JP2019502113A - 可動マスの電圧検出機能を備えたmemsセンサ - Google Patents

可動マスの電圧検出機能を備えたmemsセンサ Download PDF

Info

Publication number
JP2019502113A
JP2019502113A JP2018530131A JP2018530131A JP2019502113A JP 2019502113 A JP2019502113 A JP 2019502113A JP 2018530131 A JP2018530131 A JP 2018530131A JP 2018530131 A JP2018530131 A JP 2018530131A JP 2019502113 A JP2019502113 A JP 2019502113A
Authority
JP
Japan
Prior art keywords
voltage
anchor point
measurement
mass system
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018530131A
Other languages
English (en)
Other versions
JP6800515B2 (ja
Inventor
アドルフォ ジャンバスティアニ
アドルフォ ジャンバスティアニ
ヤーッコ ルオヒオ
ヤーッコ ルオヒオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2019502113A publication Critical patent/JP2019502113A/ja
Application granted granted Critical
Publication of JP6800515B2 publication Critical patent/JP6800515B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)

Abstract

懸架式ばねマスシステム(202〜204)が、複数のアンカー点(201,205)から懸架される。電源電圧(206)が、アンカー点(201)のうちの1つから懸架式ばねマスシステム(202〜204)に提供される。他のアンカー点(205)は、これらのアンカー点(205)における電圧を測定する測定ノード(207)を有する。測定ノード(207)のうちの1つで電源電圧(206)以外の電圧を受け取った場合に誤りが識別される。

