JP2019524994A - Bainitic steel wheels for high toughness railway transportation and manufacturing method thereof - Google Patents

Bainitic steel wheels for high toughness railway transportation and manufacturing method thereof Download PDF

Info

Publication number
JP2019524994A
JP2019524994A JP2019500284A JP2019500284A JP2019524994A JP 2019524994 A JP2019524994 A JP 2019524994A JP 2019500284 A JP2019500284 A JP 2019500284A JP 2019500284 A JP2019500284 A JP 2019500284A JP 2019524994 A JP2019524994 A JP 2019524994A
Authority
JP
Japan
Prior art keywords
wheel
toughness
bainite
steel
bainite steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019500284A
Other languages
Japanese (ja)
Other versions
JP6765496B2 (en
Inventor
明如 張
明如 張
海 趙
海 趙
峰 張
峰 張
政 方
政 方
紅 浦
紅 浦
世紅 謝
世紅 謝
Original Assignee
▲馬▼▲鋼▼(集▲団▼)控股有限公司
▲馬▼鞍山▲鋼▼▲鉄▼股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲馬▼▲鋼▼(集▲団▼)控股有限公司, ▲馬▼鞍山▲鋼▼▲鉄▼股▲分▼有限公司 filed Critical ▲馬▼▲鋼▼(集▲団▼)控股有限公司
Publication of JP2019524994A publication Critical patent/JP2019524994A/en
Application granted granted Critical
Publication of JP6765496B2 publication Critical patent/JP6765496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、高靭性鉄道輸送用ベイナイト鋼車輪及びその製造方法を提供する。ベイナイト鋼車輪は、重量パーセントで、炭素C:0.10〜0.40%、ケイ素Si:1.00〜2.00%、マンガンMn:1.00〜2.50%、ニッケルNi:0.20〜1.00%、希土類RE:0.001 〜0.040%、リンP≦0.020%、硫黄S≦0.020%を含み、残部は鉄及び不可避的残留元素であり、且つ、1.50%≦Si+Ni≦2.50%、2.00%≦Si +Mn≦4.00%である。従来技術と比較して、本発明は、鋼の化学組成の設計及び製造プロセス、特に熱処理プロセス及び技術により、車輪リムに炭化物フリーベイナイト組織構造を与える。スポーク板部及び車輪ハブは、粒状ベイナイトと過飽和フェライトを主成分とする金属組織構造を得る。車輪は、高い降伏強度、靭性、低温靭性などの総合的な機械的特性、及び良好なサービス性能を有する。コストが低減され、車輪の使用寿命及び総合的な利益が向上し、一定の経済的及び社会的利益がある。The present invention provides a high-toughness bainite steel wheel for rail transport and a method for manufacturing the same. The bainite steel wheels are, in weight percent, carbon C: 0.10 to 0.40%, silicon Si: 1.00 to 2.00%, manganese Mn: 1.00 to 2.50%, nickel Ni: 0.00. 20 to 1.00%, rare earth RE: 0.001 to 0.040%, phosphorus P ≦ 0.020%, sulfur S ≦ 0.020%, the balance being iron and inevitable residual elements, and 1.50% ≦ Si + Ni ≦ 2.50%, 2.00% ≦ Si + Mn ≦ 4.00%. Compared to the prior art, the present invention provides the wheel rim with a carbide-free bainite structure by means of a steel chemical composition design and manufacturing process, in particular a heat treatment process and technique. The spoke plate portion and the wheel hub obtain a metallographic structure mainly composed of granular bainite and supersaturated ferrite. The wheel has comprehensive mechanical properties such as high yield strength, toughness, low temperature toughness, and good service performance. Costs are reduced, wheel service life and overall benefits are improved, and there are certain economic and social benefits.

Description

本発明は、鋼の化学組成設計及び車輪製造の分野に関し、具体的には、高靭性鉄道輸送用ベイナイト鋼車輪及びその製造方法、並びに鉄道輸送の他の部品及び類似の部品の鋼の設計と製造方法に関する。   The present invention relates to the field of steel chemical composition design and wheel manufacturing, specifically to high-toughness bainite steel wheels for rail transport and methods of manufacturing the same, as well as steel designs for other and similar parts of rail transport. It relates to a manufacturing method.

「高速、高荷重及び低騒音」は、世界鉄道輸送の主要な発展方向である。車輪は鉄道輸送の「靴」であり、最も重要な走行部品の1つであり、運行の安全性に直接影響を与える。列車の通常運行中に、車輪は車両の全部の荷重を負い、摩耗及び転がり接触疲労(RCF)によって損傷され、同時に、それは線路、制輪子、車軸、及び周囲の媒体と非常に複雑な作用関係を有し、動的な交互に変化するストレス状態にある。特に車輪と線路、及び車輪と制輪子(ディスクブレーキを除く)は、2対の、常に存在する、無視できない摩擦ペアである。緊急状況又は特殊道路での運行中に、ブレーキの熱的損傷や擦り傷が非常に著しく、熱疲労が生じ、車輪の安全性や使用寿命にも影響を及ぼす。   “High speed, high load and low noise” is the main development direction of world rail transport. The wheel is a “shoe” for rail transport and is one of the most important traveling parts, directly affecting the safety of operation. During normal train operation, the wheels carry the full load of the vehicle and are damaged by wear and rolling contact fatigue (RCF), which at the same time is a very complex working relationship with the track, the control wheel, the axle and the surrounding medium. In a dynamically alternating stress state. In particular, wheels and tracks, and wheels and brakes (except for disc brakes) are two pairs of friction pairs that are always present and cannot be ignored. During emergency situations or on special roads, the brakes are severely damaged and scratched, causing thermal fatigue and affecting the safety and service life of the wheels.

鉄道輸送では、車輪が基本的な強度を満たす場合、安全性や信頼性を確保するために、特に車輪の靭性指数に注意を払う。貨物輸送用車輪の摩耗や転がり接触疲労(RCF)による損傷が大きく、踏面ブレーキのため、熱疲労損傷も大きく、剥離、剥落、リム割れなどの欠陥が生じる。旅客輸送用車輪については、車輪の靭性及び低温靭性によりいっそう注意を払う。旅客輸送は、ディスクブレーキを使用するため、ブレーキ熱疲労が減少する。   In rail transport, pay attention to the toughness index of the wheel to ensure safety and reliability when the wheel meets basic strength. Freight transport wheels are greatly damaged due to wear and rolling contact fatigue (RCF), and because of tread braking, thermal fatigue damage is also large, resulting in defects such as peeling, peeling, and rim cracking. For passenger transport wheels, pay more attention to wheel toughness and low temperature toughness. Passenger transport uses disc brakes, reducing brake thermal fatigue.

現在、中国の国内外での鉄道輸送用車輪鋼は、例えば、中国車輪規格GB/T8601、TB/T2817、欧州車輪規格EN13262、日本車輪規格JRSとJIS B5402、及び北米車輪規格AAR M107などにより、中高炭素鋼又は中高炭素マイクロ合金化鋼であり、その金属組織はパーライト−フェライト組織である。   Currently, rail transport wheel steel in China and abroad, for example, according to Chinese wheel standards GB / T8601, TB / T2817, European wheel standards EN13262, Japanese wheel standards JRS and JIS B5402, and North American wheel standards AAR M107, Medium high carbon steel or medium high carbon microalloyed steel, the metal structure of which is a pearlite-ferrite structure.

CL60鋼車輪は、中国の現在の鉄道輸送車両(旅客輸送及び貨物輸送)に主に使用されている圧延鋼の車輪鋼である。BZ−Lは、中国の現在の鉄道輸送車両(貨物輸送)に主に使用されている鋳鋼の車輪鋼である。両者の金属組織はパーライト−フェライト組織である。   The CL60 steel wheel is a rolled steel wheel steel mainly used in China's current rail transport vehicles (passenger transport and freight transport). BZ-L is a cast steel wheel steel mainly used in China's current railway transportation vehicles (cargo transportation). Both metal structures are pearlite-ferrite structures.

車輪の各部分の名称を図1に示す。CL60鋼の主な技術的指標の要求を表1に示す。
The name of each part of a wheel is shown in FIG. Table 1 shows the requirements for the main technical indicators of CL60 steel.

