JP2019216135A - Evaluation method of silicon wafer - Google Patents

Evaluation method of silicon wafer Download PDF

Info

Publication number
JP2019216135A
JP2019216135A JP2018110907A JP2018110907A JP2019216135A JP 2019216135 A JP2019216135 A JP 2019216135A JP 2018110907 A JP2018110907 A JP 2018110907A JP 2018110907 A JP2018110907 A JP 2018110907A JP 2019216135 A JP2019216135 A JP 2019216135A
Authority
JP
Japan
Prior art keywords
evaluation
silicon wafer
evaluating
line
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018110907A
Other languages
Japanese (ja)
Other versions
JP6911814B2 (en
Inventor
横山 隆
Takashi Yokoyama
隆 横山
正夫 斉藤
Masao Saito
正夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2018110907A priority Critical patent/JP6911814B2/en
Publication of JP2019216135A publication Critical patent/JP2019216135A/en
Application granted granted Critical
Publication of JP6911814B2 publication Critical patent/JP6911814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide an evaluation method of a silicon wafer, which can appropriately evaluate the quality of a silicon wafer.SOLUTION: A evaluation method of a silicon wafer includes a step of preparing a silicon single crystal in which a flat portion is formed along a crystal central axis on a part of the outer periphery of a straight body and the crystal orientation of the central axis is <111>, a step of cylindrically grinding the straight body of the silicon single crystal, and a step of cutting out a disk-shaped evaluation sample from the cylindrically ground straight body, a step of identifying an evaluation line passing through the center of the evaluation sample and orthogonal to the flat portion, and a step of evaluating the quality of the evaluation sample on the evaluation sample as the quality of the silicon wafer obtained from the straight body.SELECTED DRAWING: Figure 1

Description

本発明は、シリコンウェーハの評価方法に関する。   The present invention relates to a method for evaluating a silicon wafer.

従来、図4に示すように、中心軸が<111>結晶軸のシリコン単結晶1を製造すると、直胴部11(以下、「研削前直胴部11」という)の外周上の一部に、上記中心軸に沿って平坦部12が形成される場合があることが知られている(例えば、特許文献1参照)。
シリコン単結晶1は、品質上の要求や、引き上げ中の外乱により直径が変動する可能性があること等を考慮に入れて、目標のシリコンウェーハの直径(以下、「目標直径」という)よりも数%大きな直径で引き上げられる。このシリコン単結晶1の研削前直胴部11に対し、図5(A)に二点鎖線で示すように、円筒研削後の直胴部21(以下、「研削後直胴部21」という)が目標直径の円柱状になるように円筒研削を行う。例えば、直径がR1の研削前直胴部11を目標直径がR2の研削後直胴部21となるように円筒研削を行う場合、研削による原料ロスを最小限に抑えることが好ましい。このような観点を考慮に入れると、二点鎖線で示すように、研削前直胴部11の一端面11Aの内接円の中心を中心として、研削後の中心21C(以下、「研削後中心21C」という)が研削前の中心11C(以下、「研削前中心11C」という」に対して偏心するように研削することが好ましい。
Conventionally, as shown in FIG. 4, when a silicon single crystal 1 having a central axis of a <111> crystal axis is manufactured, a part of the outer periphery of a straight body 11 (hereinafter, referred to as “a straight body 11 before grinding”) is formed. It is known that a flat portion 12 may be formed along the central axis (for example, see Patent Document 1).
The silicon single crystal 1 has a larger diameter than a target silicon wafer (hereinafter, referred to as “target diameter”) in consideration of quality requirements and the possibility that the diameter may fluctuate due to disturbance during pulling. Raised by a few percent larger diameter. As shown by a two-dot chain line in FIG. 5A, the straight body portion 21 after cylindrical grinding (hereinafter, referred to as “the straight body portion 21 after grinding”) with respect to the straight body portion 11 before grinding of the silicon single crystal 1. Is ground so as to have a cylindrical shape having a target diameter. For example, when cylindrical grinding is performed so that the straight body portion 11 before grinding with the diameter R1 becomes the straight body portion 21 after grinding with the target diameter R2, it is preferable to minimize material loss due to grinding. Taking such a viewpoint into consideration, as shown by the two-dot chain line, the center 21C after the grinding (hereinafter, referred to as the "center after the grinding") around the center of the inscribed circle of the one end surface 11A of the straight body portion 11 before the grinding. Preferably, the grinding is performed such that the center 21C is eccentric with respect to the center 11C before grinding (hereinafter, referred to as "center 11C before grinding").

特開2017−210376号公報JP 2017-210376 A

一般的に、図5(A)に二点鎖線で示すような円筒研削を経て得られたシリコンウェーハの品質評価は、シリコンウェーハの中心から外縁に向かって延びる評価線上のエリアが対象とされる。
しかし、シリコンウェーハの製造メーカの評価結果では品質が許容範囲に入っているが、例えばデバイスメーカで加工されたチップの品質が許容範囲に入っていない場合があった。
Generally, the quality evaluation of a silicon wafer obtained through cylindrical grinding as indicated by a two-dot chain line in FIG. 5A targets an area on an evaluation line extending from the center of the silicon wafer to the outer edge. .
However, in the evaluation results of silicon wafer manufacturers, the quality is within the allowable range, but for example, the quality of chips processed by the device manufacturer may not be within the allowable range.

本発明の目的は、シリコンウェーハの品質を適切に評価できるシリコンウェーハの評価方法を提供することにある。   An object of the present invention is to provide a silicon wafer evaluation method capable of appropriately evaluating the quality of a silicon wafer.

