JP2019218545A - Bioplastic composite, and manufacturing method therefor - Google Patents

Bioplastic composite, and manufacturing method therefor Download PDF

Info

Publication number
JP2019218545A
JP2019218545A JP2019113075A JP2019113075A JP2019218545A JP 2019218545 A JP2019218545 A JP 2019218545A JP 2019113075 A JP2019113075 A JP 2019113075A JP 2019113075 A JP2019113075 A JP 2019113075A JP 2019218545 A JP2019218545 A JP 2019218545A
Authority
JP
Japan
Prior art keywords
weight
parts
compatibilizer
polylactic acid
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019113075A
Other languages
Japanese (ja)
Inventor
博幸 白浜
Hiroyuki Shirahama
博幸 白浜
義信 前田
Yoshinobu Maeda
義信 前田
祐介 柴田
Yusuke Shibata
祐介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiho Eng Co Ltd
Seiho Engineering Co Ltd
Original Assignee
Seiho Eng Co Ltd
Seiho Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiho Eng Co Ltd, Seiho Engineering Co Ltd filed Critical Seiho Eng Co Ltd
Publication of JP2019218545A publication Critical patent/JP2019218545A/en
Pending legal-status Critical Current

Links

Abstract

To provide a bioplastic composite excellent in physical properties such as mechanical strength or heat resistance, having toughness and rich in molding processability, and excellent in quality with good surface shape.SOLUTION: A composite is manufactured by adding a compatibility accelerator of 1.5 to 4.5 pts.wt., a crystallization acceleration nucleus agent of 0.5 to 1.5 pts.wt., a hydrolysis inhibitor of 0.25 to 0.75 pts.wt. to 100 pts.wt. of a mixture of polylactic acid and used paper fine ground article, and mixing them at 190°C or less. Carboxylic acid anhydride modified polyolefin, especially maleic acid anhydride modified polypropylene is suitable as the compatibility accelerator.SELECTED DRAWING: None

Description

本発明は、ポリ乳酸に古紙細砕物を配合したバイオプラスチック複合材に関し、特に大量の古紙細砕物が配合されたバイオプラスチック複合材であって、成形性、耐熱性、強度等が改良されたバイオプラスチック複合材の提供に関するものである。   The present invention relates to a bioplastic composite material obtained by mixing waste paper with polylactic acid, and in particular, a bioplastic composite material containing a large amount of waste paper, and having improved moldability, heat resistance, strength, etc. It relates to the provision of plastic composites.

昨今環境保全の観点からポリ乳酸、変性澱粉樹脂、脂肪族ポリエステル等の生分解性プラスチックの利用が積極的に行なわれているが、生分解性プラスチックは一般にそれ自体の機械的強度、耐熱性、成形加工性が悪く、物性の向上と経済性の改善が重要である。   Recently, biodegradable plastics such as polylactic acid, modified starch resin and aliphatic polyester have been actively used from the viewpoint of environmental protection. However, biodegradable plastics generally have their own mechanical strength, heat resistance, Moldability is poor, and it is important to improve physical properties and economic efficiency.

そこで、生分解性プラスチックに、古紙等のセルロース繊維を配合して、生分解性プラスチックの耐衝撃性、剛性等の機械強度や耐熱性、寸法安定性等の物理特性を補強し、併せて生分解性の向上と経済性効果を向上させる複合材の開発も行なわれている。   Therefore, cellulose fibers such as waste paper are blended with the biodegradable plastic to reinforce the mechanical properties such as impact resistance and rigidity of the biodegradable plastic and the physical properties such as heat resistance and dimensional stability. Composites have also been developed to improve the degradability and economic effects.

しかし、大量の古紙が配合された場合、古紙表面の特性の関係で生分解性樹脂に親和性を保たせることが重要であり、複合材組成物の機械強度には生分解性樹脂と古紙表面の接着力を強くすることが重要で、古紙表面と生分解性樹脂を接合するカップリング剤を使用することも好ましい。
そして、多量に古紙を配合した成形品は脆くなりやすく、成形品の外周に古紙が集中したり、精密加工が困難になる。また、成形品の表面に古紙が現れて成形品の表面状態を著しく損なう。
However, when a large amount of waste paper is blended, it is important to maintain affinity for the biodegradable resin due to the properties of the surface of the waste paper. It is important to increase the adhesive strength of the paper, and it is also preferable to use a coupling agent for joining the surface of the used paper and the biodegradable resin.
A molded article containing a large amount of used paper tends to become brittle, and the used paper concentrates on the outer periphery of the molded article, and precision processing becomes difficult. In addition, waste paper appears on the surface of the molded article, which significantly impairs the surface condition of the molded article.

