JP2019216203A - Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module - Google Patents

Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module Download PDF

Info

Publication number
JP2019216203A
JP2019216203A JP2018113303A JP2018113303A JP2019216203A JP 2019216203 A JP2019216203 A JP 2019216203A JP 2018113303 A JP2018113303 A JP 2018113303A JP 2018113303 A JP2018113303 A JP 2018113303A JP 2019216203 A JP2019216203 A JP 2019216203A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
vibration waveform
waveform sensor
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018113303A
Other languages
Japanese (ja)
Inventor
隆幸 後藤
Takayuki Goto
隆幸 後藤
松田 勲
Isao Matsuda
勲 松田
寛之 清水
Hiroyuki Shimizu
寛之 清水
岸本純明
Sumiaki Kishimoto
純明 岸本
幸宏 小西
Yukihiro Konishi
幸宏 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018113303A priority Critical patent/JP2019216203A/en
Priority to PCT/JP2019/023029 priority patent/WO2019240111A1/en
Priority to CN201980038755.1A priority patent/CN112262483A/en
Publication of JP2019216203A publication Critical patent/JP2019216203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To detect vibration with high sensitivity and reduce environmental load, without using lead-containing ceramics material and monocrystalline material.SOLUTION: In a piezoelectric element 100, a piezoelectric layer 102 and internal electrode layers 104, 106 are alternately layered and a cover layer 108 is layered thereon. As the piezoelectric layer 102, for example, an alkali niobate-based piezoelectric material is used. External electrodes 120, 122 are formed at end faces from which the internal electrode layers 104, 106 are exposed, and high voltages are applied thereto, to perform polarizing the piezoelectric layer 102. The external electrodes 120, 122 are fixed onto an electrical connection part of the substrate 140 via solder or conductive resins 130, 132. Due to the piezoelectric material containing no lead, an electro-mechanical coupling coefficient becomes low in comparison with that of the monocrystalline piezoelectric material. However, by layering many piezoelectric layers, sufficient detection sensitivity for vibration can be obtained and environmental load can also be reduced.SELECTED DRAWING: Figure 1

Description

本発明は、圧電素子,それを用いた振動波形センサー,及び振動波形センサーモジュールに関するものであり、例えば、脈拍などの各種の振動波形の検出に好適な圧電素子,振動波形センサー,及び振動波形センサーモジュールの改良に関する。   The present invention relates to a piezoelectric element, a vibration waveform sensor using the same, and a vibration waveform sensor module. For example, the present invention relates to a piezoelectric element, a vibration waveform sensor, and a vibration waveform sensor suitable for detecting various vibration waveforms such as a pulse. Regarding module improvement.

IoT(Internet of Things)が急速に普及する現代では、センサーの必要数が加速的に増加し、各種のセンサーをより低いコストで、環境にやさしく、かつ大量に製造する技術が求められる。例えば、下記特許文献1には、音波や脈波などを効率よく検知することを目的とした広帯域センサーが開示されており、絶縁基板の表面に圧電素子を設け、この圧電素子2を囲んで、開口を有する筒状部材を設ける構成としている。従来の広帯域向けの振動波形センサーは、低周期の振動を検知するために片持ち梁構造とするなど大掛かりであったが、この背景技術によれば、前記開口を体表に当接させて密閉キャビティを形成することで、コンパクトに、かつ、低ノイズで微小振動を広帯域で検知することが可能となっている。   In the modern age of the Internet of Things (IoT), the required number of sensors is increasing at an accelerating pace, and there is a need for technologies for manufacturing various sensors at lower cost, environmentally friendly, and in large quantities. For example, Patent Document 1 below discloses a broadband sensor for the purpose of efficiently detecting sound waves, pulse waves, and the like. A piezoelectric element is provided on the surface of an insulating substrate. A cylindrical member having an opening is provided. Conventional vibration waveform sensors for broadband use are large-scale, such as a cantilever structure in order to detect low-frequency vibrations. However, according to this background art, the opening is brought into contact with the body surface and sealed. By forming the cavity, it is possible to detect minute vibrations in a wide band in a compact and low noise manner.