本発明者は、鋭意研究を重ねた結果、以下の知見を得た。ここでは、研削後直胴部21から得られた評価試料であって、鏡面研磨等が施されたシリコンウェーハよりも厚い評価試料を例示して知見を説明するが、シリコンウェーハでも同じことが言える。   The inventor has obtained the following findings as a result of intensive studies. Here, the knowledge will be described by exemplifying an evaluation sample obtained from the straight body portion 21 after grinding and which is thicker than a silicon wafer subjected to mirror polishing or the like, but the same can be said for a silicon wafer. .

図5(B)に示すように、評価試料3を一面側から見たときに、研削前中心11Cを通りかつ平坦部12に直交する仮想線をL11、研削前直胴部11の円弧部13上の任意の点13Aと研削前中心11Cとを通る仮想線をL12とした場合、仮想線L11上における平坦部12側とは反対側の研削幅H1と、平坦部12側の研削幅H2とがほぼ同じになるように円筒研削を行うと、仮想線L11上の研削幅H1,H2は、仮想線L12上の研削幅H3よりも小さくなる。
また、研削前直胴部11における径方向の品質の変化量(径方向中心の品質を基準とした、所定位置の品質の変化量)は、中心側が小さく、外縁側が大きくなる。この品質変化量の傾向は、研削前中心11Cから平坦部12に向かう方向でも、研削前中心11Cから円弧部13に向かう方向でも同じである。
As shown in FIG. 5B, when the evaluation sample 3 is viewed from one surface side, an imaginary line passing through the pre-grinding center 11C and orthogonal to the flat portion 12 is represented by L11, and the arc portion 13 of the straight body portion 11 before grinding. Assuming that a virtual line passing through the arbitrary point 13A and the center before grinding 11C is L12, a grinding width H1 on the side opposite to the flat portion 12 side and a grinding width H2 on the flat portion 12 side on the virtual line L11 are: Is substantially the same, the grinding widths H1 and H2 on the imaginary line L11 are smaller than the grinding width H3 on the imaginary line L12.
The amount of change in quality in the radial direction (the amount of change in quality at a predetermined position based on the quality at the center in the radial direction) in the straight body portion 11 before grinding is small on the center side and large on the outer edge side. The tendency of the quality change amount is the same in the direction from the pre-grinding center 11C to the flat portion 12 and in the direction from the pre-grinding center 11C to the circular arc portion 13.

したがって、仮想線L11上における品質の変化量の大きい部分の研削量は、仮想線L12上のそれと比べて小さくなる。
つまり、評価試料3の外縁3Aと仮想線L11との交点のうち、平坦部12側とは反対側の交点をP1、外縁3Aと仮想線L12との交点のうち、点13A側の交点をP3とした場合、評価試料3の中心3C(以下、「試料中心3C」という)から交点P1まで延びる評価線M1上の領域には、試料中心3Cから交点P3まで延びる評価線M3上の領域と比べて、品質の変化量が大きい部分が多く存在することになる。
また、評価試料3の外縁3Aと仮想線L11との交点のうち、平坦部12側の交点をP2とした場合も、試料中心3Cから交点P2まで延びる評価線M2上の領域には、評価線M3上の領域と比べて、品質の変化量が大きい部分が多く存在することになる。
これらのことから、研削前直胴部11の一端面11Aにおける内接円の中心を通りかつ平坦部12に直交する評価線M1,M2上の品質評価は、他の部分に対して行う品質評価と比べて厳しい条件であると考えられる。つまり、評価線M1,M2上の品質が許容範囲に入っていれば、評価線M3上の品質も許容範囲に入っているが、評価線M3上の品質が許容範囲に入っていても、評価線M1,M2上の品質が許容範囲に入っていない場合があると考えられる。
本発明者は、以上の知見に基づき本発明を完成させた。
Therefore, the grinding amount of the portion having a large change in quality on the virtual line L11 is smaller than that on the virtual line L12.
That is, among the intersections between the outer edge 3A of the evaluation sample 3 and the virtual line L11, the intersection on the side opposite to the flat portion 12 side is P1, and the intersection on the point 13A side between the intersection between the outer edge 3A and the virtual line L12 is P3. , The area on the evaluation line M1 extending from the center 3C of the evaluation sample 3 (hereinafter referred to as “sample center 3C”) to the intersection P1 is compared with the area on the evaluation line M3 extending from the sample center 3C to the intersection P3. Therefore, there are many parts where the amount of change in quality is large.
When the intersection between the outer edge 3A of the evaluation sample 3 and the imaginary line L11 is P2, the area on the evaluation line M2 extending from the sample center 3C to the intersection P2 is also an evaluation line. As compared with the region on M3, there are many portions where the amount of change in quality is large.
From these facts, the quality evaluation on the evaluation lines M1 and M2 passing through the center of the inscribed circle on the one end surface 11A of the straight body portion 11 before grinding and orthogonal to the flat portion 12 is performed on the other portions. This is considered to be a severe condition compared to. That is, if the quality on the evaluation lines M1 and M2 is within the allowable range, the quality on the evaluation line M3 is also within the allowable range. It is considered that the quality on the lines M1 and M2 may not be within the allowable range.
The present inventors have completed the present invention based on the above findings.

本発明のシリコンウェーハの評価方法は、直胴部の外周上の一部に結晶中心軸に沿って平坦部が形成された、中心軸の結晶方位が<111>であるシリコン単結晶から得られるシリコンウェーハの評価方法であって、前記シリコン単結晶を準備する工程と、前記シリコン単結晶の直胴部を円筒研削する工程と、円筒研削された直胴部から円板状の評価試料を切り出す工程と、前記評価試料の中心を通り前記平坦部に直交する評価線を特定する工程と、前記評価試料における前記評価線上の品質を、前記直胴部から得られるシリコンウェーハの品質として評価する工程とを実施することを特徴とする。   The silicon wafer evaluation method of the present invention is obtained from a silicon single crystal in which a flat portion is formed along the crystal central axis on a part of the outer periphery of the straight body portion and the crystal orientation of the central axis is <111>. A method for evaluating a silicon wafer, wherein the step of preparing the silicon single crystal, the step of cylindrically grinding the straight body portion of the silicon single crystal, and cutting out a disk-shaped evaluation sample from the straightened cylindrical body portion A step of specifying an evaluation line passing through the center of the evaluation sample and orthogonal to the flat portion, and a step of evaluating the quality of the evaluation sample on the evaluation line as the quality of a silicon wafer obtained from the straight body portion And is carried out.