製造中は、車輪材料に優れ、鋼中の有害ガス及び有害な残留元素の含有量が低いことを保証することが必要である。車輪が高温にある状態で、リムの踏面は水の噴射で強化冷却されて、リムの強度及び硬度が向上する。スポーク板部及び車輪ハブは、焼ならし熱処理と同等であり、リムの強度と靭性の整合性が高く、スポーク板部に高靭性がある。最終的に、車輪は優れた総合的な機械的特性とサービス性能を有する。   During production, it is necessary to ensure that the wheel material is excellent and the content of harmful gases and harmful residual elements in the steel is low. In a state where the wheels are at a high temperature, the tread surface of the rim is strengthened and cooled by water jet, and the strength and hardness of the rim are improved. The spoke plate portion and the wheel hub are equivalent to the normalizing heat treatment, the consistency of the strength and toughness of the rim is high, and the spoke plate portion has high toughness. Ultimately, the wheels have excellent overall mechanical properties and service performance.

パーライト−少量フェライト車輪鋼では、フェライトは、材料の軟質相であり、良好な靭性と低い降伏強度を有する。その柔らかさのために、転がり接触疲労(RCF)に対する耐性が低い。一般に、フェライト含有量が高いほど、鋼の衝撃靱性は良好である。フェライトと比較して、パーライトは、強度が高く、靭性が低いため、衝撃性能が劣る。鉄道輸送の発展方向は高速かつ高荷重であり、運行中に車輪への負荷は大幅に増加する。既存のパーライト−少量フェライト材料の車輪は、運行とサービス中にますます多くの問題が表れ、主に以下の欠点が存在している。
(1)リム降伏強度は低く、一般的には600MPaを超えない。車輪の走行中に車輪と軌道との転がり接触応力が大きく、時には車輪鋼の降伏強度を超えるので、走行過程で塑性変形が発生して、踏面の副表面の塑性変形を生じる。また、介在物やセメンタイトなどの脆い相が鋼中に存在するため、リムにはマイクロクラックが発生しやすい。これらのマイクロクラックは、車輪の走行中に転がり接触疲労により、剥離やリム割れなどの欠陥を引き起こす。
(2)鋼は炭素含有量が高く、耐熱損傷性が低い。踏面ブレーキが使用されるときに又は車輪がスライドするときに擦り傷が発生した場合、車輪は局部的に鋼のオーステナイト化温度に昇温し、その後急冷してマルテンサイトを生成する。このように熱疲労が繰り返されて、ブレーキ熱クラックが形成され、剥落や大割れなどの欠陥が発生する。
(3)車輪鋼の焼入性が悪い。車輪リムは、一定の硬度勾配を有し、不均一な硬度により、輪縁の摩耗や円周のひずみなどの欠陥が発生しやすい。
In pearlite-low volume ferritic wheel steel, ferrite is the soft phase of the material and has good toughness and low yield strength. Due to its softness, it has low resistance to rolling contact fatigue (RCF). In general, the higher the ferrite content, the better the impact toughness of the steel. Compared to ferrite, pearlite has high strength and low toughness, and therefore has poor impact performance. The development direction of rail transport is high speed and high load, and the load on the wheel increases greatly during operation. Existing pearlite-low ferritic material wheels present more and more problems during operation and service, mainly due to the following disadvantages:
(1) The rim yield strength is low and generally does not exceed 600 MPa. The rolling contact stress between the wheel and the track is large during traveling of the wheel, and sometimes exceeds the yield strength of the wheel steel, so that plastic deformation occurs during the traveling process, and plastic deformation of the sub surface of the tread surface occurs. In addition, since fragile phases such as inclusions and cementite are present in the steel, microcracks are easily generated in the rim. These micro cracks cause defects such as peeling and rim cracking due to rolling contact fatigue during running of the wheel.
(2) Steel has a high carbon content and low heat damage resistance. When scratches occur when tread brakes are used or when the wheels slide, the wheels are locally heated to the austenitizing temperature of the steel and then rapidly cooled to produce martensite. Thus, thermal fatigue is repeated, brake thermal cracks are formed, and defects such as peeling and large cracks occur.
(3) The hardenability of the wheel steel is poor. The wheel rim has a certain hardness gradient, and due to non-uniform hardness, defects such as ring edge wear and circumferential distortion are likely to occur.

ベイナイト鋼の相変態に関する研究の発展とブレークスルーに伴い、特に炭化物フリーベイナイト鋼の理論と応用研究により、高強度と高靭性の良好な整合が達成される。炭化物フリーベイナイト鋼は、理想的な微細組織構造を有し、優れた機械的性質を有する。その微細組織構造は、炭化物フリーベイナイトであり、即ち、ナノスケールのラス状の過飽和フェライトである。中間は、ナノスケールの薄膜状炭素リッチ残留オーステナイトである。それにより、鋼の強度と靭性が向上し、特に、鋼の降伏強度、衝撃靭性及び破壊靱性が向上し、鋼の切欠き感受性が低下する。従って、ベイナイト鋼車輪は、車輪の転がり接触疲労(RCF)に対する耐性が効果的に向上し、車輪の剥離や剥落などの現象が低減され、車輪の安全性及び使用性能が向上する。ベイナイト鋼車輪の炭素含有量が低いため、車輪の熱疲労性能が向上し、リムのヒートクラックが防止され、車輪の旋盤加工回数及び旋盤加工量が減少し、リム金属の使用効率が向上し、車輪の使用寿命が延びる。   With the development and breakthrough of research on the phase transformation of bainite steel, a good match between high strength and high toughness is achieved especially by the theory and application research of carbide free bainite steel. Carbide-free bainite steel has an ideal microstructure and excellent mechanical properties. Its microstructure is carbide-free bainite, ie nanoscale lath-like supersaturated ferrite. In the middle is nanoscale thin film-like carbon-rich retained austenite. Thereby, the strength and toughness of the steel are improved, and in particular, the yield strength, impact toughness and fracture toughness of the steel are improved, and the notch sensitivity of the steel is reduced. Therefore, the bainite steel wheel effectively improves the resistance against rolling contact fatigue (RCF) of the wheel, reduces phenomena such as peeling and peeling of the wheel, and improves the safety and use performance of the wheel. Since the carbon content of the bainite steel wheel is low, the thermal fatigue performance of the wheel is improved, the heat crack of the rim is prevented, the number of lathe processing and the amount of lathe processing of the wheel are reduced, the use efficiency of the rim metal is improved, The service life of the wheels is extended.

2006年7月12日に公開されたCN1800427A号(公開番号)の中国特許「鉄道車両車輪用ベイナイト鋼」に開示された鋼の化学組成範囲(wt%)は、炭素C:0.08〜0.45%、ケイ素Si:0.60〜2.10%、マンガンMn:0.60〜2.10%、モリブデンMo:0.08〜0.60%、ニッケルNi:0.00〜2.10%、クロムCr:<0.25%、バナジウムV:0.00〜0.20%、銅Cu:0.00〜1.00%である。そのベイナイト鋼の典型的な組織は、炭化物フリーベイナイトであり、優れた靭性、低い切欠き感受性、良好な耐ヒートクラック性を有する。Mo元素の添加により、鋼の焼入性を高めることができるが、大断面の車輪の場合、生産管理が困難でコストが高い。   The chemical composition range (wt%) of the steel disclosed in the Chinese patent “Bainite Steel for Rail Vehicle Wheels” of CN18000427A (public number) published on July 12, 2006 is carbon C: 0.08-0. .45%, silicon Si: 0.60 to 2.10%, manganese Mn: 0.60 to 2.10%, molybdenum Mo: 0.08 to 0.60%, nickel Ni: 0.00 to 2.10 %, Chromium Cr: <0.25%, vanadium V: 0.00 to 0.20%, copper Cu: 0.00 to 1.00%. The typical structure of the bainite steel is carbide-free bainite, which has excellent toughness, low notch sensitivity, and good heat crack resistance. Although the hardenability of steel can be increased by adding Mo element, production control is difficult and cost is high in the case of a wheel with a large cross section.

ブリティッシュ・スチールの特許CN1059239Cには、ベイナイト鋼及びその生産プロセスが開示されている。その鋼の化学組成範囲(wt%)は、炭素C:0.05〜0.50%、ケイ素Si及び/又はアルミニウムAl:1.00〜3.00%、マンガンMn:0.50〜2.50%、クロムCr:0.25〜2.50%である。そのベイナイト鋼の典型的な組織は、炭化物フリーベイナイトであり、高い耐摩耗性及び転がり接触疲労耐性を有する。そのタイプの鋼は、良好な靭性を有するが、鋼レールの断面が比較的簡単であり、20℃での衝撃靭性が高くなく、鋼のコストが高い。   The British Steel patent CN1059239C discloses bainite steel and its production process. The chemical composition range (wt%) of the steel is carbon C: 0.05 to 0.50%, silicon Si and / or aluminum Al: 1.00 to 3.00%, manganese Mn: 0.50 to 2. 50%, chromium Cr: 0.25 to 2.50%. The typical structure of the bainite steel is carbide-free bainite, which has high wear resistance and rolling contact fatigue resistance. That type of steel has good toughness, but the cross section of the steel rail is relatively simple, the impact toughness at 20 ° C. is not high, and the cost of the steel is high.

