characteristics of power meters for high power CO2 lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607