本発明によれば、円筒研削された直胴部から切り出された円板状の評価試料において、評価試料の中心を通りかつ平坦部に直交する評価線を特定し、評価試料における評価線上の品質を、円筒研削後の直胴部(研削後直胴部)から得られるシリコンウェーハの品質として評価する。上述のように、評価線上の評価は他の部分に対して行う品質評価と比べて厳しい条件であることから、この厳しい条件を満たしたシリコンウェーハのみを出荷することで、シリコンウェーハの製造メーカの評価結果では品質が許容範囲に入っているが、デバイスメーカで加工されたチップの品質が許容範囲に入っていないという不具合を抑制でき、シリコンウェーハの品質を適切に評価できる。
なお、本発明の評価試料は、その仕様、例えば厚さ、研磨条件、エッチング条件等が製品として出荷するシリコンウェーハと同じであってもよいし、異なっていてもよい。
また、本発明において、評価線は、厳密に円板状の評価試料の中心を通りかつ平坦部に直交する線でなくても、許容範囲内でずれた線であってもよく、例えば、内接円の中心を通りかつ平坦部に直交する線を、試料中心(内接円の中心)を中心にして5°以下だけ回転させた線であってもよい。
According to the present invention, in a disk-shaped evaluation sample cut out from a cylindrical body subjected to cylindrical grinding, an evaluation line passing through the center of the evaluation sample and orthogonal to the flat portion is specified, and the quality on the evaluation line in the evaluation sample is determined. Is evaluated as the quality of a silicon wafer obtained from the straight body after the cylindrical grinding (the straight body after the grinding). As described above, since the evaluation on the evaluation line is a stricter condition than the quality evaluation performed on other parts, by shipping only silicon wafers satisfying the stricter condition, the silicon wafer manufacturer Although the evaluation result indicates that the quality is within the allowable range, the defect that the quality of the chip processed by the device maker is not within the allowable range can be suppressed, and the quality of the silicon wafer can be appropriately evaluated.
The specifications of the evaluation sample of the present invention, for example, the thickness, polishing conditions, etching conditions, and the like may be the same as or different from the silicon wafer to be shipped as a product.
Further, in the present invention, the evaluation line does not have to be a line strictly passing through the center of the disk-shaped evaluation sample and orthogonal to the flat portion, but may be a line shifted within an allowable range. A line passing through the center of the tangent circle and orthogonal to the flat portion may be a line rotated by 5 ° or less about the center of the sample (the center of the inscribed circle).

本発明のシリコンウェーハの評価方法において、前記評価試料を前記直胴部から切り出す工程の前に、前記直胴部にマーキング加工を施す工程を実施し、前記評価線を特定する工程は、前記マーキング加工が施された位置に基づいて評価線の位置を特定することが好ましい。   In the silicon wafer evaluation method of the present invention, before the step of cutting out the evaluation sample from the straight body, performing a step of performing a marking process on the straight body, the step of specifying the evaluation line is the marking It is preferable to specify the position of the evaluation line based on the processed position.

本発明によれば、評価試料のマーキング加工が施された位置に基づいて、評価線を容易に特定できる。   ADVANTAGE OF THE INVENTION According to this invention, an evaluation line can be easily specified based on the position where the marking process of the evaluation sample was performed.

本発明のシリコンウェーハの評価方法において、前記評価線を特定する工程は、前記評価試料の中心と前記評価試料の外周部のマーキング加工が施された位置を結ぶ線を、前記評価試料の中心を回転中心として、所定の角度で回転することにより、前記評価線を特定することが好ましい。   In the silicon wafer evaluation method of the present invention, the step of specifying the evaluation line is a line connecting the center of the evaluation sample and the position where the marking process is performed on the outer peripheral portion of the evaluation sample, and the center of the evaluation sample. It is preferable that the evaluation line be specified by rotating at a predetermined angle as a rotation center.

本発明によれば、評価試料の中心とマーキング加工が施された位置とを結ぶ線を所定の角度で回転させるだけの簡単な方法で、評価線を特定できる。   According to the present invention, an evaluation line can be specified by a simple method of simply rotating a line connecting the center of the evaluation sample and the position where the marking process is performed at a predetermined angle.

本発明のシリコンウェーハの評価方法において、前記評価する工程は、前記評価線のうち、前記評価試料の中心から前記平坦部側に延びる部分の品質、および、前記評価試料の中心から前記平坦部側とは反対側に延びる部分の品質のうち少なくともいずれか一方を評価することが好ましい。   In the method for evaluating a silicon wafer according to the present invention, the step of evaluating includes, among the evaluation lines, the quality of a portion extending from the center of the evaluation sample to the flat portion side, and the flat portion side from the center of the evaluation sample. It is preferable to evaluate at least one of the quality of the portion extending on the opposite side to the above.

本発明によれば、平坦部を有する直胴部から得られたシリコンウェーハの品質の面内分布について、不良を見落とすことなく適切に評価することができる。   According to the present invention, the in-plane distribution of the quality of a silicon wafer obtained from a straight body having a flat portion can be appropriately evaluated without overlooking a defect.