本発明の目的は、Mo、V、Cr及びBなどの合金元素を添加することなく、リムの典型的な組織が炭化物フリーベイナイトであり、優れた強度と靭性及び低い切欠き感受性などの特徴を有するC−Si−Mn−Ni−RE系の高靭性鉄道輸送用ベイナイト鋼車輪を提供することである。   The object of the present invention is to provide carbide-free bainite with a typical structure of the rim without adding alloying elements such as Mo, V, Cr, and B, and has characteristics such as excellent strength and toughness and low notch sensitivity. It is to provide a bainite steel wheel for high-toughness railway transportation having a C-Si-Mn-Ni-RE system.

本発明は、熱処理プロセス及び技術により、車輪に良好な総合的な機械的特性を与え、生産を制御しやすい高靭性鉄道輸送用ベイナイト鋼車輪の製造方法をさらに提供する。   The present invention further provides a method for producing high-toughness bainite steel wheels for rail transport that impart good overall mechanical properties to the wheels and that are easy to control production by heat treatment processes and techniques.

本発明による高靭性鉄道輸送用ベイナイト鋼車輪は、重量パーセントで、
炭素C:0.10〜0.40%、ケイ素Si:1.00〜2.00%、マンガンMn:1.00〜2.50%、
ニッケルNi:0.20〜1.00%、希土類RE:0.001 〜0.040%、
リンP≦0.020%、硫黄S≦0.020%を含み、
残部は鉄及び不可避的残留元素であり、
且つ、1.50%≦Si+Ni≦2.50%、2.00%≦Si+Mn≦4.00%である。
Bainite steel wheels for high toughness rail transport according to the present invention are in weight percent,
Carbon C: 0.10 to 0.40%, silicon Si: 1.00 to 2.00%, manganese Mn: 1.00 to 2.50%,
Nickel Ni: 0.20 to 1.00%, rare earth RE: 0.001 to 0.040%,
Including phosphorus P ≦ 0.020%, sulfur S ≦ 0.020%,
The balance is iron and inevitable residual elements,
Further, 1.50% ≦ Si + Ni ≦ 2.50% and 2.00% ≦ Si + Mn ≦ 4.00%.

好ましくは、前記高靭性鉄道輸送用ベイナイト鋼車輪は、重量パーセントで、
炭素C:0.15〜0.25%、ケイ素Si:1.20〜1.80%、マンガンMn:1.60〜2.10%、
ニッケルNi:0.20〜0.80%、希土類RE:0.010 〜0.040%、リンP≦0.020%、硫黄S≦0.020%を含み、残部は鉄及び不可避的残留元素であり、且つ、1.50%≦Si+Ni≦2.50%、2.00%≦Si+Mn≦4.00%である。
Preferably, the high toughness rail transport bainite steel wheels are in weight percent,
Carbon C: 0.15-0.25%, silicon Si: 1.20-1.80%, manganese Mn: 1.60-2.10%,
Nickel Ni: 0.20-0.80%, rare earth RE: 0.010-0.040%, phosphorus P ≦ 0.020%, sulfur S ≦ 0.020%, the balance being iron and inevitable residual elements And 1.50% ≦ Si + Ni ≦ 2.50% and 2.00% ≦ Si + Mn ≦ 4.00%.

好ましくは、前記高靭性鉄道輸送用ベイナイト鋼車輪は、重量パーセントで、
炭素C:0.20%、ケイ素Si:1.45%、マンガンMn:1.92%、
ニッケルNi:0.35%、希土類RE:0.018%、リンP:0.013%、硫黄S:0.008%を含み、残部は鉄及び不可避的不純物元素である。
Preferably, the high toughness rail transport bainite steel wheels are in weight percent,
Carbon C: 0.20%, silicon Si: 1.45%, manganese Mn: 1.92%,
It contains nickel Ni: 0.35%, rare earth RE: 0.018%, phosphorus P: 0.013%, sulfur S: 0.008%, the balance being iron and inevitable impurity elements.

SiとMnの合計含有量が2%未満である場合、鋼の焼入性が低下し、炭化物が生成しやすくなり、強度と靭性に優れた炭化物フリーベイナイト組織を得るためには不利となる。SiとMnの合計含有量が4%を超えると、鋼の焼入性が高すぎ、マルテンサイトなどの望ましくない組織を形成しやすくなり、生産制御が困難となる。   When the total content of Si and Mn is less than 2%, the hardenability of the steel is lowered, carbides are easily generated, and this is disadvantageous for obtaining a carbide-free bainite structure excellent in strength and toughness. If the total content of Si and Mn exceeds 4%, the hardenability of the steel is too high, and it becomes easy to form an undesirable structure such as martensite, making production control difficult.

SiとNiの合計含有量が1.5%未満である場合、鋼に炭化物が生成しやすくなり、強度と靭性に優れた炭化物フリーベイナイト組織を得るためには不利となる。SiとNiの合計含有量が2.5%を超えた場合、元素の作用を効果的に発揮することができず、コストも上昇する。   When the total content of Si and Ni is less than 1.5%, carbide is easily generated in the steel, which is disadvantageous for obtaining a carbide-free bainite structure having excellent strength and toughness. When the total content of Si and Ni exceeds 2.5%, the effect of the element cannot be exhibited effectively, and the cost also increases.

得られた車輪の微細組織については、車輪リム踏面下から40mm以内の金属組織は炭化物フリーベイナイト組織であり、即ち、ナノスケールのラス状の過飽和フェライトであり、ラス状の過飽和フェライトの中間にはナノスケールの薄膜状の炭素リッチ残留オーステナイトがあり、残留オーステナイトの体積パーセントは4%〜15%である。リムの微細構造は、過飽和フェライト及び炭素リッチ残留オーステナイトにより構成された複相構造であり、そのサイズはナノスケールであり、前記ナノスケールは1nm〜999nmの長さを意味する。   Regarding the microstructure of the obtained wheel, the metal structure within 40 mm from the tread surface of the wheel rim is a carbide-free bainite structure, that is, nanoscale lath-like supersaturated ferrite, in the middle of lath-like supersaturated ferrite. There is nanoscale thin film-like carbon-rich retained austenite, and the volume percent of retained austenite is between 4% and 15%. The microstructure of the rim is a multiphase structure composed of supersaturated ferrite and carbon-rich retained austenite, and its size is nanoscale, which means a length of 1 nm to 999 nm.

本発明による車輪は、貨車の車輪及び客車の車輪、並びに鉄道輸送の他の部品及び類似の部品の生産に適用できる。   The wheels according to the invention can be applied to the production of freight car wheels and passenger car wheels, as well as other parts of rail transport and similar parts.

本発明による高靭性鉄道輸送用ベイナイト鋼車輪の製造方法は、製錬、精錬、成形及び熱処理プロセスを含む。製錬及び成形のプロセスでは、従来技術を使用する。熱処理プロセスでは、
成形された車輪をオーステナイト化温度に加熱し、リム踏面を水噴射で400℃以下に強化冷却し、焼き戻し処理する。前記オーステナイト化温度への加熱は、具体的には、860〜930℃に加熱し、2.0〜2.5時間保温する。前記焼き戻し処理では、車輪を400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷し、又は、リム踏面を水噴射で400℃以下に強化冷却し、室温に空冷し、その間、スポーク板部、車輪ハブの残留熱によって自己焼き戻しを行う。
The method of manufacturing a bainite steel wheel for high toughness railway transportation according to the present invention includes smelting, refining, forming and heat treatment processes. Conventional processes are used in the smelting and forming processes. In the heat treatment process,
The formed wheel is heated to the austenitizing temperature, and the rim tread surface is tempered and cooled to 400 ° C. or less by water injection, and tempered. Specifically, the heating to the austenitizing temperature is performed by heating to 860 to 930 ° C. and keeping the temperature for 2.0 to 2.5 hours. In the tempering treatment, the wheel is tempered at a low and low temperature of less than 400 ° C. for 30 minutes or more and air-cooled to room temperature after tempering, or the rim tread is tempered and cooled to 400 ° C. or less by water jet and air-cooled to room temperature. In the meantime, self-tempering is performed by the residual heat of the spoke plate portion and the wheel hub.