下記特許文献2には、電気機械結合係数ないし圧電定数が大きく、音速やSAW速度が小さい圧電単結晶組成物を用いることにより、圧電フィルター、圧電共振子、圧電ジャイロ等の体積弾性波を利用した圧電振動子及び圧電フィルター、センサーなどの弾性表面波デバイスの小型化を可能にする点が開示されている。   Patent Literature 2 below uses a bulk acoustic wave of a piezoelectric filter, a piezoelectric resonator, a piezoelectric gyro, or the like by using a piezoelectric single crystal composition having a large electromechanical coupling coefficient or a piezoelectric constant and a small sound speed or a small SAW speed. It is disclosed that a surface acoustic wave device such as a piezoelectric vibrator, a piezoelectric filter, and a sensor can be miniaturized.

国際公開WO2013/145352号公報International Publication WO2013 / 145352 特開2006-282433号公報JP 2006-282433 A

ところで、電気機械結合係数kが高い圧電材料としては、チタン酸ジルコン酸鉛(PZT)やチタン酸鉛(PT)に代表される圧電単結晶が知られており、広く使用されているが、鉛を含むことから、環境安全面において懸念がある。また、圧電単結晶組成物を圧電層に利用するとなると、製造コストの面でも好ましいとは言えない。   By the way, as a piezoelectric material having a high electromechanical coupling coefficient k, a piezoelectric single crystal represented by lead zirconate titanate (PZT) or lead titanate (PT) is known and widely used. Therefore, there are concerns about environmental safety. Further, if the piezoelectric single crystal composition is used for the piezoelectric layer, it cannot be said that the manufacturing cost is preferable.

本発明は、かかる点に着目したもので、その目的は、鉛を含むセラミックス及び単結晶材料を使用することなく、高い感度で振動検出を行うことである。他の目的は、環境負荷を低減するとともに、コスト的にも有利に振動検出を行うことである。   The present invention focuses on this point, and an object thereof is to perform vibration detection with high sensitivity without using lead-containing ceramics and single crystal materials. Another object is to reduce vibrations and to detect vibrations advantageously in terms of cost.

本発明の圧電素子は、複数の内部電極層と、非鉛の圧電材料によって形成されており、前記内部電極層に分極用の電圧を印加して、積層方向に分極した複数の圧電層と、該複数の圧電層を、前記複数の内部電極層を挟んで積層した積層体の表裏に積層されたカバー層と、を含むことを特徴とする。主要な形態の一つによれば、前記圧電素子の長辺方向の両端にそれぞれ形成されており、前記内部電極層を交互に接続した外部接続用の外部電極とを備えたことを特徴とする。   The piezoelectric element of the present invention is formed of a plurality of internal electrode layers and a lead-free piezoelectric material, applying a voltage for polarization to the internal electrode layers, and a plurality of piezoelectric layers polarized in the stacking direction, And a cover layer laminated on the front and back sides of the laminate in which the plurality of piezoelectric layers are laminated with the plurality of internal electrode layers interposed therebetween. According to one of the main modes, the piezoelectric element includes external electrodes for external connection, which are formed at both ends in the long side direction of the piezoelectric element and alternately connect the internal electrode layers. .

本発明の振動波形センサーは、前記圧電素子を、その分極方向が実装面に対して垂直になるように実装した基板を備えたことを特徴とする。   The vibration waveform sensor according to the present invention includes a substrate on which the piezoelectric element is mounted so that the polarization direction is perpendicular to the mounting surface.

本発明の振動波形センサーモジュールは、前記振動波形センサーと、該振動波形センサーの圧電素子に生じた電荷量に比例する電圧を出力するチャージアンプとを備えたことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   A vibration waveform sensor module according to the present invention includes the vibration waveform sensor, and a charge amplifier that outputs a voltage proportional to the amount of charge generated in a piezoelectric element of the vibration waveform sensor. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、非鉛の圧電材料を内部電極層を挟んで複数積層して圧電素子を構成するとともに、チャージアンプを使用して検出出力を得ることとしたので、単結晶圧電材料を使用する場合と同様の感度を得ることができるとともに、環境負荷も低減され、製造時や使用時における温度条件も緩和されるようになる。   According to the present invention, a plurality of lead-free piezoelectric materials are laminated with an internal electrode layer interposed therebetween to constitute a piezoelectric element, and a detection output is obtained by using a charge amplifier. As a result, the same sensitivity can be obtained, the environmental load is reduced, and the temperature conditions during manufacturing and use are eased.