本発明のシリコンウェーハの評価方法において、前記評価する工程は、抵抗率、酸素濃度および欠陥密度のうち少なくともいずれか1つを評価することが好ましい。   In the method for evaluating a silicon wafer according to the present invention, it is preferable that in the evaluating step, at least one of resistivity, oxygen concentration, and defect density is evaluated.

本発明のシリコンウェーハの評価方法において、前記評価する工程は、前記評価線を前記評価試料の中心を回転中心として5°以下回転させた線上の品質を、前記評価線上の品質とみなして評価することが好ましい。   In the method for evaluating a silicon wafer according to the present invention, the evaluating step evaluates a quality on a line obtained by rotating the evaluation line by 5 ° or less around a center of the evaluation sample as a rotation center, as a quality on the evaluation line. Is preferred.

本発明の一実施形態に係るシリコンウェーハの評価方法を示すフローチャート。4 is a flowchart illustrating a method for evaluating a silicon wafer according to an embodiment of the present invention. 前記シリコンウェーハの評価方法の説明図であり、(A)は円筒研削前の直胴部を示し、(B)は評価試料を示す。It is explanatory drawing of the evaluation method of the said silicon wafer, (A) shows the straight body part before cylindrical grinding, (B) shows an evaluation sample. 本発明の実施例における酸素濃度の測定結果を示すグラフ。4 is a graph showing measurement results of oxygen concentration in the example of the present invention. 中心軸が<111>結晶軸のシリコン単結晶の斜視図。FIG. 3 is a perspective view of a silicon single crystal whose central axis is a <111> crystal axis. 本発明の課題の説明図であり、(A)は円筒研削前の直胴部を示し、(B)は評価試料を示す。It is explanatory drawing of the subject of this invention, (A) shows the straight body part before cylindrical grinding, (B) shows an evaluation sample.

[実施形態]
以下、本発明の一実施形態について図面を参照して説明する。
図1に示すように、図4に示すような中心軸が<111>結晶軸のシリコン単結晶1であって、研削前直胴部11の外周上の一部に平坦部12が形成されたシリコン単結晶1を製造する(ステップS1)。
このとき、研削後直胴部21の目標直径が200mm、300mm、450mmあるいは他の大きさとなるように、シリコン単結晶1を製造すればよいが、300mm以下であることが好ましい。原料ロスを最小限に抑える観点から、シリコン単結晶1は、目標直径が200mmの場合には、図5(B)に示す研削幅H1,H2が、4mm以上20mm以下となるような大きさ、目標直径が300mmの場合には、研削幅H1,H2が、4mm以上24mm以下となるような大きさであることが好ましい。シリコン単結晶1の製造方法は特に限定されず、シリコン融液に磁場が印加されるMCZ(Magnetic field applied Czochralski)法であってもよいし、磁場が印加されないCZ(Czochralski)法であってもよい。
[Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the central axis as shown in FIG. 4 is a silicon single crystal 1 having a <111> crystal axis, and a flat portion 12 is formed on a part of the outer periphery of the straight body portion 11 before grinding. The silicon single crystal 1 is manufactured (Step S1).
At this time, the silicon single crystal 1 may be manufactured so that the target diameter of the straight body portion 21 after grinding becomes 200 mm, 300 mm, 450 mm, or another size, but is preferably 300 mm or less. From the viewpoint of minimizing material loss, the silicon single crystal 1 has a size such that when the target diameter is 200 mm, the grinding widths H1 and H2 shown in FIG. When the target diameter is 300 mm, it is preferable that the grinding widths H1 and H2 are set to be not less than 4 mm and not more than 24 mm. The method for producing the silicon single crystal 1 is not particularly limited, and may be an MCZ (Magnetic field applied Czochralski) method in which a magnetic field is applied to the silicon melt, or a CZ (Czochralski) method in which a magnetic field is not applied. Good.

次に、シリコン単結晶1が肩部、直胴部およびテール部を有する場合は肩部およびテール部を、テール部を有さない場合は肩部を切断することで、研削前直胴部11を取得する(ステップS2)。このとき、肩部やテール部の切断は、シリコン単結晶1の中心軸に直交する方向で行うことが好ましい。なお、ステップS2の処理を行わずに(肩部およびテール部のうち少なくとも一方を切断せずに)ステップS3の処理を行ってもよい。   Next, when the silicon single crystal 1 has a shoulder portion, a straight body portion and a tail portion, the shoulder portion and the tail portion are cut, and when the silicon single crystal 1 has no tail portion, the shoulder portion is cut. Is acquired (step S2). At this time, it is preferable to cut the shoulder and the tail in a direction perpendicular to the central axis of the silicon single crystal 1. The process of step S3 may be performed without performing the process of step S2 (without cutting at least one of the shoulder and the tail).

この後、図2(A)に示すように、研削前直胴部11の一端面11Aに、当該一端面11Aの内接円の中心を通りかつ平坦部12に直交する評価線Mを特定する評価線マーク4A、および、マーキング加工が施された位置、例えばノッチ22の形成位置を特定するノッチマーク4Bを付与する(ステップS3)。評価線マーク4Aおよびノッチマーク4Bの付与位置は、円筒研削で研削されない位置であることが好ましい。評価線マーク4Aの付与位置は、評価線M上であることが好ましく、ノッチマーク4Bの付与位置は、後述するノッチ特定用仮想線L1上であることが好ましい。肩部およびテール部のうち少なくとも一方を切断してない場合、当該切断していない部分に評価線マーク4Aやノッチマーク4Bを付与してもよい。評価線マーク4Aおよびノッチマーク4Bの形状およびサイズは特に限定されないが、作業者や検査装置が容易に認識できる仕様であることが好ましい。評価線マーク4Aおよびノッチマーク4Bの付与は、ペンやけがき、あるいは、レーザにより行ってもよい。   Thereafter, as shown in FIG. 2A, an evaluation line M passing through the center of the inscribed circle of the one end surface 11A and orthogonal to the flat portion 12 is specified on one end surface 11A of the straight body portion 11 before grinding. An evaluation line mark 4A and a notch mark 4B for specifying a position where the marking process has been performed, for example, a formation position of the notch 22 are provided (step S3). It is preferable that the position where the evaluation line mark 4A and the notch mark 4B are provided is a position that is not ground by cylindrical grinding. The position where the evaluation line mark 4A is provided is preferably on the evaluation line M, and the position where the notch mark 4B is provided is preferably on a notch specifying virtual line L1 described later. When at least one of the shoulder portion and the tail portion is not cut, the evaluation line mark 4A and the notch mark 4B may be given to the uncut portion. The shape and size of the evaluation line mark 4A and the notch mark 4B are not particularly limited, but preferably have a specification that can be easily recognized by an operator or an inspection device. The evaluation line mark 4A and the notch mark 4B may be provided by using a pen, scribing, or laser.