熱処理プロセスでは、成形後の高温の残留熱により、成形された車輪のリム踏面を直接水の噴射で400℃以下に強化冷却し、焼き戻しで処理することもできる。前記焼き戻し処理では、車輪を400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷し、又は、リム踏面を水噴射で400℃以下に強化冷却し、室温に空冷し、その間、スポーク板部、車輪ハブの残留熱によって自己焼き戻しを行う。   In the heat treatment process, the rim tread surface of the molded wheel can be tempered and cooled to 400 ° C. or lower by direct water injection by the high-temperature residual heat after molding, and can also be processed by tempering. In the tempering treatment, the wheel is tempered at a low and low temperature of less than 400 ° C. for 30 minutes or more and air-cooled to room temperature after tempering, or the rim tread is tempered and cooled to 400 ° C. or less by water jet and air-cooled to room temperature. In the meantime, self-tempering is performed by the residual heat of the spoke plate portion and the wheel hub.

熱処理プロセスでは、車輪を成形した後、車輪を400℃以下に空冷し、焼き戻しで処理することもできる。焼き戻し処理では、車輪を400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷し、又は、400℃以下に空冷し、室温に空冷し、その間、スポーク板部、車輪ハブの残留熱によって自己焼き戻しを行う。   In the heat treatment process, after forming the wheel, the wheel may be air-cooled to 400 ° C. or lower and tempered. In the tempering process, the wheel is tempered at a low temperature of less than 400 ° C. for 30 minutes or more, and after tempering, it is air-cooled to room temperature, or air-cooled to 400 ° C. or less, and air-cooled to room temperature. Self-tempering is performed by the residual heat of the wheel hub.

具体的には、前記熱処理工程は、以下のいずれかの方法である。
車輪をオーステナイト化温度に加熱し、リム踏面を水噴射で400℃以下に強化冷却し、室温に空冷し、その間、残留熱によって自己焼き戻しを行う。
または、車輪をオーステナイト化温度に加熱し、リム踏面を噴水で400℃以下に強化冷却し、400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷する。
Specifically, the heat treatment step is one of the following methods.
The wheel is heated to the austenitizing temperature, the rim tread surface is reinforced and cooled to 400 ° C. or lower by water injection, and air-cooled to room temperature, while self-tempering is performed by residual heat.
Alternatively, the wheel is heated to the austenitizing temperature, the rim tread surface is strengthened and cooled to 400 ° C. or lower with a fountain, tempered at a low temperature of less than 400 ° C. for 30 minutes or more, and air cooled to room temperature after tempering.

前記オーステナイト化温度への加熱は、具体的には、860〜930℃に加熱し、2.0〜2.5時間保温する。   Specifically, the heating to the austenitizing temperature is performed by heating to 860 to 930 ° C. and keeping the temperature for 2.0 to 2.5 hours.

または、車輪成形後の高温の残留熱を用いて、リム踏面を水噴射で400℃以下に強化冷却し、室温に空冷し、その間、スポーク板部、車輪ハブの残留熱によって自己焼き戻しを行う。   Alternatively, using the high-temperature residual heat after wheel forming, the rim tread surface is reinforced and cooled to 400 ° C. or less by water injection, and air-cooled to room temperature, during which self-tempering is performed by the residual heat of the spoke plate and wheel hub. .

または、車輪成形後の高温の残留熱を用いて、リム踏面を水噴射で400℃以下に強化冷却し、400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷する。
または、車輪を成形した後、車輪を400℃以下に空冷し、その間、スポーク板部、車輪ハブの残留熱によって自己焼き戻しを行う。
Alternatively, using the high-temperature residual heat after wheel forming, the rim tread surface is tempered and cooled to 400 ° C. or less by water injection, tempered at a medium or low temperature below 400 ° C. for 30 minutes or more, and then air-cooled to room temperature after tempering. .
Or after shaping | molding a wheel, a wheel is air-cooled to 400 degrees C or less, and self-tempering is performed by the residual heat of a spoke board part and a wheel hub in the meantime.

または、車輪を成形した後、車輪を400℃以下に空冷してから、400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷する。   Alternatively, after forming the wheel, the wheel is air-cooled to 400 ° C. or lower, then tempered at a low temperature of less than 400 ° C. for 30 minutes or more, and then air-cooled to room temperature after tempering.

本発明における各元素の作用は以下のとおりである。
C含有量については、次のとおりである。Cは、鋼中の基本元素であり、隙間固溶硬化及び析出強化の効果が高い。炭素含有量の増加に伴い、鋼の強度が向上し、靭性が低下する。炭素は、フェライトよりもオーステナイト中の溶解度がはるかに大きく、有効なオーステナイト安定化元素である。鋼中の炭化物の体積分率は炭素含有量に正比例する。炭化物フリーベイナイト組織を得るために、材料の硬度がさらに向上し、特に、材料の降伏強度が向上するように、過冷却オーステナイト及び過飽和フェライトに固溶された一定のC含有量を確保する必要がある。C含有量が0.40%を超えると、セメンタイトの析出が起こり、鋼の靭性が低下し、C含有量が0.10%未満である場合、フェライトの過飽和度が低下し、鋼の強度が低下するため、炭素含有量の合理的な範囲は0.10〜0.40%であることが好ましい。
The action of each element in the present invention is as follows.
About C content, it is as follows. C is a basic element in steel and has a high effect of solid solution hardening and precipitation strengthening. As the carbon content increases, the strength of the steel improves and the toughness decreases. Carbon has a much higher solubility in austenite than ferrite and is an effective austenite stabilizing element. The volume fraction of carbides in steel is directly proportional to the carbon content. In order to obtain a carbide-free bainite structure, it is necessary to ensure a certain C content dissolved in supercooled austenite and supersaturated ferrite so that the hardness of the material is further improved, and in particular, the yield strength of the material is improved. is there. If the C content exceeds 0.40%, precipitation of cementite occurs and the toughness of the steel decreases. If the C content is less than 0.10%, the supersaturation degree of ferrite decreases and the strength of the steel decreases. Since it falls, it is preferable that the reasonable range of carbon content is 0.10 to 0.40%.

Si含有量については、以下のとおりである。Siは、鋼中の基本合金元素であり、一般的に使用される脱酸剤であり、その原子半径は鉄原子の半径より小さく、オーステナイトとフェライトに対する固溶強化の効果が高く、オーステナイトの剪断強度が向上する。Siは、非炭化物形成元素であり、セメンタイトの析出を阻止し、ベイナイト−フェライトの間に炭素リッチオーステナイト薄膜及び(M−A)島状組織の形成を促進し、炭化物フリーベイナイト鋼を得るための主要元素である。Siはまた、セメンタイトの析出を阻止し、過冷オーステナイトの分解による炭化物の析出を防止することもできる。300℃〜400℃での焼き戻し中に、セメンタイトの析出は完全に抑制され、オーステナイトの熱安定性及び機械的安定性が向上する。鋼中のSi含有量が2.00%を超えると、初析フェライトの析出傾向が増加し、残留オーステナイトの量が増加し、鋼の強度と靭性が低下し、Si含有量が1.00%未満である場合、鋼中にセメンタイトが析出しやすく、炭化物フリーベイナイト組織が得られにくいため、Si含有量を1.00〜2.00%に制御する必要がある。   About Si content, it is as follows. Si is a basic alloying element in steel and is a commonly used deoxidizing agent. Its atomic radius is smaller than that of iron atoms and has a high effect of solid solution strengthening on austenite and ferrite. Strength is improved. Si is a non-carbide forming element, prevents precipitation of cementite, promotes the formation of a carbon-rich austenite thin film and (MA) island-like structure between bainite and ferrite, and obtains a carbide-free bainite steel. It is a major element. Si can also prevent cementite precipitation and prevent carbide precipitation due to decomposition of supercooled austenite. During tempering at 300 ° C. to 400 ° C., precipitation of cementite is completely suppressed, and the thermal stability and mechanical stability of austenite are improved. If the Si content in the steel exceeds 2.00%, the precipitation tendency of pro-eutectoid ferrite increases, the amount of retained austenite increases, the strength and toughness of the steel decrease, and the Si content is 1.00%. If it is less than the range, cementite is likely to precipitate in the steel, and a carbide-free bainite structure is difficult to obtain. Therefore, it is necessary to control the Si content to 1.00 to 2.00%.