本発明の実施例1の圧電素子を示す図であり、(A)は主要断面を示し、(B)は積層状態を示す図である。It is a figure which shows the piezoelectric element of Example 1 of this invention, (A) shows a main section, (B) is a figure which shows a lamination | stacking state. (A)は前記実施例による脈波検出の例における出力を比較するグラフを示し、(B)は従来と本発明の増幅率を比較するグラフである。(A) shows a graph for comparing the outputs in the example of pulse wave detection according to the above embodiment, and (B) is a graph for comparing the amplification factors of the prior art and the present invention. 本発明の実施例2の振動波形センサーの構成と、そのモジュールの構成の一例を示す図である。It is a figure which shows an example of the structure of the vibration waveform sensor of Example 2 of this invention, and the structure of the module.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1及び図2(A)を参照しながら、本発明の実施例1について説明する。図1には、本実施例にかかる圧電素子が示されており、同図(A)は主要断面構造を示し、同図(B)は積層構造を示している。これらの図に示すように、圧電素子100は、圧電層102と内部電極層104,106を交互に複数層積層し、更に、それらにカバー層ないし保護層108を積層した構成となっており、例えば、積層セラミックコンデンサ(MLCC)と同様の積層構造となっている。圧電層102としては、非鉛ないし鉛フリーの圧電材料、例えばアルカリナイオベート系の圧電材料を使用し、厚さは20μmとする。内部電極層104,106としては、例えばAg、Ag−Pd合金、Ni、Cu、Ni−Cu合金などの導電性材料を使用し、厚さは例えば3μmとする。カバー層108としては、絶縁性材料を使用するが、本実施例では、前記圧電層102と同じ材料を使用している。カバー層108の厚さは、振動による屈曲を妨げないようにする関係から、それぞれ50μm未満が好ましい。   First, a first embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 shows a piezoelectric element according to the present example. FIG. 1A shows a main cross-sectional structure, and FIG. 1B shows a laminated structure. As shown in these drawings, the piezoelectric element 100 has a structure in which a plurality of piezoelectric layers 102 and internal electrode layers 104 and 106 are alternately laminated, and further, a cover layer or a protective layer 108 is laminated thereon. For example, it has a multilayer structure similar to that of a multilayer ceramic capacitor (MLCC). As the piezoelectric layer 102, a lead-free or lead-free piezoelectric material, for example, an alkali niobate-type piezoelectric material is used, and the thickness is 20 μm. The internal electrode layers 104 and 106 are made of a conductive material such as Ag, Ag-Pd alloy, Ni, Cu, or Ni-Cu alloy, and have a thickness of, for example, 3 μm. As the cover layer 108, an insulating material is used. In this embodiment, the same material as that of the piezoelectric layer 102 is used. The thickness of the cover layer 108 is preferably less than 50 μm in order not to prevent bending due to vibration.

非鉛の圧電材料の例として挙げられるアルカリナイオベート系の圧電材料は、以下に示す一般式(1)で表される圧電材料が好適に用いられる。
(K1−w−xNaLi(SbTaNb1−y−z)O ・・・・(1)
ただし、前記w,x,y,z,aは、
0≦w≦1,
0.02<x≦0.1,
0.02<w+x≦1,
0≦y≦0.1,
0≦z≦0.4,
1<a≦1.1
である。
A piezoelectric material represented by the following general formula (1) is preferably used as the alkali niobate-based piezoelectric material, which is an example of a lead-free piezoelectric material.
(K 1-w-x Na w Li x) a (Sb y Ta z Nb 1-y-z) O 3 ···· (1)
Where w, x, y, z, and a are
0 ≦ w ≦ 1,
0.02 <x ≦ 0.1,
0.02 <w + x ≦ 1,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.4,
1 <a ≦ 1.1
It is.