次に、一端面11A側から見たときの評価線Mとノッチ22の形成位置との位置関係を把握する(ステップS4)。具体的に、まず、一端面11Aの内接円の中心を研削後中心21Cとして特定し、当該研削後中心21Cを中心として円筒研削を行った後の研削後直胴部21の外形状を特定する。
その後、研削後中心21Cからノッチマーク4Bに基づき特定されるノッチ22の形成位置まで延びるノッチ特定用仮想線L1を設定した後、評価線Mのうち研削後中心21Cから平坦部12側に延びる線とノッチ特定用仮想線L1とのなす角度θを評価線Mとノッチ22の形成位置との位置関係として把握する。
Next, the positional relationship between the evaluation line M and the formation position of the notch 22 when viewed from the one end face 11A side is grasped (step S4). Specifically, first, the center of the inscribed circle of the one end face 11A is specified as the center 21C after grinding, and the outer shape of the straight body portion 21 after grinding after performing cylindrical grinding around the center 21C after grinding is specified. I do.
Then, after setting a notch specifying virtual line L1 extending from the post-grinding center 21C to the formation position of the notch 22 specified based on the notch mark 4B, the evaluation line M extends from the post-grinding center 21C to the flat portion 12 side. And the notch specifying virtual line L1 are grasped as the positional relationship between the evaluation line M and the position where the notch 22 is formed.

この後、研削後中心21Cを中心とした円筒研削を行い(ステップS5)、研削後直胴部21を得て、図2(B)に示すように、当該研削後直胴部21の外周上の一部にノッチ22を形成する(ステップS6)。
ノッチ22が形成された研削後直胴部21から円板状の評価試料3を取得する(ステップS7)。このとき取得する評価試料3は、研削後直胴部21の長さ方向の端部から切り出したものであってもよいし、研削後直胴部21を複数の円柱状のブロックに切断して、当該ブロックの端部から切り出したものであってもよい。品質評価をするために、評価試料3に対して、研磨、エッチング等の処理を行う。
Thereafter, cylindrical grinding is performed around the center 21C after the grinding (step S5) to obtain the straight body 21 after the grinding, and as shown in FIG. 2 (B), on the outer periphery of the straight body 21 after the grinding. Is formed in a part of (step S6).
The disk-shaped evaluation sample 3 is obtained from the straight body portion 21 after the notch 22 is formed (step S7). The evaluation sample 3 obtained at this time may be cut out from the longitudinal end of the straight body 21 after grinding, or may be cut into a plurality of cylindrical blocks after grinding. , May be cut out from the end of the block. In order to evaluate the quality, the evaluation sample 3 is subjected to processing such as polishing and etching.

次に、評価試料3の品質評価を行う評価線M1を特定する(ステップS8)。具体的には、評価試料3を検査装置の図示しないテーブルに載置し、図2(B)に示すように、評価試料3を図2(A)と同じ方向側から見たときに、研削後中心21Cと一致する評価試料3の試料中心3Cからノッチ22まで延びる線をノッチ特定用仮想線L1と見なし、当該ノッチ特定用仮想線L1を右回りにθ1(=180°−θ)だけ回転させた線を評価線M1として特定する。この評価線M1は、評価線M上に位置している。
この後、テーブルに載置された評価試料3の評価線M1上の品質、例えば抵抗率、酸素濃度および欠陥密度のうち少なくともいずれか1つを、研削後直胴部21から得られるシリコンウェーハの品質として評価する(ステップS9)。品質評価は、評価線M1上の全領域に対して行ってもよいし、評価線M1上の複数の測定点に対して行ってもよい。
Next, an evaluation line M1 for evaluating the quality of the evaluation sample 3 is specified (step S8). Specifically, the evaluation sample 3 is placed on a table (not shown) of the inspection apparatus, and as shown in FIG. 2B, when the evaluation sample 3 is viewed from the same side as FIG. A line extending from the sample center 3C of the evaluation sample 3 that coincides with the rear center 21C to the notch 22 is regarded as the notch specifying virtual line L1, and the notch specifying virtual line L1 is rotated clockwise by θ1 (= 180 ° −θ). The line thus specified is specified as the evaluation line M1. This evaluation line M1 is located on the evaluation line M.
Thereafter, the quality on the evaluation line M1 of the evaluation sample 3 placed on the table, for example, at least one of the resistivity, the oxygen concentration, and the defect density of the silicon wafer obtained from the straight body 21 after grinding is determined. The quality is evaluated (step S9). The quality evaluation may be performed on the entire area on the evaluation line M1, or may be performed on a plurality of measurement points on the evaluation line M1.