Ni含有量については、以下のとおりである。Niは、非炭化物形成元素であり、ベイナイト変態中の炭化物の析出を抑制することができるので、ベイナイトフェライトのラス間に安定したオーステナイト薄膜が形成され、炭化物フリーベイナイト組織の形成に有利である。Niは、鋼の強度及び靭性を向上させることができ、高い衝撃靭性を得るために不可欠な合金元素であり、衝撃靭性転移温度を低下させる。Ni含有量が0.20%未満である場合、炭化物フリーベイナイトの形成に不利となり、Ni含有量が1.00%を超えると、鋼の強度と靭性への寄与率が大きく低下し、生産コストが上昇するため、Ni含有量を0.20〜1.00%に制御する必要がある。   About Ni content, it is as follows. Ni is a non-carbide-forming element and can suppress the precipitation of carbide during bainite transformation. Therefore, a stable austenite thin film is formed between laths of bainite ferrite, which is advantageous for the formation of a carbide-free bainite structure. Ni can improve the strength and toughness of steel, and is an indispensable alloy element for obtaining high impact toughness, and lowers the impact toughness transition temperature. When the Ni content is less than 0.20%, it is disadvantageous for the formation of carbide free bainite. When the Ni content exceeds 1.00%, the contribution to the strength and toughness of the steel is greatly reduced, and the production cost is reduced. Therefore, it is necessary to control the Ni content to 0.20 to 1.00%.

Mn含有量については、以下のとおりである。Mnは鋼中のオーステナイト安定化元素であり、鋼の焼入性を増加させ、鋼の機械的性質を向上させる。SiとMnの合金量を適切に調整することにより、炭化物析出のない、ベイナイトフェライトラスの間に間隔分布する薄膜状オーステナイト組織、即ち、炭化物フリーベイナイトが得られる。Mnはまた、Pの拡散係数を増大させ、鋼の脆性を増大させることもできる。Mn含有量が1.00%未満である場合、鋼の焼入性が悪く、炭化物フリーベイナイトの取得に不利となり、Mn含有量が2.50%を超えると、鋼の焼入性が著しく向上するが、Pの拡散傾向が著しく増大し、鋼の靭性が低下するため、Mn含有量を1.00〜2.50%に制御する必要がある。   About Mn content, it is as follows. Mn is an austenite stabilizing element in steel and increases the hardenability of the steel and improves the mechanical properties of the steel. By appropriately adjusting the alloy amount of Si and Mn, a thin-film austenite structure having no carbide precipitation and distributed between bainite ferrite laths, that is, carbide-free bainite can be obtained. Mn can also increase the diffusion coefficient of P and increase the brittleness of the steel. When the Mn content is less than 1.00%, the hardenability of the steel is poor, which is disadvantageous for obtaining carbide-free bainite. When the Mn content exceeds 2.50%, the hardenability of the steel is remarkably improved. However, since the diffusion tendency of P is remarkably increased and the toughness of the steel is lowered, it is necessary to control the Mn content to 1.00 to 2.50%.

RE含有量については、以下のとおりである。鋼中のRE元素の添加は、オーステナイト結晶粒を微細化し、浄化及び変質の作用を有し、粒界での有害不純物の偏析を低減し、粒界を改善し強化し、それによって鋼の強度と靭性を向上させることができる。同時に、REは、介在物の球状化を促進し、鋼の靭性をさらに改善し、材料の切欠き感受性を低下させることができる。RE含有量が多すぎると、その有益な効果が弱まり、同時に鋼の製造コストが上がる。RE含有量が0.001%未満である場合、有害な元素を完全に除去して靭性希土類介在物を形成することができず、RE含有量が0.040%を超えると、RE元素が過剰になり、その効果が発揮できなくなるため、RE含有量が0.001〜0.040%に制御される。   The RE content is as follows. The addition of RE element in steel has the effect of refining austenite grains, purifying and altering, reducing segregation of harmful impurities at grain boundaries, improving and strengthening grain boundaries, thereby strengthening steel strength And toughness can be improved. At the same time, RE can promote spheroidization of inclusions, further improve the toughness of the steel, and reduce the notch sensitivity of the material. If the RE content is too high, the beneficial effect is weakened, and at the same time the production cost of steel increases. If the RE content is less than 0.001%, harmful elements cannot be completely removed to form tough rare earth inclusions. If the RE content exceeds 0.040%, the RE element is excessive. Since the effect cannot be exhibited, the RE content is controlled to 0.001 to 0.040%.

P含有量については、以下のとおりである。中高炭素鋼では、Pが粒界に偏析しやすいので、粒界が弱くなり、鋼の強度及び靭性が低下する。有害な元素として、P≦0.020%の場合、性能に対する大きな悪影響がない。   About P content, it is as follows. In medium and high carbon steels, P tends to segregate at the grain boundaries, so the grain boundaries become weak, and the strength and toughness of the steel decrease. When P ≦ 0.020% as a harmful element, there is no significant adverse effect on performance.

S含有量については、以下のとおりである。Sは粒界に偏析しやすく、他の元素と介在物を形成しやすく、鋼の強度及び靭性が低下する。有害な元素として、S≦0.020%の場合、性能に対する大きな悪影響がない。   About S content, it is as follows. S tends to segregate at the grain boundaries, tends to form inclusions with other elements, and the strength and toughness of the steel decrease. As a harmful element, when S ≦ 0.020%, there is no significant adverse effect on performance.

鋼の元素設計において、本発明はC−Si−Mn−Ni−RE系を採用し、Mo、V、Cr及びBなどの合金元素を特別に添加しないで、熱処理プロセスを組み合わせて、リムの典型的な組織を炭化物フリーベイナイト、即ち、ナノスケールのラス状の過飽和フェライトにする。中間はナノスケールの薄膜状炭素リッチ残余オーステナイトである。残余オーステナイトは4%〜15%ある。車輪は、優れた強度と靭性、及び低い切欠き感受性などの特徴を有する。このタイプの鋼は、中等焼入性を有し、生産制御が比較的容易であり、コストが低い。希土類元素は、鋼中の介在物を球状化し、粒界を強化することができるので、このタイプの鋼は、20℃の衝撃靭性が高い。Niの添加により、得られたベイナイト鋼はより高い20℃衝撃靭性を有する。   In the elemental design of steel, the present invention adopts the C—Si—Mn—Ni—RE system, and does not add special alloy elements such as Mo, V, Cr and B, and combines the heat treatment process, and the typical rim The typical structure is carbide free bainite, that is, nanoscale lath-like supersaturated ferrite. In the middle is nanoscale thin film carbon-rich residual austenite. The remaining austenite is 4% to 15%. The wheel has features such as excellent strength and toughness, and low notch sensitivity. This type of steel has moderate hardenability, is relatively easy to control production and is low in cost. Since rare earth elements can spheroidize inclusions in steel and strengthen grain boundaries, this type of steel has a high impact toughness of 20 ° C. With the addition of Ni, the resulting bainite steel has a higher 20 ° C. impact toughness.

本発明では、組成及び製造プロセスを設計することにより、車輪の高強度と高靭性の整合性を実現し、車輪の総合的な機械的性質を提供し、車輪のサービス性能を向上させる目的を達成し、鉄道輸送の他の主要部品及び類似の部品の製造にも使用できる。   In the present invention, the composition and manufacturing process are designed to achieve the high strength and high toughness of the wheel, provide the overall mechanical properties of the wheel, and achieve the purpose of improving the service performance of the wheel However, it can also be used to manufacture other major parts of rail transport and similar parts.

本発明は、主にSi及びNi非炭化物形成元素を利用して、フェライト中の炭素の活性を改善し、炭化物の析出を遅延及び抑制し、適切な成形プロセス(鍛造圧延又はモデル鋳造などを含む)、特に熱処理プロセスにより、鋼の調合に応じて、リム踏面を水噴射で強化冷却することによって、車輪リムに炭化物フリーベイナイト組織を与え、残留熱を利用して自己焼き戻しするか又は中低温で焼き戻しして、車輪の組織安定性及び車輪の総合的な機械的性質をさらに改善する。同時に、Mn元素の優れたオーステナイト安定化効果により、鋼の焼入性が増加し、鋼の強度が向上する。希土類元素は、鋼中の水素などの有害ガスを吸着する機能を有し、鋼中の不可避的介在物を球状化し、鋼の靭性をさらに向上させる。Si、Ni、Mn、及びREの含有量を適切に調整することにより、リムは炭化物析出のない炭化物フリーベイナイト組織を得て、車輪の強度及び靭性がさらに向上する。Ni元素の優れた固溶強化の特徴により、靭性指数が低下せずに、強度と靭性がさらに向上する。また、Ni元素の耐食性により、車輪の大気腐食耐性が実現され、車輪の使用寿命が延び、高靭性ベイナイト鋼車輪が実現し、鉄道輸送運行条件の厳しい要求が満たされる。   The present invention mainly utilizes Si and Ni non-carbide forming elements to improve the activity of carbon in ferrite, retard and suppress carbide precipitation, and include suitable forming processes (forging rolling or model casting, etc.) ), Especially by heat treatment process, depending on the steel composition, the rim tread surface is strengthened and cooled with water injection to give the wheel rim a carbide free bainite structure and use the residual heat for self-tempering or at low to medium temperature Tempering with to further improve the wheel's tissue stability and the overall mechanical properties of the wheel. At the same time, the excellent austenite stabilizing effect of the Mn element increases the hardenability of the steel and improves the strength of the steel. The rare earth element has a function of adsorbing harmful gases such as hydrogen in the steel, spheroidizes inevitable inclusions in the steel, and further improves the toughness of the steel. By appropriately adjusting the contents of Si, Ni, Mn, and RE, the rim obtains a carbide-free bainite structure with no carbide precipitation, and the strength and toughness of the wheel are further improved. Due to the excellent solid solution strengthening characteristics of Ni element, the strength and toughness are further improved without lowering the toughness index. Moreover, the corrosion resistance of Ni element realizes atmospheric corrosion resistance of the wheel, extends the service life of the wheel, realizes a high toughness bainitic steel wheel, and satisfies the severe requirements of railway transportation operation conditions.