Description

スマートフォン、スマートウォッチ、タブレット、自動車、ドローン、電気器具、航空機、運動支援装置、ゲームコントローラなどの多くの物品は、その操作中に運動センサを利用できる。多くの用途では、加速度計やジャイロスコープなどの様々なタイプの運動センサが、特定用途の様々な情報を決定するために個別又は一緒に分析されうる。例えば、ジャイロスコープと加速度計は、ゲーム用途(例えば、スマートフォン又はゲームコントローラ)でユーザによる複雑な運動を取得するために使用されることがあり、ドローンや他の航空機は、ジャイロスコープ測定値(例えば、ロール、ピッチ及びヨー)に基づいて向きを決定でき、車両は、方向(例えば、推測航法のため)と安全性(例えば、スリップ又はロールオーバ状態の認識)の決定のために測定値を利用できる。
加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなどの多くのセンサが、微小電気機械システム(MEMS)センサとして実現される。センサの微小機械構成要素は、シリコン製造技術を使用して作成され、そのような微小機械構成要素は、特定の微小機械構成要素の設計に基づいて、センサによって測定された特定の外部刺激に対して応答する(例えば、動く)。外部刺激に対する微小機械構成要素の応答は、例えばセンサの運動微小機械構成要素と固定構成要素の間の相対距離を測定することによって測定されうる。
MEMSセンサは、軸に沿った直線加速度や軸のまわりの角速度などの所望の運動の測定を支援するように懸架され互いに結合されたマスによって実現されうる。マスは、ばねによって懸架され、そのばねで互いに結合される。時間が経つにつれて、ばね又はマスの一部が摩耗又は破損しうる。場合によって、MEMSセンサは、構成要素が摩耗又は破損したにもかかわらず動作し続けることがあり、その結果測定が不正確になる。
典型的実施形態では、微小電気機械センサは、複数のアンカー点と懸架式ばねマスシステムを含み、懸架式ばねマスシステム(suspended spring-mass system)は、複数の可動マスと、複数の可動マスを互いに結合し複数の可動マスを複数のアンカー点から懸架する複数のばねとを含み、複数の可動マスと複数のアンカー点は、複数のばねによって電気的に接続される。微小電気機械センサは、また、複数のアンカー点のうちの第1のアンカー点を介して懸架式ばねマスシステムにシステム電圧レベルを印加するように結合された第1の電圧源と、複数のアンカー点のうちの第2のアンカー点に結合されて第2のアンカー点の電圧を測定する測定ノードと、測定電圧に基づいて懸架式ばねマスシステムの誤りを識別するように構成された処理回路とを含む。
典型的実施形態では、微小電気機械センサ内の誤りを識別する方法が、第1の電圧源から、複数のアンカー点のうちの第1のアンカー点にシステム電圧を提供することと、第1のアンカー点を介して、懸架式ばねマスシステムにシステム電圧レベルを印加することを含む。方法は、更に、複数のアンカー点の第2のアンカー点に、懸架式ばねマスシステムを介して受信電圧を受け取り、受信電圧を第2のアンカー点から測定ノードに提供することを含む。方法は、更に、処理回路によって、測定ノードにおける受信電圧に基づいて懸架式ばねマスシステムの誤りを識別することを含む。
典型的実施形態では、微小電気機械センサは、複数のアンカー点と、複数のアンカー点に結合された複数のソース/センス回路とを含み、各ソース/センス回路が、電圧源、測定ノード及びスイッチを含む。微小電気機械センサは、更に、複数のアンカー点から懸架された懸架式ばねマスシステムと、第1のソース/センス回路に、第1のソース/センス回路の電圧源を複数のアンカー点のうちの第1のアンカー点に結合させ、第2のソース/センス回路に、複数のアンカー点のうちの第2のアンカー点を第2のソース/センス回路の測定ノードに結合させ、第2の測定ノードで受け取った電圧に基づいて懸架式ばねマスシステムの誤りを識別するように構成された処理回路とを含む。
本開示の以上その他の特徴、その本質及び様々な利点は、添付図面と関連して行われる以下の詳細な記述を検討することにより明らかになる。
本開示の実施形態による説明的な運動処理システムを示す図である。 本開示の幾つかの実施形態による可動マスの電圧検出機能を有する説明的なばねマスシステムを示す図である。 本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なばねマスシステムを示す図である。 本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なMEMSジャイロスコープを示す図である。 本開示の幾つかの実施形態によるばねマスシステムの可動マスの電圧を検出するための典型的なステップを示す図である。 本開示の幾つかの実施形態による複数のソース/センス回路を有するばねマスシステムの可動マスの電圧を検出するための典型的なステップを示す図である。
MEMS装置は、最下層、MEMS装置層、キャップ層などのいくつかの層で構成されうる。MEMS装置層は、MEMS装置の外部に配置されうるCMOS回路などの処理回路に電気的に結合されてもよく、幾つかの実施形態では、最下層は、CMOS回路を含むCMOS層でよい。本開示は、最下層としてCMOS層を含む典型的実施形態について述べうるが、ここで述べる実施形態が、MEMS装置の外部にCMOS回路が配置された装置にも同様に適用可能でありうることを理解されよう(例えば、本明細書に記載されたように電圧と信号を提供する/受け取るための配線をアンカー点と外部回路の間に提供することによって)。
MEMS装置層は、直線加速度や角速度などの力に応じて運動する懸架式ばねマスシステムを含む。動作中、MEMS装置の動作を容易にするため、例えば、懸架式ばねマスシステムの構成要素を駆動しかつ静電容量検出を提供するために、システム電圧などの電圧がCMOS層からMEMS層に印加される。電圧は、CMOS層に物理的に接続されMEMS層の懸架式ばねマスシステムを懸架するアンカー点によって、CMOS層からMEMS層に提供されうる。
複数のアンカー点が、懸架式ばねマスシステムの様々な部分に結合されうる。これらのアンカー点の1つ以上からシステム電圧などの電源電圧が提供されうる。懸架式ばねマスシステムの構成要素が破損していないときの正常動作条件下で、この電圧は、懸架式ばねマスシステムの構成要素を介して他のアンカー点に伝えられる。これらの他のアンカー点は、電極を検出する測定点として機能しうる。
懸架式ばねマスシステムの構成要素が破損すると、測定ノードのうちの1つ以上の測定ノードで検出された電圧が、電圧源から提供された電圧と一致できない。したがって、そのような測定電圧に基づいて、誤りの存在(例えば、破損した構成要素)を識別でき、場合によってはどの構成要素が破損したかを決定できる。この情報に基づいて、誤りを識別しかつ/又は補償でき、通知が提供されうる。
場合によっては、ソース/センス回路が、アンカー点の1つ以上に結合されうる。ソース/センス回路は、アンカー点を電圧源又は測定ノードに選択的に結合できる。電圧源と測定ノードに接続するアンカー点を修正することによって、懸架式ばねマスシステムを通る様々な回路経路を試験し、誤りの原因と本質をよりよく識別できる。
図1は、本開示の幾つかの実施形態による典型的な運動処理システム10を示す。図1に特定の構成要素が示されているが、センサ、処理構成要素、メモリ、及び他の回路の任意の適切な組み合わせが、必要に応じて、様々な用途及びシステムに利用されうることを理解されよう。本明細書に記載されたような一実施形態では、運動処理システムは、少なくともMEMSジャイロスコープ12と、処理回路14やメモリ16などの支援回路を含みうる。幾つかの実施形態では、統合運動処理ユニット(「MPU」)(例えば、3軸のMEMSジャイロスコープ検出、3軸のMEMS加速度計検出、マイクロフォン、圧力センサ、及びコンパスを含む)を提供するために、運動処理システム10内に、1つ以上の追加センサ18(例えば、追加MEMSジャイロスコープ、MEMS加速度計、MEMSマイクロフォン、MEMS圧力センサ及びコンパス)が含まれうる。
処理回路14は、運動処理システム10の要件に基づいて必要な処理を提供する1つ以上の構成要素を含みうる。幾つかの実施形態では、処理回路14は、ジャイロスコープ12又は他のセンサ18の動作を制御し、かつジャイロスコープ12又は他のセンサ18の処理の一部を実行するために、1つ以上のメモリ16及びMEMS装置の外部の処理回路上にあるかないかに関わらず、センサのチップ内(例えば、ジャイロスコープ12又は他のセンサ18の基板又はキャップ上、或いはジャイロスコープ又は他のセンサへのチップの隣接部分上)に一体化されうるハードウェア制御回路(例えば、デジタル、アナログ又は混合信号)などのハードウェア制御ロジックを含みうる。幾つかの実施形態では、ジャイロスコープ12及び他のセンサ18は、ハードウェア制御ロジックの動作の一部の修正を可能にする(例えば、レジスタの値の修正によって)1つ以上のレジスタを含みうる。幾つかの実施形態では、処理回路14は、また、例えばメモリ16に記憶されたソフトウェア命令を実行するマイクロプロセッサなどのプロセッサを含みうる。マイクロプロセッサは、ハードウェア制御ロジックと相互作用することによってジャイロスコープ12の動作を制御し、ジャイロスコープ12から受け取った測定信号を処理できる。マイクロプロセッサは、他のセンサと同じように相互作用できる。
幾つかの実施形態(図1に示されていない)では、ジャイロスコープ12又は他のセンサ18が、外部回路と(例えば、シリアルバスによって、又はセンサ出力及び制御入力への直接接続によって)直接通信してもよく、一実施形態では、処理回路14は、ジャイロスコープ12及び他のセンサ18から受け取ったデータを処理し、通信インタフェース20(例えば、SPI又はI2Cバス、又は、自動車アプリケーション、コントローラエリアネットワーク(CAN)又はローカルインターコネクトネットワーク(LIN)バス)を介して外部構成要素と通信できる。処理回路14は、ジャイロスコープ12及び他のセンサ18から受け取った信号を適切な測定ユニットに変換し(例えば、通信バス20によって通信する他の計算処理ユニットによって提供される設定に基づいて)、向きやオイラー角度などの測定値を決定するより複雑な処理を実行し、幾つかの実施形態では、特定の活動(例えば、徒歩、走行、制動、滑り、ローリングなど)が行われているかどうかをセンサデータから決定できる。
幾つかの実施形態では、特定タイプの情報が、複数のジャイロスコープ12とセンサ18からのデータに基づいて、センサーフュージョンと呼ばれうるプロセスで決定されうる。様々なセンサからの情報を組み合わせることによって、画像安定化、ナビゲーションシステム、自動車制御及び安全性、推測航法、リモート制御及びゲーム装置、活動センサ、三次元カメラ、産業オートメーション、及び多数の他の用途など、様々な用途に役立つ情報を正確に決定できる。
MEMSジャイロスコープは、典型的には、軸のまわりの回転(例えば、ピッチ、ロール及び/又はヨー)を測定するために使用される複数の微小機械構成要素を有しうる。微小機械構成要素は、ジャイロスコープの装置平面内にある複数のマス、櫛歯、電極、レバー、アーム、ばね及び他の類似の構成要素を含みうる。幾つかの実施形態では、マスは、装置平面内に懸架されうる。微小機械構成要素の1つ以上は、典型的には駆動電極や駆動櫛歯などの静電駆動システムによって振動させられる。構成要素(例えば、駆動マス)は、駆動軸内で駆動周波数で振動させられる。駆動マスから回転を測定できるが、多くのジャイロスコープでは、幾つかのマス(例えば、コリオリマス、プルーフマス、センスマスなど)が、ばねによって互いに結合され、このばねは、多くの場合、ばねの設計と配置に基づいて、マスの運動自由度を特定方向に制限する。
駆動軸内で振動しているマスは、軸のまわりのジャイロスコープの回転によって生じる力を受けうる。このコリオリの力は、マスに対して、駆動軸と、ジャイロスコープがまわりを回転している軸との両方に垂直な軸(即ち、センス軸)に沿って加えられる。コリオリの力を受けるマス(例えば、センスマス)が、センス軸内で自由に動くとき(例えば、マスとばねの構成により)、このセンスマスは、センス軸内で振動する。典型的なヨーレートMEMSジャイロスコープでは、マスは、その軸内の駆動運動に応じて第1の軸内で振動させられる。装置平面に垂直な軸のまわりのヨー回転は、装置平面内のコリオリ力をもたらし、駆動軸と回転軸の両方に垂直になる。ジャイロスコープの角速度は、固定センサに関するセンスマスの運動に基づいて測定される。幾つかの実施形態では、検出は、櫛歯やプレートなどの電極によって行われうる。
典型的なMEMS加速度計(例えば、センサ18の)は、MEMS加速度計が軸に沿った直線加速度を測定できるように構成された1つ以上のマスとばねを含みうる。幾つかの実施形態では、1つ以上のマスは、マスが検出軸に沿った直線加速度に応じて運動するように、懸架され結合されうる。直線加速度に応じた検出軸に沿った固定面(例えば、固定電極)に対するマスの運動が測定され評価されて直線加速度が決定される。
前述のように、典型的なMEMS装置は、ばねによって互いに懸架され結合された可動マスを含む。可動マスは、本明細書に記載されたように、装置のMEMS層に平行な層(例えば、CMOS層)から延在するアンカー、装置のMEMS層のフレーム、又は可動マスに対して固定されたMEMS装置の他の適切な部分など、固定されたMEMSセンサの任意の部分を指しうるアンカー点から懸架されうる。一実施形態では、可動マスと、アンカー点から可動マスを懸架し可動マスを互いに結合するばねが、懸架式ばねマスシステムと呼ばれうる。
一実施形態では、懸架式ばねマスシステムは、複数のアンカー点から懸架されうる。懸架式ばねマスシステムの1つの構成要素に電圧が印加される場合、電圧は、経路がばね又はマス全体にある限り、ばねマスシステム内を伝わる。一実施形態では、複数のアンカー点のうちの少なくとも幾つかは、アンカー点が互いに電気的に分離されるように、MEMS装置の1つ以上の層に接続されてもよい(例えば、共有CMOS層)。したがって、第1のアンカー点に印加される電圧は、懸架式ばねマスシステムのばねと可動マス内に経路がなければ、他のアンカー点で受け取られ得ない。幾つかの実施形態では、測定ノードが、他のアンカー点のうちの1つ以上に結合されて、第1のアンカー点に印加された電圧が他のアンカー点で受け取られたかどうかが決定されうる。
幾つかの実施形態では、印加電圧が、測定ノードのうちの1つで受け取られないとき、これは、電圧が印加されるアンカー点と測定ノードとの間の回路経路を構成する懸架式ばねマスシステムの構成要素が、例えばばね又はマスの破損によって破損したことを示しうる。一実施形態では、回路経路を規定する既知の限られた数の構成要素に基づいて、破損した構成要素が、1つの特定の構成要素か、構成要素のサブセットのうちの1つの構成要素であることを決定できる。構成要素のサブセットは、複数の測定ノードからの測定値に基づいて更に絞り込まれてもよい。追加の測定ノード及びそれらの測定ノードと関連付けられた回路経路で印加電圧を受け取ったかどうかに基づいて、特定の構成要素を、破損した構成要素として識別又は除外できる(例えば、構成要素のサブセットを識別し、次にそれらの構成要素を試験する様々な回路経路を適用する繰り返しプロセスで)。
一実施形態では、電圧を印加するために使用されるアンカー点が変更されうる。懸架式ばねマスシステムの構成に基づいて、初期アンカー点に印加される電圧によって識別できない特定の回路経路がありうる。電圧を印加する異なるアンカー点の変更によって、そのような他の回路経路の試験が可能である。幾つかの実施形態では、電圧を様々なアンカー点に印加することによって、様々な回路経路を試験して識別された破損構成要素を高精度化できる。実施形態では、アンカー点の幾つか又は全てが、特定のアンカー点に電圧を選択的に印加するか、特定のアンカー点を測定ノードに結合するように制御されうる(例えば、MEMSセンサのハードウェア制御ロジック又は処理回路14によって)スイッチ(例えば、トランジスタ、リレー、MOSFETなどの任意の適切なスイッチング素子)を含みうる。このようにして、追加の試験構成が適用されうる。
幾つかの実施形態では、取得された情報が、MEMS装置の修正処理を決定するために使用されうる。幾つかの実施形態では、MEMS装置は、構成要素が破損しても何らかの方法で動作し続けうる(例えば、全体性能への影響が小さい部分的に重複するばね又は二次的マスばねサブシステム)。MEMS装置の動作を修正するために、MEMS装置のスケーリングファクタ、駆動力又は他の動作パラメータが利用されうる。幾つかの実施形態では、MEMS装置の故障モードを識別するために情報が決定され収集されうる。例えば、故障した構成要素の決定は、処理回路14に提供され、処理回路14を介して、ある期間にわたって取得された大量のデータに基づいて故障を識別し分析するデータ分析及び記憶システムに提供されうる。そのような情報は、設計を修正するか設計実施を更新するために利用されうる。幾つかの実施形態では、破損した構成要素に関する情報が、破損が検出されたときにセンサがどのように動作していたかに関する他の情報と組み合わされて、故障モード及び原因が更に識別される(例えば、検出された直線加速度又は角速度に基づいて)。
図2は、本開示の幾つかの実施形態による可動マスの電圧検出機能を有する説明的なばねマスシステムを表す。図2には特定の構成要素が特定の方法で表され構成されているが、ばねマスシステムが他の適切な構成要素及び構成を含みうることを理解されよう。
図2の実施形態では、ばねマスシステムは、複数の接合半導体層から構成されたMEMS装置として実現される。MEMS装置は様々な仕方で構成されうるが、一実施形態では、MEMS装置は、特定の点で接合されて密閉パッケージを構成するCMOS層220、MEMS層210及びキャップ層(図示せず)を含みうる。典型的なMEMS層は、MEMSセンサ(例えば、加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなど)などの用途で使用される微小機械構成要素を構成するために、半導体製造技術を使用して作成されうる。典型的なCMOS層は、CMOS層内の電気構成要素と装置の集積化を提供でき、それらの構成要素の間の相互接続も提供できる。幾つかの実施形態では、MEMS層の構成要素が導電性でよく、MEMS層及びCMOS層の構成要素間の相互接続が提供されうる。
典型的実施形態では、MEMS層は、アンカー点201及び205、ばね202及び204、並びにマス203を含みうる。アンカー点201及び205はそれぞれ、CMOS層220に固定(例えば、接合)され、MEMSばねマスシステムの平面内にも延在しうる。ばね202は、アンカー点201をマス203に接続でき、ばね204は、アンカー点205をマス203に接続できる。集合的に、ばね202、マス203、及びばね204は、ばねがMEMSばねマスシステムの平面内でマスを懸架する懸架式ばねマスシステムとして機能できる。MEMS層210内の構成要素はそれぞれ導電性であり、その結果、ある構成要素に印加される電圧が、回路経路が存在する他の構成要素にも印加される。図2の実施形態では、MEMS層210内の構成要素のうちの1つが破損又は破壊されない限り、構成要素のいずれかに印加される電圧は、MEMS層210内の他の構成要素にも印加される。例えば、アンカー点201に印加された電圧が、ばね202に印加され、アンカー点201とばね202を介してマス203に印加され、アンカー点201、ばね202及びマス203を介してばね204に印加され、アンカー点201、ばね202、マス203及びばね204を介してアンカー点205に印加される。この回路経路内の構成要素が破損又は破壊された場合だけ、異なる電圧が、これらの構成要素のいずれかに印加される。