積層数は、適宜設定してよいが、例えば圧電層102が10層となるように積層体を作製する。圧電素子100の外形寸法としては、例えば、長辺の長さを3.2mm,短辺の長さ(幅)を1.6mm,厚みを0.3mmとする。製造方法としては、圧電層102,内部電極層104,106を交互に複数積層し、更にカバー層108を積層し、次に焼成を行う。そして、積層体の長辺方向の端部のうち、内部電極層104が露出する端面には外部電極120を形成し、内部電極層106が露出する端面には外部電極122を形成する。すなわち、内部電極層104,106は、交互に長辺側の端面に引き出されており、外部接続用の外部電極120,122にそれぞれ接続されている。
次に、これら外部電極120,122間に高電圧を印加して、圧電層102の分極処理を行い、圧電性を付与する。圧電層102の分極方向は、内部電極層104,106の積層方向、すなわち厚さ方向となる。
The number of stacked layers may be set as appropriate. For example, the stacked body is manufactured so that the piezoelectric layer 102 has 10 layers. As external dimensions of the piezoelectric element 100, for example, the length of the long side is 3.2 mm, the length (width) of the short side is 1.6 mm, and the thickness is 0.3 mm. As a manufacturing method, a plurality of piezoelectric layers 102 and internal electrode layers 104 and 106 are alternately stacked, a cover layer 108 is further stacked, and then firing is performed. The external electrode 120 is formed on the end surface where the internal electrode layer 104 is exposed, and the external electrode 122 is formed on the end surface where the internal electrode layer 106 is exposed, among the ends in the long side direction of the laminate. That is, the internal electrode layers 104 and 106 are alternately drawn to the end face on the long side, and are connected to the external electrodes 120 and 122 for external connection, respectively.
Next, a high voltage is applied between the external electrodes 120 and 122 to polarize the piezoelectric layer 102 to impart piezoelectricity. The polarization direction of the piezoelectric layer 102 is the laminating direction of the internal electrode layers 104 and 106, that is, the thickness direction.

以上のようにして得た圧電素子100は、例えば、図1(A)に示すように、長辺方向の両端の外部電極120,122を、ハンダないし導電性樹脂130,132によって基板140の電気的接続部上に固定する。なお、チャージアンプ50については後述する。   In the piezoelectric element 100 obtained as described above, for example, as shown in FIG. 1A, the external electrodes 120 and 122 at both ends in the long side direction are electrically connected to the substrate 140 by soldering or conductive resins 130 and 132. On the mechanical connection. The charge amplifier 50 will be described later.

本実施例によれば、鉛を含有しない圧電材料を使用しているために、電気機械結合係数がPZTなどの圧電セラミックス及び単結晶組成物などと比較して低くなってしまうが、圧電層と電極層を交互に複数積層することで、十分な振動の検出感度を得ることができる。図2(A)には、使用する材料による振幅が示されている。PZT系セラミックスの振幅に対して、アルカリナイオベート(AN)系セラミックスの振幅は10分の1程度と低いが、これを積層することで、ほぼ同等の振幅が得られている。加えて、アルカリナイオベート系セラミックスは、PZT系セラミックスと比較してキュリー温度が高く、PZT系セラミックスが300℃程度であるのに対し、アルカリナイオベート系セラミックスは400℃以上ある。このため、製造工程や使用状況における熱的条件が緩和されるようになるといった利点もある。   According to the present embodiment, since a piezoelectric material containing no lead is used, the electromechanical coupling coefficient is lower than that of a piezoelectric ceramic such as PZT or a single crystal composition. By alternately stacking a plurality of electrode layers, sufficient vibration detection sensitivity can be obtained. FIG. 2A shows the amplitude depending on the material used. The amplitude of alkali niobate (AN) ceramics is as low as one-tenth that of PZT ceramics, but by stacking these, almost the same amplitude is obtained. In addition, alkali niobate ceramics have a higher Curie temperature than PZT ceramics, while PZT ceramics are about 300 ° C., whereas alkali niobate ceramics are 400 ° C. or higher. For this reason, there also exists an advantage that the thermal conditions in a manufacturing process or a use condition come to be eased.

次に、図2(B)及び図3も参照しながら、上述した圧電素子を利用する振動波形センサーおよび振動波形センサーモジュールの実施例について説明する。図3には、本実施例の振動波形センサーの基本的な構成が示されており、同図(A)は振動波形センサー10の断面を示し、同図(B)は分解した様子を示し、同図(C)は底面側から見た様子を示している。これらの図において、振動波形センサー10は、基板20の主面上に圧電素子100が配置されており、この圧電素子100を、振動導入体として作用する振動リング40で覆った構造となっている。   Next, embodiments of a vibration waveform sensor and a vibration waveform sensor module using the above-described piezoelectric element will be described with reference to FIGS. FIG. 3 shows a basic configuration of the vibration waveform sensor of the present embodiment. FIG. 3A shows a cross section of the vibration waveform sensor 10, and FIG. 3B shows an exploded state. FIG. 3C shows a state viewed from the bottom side. In these drawings, the vibration waveform sensor 10 has a structure in which a piezoelectric element 100 is disposed on the main surface of a substrate 20 and this piezoelectric element 100 is covered with a vibration ring 40 that acts as a vibration introducing body. .