従来技術と比較して、本発明により製造されたベイナイト鋼車輪は、CL60車輪と比較して、リムの強度と靭性の整合性が著しく向上する。それにより、安全性が保証される前提で、車輪の降伏強度、靭性及び低温靭性が効果的に向上し、車輪の転がり接触疲労(RCF)耐性が向上し、車輪の耐ヒートクラック性が向上し、車輪の耐食性が向上し、車輪の切欠き感受性が低下し、車輪の使用中の剥離や剥落の可能性が低減され、車輪踏面の均一な摩耗及び少ない旋盤加工が実現され、車輪リム金属の仕様効率が向上し、車輪の使用寿命及び総合的な利益が改善され、一定の経済的及び社会的利益がある。   Compared to the prior art, the bainite steel wheels produced according to the present invention have a significantly improved consistency of rim strength and toughness compared to CL60 wheels. As a result, the yield strength, toughness, and low-temperature toughness of the wheel are effectively improved on the premise that safety is guaranteed, the resistance to rolling contact fatigue (RCF) of the wheel is improved, and the heat crack resistance of the wheel is improved. The corrosion resistance of the wheel is improved, the notch sensitivity of the wheel is reduced, the possibility of peeling and peeling off during use of the wheel is reduced, the wheel tread is evenly worn and less lathe processing is realized, and the wheel rim metal Specification efficiency is improved, wheel service life and overall benefits are improved, and there are certain economic and social benefits.

車輪の各部分の名称を示す図である。 1は車輪ハブ穴、2はリム外側面、3はリム、4はリム内側面、5はスポーク板部、6は車輪ハブ、7は踏面である。It is a figure which shows the name of each part of a wheel. 1 is a wheel hub hole, 2 is a rim outer surface, 3 is a rim, 4 is a rim inner surface, 5 is a spoke plate portion, 6 is a wheel hub, and 7 is a tread surface. 実施例1のリム100× 光学金属組織図である。It is a rim | limb 100x optical metal structure figure of Example 1. FIG. 実施例1のリム500× 光学金属組織図である。FIG. 3 is a diagram illustrating a rim 500 × optical metal structure of Example 1. 実施例2のリム100× 光学金属組織図である。It is a rim | limb 100x optical metal structure figure of Example 2. FIG. 実施例2のリム500× 光学金属組織図である。It is the rim | limb 500x optical metal structure figure of Example 2. FIG. 実施例2のリム500× 染色金属組織図である。It is the rim | limb 500x dyeing | staining metal structure figure of Example 2. FIG. 実施例2のリムの透過電子顕微鏡組織図である。FIG. 3 is a transmission electron microscope structure diagram of the rim of Example 2. 実施例3のリム100× 光学金属組織図である。FIG. 10 is a diagram illustrating a rim 100 × optical metal structure of Example 3. 実施例3のリム500× 光学金属組織図である。It is the rim | limb 500x optical metal structure figure of Example 3. FIG. 実施例2の鋼の連続冷却変態曲線(CCT曲線)である。It is a continuous cooling transformation curve (CCT curve) of the steel of Example 2. 実施例2の車輪及びCL60車輪の摩擦摩耗試験における摩擦係数と回転数との間の関係の比較である。It is a comparison of the relationship between the friction coefficient and the rotation speed in the friction wear test of the wheel of Example 2, and a CL60 wheel. 実施例2の車輪及びCL60車輪の摩擦摩耗試験後の試料の表面変形組織である。It is the surface deformation | transformation structure | tissue of the sample after the friction abrasion test of the wheel of Example 2, and a CL60 wheel.

実施例1、2、3における車輪鋼の化学組成の重量パーセントを表2に示す。実施例1、2、3はいずれも、電気炉製錬を用い、LF+RH精錬真空脱ガス後に直接φ380mmの丸ビレットを連続鋳造し、鋼塊切断、加熱及び輾圧圧延、熱処理、仕上げ加工を行った後に、直径が915mmの車輪を形成した。   Table 2 shows the weight percentage of the chemical composition of the wheel steel in Examples 1, 2, and 3. In each of Examples 1, 2, and 3, electric furnace smelting was used, and after LF + RH refining vacuum degassing, a round billet with a diameter of 380 mm was directly continuously cast, and steel ingot cutting, heating and pressure rolling, heat treatment, and finishing were performed. After that, a wheel having a diameter of 915 mm was formed.

<実施例1>
高靭性鉄道輸送用ベイナイト鋼車輪は、下記の表2に示す重量パーセントの元素を含有する。
<Example 1>
Bainite steel wheels for high toughness rail transport contain the weight percent elements shown in Table 2 below.

高靭性鉄道輸送用ベイナイト鋼車輪の製造方法は、以下のステップを含む:表2の実施例1のような化学組成を有する溶鋼を、電気炉製鋼工程、LF炉精錬工程、RH真空処理工程、丸ビレット連続鋳造工程、鋼塊切断圧延工程、熱処理工程、加工、完成品検査工程を経て、車輪を形成した。前記熱処理工程では、860〜930℃に加熱し2.0〜2.5時間保温し、リムを噴水で400℃以下に冷却し、280℃で4.5〜5.0時間焼き戻し処理した。   The manufacturing method of a bainite steel wheel for high toughness railway transportation includes the following steps: an electric furnace steelmaking process, an LF furnace refining process, an RH vacuum treatment process, and a molten steel having a chemical composition as shown in Example 1 in Table 2; The wheel was formed through a round billet continuous casting process, a steel ingot cutting and rolling process, a heat treatment process, a processing, and a finished product inspection process. In the heat treatment step, the mixture was heated to 860 to 930 ° C. and kept warm for 2.0 to 2.5 hours, the rim was cooled to 400 ° C. or lower with fountain, and tempered at 280 ° C. for 4.5 to 5.0 hours.

図2a、図2bに示すように、本実施例で製造された車輪リムの金属組織は主に炭化物フリーベイナイト組織である。本実施例の車輪の機械的性能を表3に示す。車輪実物の強度と靭性の整合性はCL60車輪よりも優れている。   As shown in FIGS. 2a and 2b, the metal structure of the wheel rim manufactured in this example is mainly a carbide-free bainite structure. Table 3 shows the mechanical performance of the wheel of this example. The consistency of the strength and toughness of the actual wheel is superior to the CL60 wheel.

<実施例2>
高靭性鉄道輸送用ベイナイト鋼車輪は、下記の表2に示す重量パーセントの元素を含有する。
<Example 2>
Bainite steel wheels for high toughness rail transport contain the weight percent elements shown in Table 2 below.

高靭性鉄道輸送用ベイナイト鋼車輪の製造方法は、以下のステップを含む:表2の実施例2のような化学組成を有する溶鋼を、電気炉製鋼工程、LF炉精錬工程、RH真空処理工程、丸ビレット連続鋳造工程、鋼塊切断圧延工程、熱処理工程、加工、完成品検査工程を経て、車輪を形成した。前記熱処理工程では、860〜930℃に加熱し2.0〜2.5時間保温し、リムを噴水で400℃以下に冷却し、240℃で4.5〜5.0時間焼き戻し処理した。   The manufacturing method of a bainite steel wheel for high toughness railway transportation includes the following steps: an electric furnace steelmaking process, an LF furnace refining process, an RH vacuum treatment process, and a molten steel having a chemical composition as shown in Example 2 in Table 2; The wheel was formed through a round billet continuous casting process, a steel ingot cutting and rolling process, a heat treatment process, a processing, and a finished product inspection process. In the heat treatment step, the mixture was heated to 860 to 930 ° C. and kept warm for 2.0 to 2.5 hours, the rim was cooled to 400 ° C. or lower with fountain, and tempered at 240 ° C. for 4.5 to 5.0 hours.