[実施形態の作用効果]
上記実施形態によれば、研削前直胴部11の軸方向の一端面11Aにおける内接円の中心を通りかつ平坦部12に直交する評価線M、つまり円筒研削時に研削量が最も少ない評価線M上の品質を、シリコンウェーハの品質として評価するため、評価線M上の品質が許容範囲に入っていれば、当該評価線Mに対して評価試料の周方向に所定角度回転した線上、例えば図5(B)に示す評価線M3上の品質も許容範囲に入っていることになる。したがって、シリコンウェーハの製造メーカの評価結果では品質が許容範囲に入っているが、デバイスメーカで加工されたチップの品質が許容範囲に入っていないという不具合を抑制でき、シリコンウェーハの品質を適切に評価できる。
[Operation and Effect of Embodiment]
According to the above embodiment, the evaluation line M passing through the center of the inscribed circle at the one end surface 11A in the axial direction of the straight body portion 11 before grinding and orthogonal to the flat portion 12, that is, the evaluation line with the least amount of grinding during cylindrical grinding. In order to evaluate the quality on M as the quality of the silicon wafer, if the quality on the evaluation line M falls within the allowable range, a line rotated by a predetermined angle in the circumferential direction of the evaluation sample with respect to the evaluation line M, for example, The quality on the evaluation line M3 shown in FIG. 5B also falls within the allowable range. Therefore, it is possible to suppress the defect that the quality of the chips processed by the device maker is not within the allowable range, but the quality of the silicon wafer maker is within the allowable range according to the evaluation result of the silicon wafer maker. Can be evaluated.

研削前直胴部11の一端面11Aに付与された評価線マーク4Aおよびノッチマーク4Bに基づいて、評価線Mおよびノッチ22の形成位置を確認できるため、評価線M1を容易に特定できる。   Since the formation positions of the evaluation line M and the notch 22 can be confirmed based on the evaluation line mark 4A and the notch mark 4B provided on the one end surface 11A of the straight body portion 11 before grinding, the evaluation line M1 can be easily specified.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
[Modification]
It should be noted that the present invention is not limited only to the above embodiment, and various improvements and design changes can be made without departing from the spirit of the present invention.

図2(B)に示すように、ノッチ特定用仮想線L1を左回りにθだけ回転させた線を、評価線Mに含まれる評価線M2として設定し、当該評価線M2上の品質を評価してもよいし、評価線M1上および評価線M2上の両方の品質、つまり評価線M全体の品質を評価してもよい。
評価線マーク4Aおよびノッチマーク4Bの位置は、評価線Mの位置、ノッチ22の形成位置をそれぞれ特定可能であれば、評価線M上、ノッチ特定用仮想線L1上でなくてもよい。
製品として出荷するシリコンウェーハを本発明の評価試料とみなし、当該シリコンウェーハに対してステップS8〜S9の処理を行ってもよい。
ノッチ22が形成されていない評価試料3に対して、本発明のシリコンウェーハの評価方法を適用してもよい。この場合、円筒研削、品質評価のための研磨、エッチング等の処理を行った後にも評価試料3に評価線マーク4Aが残るように、当該評価線マーク4Aを付与すればよい。
評価線Mを評価試料3の試料中心3Cを回転中心として、図2(B)における右方向または左方向に5°以下回転させた線上の品質を、評価線M上の品質とみなして評価してもよい。
As shown in FIG. 2B, a line obtained by rotating the notch specifying virtual line L1 counterclockwise by θ is set as an evaluation line M2 included in the evaluation line M, and the quality on the evaluation line M2 is evaluated. Alternatively, the quality on both the evaluation line M1 and the evaluation line M2, that is, the quality of the entire evaluation line M may be evaluated.
The positions of the evaluation line mark 4A and the notch mark 4B need not be on the evaluation line M and the notch specifying virtual line L1 as long as the position of the evaluation line M and the formation position of the notch 22 can be specified.
A silicon wafer to be shipped as a product may be regarded as an evaluation sample of the present invention, and the processing of steps S8 to S9 may be performed on the silicon wafer.
The silicon wafer evaluation method of the present invention may be applied to the evaluation sample 3 in which the notch 22 is not formed. In this case, the evaluation line mark 4A may be provided so that the evaluation line mark 4A remains on the evaluation sample 3 even after processing such as cylindrical grinding, polishing for quality evaluation, and etching.
The quality on the line obtained by rotating the evaluation line M by 5 ° or less to the right or left in FIG. 2B with the sample center 3C of the evaluation sample 3 as the rotation center was evaluated as the quality on the evaluation line M. You may.

次に、本発明の実施例について説明する。なお、本発明は実施例に限定されるものではない。   Next, examples of the present invention will be described. The present invention is not limited to the embodiments.

まず、目標直径が300mmであって、平坦部12を有するシリコン単結晶1をCZ法を用いて製造した。シリコン単結晶1の大きさを、図5(B)に示す研削幅H1,H2が4mmになるような大きさにした。
次に、シリコン単結晶1から取得した研削前直胴部11に対して評価線マーク4Aおよびノッチマーク4Bを付与し、評価線Mとノッチ22の形成位置との位置関係を把握した後、円筒研削を行うことで直径が目標直径の研削後直胴部21を得た。
First, a silicon single crystal 1 having a target diameter of 300 mm and having a flat portion 12 was manufactured by using the CZ method. The size of the silicon single crystal 1 was set so that the grinding widths H1 and H2 shown in FIG. 5B became 4 mm.
Next, the evaluation line mark 4A and the notch mark 4B are given to the straight body portion 11 before grinding obtained from the silicon single crystal 1, and the positional relationship between the evaluation line M and the formation position of the notch 22 is grasped. By performing the grinding, a straight body portion 21 having a target diameter after grinding was obtained.