以上の各部のうち、基板20は、圧電素子100を固定支持するとともに、その電極の引出や信号増幅を行うためのものである。基板20の主面には、中央付近に一対の電極ランド22,23が設けられており、その周囲にはグランド導体24が形成されている。電極ランド22,23は、基板20の裏面側にスルーホール22A,23Aによって引き出されている。電極ランド22,23には、図1(A)に示したように、圧電素子100の外部電極120,122がハンダないし導電性樹脂130,132によって実装されている。このように、電極ランド22,23及びスルーホール22A,23Aによって、基板20の裏面側に設けられたアンプなどと圧電素子100とが接続されている。電極ランド22,23を覆うように絶縁性の樹脂を設けてもよいし、更に圧電素子100も樹脂で覆ってよい。   Among the above-mentioned parts, the substrate 20 is for fixing and supporting the piezoelectric element 100, and for extracting the electrodes and amplifying the signals. On the main surface of the substrate 20, a pair of electrode lands 22 and 23 are provided near the center, and a ground conductor 24 is formed around the pair of electrode lands 22 and 23. The electrode lands 22 and 23 are drawn out by through holes 22A and 23A on the back side of the substrate 20. As shown in FIG. 1A, the external electrodes 120 and 122 of the piezoelectric element 100 are mounted on the electrode lands 22 and 23 by solder or conductive resins 130 and 132, respectively. As described above, the piezoelectric element 100 and the amplifier provided on the back surface side of the substrate 20 are connected by the electrode lands 22 and 23 and the through holes 22A and 23A. An insulating resin may be provided so as to cover the electrode lands 22 and 23, and the piezoelectric element 100 may also be covered with a resin.

次に、前記圧電素子100には、それを囲むように振動リング40が設けられており、振動リング40はグランド導体24と電気的に接合している。また、グランド導体24は、スルーホール24A,24B(図3(A)のみ図示)によって基板20の裏面側に引き出されている。振動リング40は、例えばステンレスによって形成されて導電性を有しており、接触する人体の皮膚との間でグランド電位を共通にするとともに、生体、例えば皮膚の微小振動を導入して、更に基板20に伝達する振動導入体として機能する。   Next, the piezoelectric element 100 is provided with a vibration ring 40 surrounding the piezoelectric element 100, and the vibration ring 40 is electrically connected to the ground conductor 24. The ground conductor 24 is drawn out to the back surface side of the substrate 20 through through holes 24A and 24B (only FIG. 3A is shown). The vibration ring 40 is made of, for example, stainless steel and has conductivity. The vibration ring 40 shares a ground potential with the skin of the human body in contact with the vibration ring 40, introduces microvibration of a living body, for example, the skin, and further has a substrate. It functions as a vibration introducing body that transmits to 20.

同図(D)には、振動波形センサーモジュール200の回路構成が示されており、振動波形センサー10の出力が、チャージアンプ(電荷増幅器)50に入力されて増幅されるようになっている。チャージアンプ50は、上述した基板20に実装されており、圧電素子100に生ずる電荷に比例した電圧が出力されるようになっている。チャージアンプ50の出力は、A/Dコンバータ(図示せず)によりデジタル信号に変換されて出力される。   FIG. 4D shows the circuit configuration of the vibration waveform sensor module 200, in which the output of the vibration waveform sensor 10 is input to a charge amplifier (charge amplifier) 50 and amplified. The charge amplifier 50 is mounted on the substrate 20 described above, and a voltage proportional to the electric charge generated in the piezoelectric element 100 is output. The output of the charge amplifier 50 is converted into a digital signal by an A / D converter (not shown) and output.