図3a、3b、3c、3dに示すように、本実施例で製造された車輪リムの金属組織は主に炭化物フリーベイナイトである。本実施例の車輪の機械的性能を表3に示す。車輪実物の強度と靭性の整合性はCL60車輪よりも優れている。   As shown in FIGS. 3a, 3b, 3c and 3d, the metal structure of the wheel rim manufactured in this example is mainly carbide-free bainite. Table 3 shows the mechanical performance of the wheel of this example. The consistency of the strength and toughness of the actual wheel is superior to the CL60 wheel.

<実施例3>
高靭性鉄道輸送用ベイナイト鋼車輪は、下記の表2に示す重量パーセントの元素を含有する。
<Example 3>
Bainite steel wheels for high toughness rail transport contain the weight percent elements shown in Table 2 below.

高靭性鉄道輸送用ベイナイト鋼車輪の製造方法は、以下のステップを含む:表2の実施例3のような化学組成を有する溶鋼を、電気炉製鋼工程、LF炉精錬工程、RH真空処理工程、丸ビレット連続鋳造工程、鋼塊切断圧延工程、熱処理工程、加工、完成品検査工程を経て、車輪を形成した。前記熱処理工程では、860〜930℃に加熱し2.0〜2.5時間保温し、リムを噴水で400℃以下に冷却し、200℃で4.5〜5.0時間焼き戻し処理した。   The manufacturing method of a bainite steel wheel for high toughness railway transportation includes the following steps: an electric furnace steelmaking process, an LF furnace refining process, an RH vacuum treatment process, and a molten steel having a chemical composition as shown in Example 3 in Table 2; The wheel was formed through a round billet continuous casting process, a steel ingot cutting and rolling process, a heat treatment process, a processing, and a finished product inspection process. In the heat treatment step, the mixture was heated to 860 to 930 ° C. and kept warm for 2.0 to 2.5 hours, the rim was cooled to 400 ° C. or lower with fountain, and tempered at 200 ° C. for 4.5 to 5.0 hours.

図4a、4bに示すように、本実施例で製造された車輪リムの金属組織は主に炭化物フリーベイナイトである。本実施例の車輪の機械的性能を表3に示す。車輪実物の強度と靭性の整合性はCL60車輪よりも優れている。   As shown in FIGS. 4a and 4b, the metal structure of the wheel rim manufactured in this example is mainly carbide-free bainite. Table 3 shows the mechanical performance of the wheel of this example. The consistency of the strength and toughness of the actual wheel is superior to the CL60 wheel.

Claims (10)

高靭性鉄道輸送用のベイナイト鋼車輪であって、重量パーセントで、
炭素C:0.10〜0.40%、ケイ素Si:1.00〜2.00%、マンガンMn:1.00〜2.50%、
ニッケルNi:0.20〜1.00%、希土類RE:0.001 〜0.040%、
リンP≦0.020%、硫黄S≦0.020%を含み、
残部は鉄及び不可避的残留元素であり、
且つ、1.50%≦Si+Ni≦2.50%、2.00%≦Si+Mn≦4.00%である、ことを特徴とする高靭性鉄道輸送用ベイナイト鋼車輪。
Bainitic steel wheels for high toughness railway transport, in weight percent,
Carbon C: 0.10 to 0.40%, silicon Si: 1.00 to 2.00%, manganese Mn: 1.00 to 2.50%,
Nickel Ni: 0.20 to 1.00%, rare earth RE: 0.001 to 0.040%,
Including phosphorus P ≦ 0.020%, sulfur S ≦ 0.020%,
The balance is iron and inevitable residual elements,
A high-toughness bainite steel wheel for railway transportation, wherein 1.50% ≦ Si + Ni ≦ 2.50% and 2.00% ≦ Si + Mn ≦ 4.00%.
前記高靭性鉄道輸送用ベイナイト鋼車輪は、重量パーセントで、
炭素C:0.15〜0.25%、ケイ素Si:1.20〜1.80%、マンガンMn:1.60〜2.10%、
ニッケルNi:0.20〜0.80%、希土類RE:0.010 〜0.040%、リンP≦0.020%、硫黄S≦0.020%を含み、
残部は鉄及び不可避的残留元素であり、且つ、1.50%≦Si+Ni≦2.50%、2.00%≦Si+Mn≦4.00%である、ことを特徴とする請求項1に記載の高靭性鉄道輸送用ベイナイト鋼車輪。
The high toughness rail transport bainite steel wheels are in weight percent,
Carbon C: 0.15-0.25%, silicon Si: 1.20-1.80%, manganese Mn: 1.60-2.10%,
Nickel Ni: 0.20-0.80%, rare earth RE: 0.010-0.040%, phosphorus P ≦ 0.020%, sulfur S ≦ 0.020%,
The balance is iron and inevitable residual elements, and 1.50% ≦ Si + Ni ≦ 2.50% and 2.00% ≦ Si + Mn ≦ 4.00%. Bainite steel wheels for high toughness railway transportation.
前記高靭性鉄道輸送用ベイナイト鋼車輪は、重量パーセントで、
炭素C:0.20%、ケイ素Si:1.45%、マンガンMn:1.92%、ニッケルNi:0.35%、希土類RE:0.018%、リンンP:0.013%、硫黄S:0.008%を含み、残部は鉄及び不可避的残留元素である、ことを特徴とする請求項1又は2に記載の高靭性鉄道輸送用ベイナイト鋼車輪。
The high toughness rail transport bainite steel wheels are in weight percent,
Carbon C: 0.20%, silicon Si: 1.45%, manganese Mn: 1.92%, nickel Ni: 0.35%, rare earth RE: 0.018%, phosphorus P: 0.013%, sulfur S The high-toughness bainite steel wheel for rail transport according to claim 1 or 2, wherein 0.008% is included and the balance is iron and inevitable residual elements.
前記ベイナイト鋼車輪のリム踏面下から40mm以内の金属組織は炭化物フリーベイナイト組織であり、即ち、ナノスケールのラス状の過飽和フェライトであり、ラス状の過飽和フェライトの中間はナノスケールの薄膜状炭素リッチ残留オーステナイトであり、残留オーステナイトの体積パーセントは4%〜15%である、ことを特徴とする請求項請求項1又は2に記載の高靭性鉄道輸送用ベイナイト鋼車輪。   The metal structure within 40 mm below the rim surface of the bainite steel wheel is a carbide-free bainite structure, that is, nanoscale lath-like supersaturated ferrite, and the middle of lath-like supersaturated ferrite is nanoscale thin film-like carbon-rich. The bainite steel wheel for high-toughness railway transportation according to claim 1 or 2, wherein the bainite steel wheel is a retained austenite, and a volume percentage of the retained austenite is 4% to 15%. 車輪のリムの微細構造は、過飽和フェライト及び炭素リッチ残留オーステナイトにより構成された複相構造であり、そのサイズはナノスケールであり、前記ナノスケールは1〜999nmである、ことを特徴とする請求項1又は2に記載の高靭性鉄道輸送用ベイナイト鋼車輪。   The microstructure of the wheel rim is a multiphase structure composed of supersaturated ferrite and carbon-rich retained austenite, the size thereof is nanoscale, and the nanoscale is 1 to 999 nm. A high-toughness bainite steel wheel for rail transport according to 1 or 2. 製錬、精錬、成形及び熱処理プロセスを含み、前記熱処理プロセスでは、成形された車輪をオーステナイト化温度に加熱し、リム踏面を水噴射で400℃以下に強化冷却し、焼き戻し処理する、ことを特徴とする請求項1〜5のいずれか一項に記載の高靭性鉄道輸送用ベイナイト鋼車輪の製造方法。   Including a smelting, refining, forming and heat treatment process, wherein the formed wheel is heated to an austenitizing temperature, the rim tread is tempered and cooled to 400 ° C. or less by water injection, and tempering is performed. The manufacturing method of the bainite steel wheel for high toughness railroad transportation as described in any one of Claims 1-5 characterized by the above-mentioned. 前記オーステナイト化温度への加熱は、具体的には、860〜930℃に加熱し、2.0〜2.5時間保温する、ことを特徴とする請求項6に記載の高靭性鉄道輸送用ベイナイト鋼車輪の製造方法。   The bainite for high-toughness railway transportation according to claim 6, wherein the heating to the austenitizing temperature is specifically heated to 860 to 930 ° C and kept warm for 2.0 to 2.5 hours. Steel wheel manufacturing method. 前記焼き戻し処理では、車輪を400℃未満の中低温で30分以上焼き戻しして、焼き戻し後に室温に空冷し、又は、リム踏面を水噴射で400℃以下に強化冷却し、室温に空冷し、その間、残留熱によって自己焼き戻しを行う、ことを特徴とする請求項6又は7に記載の高靭性鉄道輸送用ベイナイト鋼車輪の製造方法。   In the tempering treatment, the wheel is tempered at a low and low temperature of less than 400 ° C. for 30 minutes or more and air-cooled to room temperature after tempering, or the rim tread is tempered and cooled to 400 ° C. or less by water jet and air-cooled to room temperature. In the meantime, self-tempering is performed by residual heat during the process, and the method for producing a bainite steel wheel for high-toughness railway transportation according to claim 6 or 7. 熱処理プロセスでは、成形後の高温の残留熱により、成形された車輪のリム踏面を直接水噴射で400℃以下に強化冷却し、焼き戻しで処理する、ことを特徴とする請求項6に記載の高靭性鉄道輸送用ベイナイト鋼車輪の製造方法。   7. The heat treatment process according to claim 6, wherein the rim tread surface of the molded wheel is tempered and cooled to 400 ° C. or less by direct water injection by high-temperature residual heat after molding, and is tempered. A method of manufacturing high-toughness bainite steel wheels for rail transport. 熱処理プロセスでは、車輪を成形した後、車輪を400℃以下に空冷し、焼き戻しで処理する、ことを特徴とする請求項6に記載の高靭性鉄道輸送用ベイナイト鋼車輪の製造方法。   The method for manufacturing a bainite steel wheel for high toughness railway transportation according to claim 6, wherein, in the heat treatment process, after the wheel is formed, the wheel is air-cooled to 400 ° C or lower and tempered.
JP2019500284A 2016-07-06 2017-07-06 Bainite steel wheels for high toughness railway transportation and their manufacturing methods Active JP6765496B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610527582.8A CN106048430B (en) 2016-07-06 2016-07-06 A kind of high tenacity track traffic bainitic steel wheel and its manufacture method
CN201610527582.8 2016-07-06
PCT/CN2017/091930 WO2018006845A1 (en) 2016-07-06 2017-07-06 High toughness bainitic steel wheel for rail transit, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2019524994A true JP2019524994A (en) 2019-09-05
JP6765496B2 JP6765496B2 (en) 2020-10-07