一実施形態では、CMOS層220などの回路層が、電圧源206、測定ノード207、並びに接続点208及び209を含みうる。電圧源206は任意の適切な電圧源でよいが、典型的なMEMSセンサでは、電圧が、懸架式ばねマスシステムに印加されて、それにより、ばねマスシステムが静電気的に駆動されかつ/又はばねマスシステム内の構成要素の運動が容量的に検出されうる。このMEMSシステム電圧レベルは、任意の適切な方法、例えば、CMOS層220の外部若しくは内部電源、レギュレータ又は回路から提供されうる。幾つかの実施形態では、電圧源206は、特定の時間におけるMEMSシステム電圧ではなく固有の試験信号(例えば、様々な若しくは変動する電圧、又は周波数での信号を有する)を提供して、例えば、本明細書に記載されたような懸架式ばねマスシステムの構成要素を試験できる。
測定ノード207は、増幅器、比較器、フィルタ、アナログデジタル変換器、周波数フィルタなどの信号又は電圧を測定する任意の適切な構成要素でよい。本明細書に記載されているように、幾つかの実施形態では、測定ノード207はMEMSシステム電圧を監視できる。幾つかの実施形態では、試験電圧又は信号が提供され、測定モード207は、これらの信号を測定できる。測定ノード207は、また、受け取った信号をしきい値と比較するか又は様々な電圧若しくは信号に対する応答測定などの他の信号分析を行う処理回路(例えば、アナログ若しくはデジタルハードウェア制御回路及び/又は他の処理回路14を含むハードウェア制御ロジック)を含みうる。
図2の典型的実施形態では、電圧源206は、電源電圧(例えば、MEMSシステム電圧)を接続点208に提供でき、接続点208は、アンカー点201への電気接続を提供できる。したがって、電源電圧は、回路経路によってアンカー点201に接続されたMEMS層210の構成要素(例えば、ばね202、マス203、ばね204、及びアンカー点205)に提供されうる。アンカー点205は、接続点209への電気接続を提供するように接合されてもよく、接続点209には、測定ノード207が接続される。電源電圧が、測定ノード207で適切に受け取られた場合(例えば、受信電圧がMEMSシステム電圧のしきい値範囲内にあるか、受信信号が特定のしきい値範囲内の送られた信号と一致する)、アンカー点201とアンカー点205の間の回路経路が破損していないことを決定できる。これにより、アンカー点201/205、ばね202/204及びマス203システムは破損していないだけでなく、接続点208及び209も破損していないことが保証されうる。
場合によって、電源電圧は、測定ノード207で適切に受け取られない(例えば、受信電圧がMEMSシステム電圧のしきい値範囲内にないか、受信信号が特定のしきい値範囲内の送信信号のパターンと一致しない)。測定ノードで電源電圧を受け取ることができないと、懸架式ばねマスシステム内の構成要素が破損した可能性が高いことが実証されうる。これは除外できないが、CMOS層内の電気的相互接続が破損又は破壊され、アンカー点201及び205がCMOS層に物理的に取り付けられ静止している可能性が低い。これと対照的に、懸架式ばねマスシステムは、外力に応じて頻繁に動かされることがあり、その動きが、ばねマスシステム内の構成要素を破損させる可能性が高い。
幾つかの実施形態では、ばねマスシステム内の構成要素の様々なタイプの破損が、測定ノード207における受信信号に様々な影響を及ぼしうる。例えば、ばねなどの構成要素が、電圧源206と測定ノードの間の回路経路が破壊されるように物理的に破壊された場合、電源電圧は、測定ノードで検出されなくなる。幾つかの実施形態では、電圧源206から測定ノード207まで複数の経路が可能である。電源電圧と測定ノード207での電圧との間の部分的電圧降下は、構成要素の破損を示すことがあり、電圧パターン又は試験パターンへの周波数応答の変化も同様に構成要素の破損を示しうる。
測定ノード207と処理回路によって誤りが識別された場合、通知が提供され、修正処置が取られうる。幾つかの実施形態では、通知は、誤り(例えば、ばねの破壊、センサの破損、予想される破損範囲、接続点の破損など)の識別、誤りの原因となった測定値、センサからの他の測定値(例えば、誤りの原因を識別するために使用されうる1組の最近の検出値)、他の適切な情報、又はこれらの任意の組み合わせを提供できる。修正処置は、MEMS装置の停止動作を含んでもよく、幾つかの実施形態では、識別された破損を補償できる(例えば、駆動電圧の修正、スケーリングファクタ、電極からの対抗力の印加など)。
図3は、本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なばねマスシステムを表す。図3には特定の構成要素が特定の仕方で表され構成されているが、ばねマスシステムが他の適切な構成要素及び構成を含みうることを理解されよう。
図3のばねマスシステムは、CMOS層300がMEMS層の下にある上面図で表される。図3にソース/センス回路321、322、323及び324によって表されたように、複数の電圧源、測定ノード及びスイッチが、CMOS層300内にありうる。アンカー点301、302、303及び304が、CMOS層に(例えば、関連した接続点の位置で)接合され、それぞれのソース/センス回路321、322、323及び324に電気的に接続されうる。アンカー点は、MEMS層の一部でよく、MEMS層の懸架式ばねマスシステムの平面に対して垂直に延在してもよく、これは、ばね311、312、313、314及び315、並びにマス316及び317を含みうる。図3に表されたように、ばね311は、アンカー点301をマス316に接続でき、ばね312は、アンカー点302をマス316に接続でき、ばね313は、アンカー点303をマス317に接続でき、ばね314は、アンカー点304をマス317に接続でき、ばね315は、マス316をマス317に接続できる。正常状態で、懸架式ばねマスシステムの構成要素は、懸架式ばねマスシステムの任意の点に印加された電圧が全ての他の点にも印加されるように、電気回路を構成するように接続されうる。
典型的実施形態では、アンカー点の1つ以上が、ソース/センス回路に接続されてもよく、これにより、アンカー点を電圧源又は測定ノードに選択的に接続できる。ソース/センス回路が、任意の適切な方式で実現されうるが、一実施形態では、ソース/センス回路が、電圧源と測定ノードの両方に電気的に接続されてもよく、スイッチは、アンカー点を電圧源又は測定ノードの一方に選択的に接続するように制御されてもよい(例えば、ハードウェア制御ロジック及び/又は処理回路によって)。本明細書に記載されたように、スイッチは、スイッチング素子、1つ以上のトランジスタ、1つ以上のMOSFETS、他の適切なスイッチング回路、又はこれらの任意の適切な組み合わせなど、電圧源と測定ノードの間の選択を容易にする任意の適切な回路若しくは装置又はこれらの組み合わせを含みうる。
図3の典型的実施形態では、アンカー点301、302、303及び304がそれぞれ、それぞれのソース/センス回路321、322、323及び324に接続されうる。一実施形態では、ソース/センス回路の電圧源がそれぞれ(例えば、電圧源1、電圧源2、電圧源3及び電圧源4)、共通電源に接続されてもよいが、幾つかの実施形態では、様々な電源が、電圧源の様々なものと関連付けられうる。電源電圧が、懸架式ばねマスシステムに任意の適切な方法で印加されてもよいが、一実施形態では、ソース/センス回路321、322、323及び324のうちの1つだけ(例えば、図3のソース/センス回路323)が、電圧源に結合するように設定されたスイッチを有してもよい。電源電圧は、アンカー点303によって懸架式ばね/マスシステムに印加されてもよく、懸架式ばねマスシステムの構成要素のどれも破損していない場合は、懸架式ばねマスシステム及び関連したアンカー点の回路経路によって、ソース/センス回路321、322及び324のそれぞれの測定ノードに提供されうる。図3の実施形態では、ソース/センス回路321の測定ノードは、ばね313、マス317、ばね315、マス316、ばね311及びアンカー点301を介して電源電圧を受け取りうる。ソース/センス回路322の測定ノードは、ばね313、マス317、ばね315、マス316、ばね312及びアンカー点302を介して電源電圧を受け取りうる。ソース/センス回路324の測定ノードは、ばね313、マス317、ばね314及びアンカー点304を介して電源電圧を受け取りうる。
電源電圧が、測定ノードのうちの1つに適切に受け取られない場合、これは、懸架式センスマスシステムの1つ以上の構成要素が破損しているという指示を提供できる。例えば、電源電圧が、ソース/センス回路321の測定ノードで受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね315、マス316、ばね311又はアンカー点301のうちの1つが破損していることを示しうる。電源電圧が、ソース/センス回路322の測定ノードで受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね315、マス316、ばね312又はアンカー点302のうちの1つが破損していることを示しうる。電源電圧が、ソース/センス回路324の測定ノードにおいて受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね314、又はアンカー点304のうちの1つが破損していることを示しうる。
破損した構成要素は、更に、監視ノードの全ての受信信号を考慮し比較することによって識別されうる。例えば、ソース/センス回路321及び322の測定ノードの両方が電源電圧を受け取るわけではないが、ソース/センス回路324の測定ノードが電源電圧を受け取る場合、これは、ばね313が破損していないこと(例えば、ばね313を介してソース/センス回路324の測定ノードで受け取られる電源電圧に基づいて)と、ばね315が破損している可能性が高いこと(例えば、両方のばね311及び312が同時に破損する可能性は低いので)を示しうる。
ソース/センス回路のスイッチは、電源電圧がソース/センス回路の異なるものから提供されるように修正されうる。幾つかの実施形態では、これは、例えば、懸架式ばねマスシステムのどの構成要素が破損しているかをよりよく識別するために、測定ノードの1つ以上に基づいて誤りが最初に識別された後で実行されうる。前述の典型的実施形態では、ソース/センス回路321は、電源電圧を提供するために切り替わることができ、ソース/センス回路323は、アンカー点303を測定ノード3に接続できる。電圧が、ばね311、マス316及びばね312を介して測定ノード2で検出された場合、これは、ばね311及び312が両方とも破損していないことを確認できる。更に、電源電圧が、ソース/センス回路323の測定ノード3とソース/センス回路324の測定ノード4のどちらでも検出されない場合、これは、ばね315が破損したばねであることを確認できる。同様に、破損している可能性の高い1つ以上の構成要素を識別するために、必要に応じて、電源電圧が、任意の適切なアンカー点を介して提供されてもよい。
図4は、本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なMEMSジャイロスコープを表す。図4のジャイロスコープ設計は、限定ではなく説明のために提供される。本開示の原理は、任意の適切なMEMS装置(例えば、MEMS加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなど)と、そのような装置の任意の適切な構成に適用されうることを理解されよう。図4の典型的実施形態が、平衡したガイドマスシステム400を含む二軸ジャイロスコープの一実施形態を示す。ガイドマスシステム400は、結合ばね405によって互いに結合された2つのガイドマスシステム400a及び400bを含む。
ガイドマスシステム400a及び400bは、ばね408a〜408dによってアンカー点406a〜406dに接続される。追加のアンカー点440a及び440bが、ピッチプルーフマス450a及び450b内にある。図4に表された懸架式ばねマスシステムのMEMS層の下には、CMOS層401がある。アンカー点406a〜406d及び440a〜440bはそれぞれ、CMOS層401に(例えば、それぞれの接続点を介して)接合され、懸架されたばねマスシステムの平面内で上方に延在されうる。アンカー点406a〜406d及び440a〜440bは、CMOS層401内の任意の適切な回路に結合されうるが、典型的実施形態では、アンカー点406a〜406dがそれぞれ、それぞれのソース/センス回路(図4に表されていない)に電気的に接続されて、アンカー点が電圧源又は測定ノードに選択的に取り付けられうる。
対称的なガイドマスシステム400aは、平面外で第1のロールセンス軸のまわりを回転する。対称的なガイドマスシステム400bは、平面内で第1のロールセンス軸と平行な第2のロールセンス軸のまわりの平面外で回転する。結合ばね405は、プルーフマス402b及び402cをロールするように接続される。結合ばね405は、X方向の軸のまわりのねじれに従順であり、したがって、対称ガイドマスシステム400a及び400bは、逆位相で平面外を第1及び第2のロールセンス軸のまわりに回転できる。結合ばね405は、Z方向に剛性であり、対称ガイドマスシステム400a及び400bが平面外で同相で回転するのを防ぐ。
一実施形態では、ピッチプルーフマス450a及び450bは、ばね452a〜452dを介してそれぞれ4つのロールプルーフマス402a〜402dにそれぞれ柔軟に接続される。ばね452a及び452bは、ピッチプルーフマス450aが平面外でY方向の第1のピッチセンス軸のまわりを回転できるようにねじれに従順であり、ばね452c及び452dは、平面外でY方向の第2のピッチセンス軸のまわりを回転できるようにねじれに従順である。
この実施形態では、プルーフマス450a及び450bはそれぞれ、ばねシステム431及び432を介してCMOS層401と、アンカー点440a及び440bに結合される。ピッチプルーフマス450a及び450bは、CMOS層401基板の運動に従い、基板とプルーフマスの間の垂直方向ギャップは、温度変動や外部作用力のような外部影響下で同じままである。
2つの対称ガイドマスシステム400a及び400bは、ロールプルーフマス402a〜402dが全てX方向に動くように配列される。結合ばね405はX方向に剛性であり、その結果、ロールプルーフマス402b及び402cは一緒にX方向に動く。ロールプルーフマス402a及び402dは、ロールプルーフマス402b及び402cの反対に動く。
ばね452a〜452dは、平面内で従順であり、その結果、ロールプルーフマス402a〜402dが駆動されるとき、ピッチプルーフマス450a及び450bは、逆位相で平面内をZ方向に別個の軸のまわりを回転する。櫛歯駆動などの静電アクチュエータ409a〜409hは、ロールプルーフマス402a〜402dに接続されて、平衡ガイドマスシステム400を駆動する。ロールプルーフマス402a〜402dとピッチプルーフマス450a及び450bを含む2つのガイドマスシステム400a及び400bは、アクチュエータ409a〜409hに結合された駆動回路による周波数で一緒に駆動される。
X方向のピッチ入力軸のまわりの角速度は、コリオリ力を、第1及び第2のピッチセンス軸それぞれのまわりのピッチプルーフマス450a及び450bに作用させる。コリオリ力は、ピッチプルーフマス450a及び450bを、逆位相で平面外を第1及び第2のピッチセンス軸のまわりに回転させる。第1及び第2のピッチセンス軸のまわりのピッチプルーフマス450a及び450bの回転の振幅は、ピッチ入力軸のまわりの角速度に比例する。
一実施形態では、ピッチプルーフマス450a及び450b下の変換器460a〜460dは、第1及び第2のピッチセンス軸のまわりの逆位相回転を検出するために使用される。ロール入力軸のまわりの外部から印加される角加速度は、ピッチプルーフマス450a及び450b上に同相の慣性トルクを生成し、それらを同相で第1及び第2のピッチセンス軸のまわりに回転させる。変換器460a及び460dを結合し、変換器460b及び460cを結合することにより、ピッチプルーフマス450a及び450bの同相回転が検出されないが、逆位相回転が検出されうる。
ロール入力軸のまわりの角速度は、コリオリ力をロールプルーフマス402a〜402d上にZ方向に作用させる。コリオリ力は、対称ガイドマスシステム400a及び400bを、逆位相で平面外を第1及び第2のロールセンス軸のまわりに回転させる。ロールプルーフマス402a〜402d下の変換器412a〜412cは、対称ガイドマスシステム400a及び400bの回転を検出するために使用される。ピッチ入力軸のまわりの外部から印加される角加速度は、対称ガイドマスシステム400a及び400b上に同相慣性トルクを生成する。
しかしながら、対称ガイドマスシステム400a及び400bは、結合ばね405が第1及び第2の回転センス軸のまわりの同相回転を防ぐので、回転しない。変換器412a及び412cは、対称ガイドマスシステム400a及び400bの同相回転が検出されないが反相回転が検出されるように結合されうる。
図4の懸架式ばねマスシステムの構成要素のどれかが破損した場合、ロールプルーフマス402a〜402d又はピッチプルーフマス450a〜450bの1つ以上が、ロール又はピッチ軸のまわりの回転に正確に応える能力が損なわれうる。従って、電源電圧は、アンカー点406a〜406c及び440a〜440bのうちの1つから懸架式ばねマスシステムに提供され、他のアンカー点406a〜406c及び440a〜440bの1つと関連付けられた監視ノードが、その電源電圧を監視できる。監視ノードのいずれかで不適切な監視電圧が検出された場合(例えば、MEMSシステム電圧と比較されたしきい値、様々な誤りモード(例えば、電圧降下)と関連した様々なしきい値、又は周波数成分を有する信号の信号分析に基づいて)は、本明細書に記載されたように誤りを識別でき、通知が提供され、幾つかの実施形態では、必要に応じて修正処置が行われうる。
一実施形態では、アンカー点406a〜406c及び440a〜440bがそれぞれ、ソース/センス回路に接続され、その結果、アンカー406a〜406c及び440a〜440bがそれぞれ、ソース電圧を提供できる。様々な異なるアンカー点406a〜406c及び440a〜440bに電源電圧を印加し、他のアンカー点と関連付けられた測定ノードで検出することによって、懸架式ばねマスシステムのうちの破損した構成要素を更に分離できる。
図5〜図6は、本開示の幾つかの実施形態による懸架式ばねマスシステム内の構成要素の破損を試験するための典型的ステップを表す。図5〜図6は、本開示の文脈で述べられているが、図5〜図6に示された方法及びステップが、任意の適切な懸架式ばねマスシステムに適用されうることを理解されよう。図5〜図6に特定の順序及び流れのステップが示されているが、幾つかの実施形態では、ステップの1つ以上が、修正、移動、除去又は追加されてもよく、図5〜図6に表された流れが修正されてもよいことを理解されよう。
図5は、本開示の幾つかの実施形態によるばねマスシステムの可動マスの電圧を検出するための典型的なステップを表す。ステップ502で、電源電圧が、電圧源から懸架式ばねマスシステムに印加されうる。本明細書に記載されたように、電源電圧は、適切な電圧、電圧パターン、又は周波数成分を有する信号でよいが、典型的実施形態では、電源電圧は、懸架式ばねマスシステムの構成要素の駆動及び/又は検出を容易にするために、装置(例えば、MEMSジャイロスコープ又は加速度計)の通常動作中に印加されるシステム電圧でよい。一実施形態では、電源電圧は、CMOS層から垂直方向に延在するアンカーなどのアンカー点を介して印加されてもよく、電圧源が、懸架式ばねマスシステムが配置されたMEMS装置平面内に提供されうる。電源電圧が印加された後、処理は、ステップ504に進むことができる。