以上のような振動波形センサーモジュール200は、例えば、図3(E)に示すように、人体の指などの適宜位置に、医療用の固定テープ12などによって、振動リング40が人体の皮膚BDに当たるように装着される。一方、心臓の拍動に伴う血液の流入によって生ずる容積変化である脈波は、皮膚BDの微小振動として振動波形センサーモジュール200の振動リング40に伝わる。振動リング40の振動は、更に、振動体ないし起歪体としても機能する基板20を振動させ、振動リング40から伝達された微小振動が圧電素子100に伝達される。これにより、例えば皮膚BDの微小振動が電圧信号として検出される。   In the vibration waveform sensor module 200 as described above, for example, as shown in FIG. 3E, the vibration ring 40 hits the skin BD of the human body at an appropriate position such as a finger of the human body with the medical fixing tape 12 or the like. Is mounted as follows. On the other hand, the pulse wave, which is a volume change caused by the inflow of blood accompanying the pulsation of the heart, is transmitted to the vibration ring 40 of the vibration waveform sensor module 200 as a minute vibration of the skin BD. The vibration of the vibration ring 40 further vibrates the substrate 20 that also functions as a vibration body or a strain generating body, and the minute vibration transmitted from the vibration ring 40 is transmitted to the piezoelectric element 100. Thereby, for example, minute vibration of the skin BD is detected as a voltage signal.

ところで、この場合において、本実施例では、圧電素子100において圧電層102が多数積層された構造となっている。このため、コンデンサとしてみると、面積が大きくなり、蓄積される電荷量も増大することとなり、電荷量に比例した電圧を出力するチャージアンプ50の出力も増大するようになる。   Incidentally, in this case, in this embodiment, the piezoelectric element 100 has a structure in which many piezoelectric layers 102 are stacked. For this reason, when viewed as a capacitor, the area increases, the amount of accumulated charge also increases, and the output of the charge amplifier 50 that outputs a voltage proportional to the amount of charge also increases.

図2(B)は、PZT系圧電材料を1層有する従来の圧電素子を使用した振動波形センサーモジュールと、非鉛のアルカリナイオベート系圧電材料を10層積層した本実施例の圧電素子を使用した振動波形センサーモジュールによる脈波波形の検出出力を比較して示すものである。いずれも、圧電素子の形状寸法は、長辺3.2mm×短辺1.6mm×厚み0.3mmである。このグラフに示すように、PZT系の従来構造と、本実施例とも、ほぼ近似した出力が得られており、本実施例のように、電気機械結合係数が小さい非鉛の圧電材料を使用したとしても、積層構造とすることで、良好な波形検出を行うことができることが分かる。   FIG. 2B shows a vibration waveform sensor module using a conventional piezoelectric element having one layer of a PZT-based piezoelectric material and a piezoelectric element of the present embodiment in which 10 layers of a lead-free alkaline niobate-based piezoelectric material are laminated. FIG. 7 shows a comparison between pulse wave waveform detection outputs obtained by the vibration waveform sensor module described above. In any case, the shape dimension of the piezoelectric element is 3.2 mm long side × 1.6 mm short side × 0.3 mm thickness. As shown in this graph, the PZT-based conventional structure and this example both have almost similar outputs, and as in this example, lead-free piezoelectric materials with a small electromechanical coupling coefficient were used. However, it can be seen that good waveform detection can be performed by using a laminated structure.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例で示した各部の材料は一例であり、公知の各種の材料を使用してよい。例えば、前記実施例では、圧電層102として、非鉛のアルカリナイオベート系圧電材料を使用したが、その他各種の非鉛の圧電材料、例えばチタン酸バリウムを使用してよい。圧電素子100の形状寸法や、圧電層102の積層数についても、同様に適宜設定してよい。
(2)前記実施例で示した脈波検出は一例であり、各種の振動の検出に適用してよい。
(3)前記実施例では、チャージアンプ50を基板20に実装した例を示したが、チャージアンプ50を振動波形センサー10の外部に設けてもよい。
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention. For example, the following are also included.
(1) The material of each part shown in the said Example is an example, You may use various well-known materials. For example, in the above embodiment, a lead-free alkaline niobate piezoelectric material is used as the piezoelectric layer 102, but various other lead-free piezoelectric materials such as barium titanate may be used. The shape dimensions of the piezoelectric element 100 and the number of stacked piezoelectric layers 102 may be set as appropriate in the same manner.
(2) The pulse wave detection shown in the above embodiment is an example, and may be applied to detection of various vibrations.
(3) Although the charge amplifier 50 is mounted on the substrate 20 in the above embodiment, the charge amplifier 50 may be provided outside the vibration waveform sensor 10.