そこで、生分解性プラスチック複合材の上記問題を解決するために、架橋剤や滑剤等の添加剤の併用が必要とされており、従来このような目的のために、イソシアネート系樹脂や有機パーオキサイド等の架橋剤やシラン、チタネート、アルミネート等のカップリング剤の検討も試みられている。
特許文献1にはポリ乳酸と天然繊維にシランカップリング剤を配合する技術が開示され、また特許文献2には熱可塑性樹脂と澱粉質系材料にチタネート、シラン、アルミネート系のカップリング剤を配合する材料の開発が開示されている。
しかしながらこれらの従来一般に使用されるカップリング剤は、チタン、シリコン、アルミ等の金属原子上に有機官能基とアルコキシ基のような加水分解基を有しており、有機官能基がマトリックスと相溶化し、加水分解基が加水分解して添加剤表面と化学結合して複合剤組成物をカップリングさせるものであるが、加工性に問題がある。
Therefore, in order to solve the above-mentioned problems of the biodegradable plastic composite material, it is necessary to use additives such as a cross-linking agent and a lubricant, and conventionally, for such a purpose, an isocyanate-based resin or an organic peroxide is used. Studies have been made on cross-linking agents such as silanes, coupling agents such as silanes, titanates, and aluminates.
Patent Document 1 discloses a technique of blending a polylactic acid and a natural fiber with a silane coupling agent. Patent Document 2 discloses a thermoplastic resin and a starch-based material containing a titanate, silane, or aluminate-based coupling agent. The development of compounding materials is disclosed.
However, these conventionally used coupling agents have an organic functional group and a hydrolyzable group such as an alkoxy group on a metal atom such as titanium, silicon, and aluminum, and the organic functional group is compatible with the matrix. In this method, the hydrolyzable group is hydrolyzed and chemically bonded to the surface of the additive to couple the composite agent composition, but there is a problem in workability.

特開2008−150599号JP-A-2008-150599 特開2004−2613号JP-A-2004-2613

本発明の目的は、古紙が配合された生分解性プラスチック複合材、特に大量の古紙粉が配合された生分解性プラスチック複合材にみられる上記のような種々の欠点を解消することにある。   SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned various drawbacks found in a biodegradable plastic composite containing waste paper, especially a biodegradable plastic composite containing a large amount of waste paper powder.

本発明者らは、鋭意研究の結果、下記構成のバイオプラスチック複合材及びその製造方法を開発した。
[1] ポリ乳酸と古紙細砕物との混合物100重量部に対して、相溶化剤1.5〜4.5重量部と、結晶化促進核剤0.5〜1.5重量部と、加水分解抑制剤0.25〜0.75重量部が混有してなることを特徴とするバイオプラスチック複合材。
[2] ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部が混有してなることを特徴とするバイオプラスチック複合材。
[3] 相溶化剤が、無水カルボン酸変性ポリオレフィンであることを特徴とする[1]〜[2]のいずれか1項に記載のバイオプラスチック複合材。
[4] 相溶化剤が、無水マレイン酸変性ポリプロピレンであることを特徴とする[1]〜[3]のいずれか1項に記載のバイオプラスチック複合材。
Means for Solving the Problems As a result of earnest research, the present inventors have developed a bioplastic composite material having the following structure and a method for producing the same.
[1] 1.5 to 4.5 parts by weight of a compatibilizer, 0.5 to 1.5 parts by weight of a crystallization promoting nucleator, and water A bioplastic composite material comprising 0.25 to 0.75 parts by weight of a decomposition inhibitor.
[2] 100 to 100 parts by weight of a mixture of polylactic acid and ground paper waste = 40 to 60:60 to 40 (weight ratio), 2.4 to 3.6 parts by weight of a compatibilizer and 0 crystallization promoting nucleating agent A bioplastic composite material comprising a mixture of 0.8 to 1.2 parts by weight and a hydrolysis inhibitor of 0.4 to 0.6 parts by weight.
[3] The bioplastic composite material according to any one of [1] to [2], wherein the compatibilizer is a carboxylic anhydride-modified polyolefin.
[4] The bioplastic composite material according to any one of [1] to [3], wherein the compatibilizer is maleic anhydride-modified polypropylene.