ステップ504で、電圧が、1つ以上の測定ノードで測定されうる。電源電圧が懸架式ばねマスシステムに印加されたとき、そのシステムの導電性構成要素が、正常状態で印加電圧を受け取る。構成要素が破損又は破壊されている場合、懸架式ばねマスシステムの1つ以上の部分が、印加されたシステム電圧から分離され、その結果、システム電圧を受け取らず、電圧降下が起こる。これらの分離された構成要素を介して接続されたアンカー点は、システム電圧を受け取らず、受け取った電圧は、CMOS層内に配置されアンカー点に接続された測定ノードによって検出されうる。測定ノードにおける電圧が決定された後、処理は、ステップ506に進むことができる。
ステップ506で、処理回路(例えば、ハードウェア制御ロジックは、処理回路のハードウェア制御回路を有する)は、監視ノードにおける測定値に基づいて誤りを識別できる。一実施形態では、誤りの識別は、懸架式ばねマスシステムと接続点が破損したことの決定と、懸架式ばねマスシステム内の構成要素と接続点が故障した可能性が高いことの識別を含みうる。例えば、複数の測定ノードからの測定値に基づいて、破損した懸架式ばねマスシステムの特定の構成要素を、本明細書に記載されたように識別でき、幾つかの実施形態では、それらの構成要素の破損の程度を識別できる。処理は、次に、ステップ508に進みうる。
ステップ508で、誤りの識別に基づいて修正処置が取られうる。幾つかの実施形態では、修正処置は、ステップ506で決定された破損した構成要素及び/又は深刻さに基づくことができ、MEMS装置の動作の停止やMEMS装置の動作の補償など(例えば、駆動力の修正、センススケーリングファクタの変更など)の処理を含みうる。多軸ジャイロスコープや加速度計などの幾つかの実施形態では、破損した構成要素から分離された特定の軸を動作させ、測定し続けうる。多軸装置(例えば、3軸のジャイロスコープ検出及び3軸の加速度計検出を含む)の場合、存在しない軸の値を推定するか又は1つ以上の破損構成要素を含む軸からの測定値に基づいて補償するために、センサーフュージョンが使用されうる。ステップ508で修正処置が行われた後、処理は、ステップ510に進みうる。
ステップ510で、懸架式ばねマスシステム内に誤りが起きたことを示す通知が提供されうる。一実施形態では、誤りのタイプ、破損構成要素の識別、構成要素が破損したときより前及びそのときの駆動及びセンス力の測定値(他のセンサ/軸からを含む)、使用される補償技術、懸架式ばねマスシステムを含むMEMS装置に関する他の適切な情報、及びこれらの任意の適切な組み合わせなどの情報を示す通知が提供されうる。幾つかの実施形態では、通知は、故障モードを識別する様々なセンサに関する情報を決定し、補償技術を修正し、通知から識別されうる故障に関する情報の長期傾向に基づく他の分析を実行するリモートシステムに提供されうる。通知が提供された後、図5のステップが終了できる。
図6は、本開示の幾つかの実施形態による複数のソース/センス回路を有するばねマスシステムの可動マスの電圧を検出するための典型的なステップを表す。図6の典型的実施形態では、複数のアンカー点はそれぞれ、各アンカー点が、電圧源又は測定ノードとして機能するように選択的に結合されうるように、それぞれのソース/センス回路に結合されうる。
ステップ602で、アンカー点は、電圧源として機能するように選択されうる。一実施形態では、残りのアンカー点が、測定ノードとして機能するように選択されうる。電圧源として機能するアンカー点のソース/センス回路は、そのアンカー点を電圧源に結合でき、残りのソース/センス回路は、そのそれぞれのアンカー点をそれぞれの測定ノードに結合できる。処理は、次に、ステップ604に進みうる。
ステップ604で、電源電圧が、電圧源から懸架式ばねマスシステムに印加されうる。本明細書に記載されたように、電源電圧は、適切な電圧、電圧パターン、又は周波数成分を有する信号でよいが、典型的実施形態では、電源電圧は、懸架式ばねマスシステムの構成要素の駆動及び/又は検出を容易にするために、装置(例えば、MEMSジャイロスコープ又は加速度計)の通常動作中に印加されるシステム電圧でよい。一実施形態では、ソース/センス回路を介して電源電圧を供給するために接続されるアンカー点は、CMOS層から垂直方向に延在してもよく、ソース/センス回路及び電圧源は、懸架式ばねマスシステムが配置されるMEMS装置平面内にある。電源電圧が印加された後、処理は、ステップ606に進むことができる。
ステップ606で、それぞれのアンカー点によって懸架式ばねマスシステムに接続された測定ノードのそれぞれにおける電圧が測定されうる。電源電圧が懸架式ばねマスシステムに印加されるとき、そのシステムの導電性構成要素が、正常状態で印加電圧を受け取る。構成要素が破損又は破壊されている場合、懸架式ばねマスシステムの1つ以上の部分が、印加されたシステム電圧から分離され、その結果、システム電圧を受け取らず、電圧降下が起こる。これらの分離された構成要素を介して接続されたアンカー点は、システム電圧を受け取らず、受け取った電圧は、CMOS層内に配置されアンカー点に接続された測定ノードによって検出されうる。測定ノードにおける電圧が決定された後、処理は、ステップ608に進むことができる。
ステップ608で、処理回路(例えば、処理回路のハードウェア制御回路などのハードウェア制御ロジック)は、監視ノードにおける測定値に基づいて誤りを識別できる。一実施形態では、誤りの識別は、懸架式ばねマスシステムに破損が生じたことの決定と、懸架式ばねマスシステム内の故障した可能性が高い構成要素の識別を含みうる。例えば、複数の測定ノードからの測定値に基づいて、破損した懸架式ばねマスシステムの特定の構成要素を本明細書に記載されたように識別でき、幾つかの実施形態では、それらの構成要素の破損の程度を識別できる。誤りが識別された場合、処理はステップ610に進みうる。誤りが識別されない場合、処理は、ステップ602に戻って追加測定を実行できる(例えば、電源電圧を提供する様々なアンカー点によって)。
ステップ610で、様々な構成要素に電源電圧を印加することによって(例えば、ソース/センス回路を切り替えることにより)、懸架式ばねマスシステムに追加測定を行うべきかどうかを決定できる。幾つかの実施形態では、追加測定を行うべきかどうかの決定は、ステップ608から識別された誤りに基づいており、例えば、特定の誤りが正確に識別された可能性、誤りの深刻さ、及び補償を行う可能性があるかどうかに基づきうる。追加測定が行われない場合、処理は、ステップ612に進みうる。追加測定が行われる場合、処理は、ステップ614に進みうる。
ステップ614で、様々なアンカー点に電源電圧を印加することによって(例えば、特定のアンカー点と関連したソース/センス回路の状態を修正することによって)、追加測定が行われうる。このようにして、懸架式ばねマスシステムを通る様々な回路経路が試験され、どの構成要素が破損したか及びその破損の程度が決定されうる。幾つかの実施形態では、追加測定は、誤りの初期識別に基づいてもよく、例えば、特定の誤りの識別を更に高精度にするために選択されてもよい。他の実施形態では、アンカー点はそれぞれ、電源電圧を(例えば、それぞれのソース/センス回路の切り替えに基づいて)ある期間印加できる。幾つかの実施形態では、誤りが最初に識別された後(例えば、システム電圧の印加に基づいて)、誤りの原因を識別するために、他の電圧パターンが懸架式ばねマスシステムに印加されうる。追加測定が実行された後、処理は、ステップ616に進みうる。
ステップ616で、測定ノードにおける繰り返し測定に基づいて、誤りを補償できるかどうかが決定されうる。この決定は、誤りの識別並びに補償を支援するために使用されうる他の利用可能な手段(例えば、運動を検出できる他の軸)に基づいて行われうる。補償が行われる場合、処理は、ステップ618に進みうる。補償が行われない場合、処理は、ステップ612に進みうる。
ステップ618で、補償が実行されうる。幾つかの実施形態では、MEMS装置は、MEMS装置の動作を修正することによって(例えば、駆動力の修正、センススケーリングファクタの変更などによって)、破損した軸を測定し続けることができる。多軸ジャイロスコープや加速度計などの幾つかの実施形態では、破損した構成要素から分離された特定の軸を動作させ、測定し続けうる。多軸装置(例えば、3軸のジャイロスコープ検出及び3軸の加速度計検出を含む)の場合、存在しない軸の値を推定するか又は1つ以上の破損構成要素を含む軸からの測定値に基づいて補償するために、センサーフュージョンが使用されうる。補償が実施された後、処理は、ステップ620に進みうる。
ステップ612で、故障が決定され、MEMS装置の動作が終了すべきであることが決定されうる。破損したMEMS装置が遮断され、処理は、ステップ620に進みうる。
ステップ620で、懸架式ばねマスシステム内で誤りが起きたこと又は懸架式ばねマスシステム内で補償が使用されていることを示す通知が提供されうる。一実施形態では、誤りのタイプ、破損した構成要素の識別、構成要素が破損したときより前及びそのときの駆動及びセンス力の測定値(他のセンサ/軸からを含む)、使用される補償技術、誤りを識別するために使用された接続点の順序、懸架式ばねマスシステムを含むMEMS装置に関する他の適切な情報、及びこれらの任意の適切な組み合わせなどの情報を示す通知が提供されうる。幾つかの実施形態では、通知は、故障モードを識別する様々なセンサに関する情報を決定し、補償技術を修正し、通知から識別されうる故障に関する情報の長期傾向に基づいて他の分析を行うリモートシステムに提供されうる。通知が提供された後、図6のステップが終了できる。
以上の説明は、本開示による典型的実施形態を含む。これらの例は、説明のためのものであり、限定するためのものではない。本開示が、本明細書に明示的に記述され描かれた形態と異なる形態で実施されてもよく、以下の特許請求の範囲と一致する様々な修正、最適化及び変形が、当業者によって実現されうることを理解されよう。
スマートフォン、スマートウォッチ、タブレット、自動車、ドローン、電気器具、航空機、運動支援装置、ゲームコントローラなどの多くの物品は、その操作中に運動センサを利用できる。多くの用途では、加速度計やジャイロスコープなどの様々なタイプの運動センサが、特定用途の様々な情報を決定するために個別又は一緒に分析されうる。例えば、ジャイロスコープと加速度計は、ゲーム用途(例えば、スマートフォン又はゲームコントローラ)でユーザによる複雑な運動を取得するために使用されることがあり、ドローンや他の航空機は、ジャイロスコープ測定値(例えば、ロール、ピッチ及びヨー)に基づいて向きを決定でき、車両は、方向(例えば、推測航法のため)と安全性(例えば、スリップ又はロールオーバ状態の認識)の決定のために測定値を利用できる。
加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなどの多くのセンサが、微小電気機械システム(MEMS)センサとして実現される。センサの微小機械構成要素は、シリコン製造技術を使用して作成され、そのような微小機械構成要素は、特定の微小機械構成要素の設計に基づいて、センサによって測定された特定の外部刺激に対して応答する(例えば、動く)。外部刺激に対する微小機械構成要素の応答は、例えばセンサの運動微小機械構成要素と固定構成要素の間の相対距離を測定することによって測定されうる。
MEMSセンサは、軸に沿った直線加速度や軸のまわりの角速度などの所望の運動の測定を支援するように懸架され互いに結合されたマスによって実現されうる。マスは、ばねによって懸架され、そのばねで互いに結合される。時間が経つにつれて、ばね又はマスの一部が摩耗又は破損しうる。場合によって、MEMSセンサは、構成要素が摩耗又は破損したにもかかわらず動作し続けることがあり、その結果測定が不正確になる。
典型的実施形態では、微小電気機械センサは、複数のアンカー点と懸架式ばねマスシステムを含み、懸架式ばねマスシステム(suspended spring-mass system)は、複数の可動マスと、複数の可動マスを互いに結合し複数の可動マスを複数のアンカー点から懸架する複数のばねとを含み、複数の可動マスと複数のアンカー点は、複数のばねによって電気的に接続される。微小電気機械センサは、また、複数のアンカー点のうちの第1のアンカー点を介して懸架式ばねマスシステムにシステム電圧レベルを印加するように結合された第1の電圧源と、複数のアンカー点のうちの第2のアンカー点に結合されて第2のアンカー点の電圧を測定する測定ノードと、測定電圧に基づいて懸架式ばねマスシステムの誤りを識別するように構成された処理回路とを含む。
典型的実施形態では、微小電気機械センサ内の誤りを識別する方法が、第1の電圧源から、複数のアンカー点のうちの第1のアンカー点にシステム電圧を提供することと、第1のアンカー点を介して、懸架式ばねマスシステムにシステム電圧レベルを印加することを含む。方法は、更に、複数のアンカー点の第2のアンカー点に、懸架式ばねマスシステムを介して受信電圧を受け取り、受信電圧を第2のアンカー点から測定ノードに提供することを含む。方法は、更に、処理回路によって、測定ノードにおける受信電圧に基づいて懸架式ばねマスシステムの誤りを識別することを含む。
典型的実施形態では、微小電気機械センサは、複数のアンカー点と、複数のアンカー点に結合された複数のソース/センス回路とを含み、各ソース/センス回路が、電圧源、測定ノード及びスイッチを含む。微小電気機械センサは、更に、複数のアンカー点から懸架された懸架式ばねマスシステムと、第1のソース/センス回路に、第1のソース/センス回路の電圧源を複数のアンカー点のうちの第1のアンカー点に結合させ、第2のソース/センス回路に、複数のアンカー点のうちの第2のアンカー点を第2のソース/センス回路の測定ノードに結合させ、第2の測定ノードで受け取った電圧に基づいて懸架式ばねマスシステムの誤りを識別するように構成された処理回路とを含む。
本開示の以上その他の特徴、その本質及び様々な利点は、添付図面と関連して行われる以下の詳細な記述を検討することにより明らかになる。
本開示の実施形態による説明的な運動処理システムを示す図である。 本開示の幾つかの実施形態による可動マスの電圧検出機能を有する説明的なばねマスシステムを示す図である。 本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なばねマスシステムを示す図である。 本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なMEMSジャイロスコープを示す図である。 本開示の幾つかの実施形態によるばねマスシステムの可動マスの電圧を検出するための典型的なステップを示す図である。 本開示の幾つかの実施形態による複数のソース/センス回路を有するばねマスシステムの可動マスの電圧を検出するための典型的なステップを示す図である。
MEMS装置は、最下層、MEMS装置層、キャップ層などのいくつかの層で構成されうる。MEMS装置層は、MEMS装置の外部に配置されうるCMOS回路などの処理回路に電気的に結合されてもよく、幾つかの実施形態では、最下層は、CMOS回路を含むCMOS層でよい。本開示は、最下層としてCMOS層を含む典型的実施形態について述べうるが、ここで述べる実施形態が、MEMS装置の外部にCMOS回路が配置された装置にも同様に適用可能でありうることを理解されよう(例えば、本明細書に記載されたように電圧と信号を提供する/受け取るための配線をアンカー点と外部回路の間に提供することによって)。
MEMS装置層は、直線加速度や角速度などの力に応じて運動する懸架式ばねマスシステムを含む。動作中、MEMS装置の動作を容易にするため、例えば、懸架式ばねマスシステムの構成要素を駆動しかつ静電容量検出を提供するために、システム電圧などの電圧がCMOS層からMEMS層に印加される。電圧は、CMOS層に物理的に接続されMEMS層の懸架式ばねマスシステムを懸架するアンカー点によって、CMOS層からMEMS層に提供されうる。
複数のアンカー点が、懸架式ばねマスシステムの様々な部分に結合されうる。これらのアンカー点の1つ以上からシステム電圧などの電源電圧が提供されうる。懸架式ばねマスシステムの構成要素が破損していないときの正常動作条件下で、この電圧は、懸架式ばねマスシステムの構成要素を介して他のアンカー点に伝えられる。これらの他のアンカー点は、電極を検出する測定点として機能しうる。
懸架式ばねマスシステムの構成要素が破損すると、測定ノードのうちの1つ以上の測定ノードで検出された電圧が、電圧源から提供された電圧と一致できない。したがって、そのような測定電圧に基づいて、誤りの存在(例えば、破損した構成要素)を識別でき、場合によってはどの構成要素が破損したかを決定できる。この情報に基づいて、誤りを識別しかつ/又は補償でき、通知が提供されうる。
場合によっては、ソース/センス回路が、アンカー点の1つ以上に結合されうる。ソース/センス回路は、アンカー点を電圧源又は測定ノードに選択的に結合できる。電圧源と測定ノードに接続するアンカー点を修正することによって、懸架式ばねマスシステムを通る様々な回路経路を試験し、誤りの原因と本質をよりよく識別できる。
図1は、本開示の幾つかの実施形態による典型的な運動処理システム10を示す。図1に特定の構成要素が示されているが、センサ、処理構成要素、メモリ、及び他の回路の任意の適切な組み合わせが、必要に応じて、様々な用途及びシステムに利用されうることを理解されよう。本明細書に記載されたような一実施形態では、運動処理システムは、少なくともMEMSジャイロスコープ12と、処理回路14やメモリ16などの支援回路を含みうる。幾つかの実施形態では、統合運動処理ユニット(「MPU」)(例えば、3軸のMEMSジャイロスコープ検出、3軸のMEMS加速度計検出、マイクロフォン、圧力センサ、及びコンパスを含む)を提供するために、運動処理システム10内に、1つ以上の追加センサ18(例えば、追加MEMSジャイロスコープ、MEMS加速度計、MEMSマイクロフォン、MEMS圧力センサ及びコンパス)が含まれうる。
処理回路14は、運動処理システム10の要件に基づいて必要な処理を提供する1つ以上の構成要素を含みうる。幾つかの実施形態では、処理回路14は、ジャイロスコープ12又は他のセンサ18の動作を制御し、かつジャイロスコープ12又は他のセンサ18の処理の一部を実行するために、1つ以上のメモリ16及びMEMS装置の外部の処理回路上にあるかないかに関わらず、センサのチップ内(例えば、ジャイロスコープ12又は他のセンサ18の基板又はキャップ上、或いはジャイロスコープ又は他のセンサへのチップの隣接部分上)に一体化されうるハードウェア制御回路(例えば、デジタル、アナログ又は混合信号)などのハードウェア制御ロジックを含みうる。幾つかの実施形態では、ジャイロスコープ12及び他のセンサ18は、ハードウェア制御ロジックの動作の一部の修正を可能にする(例えば、レジスタの値の修正によって)1つ以上のレジスタを含みうる。幾つかの実施形態では、処理回路14は、また、例えばメモリ16に記憶されたソフトウェア命令を実行するマイクロプロセッサなどのプロセッサを含みうる。マイクロプロセッサは、ハードウェア制御ロジックと相互作用することによってジャイロスコープ12の動作を制御し、ジャイロスコープ12から受け取った測定信号を処理できる。マイクロプロセッサは、他のセンサと同じように相互作用できる。
幾つかの実施形態(図1に示されていない)では、ジャイロスコープ12又は他のセンサ18が、外部回路と(例えば、シリアルバスによって、又はセンサ出力及び制御入力への直接接続によって)直接通信してもよく、一実施形態では、処理回路14は、ジャイロスコープ12及び他のセンサ18から受け取ったデータを処理し、通信インタフェース20(例えば、SPI又はI2Cバス、又は、自動車アプリケーション、コントローラエリアネットワーク(CAN)又はローカルインターコネクトネットワーク(LIN)バス)を介して外部構成要素と通信できる。処理回路14は、ジャイロスコープ12及び他のセンサ18から受け取った信号を適切な測定ユニットに変換し(例えば、通信バス20によって通信する他の計算処理ユニットによって提供される設定に基づいて)、向きやオイラー角度などの測定値を決定するより複雑な処理を実行し、幾つかの実施形態では、特定の活動(例えば、徒歩、走行、制動、滑り、ローリングなど)が行われているかどうかをセンサデータから決定できる。