本発明によれば、非鉛の圧電材料を内部電極層を挟んで複数積層して圧電素子を構成するととするとともに、チャージアンプを使用して検出出力を得ることとしたので、単結晶圧電材料を使用する場合と同様の感度を得ることができるとともに、環境負荷も低減され、製造時や使用時における温度条件も緩和されるようになることから、脈波センサーなど、各種の振動波形センサーに好適である。   According to the present invention, a plurality of non-lead piezoelectric materials are laminated with an internal electrode layer interposed therebetween to constitute a piezoelectric element, and a detection output is obtained using a charge amplifier. The same sensitivity can be obtained as when using a sensor, the environmental load is reduced, and the temperature conditions during manufacturing and use are eased. It is suitable.

10:振動波形センサー
12:固定テープ
20:基板
22,23:電極ランド
22A,23A:スルーホール
24:グランド導体
24A,24B:スルーホール
40:振動リング
50:チャージアンプ
100:圧電素子
102:圧電層
104,106:内部電極層
108:カバー層
120,122:外部電極
130,132:導電性樹脂
140:基板
200:振動波形センサーモジュール
10: Vibration waveform sensor 12: Fixed tape 20: Substrate 22, 23: Electrode land 22A, 23A: Through hole 24: Ground conductor 24A, 24B: Through hole 40: Vibration ring 50: Charge amplifier 100: Piezoelectric element 102: Piezoelectric layer 104, 106: Internal electrode layer 108: Cover layer 120, 122: External electrode 130, 132: Conductive resin 140: Substrate 200: Vibration waveform sensor module

Claims (4)

複数の内部電極層と、
非鉛の圧電材料によって形成されており、前記内部電極層に分極用の電圧を印加して、積層方向に分極した複数の圧電層と、
該複数の圧電層を、前記複数の内部電極層を挟んで積層した積層体の表裏に積層されたカバー層と、
を含むことを特徴とする圧電素子。
A plurality of internal electrode layers;
Formed of a lead-free piezoelectric material, applying a voltage for polarization to the internal electrode layer, and a plurality of piezoelectric layers polarized in the stacking direction;
A cover layer laminated on the front and back of the laminate in which the plurality of piezoelectric layers are laminated with the plurality of internal electrode layers interposed therebetween;
A piezoelectric element comprising:
前記圧電素子の長辺方向の両端にそれぞれ形成されており、前記内部電極層を交互に接続した外部接続用の外部電極と、
を備えたことを特徴とする請求項1記載の圧電素子。
Formed on both ends of the piezoelectric element in the long side direction, and external electrodes for external connection in which the internal electrode layers are alternately connected;
The piezoelectric element according to claim 1, further comprising:
請求項2記載の圧電素子を、その分極方向が実装面に対して垂直になるように実装した基板と、
を備えたことを特徴とする振動波形センサー。
A substrate on which the piezoelectric element according to claim 2 is mounted so that its polarization direction is perpendicular to the mounting surface;
A vibration waveform sensor characterized by comprising:
請求項3記載の振動波形センサーと、
該振動波形センサーの圧電素子に生じた電荷量に比例する電圧を出力するチャージアンプと、
を備えたことを特徴とする振動波形センサーモジュール。
A vibration waveform sensor according to claim 3,
A charge amplifier that outputs a voltage proportional to the amount of charge generated in the piezoelectric element of the vibration waveform sensor;
A vibration waveform sensor module comprising:
JP2018113303A 2018-06-14 2018-06-14 Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module Pending JP2019216203A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018113303A JP2019216203A (en) 2018-06-14 2018-06-14 Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module
PCT/JP2019/023029 WO2019240111A1 (en) 2018-06-14 2019-06-11 Piezoelectric element, oscillation waveform sensor, and oscillation waveform sensor module
CN201980038755.1A CN112262483A (en) 2018-06-14 2019-06-11 Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113303A JP2019216203A (en) 2018-06-14 2018-06-14 Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module

Publications (1)

Publication Number Publication Date
JP2019216203A true JP2019216203A (en) 2019-12-19

Family

ID=68842888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113303A Pending JP2019216203A (en) 2018-06-14 2018-06-14 Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module

Country Status (3)

Country Link
JP (1) JP2019216203A (en)
CN (1) CN112262483A (en)
WO (1) WO2019240111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023043450A1 (en) * 2021-09-14 2023-03-23 Halliburton Energy Services, Inc. Acoustic transducer with piezoelectric elements having different polarities