[5] ポリ乳酸と古紙細砕物との混合物100重量部に対して、相溶化剤1.5〜4.5重量部と、結晶化促進核剤0.5〜1.5重量部と、加水分解抑制剤0.25〜0.75重量部を添加し、190℃以下で混練することを特徴とするバイオプラスチック複合材の製造方法。
[6] ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部を添加し、190℃以下で混練することを特徴とするバイオプラスチック複合材の製造方法。
[7] 相溶化剤が、無水マレイン酸変性ポリプロピレンであることを特徴とする[5]〜[6]のいずれか1項に記載のバイオプラスチック複合材の製造方法。
[8] ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部を添加し、これら混合物を混練機に供給して、2軸式混練機でバレル温度150〜190℃、スクリュー回転数2〜6rpm、吐出2500〜7500g/hの条件で、混練押出すことを特徴とするバイオプラスチック複合材の製造方法。
[5] 1.5 to 4.5 parts by weight of a compatibilizer, 0.5 to 1.5 parts by weight of a crystallization promoting nucleator, and 100 parts by weight of a mixture of polylactic acid and ground paper waste, A method for producing a bioplastic composite material, comprising adding 0.25 to 0.75 parts by weight of a decomposition inhibitor and kneading at 190 ° C or lower.
[6] 2.4-3.6 parts by weight of a compatibilizer and 100 parts by weight of a mixture of polylactic acid: ground paper waste = 40-60: 60-40 (weight ratio) and a crystallization promoting nucleating agent 0 0.8 to 1.2 parts by weight, and 0.4 to 0.6 parts by weight of a hydrolysis inhibitor, and kneading at 190 ° C. or lower.
[7] The method for producing a bioplastic composite according to any one of [5] to [6], wherein the compatibilizer is maleic anhydride-modified polypropylene.
[8] 2.4 to 3.6 parts by weight of a compatibilizer and 0 crystallization promoting nucleating agent per 100 parts by weight of a mixture of polylactic acid: ground paper waste = 40 to 60:60 to 40 (weight ratio) 0.8 to 1.2 parts by weight and 0.4 to 0.6 parts by weight of a hydrolysis inhibitor are added, and the mixture is supplied to a kneading machine. A method for producing a bioplastic composite material, comprising kneading and extruding under conditions of a screw rotation speed of 2 to 6 rpm and a discharge of 2500 to 7500 g / h.

本発明によれば、機械強度や耐熱性等の物理特性が優れ、強靭で成形加工性に富み、表面性状の良い品質の優れたバイオプラスチック複合材を提供できる。
本発明で得られるバイオプラスチック複合材は、主原料が生分解性のポリ乳酸と古紙から構成されていて、全体として生分解性製品となっているため、環境汚染をしない優れたバイオプラスチック複合材となる。
According to the present invention, it is possible to provide a bioplastic composite material having excellent physical properties such as mechanical strength and heat resistance, toughness, excellent moldability, and excellent quality in surface properties.
The bioplastic composite material obtained by the present invention is an excellent bioplastic composite material that does not cause environmental pollution because the main raw material is composed of biodegradable polylactic acid and waste paper and is a biodegradable product as a whole. It becomes.

本発明で用いる生分解性樹脂としてのポリ乳酸は、
乳酸を基本単位とし、複数の乳酸が連なって高分子量となった脂肪族ポリエステルの一種であり、例えば、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸であるポリ(DL−乳酸)やこれらの混合物、L−乳酸とD−乳酸とのランダム共重合体、L−乳酸とD−乳酸とのステレオコンプレックスなどが挙げられる。
これらのポリ乳酸を製造するには、例えば、乳酸などのモノマーや、その他の組成物を混合しこれを適切な触媒と、開始剤の存在下、直接脱水重合する方法、リパーゼなどの酵素反応を利用して合成する方法など、目的に応じて適宜選択した公知の方法に従って重合させることにより得ることができる。環状ラクチドの開環重合で合成する方法によりポリ乳酸を得ることも好ましい。
前記ポリ乳酸は、特に制限はなく、目的に応じて適宜選択することができ、乳酸から環状二量体ラクチドを経て、触媒の存在下で開環重合することによって合成することができる。
ポリ乳酸樹脂の重量平均分子量は、耐加水分解性を向上させる観点から、好ましくは10万〜40万である。
Polylactic acid as a biodegradable resin used in the present invention,
It is a kind of aliphatic polyester in which lactic acid is a basic unit and a plurality of lactic acids are linked to form a high molecular weight. For example, poly (L-lactic acid) whose structural unit is L-lactic acid, and whose structural unit is D-lactic acid Poly (D-lactic acid), poly (DL-lactic acid) whose structural units are L-lactic acid and D-lactic acid, and mixtures thereof, random copolymers of L-lactic acid and D-lactic acid, L-lactic acid and D-lactic acid Examples include a stereo complex with lactic acid.
In order to produce these polylactic acids, for example, a method of mixing monomers such as lactic acid and other compositions, and then directly mixing them with an appropriate catalyst and an initiator to perform dehydration polymerization, an enzymatic reaction such as lipase, etc. It can be obtained by polymerizing according to a known method appropriately selected according to the purpose, such as a method of utilizing and synthesizing. It is also preferable to obtain polylactic acid by a method of synthesizing by ring-opening polymerization of cyclic lactide.
The polylactic acid is not particularly limited and may be appropriately selected depending on the intended purpose. The polylactic acid can be synthesized by subjecting lactic acid to cyclic dimer lactide and ring-opening polymerization in the presence of a catalyst.
The weight average molecular weight of the polylactic acid resin is preferably from 100,000 to 400,000 from the viewpoint of improving the hydrolysis resistance.