幾つかの実施形態では、特定タイプの情報が、複数のジャイロスコープ12とセンサ18からのデータに基づいて、センサーフュージョンと呼ばれうるプロセスで決定されうる。様々なセンサからの情報を組み合わせることによって、画像安定化、ナビゲーションシステム、自動車制御及び安全性、推測航法、リモート制御及びゲーム装置、活動センサ、三次元カメラ、産業オートメーション、及び多数の他の用途など、様々な用途に役立つ情報を正確に決定できる。
MEMSジャイロスコープは、典型的には、軸のまわりの回転(例えば、ピッチ、ロール及び/又はヨー)を測定するために使用される複数の微小機械構成要素を有しうる。微小機械構成要素は、ジャイロスコープの装置平面内にある複数のマス、櫛歯、電極、レバー、アーム、ばね及び他の類似の構成要素を含みうる。幾つかの実施形態では、マスは、装置平面内に懸架されうる。微小機械構成要素の1つ以上は、典型的には駆動電極や駆動櫛歯などの静電駆動システムによって振動させられる。構成要素(例えば、駆動マス)は、駆動軸内で駆動周波数で振動させられる。駆動マスから回転を測定できるが、多くのジャイロスコープでは、幾つかのマス(例えば、コリオリマス、プルーフマス、センスマスなど)が、ばねによって互いに結合され、このばねは、多くの場合、ばねの設計と配置に基づいて、マスの運動自由度を特定方向に制限する。
駆動軸内で振動しているマスは、軸のまわりのジャイロスコープの回転によって生じる力を受けうる。このコリオリの力は、マスに対して、駆動軸と、ジャイロスコープがまわりを回転している軸との両方に垂直な軸(即ち、センス軸)に沿って加えられる。コリオリの力を受けるマス(例えば、センスマス)が、センス軸内で自由に動くとき(例えば、マスとばねの構成により)、このセンスマスは、センス軸内で振動する。典型的なヨーレートMEMSジャイロスコープでは、マスは、その軸内の駆動運動に応じて第1の軸内で振動させられる。装置平面に垂直な軸のまわりのヨー回転は、装置平面内のコリオリ力をもたらし、駆動軸と回転軸の両方に垂直になる。ジャイロスコープの角速度は、固定センサに関するセンスマスの運動に基づいて測定される。幾つかの実施形態では、検出は、櫛歯やプレートなどの電極によって行われうる。
典型的なMEMS加速度計(例えば、センサ18の)は、MEMS加速度計が軸に沿った直線加速度を測定できるように構成された1つ以上のマスとばねを含みうる。幾つかの実施形態では、1つ以上のマスは、マスが検出軸に沿った直線加速度に応じて運動するように、懸架され結合されうる。直線加速度に応じた検出軸に沿った固定面(例えば、固定電極)に対するマスの運動が測定され評価されて直線加速度が決定される。
前述のように、典型的なMEMS装置は、ばねによって互いに懸架され結合された可動マスを含む。可動マスは、本明細書に記載されたように、装置のMEMS層に平行な層(例えば、CMOS層)から延在するアンカー、装置のMEMS層のフレーム、又は可動マスに対して固定されたMEMS装置の他の適切な部分など、固定されたMEMSセンサの任意の部分を指しうるアンカー点から懸架されうる。一実施形態では、可動マスと、アンカー点から可動マスを懸架し可動マスを互いに結合するばねが、懸架式ばねマスシステムと呼ばれうる。
一実施形態では、懸架式ばねマスシステムは、複数のアンカー点から懸架されうる。懸架式ばねマスシステムの1つの構成要素に電圧が印加される場合、電圧は、経路がばね又はマス全体にある限り、ばねマスシステム内を伝わる。一実施形態では、複数のアンカー点のうちの少なくとも幾つかは、アンカー点が互いに電気的に分離されるように、MEMS装置の1つ以上の層に接続されてもよい(例えば、共有CMOS層)。したがって、第1のアンカー点に印加される電圧は、懸架式ばねマスシステムのばねと可動マス内に経路がなければ、他のアンカー点で受け取られ得ない。幾つかの実施形態では、測定ノードが、他のアンカー点のうちの1つ以上に結合されて、第1のアンカー点に印加された電圧が他のアンカー点で受け取られたかどうかが決定されうる。
幾つかの実施形態では、印加電圧が、測定ノードのうちの1つで受け取られないとき、これは、電圧が印加されるアンカー点と測定ノードとの間の回路経路を構成する懸架式ばねマスシステムの構成要素が、例えばばね又はマスの破損によって破損したことを示しうる。一実施形態では、回路経路を規定する既知の限られた数の構成要素に基づいて、破損した構成要素が、1つの特定の構成要素か、構成要素のサブセットのうちの1つの構成要素であることを決定できる。構成要素のサブセットは、複数の測定ノードからの測定値に基づいて更に絞り込まれてもよい。追加の測定ノード及びそれらの測定ノードと関連付けられた回路経路で印加電圧を受け取ったかどうかに基づいて、特定の構成要素を、破損した構成要素として識別又は除外できる(例えば、構成要素のサブセットを識別し、次にそれらの構成要素を試験する様々な回路経路を適用する繰り返しプロセスで)。
一実施形態では、電圧を印加するために使用されるアンカー点が変更されうる。懸架式ばねマスシステムの構成に基づいて、初期アンカー点に印加される電圧によって識別できない特定の回路経路がありうる。電圧を印加する異なるアンカー点の変更によって、そのような他の回路経路の試験が可能である。幾つかの実施形態では、電圧を様々なアンカー点に印加することによって、様々な回路経路を試験して識別された破損構成要素を高精度化できる。実施形態では、アンカー点の幾つか又は全てが、特定のアンカー点に電圧を選択的に印加するか、特定のアンカー点を測定ノードに結合するように制御されうる(例えば、MEMSセンサのハードウェア制御ロジック又は処理回路14によって)スイッチ(例えば、トランジスタ、リレー、MOSFETなどの任意の適切なスイッチング素子)を含みうる。このようにして、追加の試験構成が適用されうる。
幾つかの実施形態では、取得された情報が、MEMS装置の修正処理を決定するために使用されうる。幾つかの実施形態では、MEMS装置は、構成要素が破損しても何らかの方法で動作し続けうる(例えば、全体性能への影響が小さい部分的に重複するばね又は二次的マスばねサブシステム)。MEMS装置の動作を修正するために、MEMS装置のスケーリングファクタ、駆動力又は他の動作パラメータが利用されうる。幾つかの実施形態では、MEMS装置の故障モードを識別するために情報が決定され収集されうる。例えば、故障した構成要素の決定は、処理回路14に提供され、処理回路14を介して、ある期間にわたって取得された大量のデータに基づいて故障を識別し分析するデータ分析及び記憶システムに提供されうる。そのような情報は、設計を修正するか設計実施を更新するために利用されうる。幾つかの実施形態では、破損した構成要素に関する情報が、破損が検出されたときにセンサがどのように動作していたかに関する他の情報と組み合わされて、故障モード及び原因が更に識別される(例えば、検出された直線加速度又は角速度に基づいて)。
図2は、本開示の幾つかの実施形態による可動マスの電圧検出機能を有する説明的なばねマスシステムを表す。図2には特定の構成要素が特定の方法で表され構成されているが、ばねマスシステムが他の適切な構成要素及び構成を含みうることを理解されよう。
図2の実施形態では、ばねマスシステムは、複数の接合半導体層から構成されたMEMS装置として実現される。MEMS装置は様々な仕方で構成されうるが、一実施形態では、MEMS装置は、特定の点で接合されて密閉パッケージを構成するCMOS層220、MEMS層210及びキャップ層(図示せず)を含みうる。典型的なMEMS層は、MEMSセンサ(例えば、加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなど)などの用途で使用される微小機械構成要素を構成するために、半導体製造技術を使用して作成されうる。典型的なCMOS層は、CMOS層内の電気構成要素と装置の集積化を提供でき、それらの構成要素の間の相互接続も提供できる。幾つかの実施形態では、MEMS層の構成要素が導電性でよく、MEMS層及びCMOS層の構成要素間の相互接続が提供されうる。
典型的実施形態では、MEMS層は、アンカー点201及び205、ばね202及び204、並びにマス203を含みうる。アンカー点201及び205はそれぞれ、CMOS層220に固定(例えば、接合)され、MEMSばねマスシステムの平面内にも延在しうる。ばね202は、アンカー点201をマス203に接続でき、ばね204は、アンカー点205をマス203に接続できる。集合的に、ばね202、マス203、及びばね204は、ばねがMEMSばねマスシステムの平面内でマスを懸架する懸架式ばねマスシステムとして機能できる。MEMS層210内の構成要素はそれぞれ導電性であり、その結果、ある構成要素に印加される電圧が、回路経路が存在する他の構成要素にも印加される。図2の実施形態では、MEMS層210内の構成要素のうちの1つが破損又は破壊されない限り、構成要素のいずれかに印加される電圧は、MEMS層210内の他の構成要素にも印加される。例えば、アンカー点201に印加された電圧が、ばね202に印加され、アンカー点201とばね202を介してマス203に印加され、アンカー点201、ばね202及びマス203を介してばね204に印加され、アンカー点201、ばね202、マス203及びばね204を介してアンカー点205に印加される。この回路経路内の構成要素が破損又は破壊された場合だけ、異なる電圧が、これらの構成要素のいずれかに印加される。
一実施形態では、CMOS層220などの回路層が、電圧源206、測定ノード207、並びに接続点208及び209を含みうる。電圧源206は任意の適切な電圧源でよいが、典型的なMEMSセンサでは、電圧が、懸架式ばねマスシステムに印加されて、それにより、ばねマスシステムが静電気的に駆動されかつ/又はばねマスシステム内の構成要素の運動が容量的に検出されうる。このMEMSシステム電圧レベルは、任意の適切な方法、例えば、CMOS層220の外部若しくは内部電源、レギュレータ又は回路から提供されうる。幾つかの実施形態では、電圧源206は、特定の時間におけるMEMSシステム電圧ではなく固有の試験信号(例えば、様々な若しくは変動する電圧、又は周波数での信号を有する)を提供して、例えば、本明細書に記載されたような懸架式ばねマスシステムの構成要素を試験できる。
測定ノード207は、増幅器、比較器、フィルタ、アナログデジタル変換器、周波数フィルタなどの信号又は電圧を測定する任意の適切な構成要素でよい。本明細書に記載されているように、幾つかの実施形態では、測定ノード207はMEMSシステム電圧を監視できる。幾つかの実施形態では、試験電圧又は信号が提供され、測定モード207は、これらの信号を測定できる。測定ノード207は、また、受け取った信号をしきい値と比較するか又は様々な電圧若しくは信号に対する応答測定などの他の信号分析を行う処理回路(例えば、アナログ若しくはデジタルハードウェア制御回路及び/又は他の処理回路14を含むハードウェア制御ロジック)を含みうる。
図2の典型的実施形態では、電圧源206は、電源電圧(例えば、MEMSシステム電圧)を接続点208に提供でき、接続点208は、アンカー点201への電気接続を提供できる。したがって、電源電圧は、回路経路によってアンカー点201に接続されたMEMS層210の構成要素(例えば、ばね202、マス203、ばね204、及びアンカー点205)に提供されうる。アンカー点205は、接続点209への電気接続を提供するように接合されてもよく、接続点209には、測定ノード207が接続される。電源電圧が、測定ノード207で適切に受け取られた場合(例えば、受信電圧がMEMSシステム電圧のしきい値範囲内にあるか、受信信号が特定のしきい値範囲内の送られた信号と一致する)、アンカー点201とアンカー点205の間の回路経路が破損していないことを決定できる。これにより、アンカー点201/205、ばね202/204及びマス203システムは破損していないだけでなく、接続点208及び209も破損していないことが保証されうる。
場合によって、電源電圧は、測定ノード207で適切に受け取られない(例えば、受信電圧がMEMSシステム電圧のしきい値範囲内にないか、受信信号が特定のしきい値範囲内の送信信号のパターンと一致しない)。測定ノードで電源電圧を受け取ることができないと、懸架式ばねマスシステム内の構成要素が破損した可能性が高いことが実証されうる。これは除外できないが、CMOS層内の電気的相互接続が破損又は破壊され、アンカー点201及び205がCMOS層に物理的に取り付けられ静止している可能性が低い。これと対照的に、懸架式ばねマスシステムは、外力に応じて頻繁に動かされることがあり、その動きが、ばねマスシステム内の構成要素を破損させる可能性が高い。
幾つかの実施形態では、ばねマスシステム内の構成要素の様々なタイプの破損が、測定ノード207における受信信号に様々な影響を及ぼしうる。例えば、ばねなどの構成要素が、電圧源206と測定ノードの間の回路経路が破壊されるように物理的に破壊された場合、電源電圧は、測定ノードで検出されなくなる。幾つかの実施形態では、電圧源206から測定ノード207まで複数の経路が可能である。電源電圧と測定ノード207での電圧との間の部分的電圧降下は、構成要素の破損を示すことがあり、電圧パターン又は試験パターンへの周波数応答の変化も同様に構成要素の破損を示しうる。
測定ノード207と処理回路によって誤りが識別された場合、通知が提供され、修正処置が取られうる。幾つかの実施形態では、通知は、誤り(例えば、ばねの破壊、センサの破損、予想される破損範囲、接続点の破損など)の識別、誤りの原因となった測定値、センサからの他の測定値(例えば、誤りの原因を識別するために使用されうる1組の最近の検出値)、他の適切な情報、又はこれらの任意の組み合わせを提供できる。修正処置は、MEMS装置の停止動作を含んでもよく、幾つかの実施形態では、識別された破損を補償できる(例えば、駆動電圧の修正、スケーリングファクタ、電極からの対抗力の印加など)。
図3は、本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なばねマスシステムを表す。図3には特定の構成要素が特定の仕方で表され構成されているが、ばねマスシステムが他の適切な構成要素及び構成を含みうることを理解されよう。
図3のばねマスシステムは、CMOS層300がMEMS層の下にある上面図で表される。図3にソース/センス回路321、322、323及び324によって表されたように、複数の電圧源、測定ノード及びスイッチが、CMOS層300内にありうる。アンカー点301、302、303及び304が、CMOS層に(例えば、関連した接続点の位置で)接合され、それぞれのソース/センス回路321、322、323及び324に電気的に接続されうる。アンカー点は、MEMS層の一部でよく、MEMS層の懸架式ばねマスシステムの平面に対して垂直に延在してもよく、これは、ばね311、312、313、314及び315、並びにマス316及び317を含みうる。図3に表されたように、ばね311は、アンカー点301をマス316に接続でき、ばね312は、アンカー点302をマス316に接続でき、ばね313は、アンカー点303をマス317に接続でき、ばね314は、アンカー点304をマス317に接続でき、ばね315は、マス316をマス317に接続できる。正常状態で、懸架式ばねマスシステムの構成要素は、懸架式ばねマスシステムの任意の点に印加された電圧が全ての他の点にも印加されるように、電気回路を構成するように接続されうる。
典型的実施形態では、アンカー点の1つ以上が、ソース/センス回路に接続されてもよく、これにより、アンカー点を電圧源又は測定ノードに選択的に接続できる。ソース/センス回路が、任意の適切な方式で実現されうるが、一実施形態では、ソース/センス回路が、電圧源と測定ノードの両方に電気的に接続されてもよく、スイッチは、アンカー点を電圧源又は測定ノードの一方に選択的に接続するように制御されてもよい(例えば、ハードウェア制御ロジック及び/又は処理回路によって)。本明細書に記載されたように、スイッチは、スイッチング素子、1つ以上のトランジスタ、1つ以上のMOSFETS、他の適切なスイッチング回路、又はこれらの任意の適切な組み合わせなど、電圧源と測定ノードの間の選択を容易にする任意の適切な回路若しくは装置又はこれらの組み合わせを含みうる。
図3の典型的実施形態では、アンカー点301、302、303及び304がそれぞれ、それぞれのソース/センス回路321、322、323及び324に接続されうる。一実施形態では、ソース/センス回路の電圧源がそれぞれ(例えば、電圧源1、電圧源2、電圧源3及び電圧源4)、共通電源に接続されてもよいが、幾つかの実施形態では、様々な電源が、電圧源の様々なものと関連付けられうる。電源電圧が、懸架式ばねマスシステムに任意の適切な方法で印加されてもよいが、一実施形態では、ソース/センス回路321、322、323及び324のうちの1つだけ(例えば、図3のソース/センス回路323)が、電圧源に結合するように設定されたスイッチを有してもよい。電源電圧は、アンカー点303によって懸架式ばね/マスシステムに印加されてもよく、懸架式ばねマスシステムの構成要素のどれも破損していない場合は、懸架式ばねマスシステム及び関連したアンカー点の回路経路によって、ソース/センス回路321、322及び324のそれぞれの測定ノードに提供されうる。図3の実施形態では、ソース/センス回路321の測定ノードは、ばね313、マス317、ばね315、マス316、ばね311及びアンカー点301を介して電源電圧を受け取りうる。ソース/センス回路322の測定ノードは、ばね313、マス317、ばね315、マス316、ばね312及びアンカー点302を介して電源電圧を受け取りうる。ソース/センス回路324の測定ノードは、ばね313、マス317、ばね314及びアンカー点304を介して電源電圧を受け取りうる。
電源電圧が、測定ノードのうちの1つに適切に受け取られない場合、これは、懸架式センスマスシステムの1つ以上の構成要素が破損しているという指示を提供できる。例えば、電源電圧が、ソース/センス回路321の測定ノードで受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね315、マス316、ばね311又はアンカー点301のうちの1つが破損していることを示しうる。電源電圧が、ソース/センス回路322の測定ノードで受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね315、マス316、ばね312又はアンカー点302のうちの1つが破損していることを示しうる。電源電圧が、ソース/センス回路324の測定ノードにおいて受け取られない場合、これは、アンカー点303、ばね313、マス317、ばね314、又はアンカー点304のうちの1つが破損していることを示しうる。
破損した構成要素は、更に、監視ノードの全ての受信信号を考慮し比較することによって識別されうる。例えば、ソース/センス回路321及び322の測定ノードの両方が電源電圧を受け取るわけではないが、ソース/センス回路324の測定ノードが電源電圧を受け取る場合、これは、ばね313が破損していないこと(例えば、ばね313を介してソース/センス回路324の測定ノードで受け取られる電源電圧に基づいて)と、ばね315が破損している可能性が高いこと(例えば、両方のばね311及び312が同時に破損する可能性は低いので)を示しうる。