この研削後直胴部21に対してノッチ22を形成し、研削後直胴部21の長さ方向の端部から1枚の評価試料3を取得した。次に、評価試料3に対して、酸素濃度測定に必要な前処理、例えばエッチング、研磨等を行った後、当該評価試料3を検査装置にセットした。この後、評価試料3の被検査面上に評価線Mに含まれる評価線M1を設定し、当該評価線M1上の酸素濃度を5mm間隔で測定した(実施例1)。酸素濃度は、FTIR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光法)を用いてASTM F121−1979に基づき測定した。
同じ評価試料3の被検査面上において、評価線M1および当該評価線M1の延長線に重ならない任意の線上の酸素濃度を実施例1と同じ間隔で測定した(比較例1)。測定は、試料中心3Cと当該試料中心3Cから径方向に145mm離れた位置との間で行った。
実施例1および比較例1の酸素濃度の測定結果を図3に示す。
また、実施例1および比較例1のそれぞれの測定結果に基づいて、以下の式(1)で表されるROG(Radial Oxygen Gradient:酸素濃度勾配)を算出した。その結果を表1に示す。
ROG(%)={(酸素濃度の最大値−酸素濃度の最小値)/酸素濃度の最小値}×100) … (1)
A notch 22 was formed in the straight body 21 after the grinding, and one evaluation sample 3 was obtained from the longitudinal end of the straight body 21 after the grinding. Next, the evaluation sample 3 was subjected to a pretreatment necessary for oxygen concentration measurement, for example, etching, polishing, and the like, and then the evaluation sample 3 was set in an inspection device. Thereafter, an evaluation line M1 included in the evaluation line M was set on the inspection surface of the evaluation sample 3, and the oxygen concentration on the evaluation line M1 was measured at intervals of 5 mm (Example 1). The oxygen concentration was measured based on ASTM F121-1979 using FTIR (Fourier Transform Infrared Spectroscopy).
On the surface to be inspected of the same evaluation sample 3, the oxygen concentration on the evaluation line M1 and an arbitrary line that does not overlap with the extension of the evaluation line M1 was measured at the same interval as in Example 1 (Comparative Example 1). The measurement was performed between the sample center 3C and a position 145 mm away from the sample center 3C in the radial direction.
FIG. 3 shows the measurement results of the oxygen concentration in Example 1 and Comparative Example 1.
Further, based on the measurement results of Example 1 and Comparative Example 1, ROG (Radial Oxygen Gradient: oxygen concentration gradient) represented by the following equation (1) was calculated. Table 1 shows the results.
ROG (%) = {(maximum oxygen concentration−minimum oxygen concentration) / minimum oxygen concentration} × 100) (1)

Figure 2019216135
Figure 2019216135

図3に示すように、試料中心3Cから125mmの位置までの酸素濃度は、実施例1と比較例1とでほぼ同じであったが、130mmの位置よりも外側における実施例1の酸素濃度は、比較例1よりも小さくなり、評価試料3の外縁に向かうほど小さくなった。また、表1に示すように、実施例1のROGは比較例1のROGよりも大きくなった。
以上のことから、実施例1の品質評価は比較例1の品質評価よりも厳しい条件であり、当該厳しい条件で品質評価を行うことで、品質が許容範囲に入っていないシリコンウェーハの出荷を抑制できることを確認できた。
As shown in FIG. 3, the oxygen concentration from the center 3C of the sample to the position of 125 mm was substantially the same in Example 1 and Comparative Example 1, but the oxygen concentration of Example 1 outside the position of 130 mm was And smaller than Comparative Example 1, and decreased toward the outer edge of Evaluation Sample 3. Further, as shown in Table 1, the ROG of Example 1 was larger than the ROG of Comparative Example 1.
From the above, the quality evaluation of Example 1 is a stricter condition than the quality evaluation of Comparative Example 1. By performing the quality evaluation under the strict conditions, the shipment of silicon wafers whose quality is not within the allowable range is suppressed. I was able to confirm that I can do it.

1…シリコン単結晶、3…評価試料、11…(円筒研削前の)直胴部、12…平坦部、21…(円筒研削加工された)直胴部、M,M1,M2…評価線。   1 ... silicon single crystal, 3 ... evaluation sample, 11 ... straight body (before cylindrical grinding), 12 ... flat part, 21 ... straight body (cylindrical ground), M, M1, M2 ... evaluation line.

Claims (6)