本発明で混練機に供給して用いる古紙としては、粒径が4〜0.05mmのものが好ましい。
そして、混練機で古紙とポリ乳酸、相溶化剤、結晶化促進核剤、加水分解抑制剤とともに混練されて得られたバイオプラスチック複合材中においては、古紙のサイズは平均粒径10〜80μmとなって存在している。
古紙としては、上記のような新聞古紙のほかに、書籍、雑誌、電話帳、カタログ類、上質紙、包装用箱、段ボール箱、パルプモールド、紙製緩衝材、あるいは抄紙、印刷、製本、製箱、段ボール製造などの工場・事業場から排出される裁落、損紙等が挙げられる。これらは単独使用あるいは二種以上の併用が可能である。
古紙細砕物及びポリ乳酸の合計が100重量部である際に、古紙細砕物が60重量部を超える場合又はポリ乳酸が40重量部未満の場合は、混和物の流動性が低下し、用いる成形方法が限定され、細かな形状の成形品は得られにくい。
一方、古紙細砕物が40重量部未満又はポリ乳酸が60重量部を超える場合は、得られる古紙細砕物含有ポリ乳酸組成物成形品の耐熱性が低下し、コストも割高になる。
The used paper supplied to the kneader in the present invention is preferably one having a particle size of 4 to 0.05 mm.
And, in the bioplastic composite material obtained by kneading the used paper with polylactic acid, a compatibilizer, a crystallization accelerating nucleating agent, and a hydrolysis inhibitor in a kneading machine, the size of the used paper has an average particle size of 10 to 80 μm. It exists.
As used paper, in addition to the used newspaper used above, books, magazines, telephone directories, catalogs, woodfree paper, packaging boxes, cardboard boxes, pulp molds, paper cushioning materials, or papermaking, printing, bookbinding, binding Paper cuts, waste paper, and the like discharged from factories and business sites such as boxes and cardboard manufacturing. These can be used alone or in combination of two or more.
When the sum of the used paper pulverized material and the polylactic acid is 100 parts by weight, and the used paper pulverized material exceeds 60 parts by weight or the polylactic acid is less than 40 parts by weight, the fluidity of the admixture decreases and the molding used The method is limited, and it is difficult to obtain a molded article having a fine shape.
On the other hand, when the used paper pulverized material is less than 40 parts by weight or the polylactic acid exceeds 60 parts by weight, the heat resistance of the obtained used paper pulverized material-containing polylactic acid composition is reduced, and the cost is relatively high.

そして本発明で用いる相溶化剤の働きは、疎水性のポリ乳酸と、それより親水性の高い古紙をうまく混和させた上で、結晶化促進核剤や加水分解抑制剤などの添加剤を複合材中に均一に分散させるものであり、その化合物としては、カルボン酸変性ポリオレフィン、特に無水マレイン酸変性ポリプロピレンが好ましい。
無水マレイン酸変性ポリプロピレンは、分子量が9,000〜70,000、酸価が3〜120のもの、例えば「ユーメックス」(商品名:三洋化成工業(株)製)が好ましい。
また、結晶化促進核剤の働きは、結晶化速度の遅いポリ乳酸の球晶核形成を促進するものであり、その化合物としては、エステル基、水酸基又はアミド基を含む脂肪族化合物が好ましく、例えばチラバゾールP−4(登録商標:太陽化学社製)やLAK−301(竹本油脂社製)好ましい。
その添加量は0.8〜1.5重量部が好ましい。
さらに加水分解抑制剤の働きは、元来存在するポリ乳酸の親水性末端基(−COOH基、−OH基)や、ポリ乳酸の加水分解により生じたそれら末端基と反応して末端基を封鎖したり、それら末端基の分子間架橋をして加水分解反応を抑制するものであり、その化合物としてはカルボジイミド基含有化合物が好ましく、例えば、カルボジライト(登録商標:日清紡ケミカル社製)が挙げられ、それらの中でも、有機溶剤との相溶性に優れるものが好ましい。
その添加量は0.4〜0.6重量部が好ましい。
The function of the compatibilizer used in the present invention is to mix well the hydrophobic polylactic acid and the highly hydrophilic waste paper, and then combine the additives such as the crystallization promoting nucleating agent and the hydrolysis inhibitor. The compound is uniformly dispersed in the material, and the compound is preferably a carboxylic acid-modified polyolefin, particularly, maleic anhydride-modified polypropylene.
The maleic anhydride-modified polypropylene preferably has a molecular weight of 9,000 to 70,000 and an acid value of 3 to 120, for example, "UMEX" (trade name, manufactured by Sanyo Chemical Industries, Ltd.).
In addition, the function of the crystallization promoting nucleating agent is to promote spherulite nucleation of polylactic acid having a low crystallization rate, and as the compound, an aliphatic compound containing an ester group, a hydroxyl group or an amide group is preferable, For example, Tirabazole P-4 (registered trademark: manufactured by Taiyo Kagaku Co., Ltd.) and LAK-301 (manufactured by Takemoto Yushi Co., Ltd.) are preferable.
The addition amount is preferably 0.8 to 1.5 parts by weight.
Further, the function of the hydrolysis inhibitor is to block the terminal groups by reacting with the hydrophilic terminal groups (-COOH group, -OH group) of polylactic acid which originally exist and those terminal groups generated by hydrolysis of polylactic acid. Carbodiimide group-containing compounds, such as carbodiimide (registered trademark: manufactured by Nisshinbo Chemical Co., Ltd.). Among them, those having excellent compatibility with the organic solvent are preferable.
The addition amount is preferably 0.4 to 0.6 parts by weight.