ソース/センス回路のスイッチは、電源電圧がソース/センス回路の異なるものから提供されるように修正されうる。幾つかの実施形態では、これは、例えば、懸架式ばねマスシステムのどの構成要素が破損しているかをよりよく識別するために、測定ノードの1つ以上に基づいて誤りが最初に識別された後で実行されうる。前述の典型的実施形態では、ソース/センス回路321は、電源電圧を提供するために切り替わることができ、ソース/センス回路323は、アンカー点303を測定ノード3に接続できる。電圧が、ばね311、マス316及びばね312を介して測定ノード2で検出された場合、これは、ばね311及び312が両方とも破損していないことを確認できる。更に、電源電圧が、ソース/センス回路323の測定ノード3とソース/センス回路324の測定ノード4のどちらでも検出されない場合、これは、ばね315が破損したばねであることを確認できる。同様に、破損している可能性の高い1つ以上の構成要素を識別するために、必要に応じて、電源電圧が、任意の適切なアンカー点を介して提供されてもよい。
図4は、本開示の幾つかの実施形態による複数の可動マスの電圧検出機能を有する説明的なMEMSジャイロスコープを表す。図4のジャイロスコープ設計は、限定ではなく説明のために提供される。本開示の原理は、任意の適切なMEMS装置(例えば、MEMS加速度計、ジャイロスコープ、圧力センサ、マイクロフォンなど)と、そのような装置の任意の適切な構成に適用されうることを理解されよう。図4の典型的実施形態が、平衡したガイドマスシステム400を含む二軸ジャイロスコープの一実施形態を示す。ガイドマスシステム400は、結合ばね405によって互いに結合された2つのガイドマスシステム400a及び400bを含む。
ガイドマスシステム400a及び400bは、ばね408a〜408dによってアンカー点406a〜406dに接続される。追加のアンカー点440a及び440bが、ピッチプルーフマス450a及び450b内にある。図4に表された懸架式ばねマスシステムのMEMS層の下には、CMOS層401がある。アンカー点406a〜406d及び440a〜440bはそれぞれ、CMOS層401に(例えば、それぞれの接続点を介して)接合され、懸架されたばねマスシステムの平面内で上方に延在されうる。アンカー点406a〜406d及び440a〜440bは、CMOS層401内の任意の適切な回路に結合されうるが、典型的実施形態では、アンカー点406a〜406dがそれぞれ、それぞれのソース/センス回路(図4に表されていない)に電気的に接続されて、アンカー点が電圧源又は測定ノードに選択的に取り付けられうる。
対称的なガイドマスシステム400aは、平面外で第1のロールセンス軸のまわりを回転する。対称的なガイドマスシステム400bは、平面内で第1のロールセンス軸と平行な第2のロールセンス軸のまわりの平面外で回転する。結合ばね405は、プルーフマス402b及び402cをロールするように接続される。結合ばね405は、X方向の軸のまわりのねじれに従順であり、したがって、対称ガイドマスシステム400a及び400bは、逆位相で平面外を第1及び第2のロールセンス軸のまわりに回転できる。結合ばね405は、Z方向に剛性であり、対称ガイドマスシステム400a及び400bが平面外で同相で回転するのを防ぐ。
一実施形態では、ピッチプルーフマス450a及び450bは、ばね452a〜452dを介してそれぞれ4つのロールプルーフマス402a〜402dにそれぞれ柔軟に接続される。ばね452a及び452bは、ピッチプルーフマス450aが平面外でY方向の第1のピッチセンス軸のまわりを回転できるようにねじれに従順であり、ばね452c及び452dは、平面外でY方向の第2のピッチセンス軸のまわりを回転できるようにねじれに従順である。
この実施形態では、プルーフマス450a及び450bはそれぞれ、ばねシステム431及び432を介してCMOS層401と、アンカー点440a及び440bに結合される。ピッチプルーフマス450a及び450bは、CMOS層401基板の運動に従い、基板とプルーフマスの間の垂直方向ギャップは、温度変動や外部作用力のような外部影響下で同じままである。
2つの対称ガイドマスシステム400a及び400bは、ロールプルーフマス402a〜402dが全てX方向に動くように配列される。結合ばね405はX方向に剛性であり、その結果、ロールプルーフマス402b及び402cは一緒にX方向に動く。ロールプルーフマス402a及び402dは、ロールプルーフマス402b及び402cの反対に動く。
ばね452a〜452dは、平面内で従順であり、その結果、ロールプルーフマス402a〜402dが駆動されるとき、ピッチプルーフマス450a及び450bは、逆位相で平面内をZ方向に別個の軸のまわりを回転する。櫛歯駆動などの静電アクチュエータ409a〜409hは、ロールプルーフマス402a〜402dに接続されて、平衡ガイドマスシステム400を駆動する。ロールプルーフマス402a〜402dとピッチプルーフマス450a及び450bを含む2つのガイドマスシステム400a及び400bは、アクチュエータ409a〜409hに結合された駆動回路による周波数で一緒に駆動される。
X方向のピッチ入力軸のまわりの角速度は、コリオリ力を、第1及び第2のピッチセンス軸それぞれのまわりのピッチプルーフマス450a及び450bに作用させる。コリオリ力は、ピッチプルーフマス450a及び450bを、逆位相で平面外を第1及び第2のピッチセンス軸のまわりに回転させる。第1及び第2のピッチセンス軸のまわりのピッチプルーフマス450a及び450bの回転の振幅は、ピッチ入力軸のまわりの角速度に比例する。
一実施形態では、ピッチプルーフマス450a及び450b下の変換器460a〜460dは、第1及び第2のピッチセンス軸のまわりの逆位相回転を検出するために使用される。ロール入力軸のまわりの外部から印加される角加速度は、ピッチプルーフマス450a及び450b上に同相の慣性トルクを生成し、それらを同相で第1及び第2のピッチセンス軸のまわりに回転させる。変換器460a及び460dを結合し、変換器460b及び460cを結合することにより、ピッチプルーフマス450a及び450bの同相回転が検出されないが、逆位相回転が検出されうる。
ロール入力軸のまわりの角速度は、コリオリ力をロールプルーフマス402a〜402d上にZ方向に作用させる。コリオリ力は、対称ガイドマスシステム400a及び400bを、逆位相で平面外を第1及び第2のロールセンス軸のまわりに回転させる。ロールプルーフマス402a〜402d下の変換器412a〜412cは、対称ガイドマスシステム400a及び400bの回転を検出するために使用される。ピッチ入力軸のまわりの外部から印加される角加速度は、対称ガイドマスシステム400a及び400b上に同相慣性トルクを生成する。
しかしながら、対称ガイドマスシステム400a及び400bは、結合ばね405が第1及び第2の回転センス軸のまわりの同相回転を防ぐので、回転しない。変換器412a及び412cは、対称ガイドマスシステム400a及び400bの同相回転が検出されないが反相回転が検出されるように結合されうる。
図4の懸架式ばねマスシステムの構成要素のどれかが破損した場合、ロールプルーフマス402a〜402d又はピッチプルーフマス450a〜450bの1つ以上が、ロール又はピッチ軸のまわりの回転に正確に応える能力が損なわれうる。従って、電源電圧は、アンカー点406a〜406c及び440a〜440bのうちの1つから懸架式ばねマスシステムに提供され、他のアンカー点406a〜406c及び440a〜440bの1つと関連付けられた監視ノードが、その電源電圧を監視できる。監視ノードのいずれかで不適切な監視電圧が検出された場合(例えば、MEMSシステム電圧と比較されたしきい値、様々な誤りモード(例えば、電圧降下)と関連した様々なしきい値、又は周波数成分を有する信号の信号分析に基づいて)は、本明細書に記載されたように誤りを識別でき、通知が提供され、幾つかの実施形態では、必要に応じて修正処置が行われうる。
一実施形態では、アンカー点406a〜406c及び440a〜440bがそれぞれ、ソース/センス回路に接続され、その結果、アンカー406a〜406c及び440a〜440bがそれぞれ、ソース電圧を提供できる。様々な異なるアンカー点406a〜406c及び440a〜440bに電源電圧を印加し、他のアンカー点と関連付けられた測定ノードで検出することによって、懸架式ばねマスシステムのうちの破損した構成要素を更に分離できる。
図5〜図6は、本開示の幾つかの実施形態による懸架式ばねマスシステム内の構成要素の破損を試験するための典型的ステップを表す。図5〜図6は、本開示の文脈で述べられているが、図5〜図6に示された方法及びステップが、任意の適切な懸架式ばねマスシステムに適用されうることを理解されよう。図5〜図6に特定の順序及び流れのステップが示されているが、幾つかの実施形態では、ステップの1つ以上が、修正、移動、除去又は追加されてもよく、図5〜図6に表された流れが修正されてもよいことを理解されよう。
図5は、本開示の幾つかの実施形態によるばねマスシステムの可動マスの電圧を検出するための典型的なステップを表す。ステップ502で、電源電圧が、電圧源から懸架式ばねマスシステムに印加されうる。本明細書に記載されたように、電源電圧は、適切な電圧、電圧パターン、又は周波数成分を有する信号でよいが、典型的実施形態では、電源電圧は、懸架式ばねマスシステムの構成要素の駆動及び/又は検出を容易にするために、装置(例えば、MEMSジャイロスコープ又は加速度計)の通常動作中に印加されるシステム電圧でよい。一実施形態では、電源電圧は、CMOS層から垂直方向に延在するアンカーなどのアンカー点を介して印加されてもよく、電圧源が、懸架式ばねマスシステムが配置されたMEMS装置平面内に提供されうる。電源電圧が印加された後、処理は、ステップ504に進むことができる。
ステップ504で、電圧が、1つ以上の測定ノードで測定されうる。電源電圧が懸架式ばねマスシステムに印加されたとき、そのシステムの導電性構成要素が、正常状態で印加電圧を受け取る。構成要素が破損又は破壊されている場合、懸架式ばねマスシステムの1つ以上の部分が、印加されたシステム電圧から分離され、その結果、システム電圧を受け取らず、電圧降下が起こる。これらの分離された構成要素を介して接続されたアンカー点は、システム電圧を受け取らず、受け取った電圧は、CMOS層内に配置されアンカー点に接続された測定ノードによって検出されうる。測定ノードにおける電圧が決定された後、処理は、ステップ506に進むことができる。
ステップ506で、処理回路(例えば、ハードウェア制御ロジックは、処理回路のハードウェア制御回路を有する)は、監視ノードにおける測定値に基づいて誤りを識別できる。一実施形態では、誤りの識別は、懸架式ばねマスシステムと接続点が破損したことの決定と、懸架式ばねマスシステム内の構成要素と接続点が故障した可能性が高いことの識別を含みうる。例えば、複数の測定ノードからの測定値に基づいて、破損した懸架式ばねマスシステムの特定の構成要素を、本明細書に記載されたように識別でき、幾つかの実施形態では、それらの構成要素の破損の程度を識別できる。処理は、次に、ステップ508に進みうる。
ステップ508で、誤りの識別に基づいて修正処置が取られうる。幾つかの実施形態では、修正処置は、ステップ506で決定された破損した構成要素及び/又は深刻さに基づくことができ、MEMS装置の動作の停止やMEMS装置の動作の補償など(例えば、駆動力の修正、センススケーリングファクタの変更など)の処理を含みうる。多軸ジャイロスコープや加速度計などの幾つかの実施形態では、破損した構成要素から分離された特定の軸を動作させ、測定し続けうる。多軸装置(例えば、3軸のジャイロスコープ検出及び3軸の加速度計検出を含む)の場合、存在しない軸の値を推定するか又は1つ以上の破損構成要素を含む軸からの測定値に基づいて補償するために、センサーフュージョンが使用されうる。ステップ508で修正処置が行われた後、処理は、ステップ510に進みうる。
ステップ510で、懸架式ばねマスシステム内に誤りが起きたことを示す通知が提供されうる。一実施形態では、誤りのタイプ、破損構成要素の識別、構成要素が破損したときより前及びそのときの駆動及びセンス力の測定値(他のセンサ/軸からを含む)、使用される補償技術、懸架式ばねマスシステムを含むMEMS装置に関する他の適切な情報、及びこれらの任意の適切な組み合わせなどの情報を示す通知が提供されうる。幾つかの実施形態では、通知は、故障モードを識別する様々なセンサに関する情報を決定し、補償技術を修正し、通知から識別されうる故障に関する情報の長期傾向に基づく他の分析を実行するリモートシステムに提供されうる。通知が提供された後、図5のステップが終了できる。
図6は、本開示の幾つかの実施形態による複数のソース/センス回路を有するばねマスシステムの可動マスの電圧を検出するための典型的なステップを表す。図6の典型的実施形態では、複数のアンカー点はそれぞれ、各アンカー点が、電圧源又は測定ノードとして機能するように選択的に結合されうるように、それぞれのソース/センス回路に結合されうる。
ステップ602で、アンカー点は、電圧源として機能するように選択されうる。一実施形態では、残りのアンカー点が、測定ノードとして機能するように選択されうる。電圧源として機能するアンカー点のソース/センス回路は、そのアンカー点を電圧源に結合でき、残りのソース/センス回路は、そのそれぞれのアンカー点をそれぞれの測定ノードに結合できる。処理は、次に、ステップ604に進みうる。
ステップ604で、電源電圧が、電圧源から懸架式ばねマスシステムに印加されうる。本明細書に記載されたように、電源電圧は、適切な電圧、電圧パターン、又は周波数成分を有する信号でよいが、典型的実施形態では、電源電圧は、懸架式ばねマスシステムの構成要素の駆動及び/又は検出を容易にするために、装置(例えば、MEMSジャイロスコープ又は加速度計)の通常動作中に印加されるシステム電圧でよい。一実施形態では、ソース/センス回路を介して電源電圧を供給するために接続されるアンカー点は、CMOS層から垂直方向に延在してもよく、ソース/センス回路及び電圧源は、懸架式ばねマスシステムが配置されるMEMS装置平面内にある。電源電圧が印加された後、処理は、ステップ606に進むことができる。
ステップ606で、それぞれのアンカー点によって懸架式ばねマスシステムに接続された測定ノードのそれぞれにおける電圧が測定されうる。電源電圧が懸架式ばねマスシステムに印加されるとき、そのシステムの導電性構成要素が、正常状態で印加電圧を受け取る。構成要素が破損又は破壊されている場合、懸架式ばねマスシステムの1つ以上の部分が、印加されたシステム電圧から分離され、その結果、システム電圧を受け取らず、電圧降下が起こる。これらの分離された構成要素を介して接続されたアンカー点は、システム電圧を受け取らず、受け取った電圧は、CMOS層内に配置されアンカー点に接続された測定ノードによって検出されうる。測定ノードにおける電圧が決定された後、処理は、ステップ608に進むことができる。
ステップ608で、処理回路(例えば、処理回路のハードウェア制御回路などのハードウェア制御ロジック)は、監視ノードにおける測定値に基づいて誤りを識別できる。一実施形態では、誤りの識別は、懸架式ばねマスシステムに破損が生じたことの決定と、懸架式ばねマスシステム内の故障した可能性が高い構成要素の識別を含みうる。例えば、複数の測定ノードからの測定値に基づいて、破損した懸架式ばねマスシステムの特定の構成要素を本明細書に記載されたように識別でき、幾つかの実施形態では、それらの構成要素の破損の程度を識別できる。誤りが識別された場合、処理はステップ610に進みうる。誤りが識別されない場合、処理は、ステップ602に戻って追加測定を実行できる(例えば、電源電圧を提供する様々なアンカー点によって)。
ステップ610で、様々な構成要素に電源電圧を印加することによって(例えば、ソース/センス回路を切り替えることにより)、懸架式ばねマスシステムに追加測定を行うべきかどうかを決定できる。幾つかの実施形態では、追加測定を行うべきかどうかの決定は、ステップ608から識別された誤りに基づいており、例えば、特定の誤りが正確に識別された可能性、誤りの深刻さ、及び補償を行う可能性があるかどうかに基づきうる。追加測定が行われない場合、処理は、ステップ612に進みうる。追加測定が行われる場合、処理は、ステップ614に進みうる。
ステップ614で、様々なアンカー点に電源電圧を印加することによって(例えば、特定のアンカー点と関連したソース/センス回路の状態を修正することによって)、追加測定が行われうる。このようにして、懸架式ばねマスシステムを通る様々な回路経路が試験され、どの構成要素が破損したか及びその破損の程度が決定されうる。幾つかの実施形態では、追加測定は、誤りの初期識別に基づいてもよく、例えば、特定の誤りの識別を更に高精度にするために選択されてもよい。他の実施形態では、アンカー点はそれぞれ、電源電圧を(例えば、それぞれのソース/センス回路の切り替えに基づいて)ある期間印加できる。幾つかの実施形態では、誤りが最初に識別された後(例えば、システム電圧の印加に基づいて)、誤りの原因を識別するために、他の電圧パターンが懸架式ばねマスシステムに印加されうる。追加測定が実行された後、処理は、ステップ616に進みうる。
ステップ616で、測定ノードにおける繰り返し測定に基づいて、誤りを補償できるかどうかが決定されうる。この決定は、誤りの識別並びに補償を支援するために使用されうる他の利用可能な手段(例えば、運動を検出できる他の軸)に基づいて行われうる。補償が行われる場合、処理は、ステップ618に進みうる。補償が行われない場合、処理は、ステップ612に進みうる。
ステップ618で、補償が実行されうる。幾つかの実施形態では、MEMS装置は、MEMS装置の動作を修正することによって(例えば、駆動力の修正、センススケーリングファクタの変更などによって)、破損した軸を測定し続けることができる。多軸ジャイロスコープや加速度計などの幾つかの実施形態では、破損した構成要素から分離された特定の軸を動作させ、測定し続けうる。多軸装置(例えば、3軸のジャイロスコープ検出及び3軸の加速度計検出を含む)の場合、存在しない軸の値を推定するか又は1つ以上の破損構成要素を含む軸からの測定値に基づいて補償するために、センサーフュージョンが使用されうる。補償が実施された後、処理は、ステップ620に進みうる。
ステップ612で、故障が決定され、MEMS装置の動作が終了すべきであることが決定されうる。破損したMEMS装置が遮断され、処理は、ステップ620に進みうる。
ステップ620で、懸架式ばねマスシステム内で誤りが起きたこと又は懸架式ばねマスシステム内で補償が使用されていることを示す通知が提供されうる。一実施形態では、誤りのタイプ、破損した構成要素の識別、構成要素が破損したときより前及びそのときの駆動及びセンス力の測定値(他のセンサ/軸からを含む)、使用される補償技術、誤りを識別するために使用された接続点の順序、懸架式ばねマスシステムを含むMEMS装置に関する他の適切な情報、及びこれらの任意の適切な組み合わせなどの情報を示す通知が提供されうる。幾つかの実施形態では、通知は、故障モードを識別する様々なセンサに関する情報を決定し、補償技術を修正し、通知から識別されうる故障に関する情報の長期傾向に基づいて他の分析を行うリモートシステムに提供されうる。通知が提供された後、図6のステップが終了できる。
以上の説明は、本開示による典型的実施形態を含む。これらの例は、説明のためのものであり、限定するためのものではない。本開示が、本明細書に明示的に記述され描かれた形態と異なる形態で実施されてもよく、以下の特許請求の範囲と一致する様々な修正、最適化及び変形が、当業者によって実現されうることを理解されよう。
201,205 アンカー点
202,203,204 懸架式ばねマスシステム
206 電圧源
207 測定ノード
208,209 接続点
210 MEMS層
220 CMOS層