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087380A (en) * 2008-10-01 2010-04-15 Taiyo Yuden Co Ltd Piezoelectric drive element, and piezoelectric drive device
US20110012051A1 (en) * 2009-07-14 2011-01-20 Ngk Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
EP2287128A1 (en) * 2009-07-14 2011-02-23 NGK Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
US20120161578A1 (en) * 2010-12-24 2012-06-28 Canon Kabushiki Kaisha Method of driving piezoelectric device
JP2015087188A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Vibration element, vibrator, electronic apparatus and mobile body
WO2016167202A1 (en) * 2015-04-17 2016-10-20 太陽誘電株式会社 Vibration waveform sensor and waveform analysis device
JP2017157829A (en) * 2016-02-26 2017-09-07 京セラ株式会社 Plate-like substrate and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518049B (en) * 2013-01-29 2016-01-21 佳能股份有限公司 Piezoelectric material, piezoelectric element, and electronic equipment
JP6091281B2 (en) * 2013-03-25 2017-03-08 住友化学株式会社 Piezoelectric thin film multilayer substrate
JP6457415B2 (en) * 2016-03-10 2019-01-23 太陽誘電株式会社 Piezoelectric element and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087380A (en) * 2008-10-01 2010-04-15 Taiyo Yuden Co Ltd Piezoelectric drive element, and piezoelectric drive device
US20110012051A1 (en) * 2009-07-14 2011-01-20 Ngk Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
EP2287128A1 (en) * 2009-07-14 2011-02-23 NGK Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
JP2011037697A (en) * 2009-07-14 2011-02-24 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic composition
US20120161578A1 (en) * 2010-12-24 2012-06-28 Canon Kabushiki Kaisha Method of driving piezoelectric device
JP2012134428A (en) * 2010-12-24 2012-07-12 Canon Inc Driving method of piezoelectric device
JP2015087188A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Vibration element, vibrator, electronic apparatus and mobile body
WO2016167202A1 (en) * 2015-04-17 2016-10-20 太陽誘電株式会社 Vibration waveform sensor and waveform analysis device
US20180092556A1 (en) * 2015-04-17 2018-04-05 Taiyo Yuden Co., Ltd. Vibration waveform sensor and waveform analysis device
JP2017157829A (en) * 2016-02-26 2017-09-07 京セラ株式会社 Plate-like substrate and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023043450A1 (en) * 2021-09-14 2023-03-23 Halliburton Energy Services, Inc. Acoustic transducer with piezoelectric elements having different polarities

Also Published As

Publication number Publication date
CN112262483A (en) 2021-01-22
WO2019240111A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP5605433B2 (en) Piezoelectric vibration device
US8915139B1 (en) Relaxor-based piezoelectric single crystal accelerometer
US9135906B2 (en) Ultrasonic generator
WO2018207578A1 (en) Piezoelectric microphone chip and piezoelectric microphone
KR20130016647A (en) Ultrasonic sensor
JPH1062445A (en) Acceleration sensor
CN109848022B (en) Ultrasonic device and ultrasonic measuring apparatus
JP2019146020A (en) Ultrasonic sensor, ultrasonic device, and method for manufacturing ultrasonic sensor
JPWO2018163963A1 (en) Ultrasonic sensor and ultrasonic sensor device
JP6742797B2 (en) Vibration waveform sensor
WO2019240111A1 (en) Piezoelectric element, oscillation waveform sensor, and oscillation waveform sensor module
KR20170000596A (en) piezoelectric device and piezoelectric speaker using the same
JPH07194517A (en) Ultrasonic probe
WO2019188381A1 (en) Vibration element
JP5663901B2 (en) Pickup device
KR101326308B1 (en) Ultrasound Probe
JPS62249600A (en) Piezoelectric element
JP2002362973A (en) Piezoelectric ceramic composition for piezoelectric vibratory gyroscope, and piezoelectric vibratory gyroscope
JP2019202004A (en) Vibration waveform sensor and vibration waveform sensor module
JP6773484B2 (en) Ultrasonic transducers, ultrasonic probes using them, and electronic devices
KR100872164B1 (en) Piezoelectric electric-acoustic transducer using piezoelectric single crystal
JPH11183510A (en) Acceleration sensor and its menufacture
JP4605320B1 (en) Ultrasonic vibrator and ultrasonic diagnostic apparatus using the same
JP2003046156A (en) Laminated electro-mechanical energy transducer and oscillatory wave drive device
WO2019188078A1 (en) Vibration element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221024