次に実施例によって更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
実施例1:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290:2500g
(2)古紙:2500g
(3)相溶化剤(三洋化成工業社製ユーメックス1001、通常タイプ):150g
(4)結晶化促進核剤(竹本油脂社製LAK−301):50g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5225gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット) を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Next, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to the following examples.
Example 1
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials, Inc .: 2500 g)
(2) Waste paper: 2500 g
(3) Compatibilizer (Umex 1001, Sanyo Chemical Industries, normal type): 150 g
(4) Crystallization promoting nucleating agent (LAK-301 manufactured by Takemoto Yushi Co., Ltd.): 50 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5225 g of the mixture of the above (1) to (5) was supplied to a biaxial kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection molded at a cylinder temperature of 175 ° C. and a mold temperature of 50 ° C. using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.).
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例2:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2500g
(2)古紙:2500g
(3)相溶化剤(三洋化成工業社製ユーメックス1001):150g
(4)結晶化促進核剤(太陽化学社製チラバゾールP−4):50g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5225gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 2:
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2500 g
(2) Waste paper: 2500 g
(3) Compatibilizer (Umex 1001 manufactured by Sanyo Chemical Industries, Ltd.): 150 g
(4) Crystallization accelerating nucleating agent (Tirabazole P-4 manufactured by Taiyo Kagaku): 50 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5225 g of the mixture of the above (1) to (5) was supplied to a biaxial kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection-molded using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C.
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例3:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2500g
(2)古紙:2500g
(3)相溶化剤(三洋化成工業社製ユーメックス1010、高酸価タイプ):150g
(4)結晶化促進核剤(太陽化学社製チラバゾールP−4):50g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5225gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 3
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2500 g
(2) Waste paper: 2500 g
(3) Compatibilizer (Umex 1010 manufactured by Sanyo Chemical Industries, high acid value type): 150 g
(4) Crystallization accelerating nucleating agent (Tirabazole P-4 manufactured by Taiyo Kagaku): 50 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5225 g of the mixture of the above (1) to (5) was supplied to a biaxial kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection molded at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.).
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例4:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2750g
(2)古紙:2250g
(3)相溶化剤(三洋化成工業社製ユーメックス1001):150g
(4)結晶化促進核剤(太陽化学社製チラバゾールP−4):50g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5225gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 4:
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2750 g
(2) Waste paper: 2250 g
(3) Compatibilizer (Umex 1001 manufactured by Sanyo Chemical Industries, Ltd.): 150 g
(4) Crystallization accelerating nucleating agent (Tirabazole P-4 manufactured by Taiyo Kagaku): 50 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5225 g of the mixture of the above (1) to (5) was supplied to a biaxial kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into pellets to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection-molded using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C.
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例5:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2750g
(2)古紙:2250g
(3)相溶化剤(三洋化成工業社製ユーメックス1001):150g
(4)結晶化促進核剤(太陽化学社製チラバゾールP−4):75g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5250gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 5:
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2750 g
(2) Waste paper: 2250 g
(3) Compatibilizer (Umex 1001 manufactured by Sanyo Chemical Industries, Ltd.): 150 g
(4) Crystallization accelerating nucleating agent (Tirabazole P-4 manufactured by Taiyo Kagaku Co., Ltd.): 75 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5250 g of the mixture of the above (1) to (5) was supplied to a twin-screw kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection-molded using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C.
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例6:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2750g
(2)古紙:2250g
(3)相溶化剤(三洋化成工業社製ユーメックス1001):150g
(4)結晶化促進核剤(太陽化学社製チラバゾールP−4):100g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5275gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 6:
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2750 g
(2) Waste paper: 2250 g
(3) Compatibilizer (Umex 1001 manufactured by Sanyo Chemical Industries, Ltd.): 150 g
(4) Crystallization promoting nucleating agent (Tirabazole P-4 manufactured by Taiyo Kagaku): 100 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5275 g of the mixture of the above (1) to (5) was supplied to a twin-screw kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection-molded using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C.
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