Claims (19)

  1. 微小電気機械センサであって、
    複数のアンカー点と、
    懸架式ばねマスシステムであって、
    複数の可動マスと、
    前記複数の可動マスを互いに結合し、前記複数の可動マスを前記複数のアンカー点から懸架する複数のばねであって、前記複数の可動マスと前記複数のアンカー点を電気的に接続する複数のばねと
    を含む懸架式ばねマスシステムと、
    前記複数のアンカー点のうちの第1のアンカー点を介して前記懸架式ばねマスシステムにシステム電圧レベルを印加するように結合された第1の電圧源と、
    前記複数のアンカー点のうちの第2のアンカー点に結合されて、前記第2のアンカー点の電圧を測定する測定ノードと、
    前記測定電圧に基づいて前記懸架式ばねマスシステムの誤りを識別するように構成された処理回路とを含む、
    微小電気機械センサ。
  2. 前記測定電圧が、第1の測定電圧を含み、更に、前記複数のアンカー点のうちの第3のアンカー点を介して第2の測定電圧を測定するように結合された付加測定ノードを含み、前記処理回路が、更に、前記第2の測定電圧に基づいて前記懸架式ばねマスシステムの前記誤りを識別するように構成された、
    請求項1に記載の微小電気機械センサ。
  3. 前記誤りが、前記懸架式ばねマスシステムの1つ以上の破損構成要素を含み、前記処理回路が、更に、前記第1の測定電圧に基づいて前記懸架式ばねマスシステムの第1のサブセットの破損した可能性のある構成要素を識別し、かつ前記第2の測定電圧に基づいて前記懸架式ばねマスシステムの第2のサブセットの破損した可能性のある構成要素を識別するように構成された、
    請求項2に記載の微小電気機械センサ。
  4. 前記処理回路は、前記第1の測定電圧が、前記システム電圧レベルとは誤りしきい値電圧より大きく異なり、かつ前記第2の測定電圧が、前記システム電圧レベルの前記誤りしきい電圧内にあるときに、前記第1のサブセットの破損した可能性のある構成要素を識別し、前記第2の測定電圧が、前記システム電圧レベルとは前記誤りしきい電圧よりも大きく異なり、かつ前記第1の測定電圧が、前記システム電圧レベルの前記誤りしきい電圧内にあるときに、第2のサブセットの破損した可能性のある構成要素を識別するように構成された、
    請求項3に記載の微小電気機械センサ。
  5. 前記誤りしきい電圧が、前記システム電圧レベルからの変化率に基づく、
    請求項4に記載の微小電気機械センサ。
  6. 前記処理回路は、更に、前記誤りが前記第1の測定電圧に基づいて識別された場合に第1の修正処置をとり、前記誤りが前記第2の測定電圧に基づく場合に第2の修正処置をとるように構成された、
    請求項2に記載の微小電気機械センサ。
  7. 前記第1の修正処置は、前記処理回路が前記微小電気機械センサを無効にするように更に構成されることを含み、前記第2の修正処置は、前記処理回路が前記微小電気機械センサの前記動作を修正するように更に構成されることを含む、
    請求項6に記載の微小電気機械センサ。
  8. 前記微小電気機械センサの前記動作の前記修正が、前記処理回路のセンススケーリングファクタの修正、又は前記複数の可動マスのうちの1つに印加される駆動電圧の修正を含む、
    請求項7に記載の微小電気機械センサ。
  9. 前記処理回路が、前記測定電圧と前記システム電圧レベルとの差に基づいて前記懸架式ばねマスシステムの前記誤りを識別するように構成された、請求項1に記載の微小電気機械センサ。
  10. 前記電圧源が、前記複数のばねのうちの第1のばねを介して前記第1のアンカー点から前記懸架式ばねマスシステムに前記システム電圧レベルを印加し、前記複数のばねのうちの前記第1のばねが、前記第1のアンカー点と前記懸架式ばねマスシステムの他の構成要素との間に直列に配置された、
    請求項1に記載の微小電気機械センサ。
  11. 前記測定ノードが、前記複数のばねのうちの第2のばねと前記第2のアンカー点とを介して前記測定電圧を受け取り、前記第2のばねが、前記第1のアンカー点と前記第2のアンカー点の間に直列に配置された、
    請求項10に記載の微小電気機械センサ。
  12. 前記測定電圧が、第2の測定電圧を含み、前記測定ノードが、第2の測定ノードを含み、更に、
    前記第2のアンカー点を介して前記懸架式ばねマスシステムに前記システム電圧レベルを印加するように結合された第2の電圧源と、
    前記第1のアンカー点の第1の測定電圧を測定するために前記第1のアンカー点に結合された第1の測定ノードと、
    前記第1のアンカー点に結合されて、前記第1のアンカー点を前記第1の電圧源又は前記第1の測定ノードに選択的に結合する第1のスイッチと、
    前記第2のアンカー点に結合されて、前記第2のアンカー点を前記第2の電圧源又は前記第2の測定ノードに選択的に結合する第2のスイッチとを含む、請求項1に記載の微小電気機械センサ。
  13. 前記処理回路は、更に、前記第1のスイッチ又は前記第2のスイッチの一方に、前記システム電圧レベルを前記懸架式ばねマスシステムに提供させ、前記第1のスイッチ又は前記第2のスイッチの他方に、前記第1のアンカー点を前記第1の測定ノードに結合させるか前記第2のアンカー点を前記2の測定ノードに結合させ、前記第1のスイッチ又は前記第2のスイッチの他方と関連付けられた前記第1の測定電圧又は前記第2の測定電圧に対する前記システム電圧レベルの比較に基づいて、前記懸架式ばねマスシステムの前記誤りを識別するように構成された、
    請求項12に記載の微小電気機械センサ。
  14. 前記システム電圧レベルを第3のアンカー点から前記懸架式ばねマスシステムに印加するように結合された第3の電圧源と、
    前記第3のアンカー点を介して第3の測定電圧を測定するように結合された第3の測定ノードと、
    前記第3のアンカー点に結合されて、前記第3のアンカー点を前記第3の電圧源又は前記第3の測定ノードに選択的に結合する第3のスイッチとを含む、
    請求項12に記載の微小電気機械センサ。
  15. 前記処理回路が、更に、前記第1のスイッチに、前記システム電圧レベルを提供する前記第1の電圧源を前記懸架式ばねマスシステムに結合させ、前記第2のスイッチに、前記第2のアンカー点を、前記第2の測定電圧を測定する前記第2の測定ノードに結合させ、前記第3のスイッチに、前記第3のアンカー点を、前記第3の測定電圧を測定する前記第3の測定ノードに結合させ、前記第2の測定電圧と前記第3の測定電圧に基づいて前記懸架式ばねマスシステムの初期誤りを識別するように構成された、
    請求項14に記載の微小電気機械センサ。
  16. 前記処理回路が、更に、前記第2のスイッチに、前記システム電圧レベルを提供する前記第2の電圧源を前記懸架式ばねマスシステムに結合させ、前記第1のスイッチに、前記第1のアンカー点を、前記第1の測定電圧を測定する前記第1の測定ノードに結合させ、前記第3のスイッチに、前記第3のアンカー点を、新しい第3の測定電圧を測定する前記第3の測定ノードに結合させ、前記初期誤り、前記第1の測定電圧、及び前記新しい第3の測定電圧に基づいて前記懸架式ばねマスシステムの高精度な誤りを識別するように構成された、
    請求項15に記載の微小電気機械センサ。
  17. 前記処理回路は、更に、前記第3のスイッチに、前記システム電圧レベルを提供する前記第3の電圧源を前記懸架式ばねマスシステムに結合させ、前記第1のスイッチに、前記第1のアンカー点を、新しい第1の測定電圧を測定する前記第1の測定ノードに結合させ、前記第2のスイッチに、前記第2のアンカー点を、新しい第2の測定電圧を測定する前記第2の測定ノードに結合させ、前記高精度な誤り、前記初期誤り、前記新しい第1の測定電圧、及び前記新しい第2の測定電圧に基づいて、更に高精度な誤りを識別するように構成された、
    請求項16に記載の微小電気機械センサ。
  18. 微小電気機械センサ内の誤りを識別する方法であって、
    第1の電圧源から、前記システム電圧を複数のアンカー点のうちの第1のアンカー点に提供するステップと、
    前記第1のアンカー点を介して、システム電圧レベルを懸架式ばねマスシステムに印加するステップと、
    前記複数のアンカー点のうちの第2のアンカー点に、前記懸架式ばねマスシステムを介して受信電圧を受け取るステップと、
    前記第2のアンカー点からの前記受信電圧を測定ノードに提供するステップと、
    処理回路によって、前記測定ノードにおける前記受信電圧に基づいて前記懸架式ばねマスシステムの誤りを識別するステップとを含む
    方法。
  19. 微小電気機械センサであって、
    複数のアンカー点と、
    複数のソース/センス回路であって、前記ソースセンス回路のそれぞれが、前記複数のアンカー点のうちの1つに結合され、電圧源と、測定ノードと、スイッチとを含む複数のソース/センス回路と、
    前記複数のアンカー点から懸架された懸架式ばねマスシステムと、
    第1のソース/センス回路に、前記第1のソース/センス回路の前記電圧源を前記複数のアンカー点のうちの第1のアンカー点に結合させ、第2のソース/センス回路に、前記複数のアンカー点のうちの第2のアンカー点を前記第2のソース/センス回路の前記測定ノードに結合させ、前記第2の測定ノードにおける受信電圧に基づいて前記懸架式ばねマスシステムの誤りを識別するように構成された処理回路と、を含む
    微小電気機械センサ。
JP2018530131A 2015-12-10 2016-12-09 可動マスの電圧検出機能を備えたmemsセンサ Active JP6800515B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562265925P 2015-12-10 2015-12-10
US15/258,939 US10119834B2 (en) 2015-12-10 2016-09-07 MEMS sensor with voltage sensing of movable mass
PCT/IB2016/057471 WO2017098453A1 (en) 2015-12-10 2016-12-09 Mems sensor with voltage sensing of movable mass