直胴部の外周上の一部に結晶中心軸に沿って平坦部が形成された、中心軸の結晶方位が<111>であるシリコン単結晶から得られるシリコンウェーハの評価方法であって、
前記シリコン単結晶を準備する工程と、
前記シリコン単結晶の直胴部を円筒研削する工程と、
円筒研削された直胴部から円板状の評価試料を切り出す工程と、
前記評価試料の中心を通り前記平坦部に直交する評価線を特定する工程と、
前記評価試料における前記評価線上の品質を、前記直胴部から得られるシリコンウェーハの品質として評価する工程とを実施することを特徴とするシリコンウェーハの評価方法。
A method for evaluating a silicon wafer obtained from a silicon single crystal in which a flat portion is formed along a crystal central axis on a part of an outer periphery of a straight body portion and a crystal orientation of a central axis is <111>,
Preparing the silicon single crystal,
A step of cylindrically grinding the straight body of the silicon single crystal,
A step of cutting out a disc-shaped evaluation sample from the cylindrical body subjected to cylindrical grinding,
A step of identifying an evaluation line passing through the center of the evaluation sample and orthogonal to the flat portion,
Evaluating the quality of the evaluation sample on the evaluation line as the quality of a silicon wafer obtained from the straight body portion.
請求項1に記載のシリコンウェーハの評価方法において、
前記評価試料を前記直胴部から切り出す工程の前に、前記直胴部にマーキング加工を施す工程を実施し、
前記評価線を特定する工程は、前記マーキング加工が施された位置に基づいて評価線の位置を特定することを特徴とするシリコンウェーハの評価方法。
In the method for evaluating a silicon wafer according to claim 1,
Prior to the step of cutting out the evaluation sample from the straight body, performing a step of performing a marking process on the straight body,
The method of evaluating a silicon wafer, wherein the step of specifying the evaluation line specifies a position of the evaluation line based on a position where the marking process is performed.
請求項2に記載のシリコンウェーハの評価方法において、
前記評価線を特定する工程は、前記評価試料の中心と前記評価試料の外周部のマーキング加工が施された位置を結ぶ線を、前記評価試料の中心を回転中心として、所定の角度で回転することにより、前記評価線を特定することを特徴とするシリコンウェーハの評価方法。
In the method for evaluating a silicon wafer according to claim 2,
The step of specifying the evaluation line rotates a line connecting a center of the evaluation sample and a position where the outer peripheral portion of the evaluation sample is subjected to the marking process at a predetermined angle around the center of the evaluation sample as a rotation center. A method for evaluating a silicon wafer, wherein the evaluation line is specified.
請求項1から請求項3のいずれか一項に記載のシリコンウェーハの評価方法において、
前記評価する工程は、前記評価線のうち、前記評価試料の中心から前記平坦部側に延びる部分の品質、および、前記評価試料の中心から前記平坦部側とは反対側に延びる部分の品質のうち少なくともいずれか一方を評価することを特徴とするシリコンウェーハの評価方法。
In the method for evaluating a silicon wafer according to any one of claims 1 to 3,
The step of evaluating the quality of a portion of the evaluation line extending from the center of the evaluation sample to the flat portion side, and the quality of a portion extending from the center of the evaluation sample to the opposite side to the flat portion side. A method for evaluating a silicon wafer, wherein at least one of the methods is evaluated.
請求項1から請求項4のいずれか一項に記載のシリコンウェーハの評価方法において、
前記評価する工程は、抵抗率、酸素濃度および欠陥密度のうち少なくともいずれか1つを評価することを特徴とするシリコンウェーハの評価方法。
In the method for evaluating a silicon wafer according to any one of claims 1 to 4,
The method for evaluating a silicon wafer, wherein the evaluating includes evaluating at least one of resistivity, oxygen concentration, and defect density.
請求項1から請求項5のいずれか一項に記載のシリコンウェーハの評価方法において、
前記評価する工程は、前記評価線を前記評価試料の中心を回転中心として5°以下回転させた線上の品質を、前記評価線上の品質とみなして評価することを特徴とするシリコンウェーハの評価方法。
In the method for evaluating a silicon wafer according to any one of claims 1 to 5,
The evaluating step is a method of evaluating a silicon wafer, wherein the quality on a line obtained by rotating the evaluation line by 5 ° or less about the center of the evaluation sample as a rotation center is regarded as the quality on the evaluation line. .
JP2018110907A 2018-06-11 2018-06-11 Evaluation method of silicon wafer Active JP6911814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110907A JP6911814B2 (en) 2018-06-11 2018-06-11 Evaluation method of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110907A JP6911814B2 (en) 2018-06-11 2018-06-11 Evaluation method of silicon wafer

Publications (2)

Publication Number Publication Date
JP2019216135A true JP2019216135A (en) 2019-12-19
JP6911814B2 JP6911814B2 (en) 2021-07-28

Family

ID=68918853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110907A Active JP6911814B2 (en) 2018-06-11 2018-06-11 Evaluation method of silicon wafer

Country Status (1)

Country Link
JP (1) JP6911814B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
JP2017210376A (en) * 2016-05-23 2017-11-30 株式会社Sumco Production method of silicon single crystal, production method of silicon wafer, and silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
JP2017210376A (en) * 2016-05-23 2017-11-30 株式会社Sumco Production method of silicon single crystal, production method of silicon wafer, and silicon single crystal

Also Published As

Publication number Publication date
JP6911814B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6132621B2 (en) Method for slicing semiconductor single crystal ingot
KR101333189B1 (en) Method for Producing Wafer
JP3213563B2 (en) Manufacturing method of notchless wafer
TWI567814B (en) Method for manufacturing chamfering device and without incision wafers
JP6750592B2 (en) Method and apparatus for evaluating edge shape of silicon wafer, silicon wafer, and method for selecting and manufacturing the same
JP5867377B2 (en) Cylindrical grinding machine and method for manufacturing single crystal wafer
JP5837290B2 (en) Epitaxial wafer manufacturing method and epitaxial growth apparatus
JP2011003773A (en) Method of manufacturing silicon wafer
JP6911814B2 (en) Evaluation method of silicon wafer
JP2014232780A (en) Manufacturing method of single crystal wafer
JP2017157796A (en) Manufacturing method of silicon wafer and silicon wafer
JP2008177287A (en) Compound semiconductor wafer
JP6471686B2 (en) Silicon wafer chamfering method, silicon wafer manufacturing method, and silicon wafer
KR100526215B1 (en) A Manufacturing Method And Device For Silicon Single Crystal Wafer
JP7207214B2 (en) How to manage the resistivity measuring device
WO2019035336A1 (en) Evaluation method and evaluation device of edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method thereof
WO2022196786A1 (en) Method for manufacturing gaas wafer, and gaas wafer group
JP7205391B2 (en) How to manage the resistivity measuring device
JP5343400B2 (en) Manufacturing method of semiconductor wafer
JP2009186181A (en) Crystal orientation measuring instrument, crystal processing apparatus, and crystal processing method
CN113119327B (en) Directional multi-line cutting method capable of improving &lt;111&gt; crystal orientation crystal bar cutting warp value
JP7046670B2 (en) Chamfering system and truing equipment used for it
JP2021194742A (en) Skiving processing device
JP2022088476A (en) Chamfering processing system
JP2012099660A (en) Chip segmentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150