Family

ID=57201046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019500284A Active JP6765496B2 (en) 2016-07-06 2017-07-06 Bainite steel wheels for high toughness railway transportation and their manufacturing methods

Country Status (4)

Country Link
EP (1) EP3483298A4 (en)
JP (1) JP6765496B2 (en)
CN (1) CN106048430B (en)
WO (1) WO2018006845A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048430B (en) * 2016-07-06 2017-11-03 马钢(集团)控股有限公司 A kind of high tenacity track traffic bainitic steel wheel and its manufacture method
CN106435367B (en) * 2016-11-23 2018-07-10 攀钢集团攀枝花钢铁研究院有限公司 A kind of bainite rail and preparation method thereof
AT519669B1 (en) * 2017-06-07 2018-09-15 Voestalpine Schienen Gmbh Rail part and method for producing a rail part
CN109182920A (en) * 2018-06-20 2019-01-11 马钢(集团)控股有限公司 A kind of rail traffic bainitic steel wheel and its manufacturing method of heat resistance and corrosive environment
CN114107821B (en) * 2021-11-26 2022-07-08 钢铁研究总院 High-toughness ultrahigh-strength steel and manufacturing method thereof
CN114058965B (en) * 2021-11-30 2022-05-13 宝武集团马钢轨交材料科技有限公司 High-contact-fatigue-resistance microalloyed steel wheel and production method thereof
CN114908291B (en) * 2022-04-27 2023-04-14 鞍钢股份有限公司 850 MPa-level precipitation strengthening type hot-rolled bainite steel and production method thereof
CN115058666B (en) * 2022-06-30 2023-08-11 马鞍山钢铁股份有限公司 Wheel rim for high corrosion resistance elastic wheel and heat treatment process thereof
CN115216612B (en) * 2022-07-22 2024-04-05 攀钢集团攀枝花钢铁研究院有限公司 Heat treatment process for high-strength high-toughness bainitic steel rail

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166804C (en) * 1998-12-07 2004-09-15 清华大学 High-strength and high-toughness weldable air-cooled Hongkang bainite steel specially for railway frog
ITMI20032370A1 (en) * 2003-12-03 2005-06-04 Lucchini Sidermeccanica S P A HIGH BAINITH MICROLEGATE STEEL FOR FATIGUE RESISTANCE
EP1553202A1 (en) * 2004-01-09 2005-07-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
CN100395366C (en) * 2004-12-31 2008-06-18 马鞍山钢铁股份有限公司 Bainite steel for railroad carriage wheel
CN101326298A (en) * 2005-12-19 2008-12-17 株式会社神户制钢所 Sheet steel excellent in fatigue crack propagation resistance
CN100567549C (en) * 2008-08-14 2009-12-09 南京钢铁股份有限公司 A kind of carbides-free bainite wear resistant steel plate and production technique thereof
KR101185232B1 (en) * 2010-08-30 2012-09-21 현대제철 주식회사 Api hot-rolled steel with high strength and high toughness and method for manufacturing the api hot-rolled steel
US20130192726A1 (en) * 2010-10-12 2013-08-01 Tata Steel Ijmuiden B.V. Method of hot forming a steel blank and the hot formed part
CN103409689A (en) * 2013-07-31 2013-11-27 内蒙古包钢钢联股份有限公司 Bainitic/martensitic steel treated by rare earth and special for railway frog
CN103397275B (en) * 2013-08-09 2016-04-27 钢铁研究总院 A kind of martensite series wear resisting steel and preparation method thereof
CN105671429A (en) * 2016-03-30 2016-06-15 内蒙古第一机械集团有限公司 High-performance E+ steel containing rare earth
CN106048430B (en) * 2016-07-06 2017-11-03 马钢(集团)控股有限公司 A kind of high tenacity track traffic bainitic steel wheel and its manufacture method

Also Published As

Publication number Publication date
EP3483298A4 (en) 2019-07-24
EP3483298A1 (en) 2019-05-15
CN106048430A (en) 2016-10-26
CN106048430B (en) 2017-11-03
JP6765496B2 (en) 2020-10-07
WO2018006845A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6765495B2 (en) High strength, high toughness, heat crack resistance Bainite steel wheels for railway transportation and their manufacturing methods
JP6765496B2 (en) Bainite steel wheels for high toughness railway transportation and their manufacturing methods
US11434553B2 (en) Low cost lean production bainitic steel wheel for rail transit, and manufacturing method therefor
CN106521315B (en) A kind of high-intensity and high-tenacity heavy haul train wheel-use steel material and its heat treatment method
CN102560228B (en) Method for producing wheel made of austempered ductile iron (ADI) material
AU2015204356A1 (en) High-strength bainitic steel rail and producing method thereof
US20190226040A1 (en) Hypereutectoid rail and manufacturing method thereof
CN108707831A (en) A kind of cold harsh traffic of Service Environment lower railway bainitic steel wheel and its manufacturing method
CN111500925A (en) Medium-carbon wheel steel with good matching of wear resistance and toughness, heat treatment method thereof and preparation method of wheel
CN109182920A (en) A kind of rail traffic bainitic steel wheel and its manufacturing method of heat resistance and corrosive environment
CN108754329A (en) A kind of rail traffic lorry bainitic steel wheel and its manufacturing method
CN111321343B (en) High-strength-toughness and high-wear-resistance steel for forging coupler knuckle and heat treatment method and production method thereof
JP2004315928A (en) High carbon rail vehicle wheel having excellent wear resistance and thermal crack resistance
CN108796372A (en) A kind of rail traffic EMU bainitic steel wheel and its manufacturing method
CN108728750A (en) A kind of railway transit passenger car bainitic steel wheel and its manufacturing method
RU2086419C1 (en) Heavy-load solid disk wheel and wheel tyre for self-propelled trains and cars and method of thermal treatment of wheels and tyres
CN113699452B (en) Steel for tramcar elastic wheel rim and heat treatment method and production method thereof
CN110904387A (en) Bainite axle steel for heavy-duty railway wagon and preparation method thereof
CN103741032A (en) High-carbon low-alloy wheel steel for locomotive of improving flexibility and wheel preparation method
CN108796371A (en) A kind of rail traffic heavy-duty freight car bainitic steel wheel and its manufacturing method
CN110257727A (en) A kind of preparation method of middle carbon high rigidity heavy-duty wheel steel and its heat treatment method and heavy-duty wheel
CN106148825B (en) A kind of bullet train bainite wheel steel and preparation method
CN113699451A (en) Steel for wear-resistant elastic wheel rim and heat treatment method and production method thereof
CN116005067A (en) Heat damage resistant locomotive wheel and production method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250