Publications (2)

Publication Number Publication Date
JP2019502113A true JP2019502113A (ja) 2019-01-24
JP6800515B2 JP6800515B2 (ja) 2020-12-16

Family

ID=57570277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530131A Active JP6800515B2 (ja) 2015-12-10 2016-12-09 可動マスの電圧検出機能を備えたmemsセンサ

Country Status (4)

Country Link
US (1) US10119834B2 (ja)
EP (1) EP3387376B1 (ja)
JP (1) JP6800515B2 (ja)
WO (1) WO2017098453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193771B1 (en) 2020-06-05 2021-12-07 Analog Devices, Inc. 3-axis gyroscope with rotational vibration rejection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187201B2 (en) * 2015-12-30 2022-07-20 Paul Hartmann AG Portable medical device
CN108225296B (zh) * 2018-01-26 2019-12-27 维沃移动通信有限公司 一种mems陀螺仪、电子设备及电子设备的控制方法
CN108489460B (zh) * 2018-03-28 2020-07-10 福建省永正工程质量检测有限公司 一种高支模高精度倾角测试系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095104A (ja) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd 静電容量式センサ
US20130255377A1 (en) * 2012-04-03 2013-10-03 Seiko Epson Corporation Gyro sensor and electronic device including the same
JP2014016341A (ja) * 2012-06-13 2014-01-30 Denso Corp 静電容量式物理量センサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587518A (en) 1994-12-23 1996-12-24 Ford Motor Company Accelerometer with a combined self-test and ground electrode
DE19845185B4 (de) * 1998-10-01 2005-05-04 Eads Deutschland Gmbh Sensor mit Resonanzstruktur sowie Vorrichtung und Verfahren zum Selbsttest eines derartigen Sensors
JP3811304B2 (ja) 1998-11-25 2006-08-16 株式会社日立製作所 変位センサおよびその製造方法
US6918282B2 (en) 2003-03-27 2005-07-19 Delphi Technologies, Inc. Self-test circuit and method for testing a microsensor
DE102004026971B4 (de) 2004-06-02 2014-08-21 Robert Bosch Gmbh Mikromechanischer Sensor mit Fehlererkennung
DE102009029073B4 (de) 2009-09-01 2020-02-13 Robert Bosch Gmbh Verfahren zur Durchführung eines Selbsttests für eine mikromechanische Sensorvorrichtung und entsprechende mikromechanische Sensorvorrichtung
JP5963567B2 (ja) 2012-06-26 2016-08-03 日立オートモティブシステムズ株式会社 慣性センサ
US9238580B2 (en) 2013-03-11 2016-01-19 Analog Devices Global Spread-spectrum MEMS self-test system and method
FI127063B (en) * 2014-06-30 2017-10-31 Murata Manufacturing Co Self-testing in a closed-loop oscillating gyroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095104A (ja) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd 静電容量式センサ
US20130255377A1 (en) * 2012-04-03 2013-10-03 Seiko Epson Corporation Gyro sensor and electronic device including the same
JP2014016341A (ja) * 2012-06-13 2014-01-30 Denso Corp 静電容量式物理量センサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193771B1 (en) 2020-06-05 2021-12-07 Analog Devices, Inc. 3-axis gyroscope with rotational vibration rejection
US11774244B2 (en) 2020-06-05 2023-10-03 Analog Devices, Inc. 3-axis gyroscope with rotational vibration rejection

Also Published As

Publication number Publication date
WO2017098453A1 (en) 2017-06-15
EP3387376B1 (en) 2022-03-02
EP3387376A1 (en) 2018-10-17
US10119834B2 (en) 2018-11-06
JP6800515B2 (ja) 2020-12-16
US20170167874A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6697557B2 (ja) 補助自己試験機能を備えたジャイロスコープ
JP6800515B2 (ja) 可動マスの電圧検出機能を備えたmemsセンサ
JP6722288B2 (ja) 加速度計同相モード自己試験
JP5492302B2 (ja) 慣性センサ
JP2019502910A (ja) 加速度計センス経路自己試験
CN111465821B (zh) 微机电mems传感器及用于传感器的方法、微机电mems陀螺仪
CN108369098B (zh) 具有腔体压力监视的双密封mems封装
CN108369097B (zh) 双频陀螺仪补偿系统和方法
JP2019505770A (ja) Mems装置におけるシール破損の識別
WO2019139662A1 (en) Proof mass offset compensation
JP6802843B2 (ja) 加速度計の残留電圧自己試験
JP6955831B2 (ja) 運動センサ同相モード自己試験

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R151 Written notification of patent or utility model registration

Ref document number: 6800515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151