実施例7:
(1)ポリ乳酸(PLA,海正生物材料社製REVODE290):2750g
(2)古紙:2250g
(3)相溶化剤(三洋化成工業社製ユーメックス1001):150g
(4)結晶化促進核剤(竹本油脂社製LAK−301):75g
(5)加水分解抑制剤(日清紡ケミカル社製カルボジライトLA−1):25g
以上(1)〜(5)の混合物5250gを2軸式混練機に供給して、バレル温度180℃、スクリュー回転数4rpm、吐出5000g/hの条件で、混練押出を実施した。
押出機先端から吐出された樹脂をペレット状にカッティングしてバイオプラスチック複合材(ペレット状のもの)を得た。
次に、このバイオプラスチック複合材(ペレット)を射出成形機(住友重機械社製SE30S)を用いてシリンダ温度175℃、金型温度50℃で射出成形した。
前記射出成形体の引張物性・曲げ物性・耐衝撃性・耐熱性を測定した。
Example 7:
(1) Polylactic acid (PLA, REVODE290 manufactured by Kaisho Biomaterials): 2750 g
(2) Waste paper: 2250 g
(3) Compatibilizer (Umex 1001 manufactured by Sanyo Chemical Industries, Ltd.): 150 g
(4) Crystallization promoting nucleating agent (LAK-301 manufactured by Takemoto Yushi Co., Ltd.): 75 g
(5) Hydrolysis inhibitor (Carbodilite LA-1 manufactured by Nisshinbo Chemical Inc.): 25 g
5250 g of the mixture of the above (1) to (5) was supplied to a twin-screw kneader, and kneading and extrusion were performed under the conditions of a barrel temperature of 180 ° C., a screw rotation speed of 4 rpm, and a discharge of 5000 g / h.
The resin discharged from the tip of the extruder was cut into a pellet to obtain a bioplastic composite (pellet).
Next, this bioplastic composite material (pellet) was injection-molded using an injection molding machine (SE30S manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 175 ° C and a mold temperature of 50 ° C.
The tensile properties, bending properties, impact resistance and heat resistance of the injection molded article were measured.

比較例1:
特許第6035854号より抜粋、複合化材の組成(PLA:古紙)は実施例とほぼ同様(PLA:古紙:有機チタネート=45:50:5)。
*1)比較例1と同様の組成物を本出願人らが測定した値。
*2):PLA物性値:出願人らが合成し、測定した値。
上記実施例1〜7及び比較例1、PLAの物性値を表1に示した。

Figure 2019218545
Comparative Example 1:
Excerpted from Japanese Patent No. 6035854, the composition of the composite material (PLA: waste paper) is almost the same as in the example (PLA: waste paper: organic titanate = 45: 50: 5).
* 1) A value measured by the present applicant for the same composition as in Comparative Example 1.
* 2): PLA physical property value: a value synthesized and measured by the applicants.
Table 1 shows the physical properties of Examples 1 to 7 and Comparative Example 1 and PLA.
Figure 2019218545

実施例による本発明の特徴
・比較例1に比べ、本実施例はいずれも引っ張り及び曲げ強度が高い。これは相溶化剤(ユーメックス)により古紙がPLA樹脂中により均一に分散された結果、ガラス繊維や炭素繊維強化プラスチック等と同様に強度が増強されたものと考えられる。
・PLAは今回の射出成形のような成形時間が短く(約1分)、金型温度(30〜50℃)も低い条件下では、結晶化速度が遅く結晶化が十分に進行していないため、耐熱性(荷重たわみ温度)も50〜60℃と低い(表1のPLAでは53℃)。これに対し実施例1〜3では、PLAの結晶化温度(約110℃)に金型温度を上げる必要もなく、通常の金型温度(50℃)で成形しても、いずれも耐熱性が大幅に向上している。これは相溶化剤により古紙の樹脂中への分散効果が高まったことと、結晶化促進核剤を使用していることの相乗効果によるものと考えている。
このこと(金型温度を110℃近辺まで上げる必要がないこと)は、省エネや装置の簡便化の点からも大いに有利な点である。
比較例1では、PLAよりも耐熱性は向上しているが、荷重たわみ温度は80℃と水が沸騰するような条件下では使用不可である。
・実施例4〜7はPLA樹脂量を増やして(古紙量を減らして)、複合化材ペレットの成形性(特に射出成形性)を高めようとした例である。
ところが、樹脂量を増やした結果、結晶化促進核剤(P−4またはLAK−301)の量が相対的に低下し、結晶化が十分に進行しないためか、荷重たわみ温度(耐熱性)が65℃とかなり低下した(実施例4)。このため、実施例5と6では、結晶化促進核剤(P−4)の添加量をそれぞれ1.5倍と2倍に増やして物性を測定した。しかしながら表から分かるように、核剤P−4を用いた場合、荷重たわみ温度はそれぞれ77℃及び74℃となり、それほど耐熱性は向上しなかった。
次に実施例7では、核剤としてLAK−301を従来(実施例4)の1.5倍使用した物性について検討した。その結果、荷重たわみ温度はこれまでの最高値(153℃)まで上昇し、その他の物性も良好な値を示した。この結果より、PLA複合化材の結晶化促進核剤としてはP−4よりもLAK−301の方が優れているものと推察される。
・PLAはそのガラス転移温度(約56℃)以上で湿度が高い(高温・高湿)条件下では、加水分解が容易に進行する。このため実施例ではいずれも加水分解抑制剤(ポリカルボジイミド(カルボジライト))を使用している。85℃で60分の加水分解実験を行ったところ、PLA及び比較例1ではPLAの分子量が大きく低下し(約半分に低下)、射出成形したダンベル試験片が簡単に手で折れたが、実施例ではいずれもPLA分子量の低下が抑制され、加水分解試験片も簡単に折れることはなかった。
Features of the present invention according to the examples. Compared to Comparative Example 1, each of the examples has a higher tensile and bending strength. This is considered to be because the used paper was more uniformly dispersed in the PLA resin by the compatibilizer (UMEX), and as a result, the strength was enhanced in the same manner as glass fiber or carbon fiber reinforced plastic.
・ PLA has a short crystallization time (about 1 minute) and a low mold temperature (30 to 50 ° C) as in this injection molding. Also, heat resistance (deflection temperature under load) is as low as 50 to 60 ° C (53 ° C for PLA in Table 1). On the other hand, in Examples 1 to 3, there is no need to raise the mold temperature to the crystallization temperature of PLA (about 110 ° C.). It has improved significantly. This is thought to be due to the synergistic effect of the use of the crystallization-promoting nucleating agent and the enhancement of the dispersing effect of the used paper in the resin by the compatibilizer.
This (the mold temperature does not need to be raised to around 110 ° C.) is a great advantage also in terms of energy saving and simplification of the apparatus.
In Comparative Example 1, the heat resistance is higher than that of PLA, but it cannot be used under the condition that the deflection temperature under load is 80 ° C. and water boils.
-Examples 4 to 7 are examples in which the amount of PLA resin is increased (the amount of waste paper is reduced) to improve the moldability (particularly, injection moldability) of the composite material pellet.
However, as a result of increasing the amount of the resin, the amount of the crystallization promoting nucleating agent (P-4 or LAK-301) relatively decreases, and the crystallization does not proceed sufficiently. The temperature dropped considerably to 65 ° C. (Example 4). For this reason, in Examples 5 and 6, the physical properties were measured by increasing the amount of the crystallization promoting nucleating agent (P-4) by 1.5 times and 2 times, respectively. However, as can be seen from the table, when nucleating agent P-4 was used, the deflection temperatures under load were 77 ° C. and 74 ° C., respectively, and the heat resistance was not so improved.
Next, in Example 7, the physical properties of LAK-301 as a nucleating agent, which was 1.5 times as much as the conventional (Example 4), were examined. As a result, the deflection temperature under load rose to the maximum value (153 ° C.) so far, and other physical properties also showed favorable values. From this result, it is inferred that LAK-301 is superior to P-4 as a crystallization promoting nucleating agent for the PLA composite material.
-PLA is easily hydrolyzed under conditions of high glass transition temperature (about 56 ° C) and high humidity (high temperature and high humidity). Therefore, in each of the examples, a hydrolysis inhibitor (polycarbodiimide (carbodilite)) is used. When a hydrolysis experiment was conducted at 85 ° C. for 60 minutes, the molecular weight of PLA and Comparative Example 1 was significantly reduced (reduced to about half), and the injection-molded dumbbell test piece was easily broken by hand. In each of the examples, the decrease in PLA molecular weight was suppressed, and the hydrolysis test piece was not easily broken.

Claims (8)

ポリ乳酸と古紙細砕物との混合物100重量部に対して、相溶化剤1.5〜4.5重量部と、結晶化促進核剤0.5〜1.5重量部と、加水分解抑制剤0.25〜0.75重量部が混有してなることを特徴とするバイオプラスチック複合材。   1.5 to 4.5 parts by weight of a compatibilizer, 0.5 to 1.5 parts by weight of a crystallization promoting nucleating agent, and a hydrolysis inhibitor based on 100 parts by weight of a mixture of polylactic acid and ground paper. A bioplastic composite material comprising a mixture of 0.25 to 0.75 parts by weight. ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部が混有してなることを特徴とするバイオプラスチック複合材。   2.4-3.6 parts by weight of a compatibilizer and 0.8-0.8 parts by weight of a crystallization promoting nucleator, based on 100 parts by weight of a mixture of polylactic acid: ground paper waste = 40-60: 60-40 (weight ratio) A bioplastic composite material comprising 1.2 parts by weight and 0.4 to 0.6 parts by weight of a hydrolysis inhibitor. 相溶化剤が、無水カルボン酸変性ポリオレフィンであることを特徴とする請求項1〜2のいずれか1項に記載のバイオプラスチック複合材。   The bioplastic composite according to any one of claims 1 to 2, wherein the compatibilizer is a carboxylic anhydride-modified polyolefin. 相溶化剤が、無水マレイン酸変性ポリプロピレンであることを特徴とする請求項1〜3のいずれか1項に記載のバイオプラスチック複合材。   The bioplastic composite according to any one of claims 1 to 3, wherein the compatibilizer is maleic anhydride-modified polypropylene. ポリ乳酸と古紙細砕物との混合物100重量部に対して、相溶化剤1.5〜4.5重量部と、結晶化促進核剤0.5〜1.5重量部と、加水分解抑制剤0.25〜0.75重量部を添加し、190℃以下で混練することを特徴とするバイオプラスチック複合材の製造方法。   1.5 to 4.5 parts by weight of a compatibilizer, 0.5 to 1.5 parts by weight of a crystallization promoting nucleating agent, and a hydrolysis inhibitor based on 100 parts by weight of a mixture of polylactic acid and ground paper. A method for producing a bioplastic composite material, comprising adding 0.25 to 0.75 parts by weight and kneading at 190 ° C or lower. ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部を添加し、190℃以下で混練することを特徴とするバイオプラスチック複合材の製造方法。   2.4-3.6 parts by weight of a compatibilizer and 0.8-0.8 parts by weight of a crystallization promoting nucleator, based on 100 parts by weight of a mixture of polylactic acid: ground paper waste = 40-60: 60-40 (weight ratio) A method for producing a bioplastic composite material, comprising adding 1.2 parts by weight and 0.4 to 0.6 parts by weight of a hydrolysis inhibitor and kneading at 190 ° C. or lower. 相溶化剤が、無水マレイン酸変性ポリプロピレンであることを特徴とする請求項5又は6に記載のバイオプラスチック複合材の製造方法。   7. The method for producing a bioplastic composite according to claim 5, wherein the compatibilizer is maleic anhydride-modified polypropylene. ポリ乳酸:古紙細砕物=40〜60:60〜40(重量比)の混合物100重量部に対して、相溶化剤2.4〜3.6重量部と、結晶化促進核剤0.8〜1.2重量部と、加水分解抑制剤0.4〜0.6重量部を添加し、これら混合物を混練機に供給して、2軸式混練機でバレル温度150〜190℃、スクリュー回転数2〜6rpm、吐出2500〜7500g/hの条件で、混練押出すことを特徴とするバイオプラスチック複合材の製造方法。
2.4-3.6 parts by weight of a compatibilizer and 0.8-0.8 parts by weight of a crystallization promoting nucleator, based on 100 parts by weight of a mixture of polylactic acid: ground paper waste = 40-60: 60-40 (weight ratio) 1.2 parts by weight and 0.4 to 0.6 parts by weight of a hydrolysis inhibitor were added, and the mixture was fed to a kneader. A method for producing a bioplastic composite material, comprising kneading and extruding under conditions of 2 to 6 rpm and discharge of 2500 to 7500 g / h.
JP2019113075A 2018-06-18 2019-06-18 Bioplastic composite, and manufacturing method therefor Pending JP2019218545A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115055 2018-06-18
JP2018115055 2018-06-18

Publications (1)

Publication Number Publication Date
JP2019218545A true JP2019218545A (en) 2019-12-26

Family

ID=69095654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113075A Pending JP2019218545A (en) 2018-06-18 2019-06-18 Bioplastic composite, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2019218545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070692A1 (en) 2020-09-30 2022-04-07 大王製紙株式会社 Polylactic acid composite resin
WO2022070691A1 (en) 2020-09-30 2022-04-07 大王製紙株式会社 Cellulose composite resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070692A1 (en) 2020-09-30 2022-04-07 大王製紙株式会社 Polylactic acid composite resin
WO2022070691A1 (en) 2020-09-30 2022-04-07 大王製紙株式会社 Cellulose composite resin

Similar Documents

Publication Publication Date Title
Sangeetha et al. State of the art and future prospectives of poly (lactic acid) based blends and composites
JP5267580B2 (en) Kenaf fiber reinforced resin composition
JP2020125470A (en) Bio-plastic composite material and method for producing the same
JP4013870B2 (en) Method for producing aliphatic polyester composition
JP4572516B2 (en) Method for producing resin composition
KR101281834B1 (en) Biodegradable polymer composite
KR20130103154A (en) Polypropylene-polylactic acid mixed resin/graphene/natural fiber bionanocomposite and manufacturing method of thereof
WO2007015371A1 (en) Resin compositions, method of producing the same and molded article obtained therefrom
JP2008081585A (en) Polylactic acid-based resin molded product
Yuryev et al. Novel super-toughened bio-based blend from polycarbonate and poly (lactic acid) for durable applications
JPWO2007094478A1 (en) Polylactic acid resin composition and molded article
US20150361258A1 (en) Poly (lactic acid)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof
JP5279415B2 (en) Resin composition and molded body using the same
JP2009096892A (en) Polylactic acid-based resin composition and molded article of the same
Bajwa et al. Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller
JP2019218545A (en) Bioplastic composite, and manufacturing method therefor
JP2005220171A (en) Lactic acid-based polymer composition
JPS6028446A (en) Thermoplastic polyester resin composition
KR20110056037A (en) Acrylonitrile-butadiene-styrene composition for bio-degradable property and interior materials of vehicle having superior impact strength
JP2008201863A (en) Method for producing molded article of polylactic acid resin
KR20100079518A (en) Polymeric composite materials comprising poly lactic acid
WO2007119342A1 (en) Aliphatic polyester resin composition
KR20120041626A (en) Acrylonitrile-butadiene-styrene copolymer/polylactic acid composites
JP2008222865A (en) Biomass resin composition
JP5004262B2 (en) Resin composition and molded article comprising the same

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722