JP2019215134A - Composite heat source heat pump device - Google Patents

Composite heat source heat pump device Download PDF

Info

Publication number
JP2019215134A
JP2019215134A JP2018113269A JP2018113269A JP2019215134A JP 2019215134 A JP2019215134 A JP 2019215134A JP 2018113269 A JP2018113269 A JP 2018113269A JP 2018113269 A JP2018113269 A JP 2018113269A JP 2019215134 A JP2019215134 A JP 2019215134A
Authority
JP
Japan
Prior art keywords
heat
heat pump
compressor
temperature
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018113269A
Other languages
Japanese (ja)
Other versions
JP7000261B2 (en
Inventor
岳彦 川上
Takehiko Kawakami
岳彦 川上
眞柄 隆志
Takashi Magara
隆志 眞柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2018113269A priority Critical patent/JP7000261B2/en
Publication of JP2019215134A publication Critical patent/JP2019215134A/en
Application granted granted Critical
Publication of JP7000261B2 publication Critical patent/JP7000261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a composite heat source heat pump device enabling efficient operation suitable for an installation environment.SOLUTION: A composite heat source heat pump device includes: a first heat pump circuit 40 having a first compressor 43 and a first heat source side heat exchanger 46 enabling heat exchange with a prescribed heat source different from the outside air; a second heat pump circuit 50 having a second compressor 53 and a second heat source side heat exchanger 57 enabling heat exchange with the outside air; outside air temperature detection means 52c; and a control device 6. The control device 6 sets one of the first compressor 43 and the second compressor 53 as a main power source and sets the other of the first compressor and the second compressor as an auxiliary power source with an outside air temperature detected by the outside air temperature detection means 52c as a reference, sets the second compressor 53 as a main power source when the outside air temperature is equal to or more than a prescribed changeover temperature, and sets the first compressor 43 as a main power source when the outside air temperature is less than the prescribed changeover temperature, and performs heating operation. In the composite heat source heat pump device, determination means 62a for determining easiness of executing defrosting operation is provided, and the determination means 62a sets a prescribed changeover temperature in accordance with the easiness of executing defrosting operation.SELECTED DRAWING: Figure 6

Description

本発明は、除霜運転の実行されやすさに応じて、主動力源/補助動力源を切り換えるための切換温度を設定する複合熱源ヒートポンプ装置に関するものである。   The present invention relates to a combined heat source heat pump device that sets a switching temperature for switching between a main power source and an auxiliary power source in accordance with the ease of execution of a defrosting operation.

従来この種の複合熱源ヒートポンプ装置においては、熱媒と熱交換する第1ヒートポンプ回路と、外気と熱交換する空気熱交換器を有する第2ヒートポンプ回路を併用するにあたって、外気温度と所定の切換温度との比較により何れか一方のヒートポンプ回路の圧縮機を主動力源とし、他方のヒートポンプ回路の圧縮機を補助動力源として切り換えて駆動制御するものがあった。(例えば、特許文献1参照。)   Conventionally, in a composite heat source heat pump device of this type, when a first heat pump circuit that exchanges heat with a heat medium and a second heat pump circuit that has an air heat exchanger that exchanges heat with outside air are used together, the outside air temperature and a predetermined switching temperature In comparison with the above, there is a type in which the compressor of one of the heat pump circuits is used as a main power source and the compressor of the other heat pump circuit is used as an auxiliary power source to perform drive control. (For example, refer to Patent Document 1.)

特開2015−117880号公報JP 2015-117880 A

ところで、この従来のものでは、前記切換温度は、主動力源となる圧縮機を有するヒートポンプ回路が、熱源から効率よく採熱を行うために予め設定された固定の温度であるが、例えば、外気中の湿度が低いなど、第2ヒートポンプ回路の空気熱交換器に着霜せずほとんど除霜運転が実行されないような状況であり、第2ヒートポンプ回路の効率が第1ヒートポンプ回路の効率よりも高い場合であっても、前記切換温度が固定の温度で、外気温度が前記切換温度より低い場合は、主動力源が第1ヒートポンプ回路の圧縮機であると決められ、第2ヒートポンプ回路の圧縮機が主動力源となることはなく、運転効率が上がらず、逆に、外気中の湿度が高いなど、第2ヒートポンプ回路の空気熱交換器に着霜しやすく除霜運転が実行されやすくなるような状況で、第2ヒートポンプ回路の効率が第1ヒートポンプ回路の効率よりも低い場合であっても、前記切換温度が固定の温度で、外気温度が前記切換温度より高い場合は、主動力源が第2ヒートポンプ回路の圧縮機であると決められ、第1ヒートポンプ回路の圧縮機が主動力源となることはなく、運転効率が上がらないというように、設置環境によっては、固定の前記切換温度で主動力源/補助動力源を切り換えるのが適切とは言えず、運転効率を低下させるおそれがあった。   By the way, in this conventional device, the switching temperature is a fixed temperature set in advance for the heat pump circuit having the compressor serving as the main power source to efficiently collect heat from the heat source. It is a situation in which the air heat exchanger of the second heat pump circuit is not frosted and the defrosting operation is hardly performed, for example, due to low humidity inside, and the efficiency of the second heat pump circuit is higher than the efficiency of the first heat pump circuit. Even in this case, when the switching temperature is a fixed temperature and the outside air temperature is lower than the switching temperature, the main power source is determined to be the compressor of the first heat pump circuit, and the compressor of the second heat pump circuit is Does not become the main power source, the operation efficiency does not increase, and conversely, the humidity in the outside air is high, so that the air heat exchanger of the second heat pump circuit is easily frosted and the defrosting operation is easily performed. In such a situation, even when the efficiency of the second heat pump circuit is lower than the efficiency of the first heat pump circuit, if the switching temperature is a fixed temperature and the outside air temperature is higher than the switching temperature, the main power source Is determined as the compressor of the second heat pump circuit, the compressor of the first heat pump circuit does not become the main power source, and the operating temperature does not increase. Therefore, it is not appropriate to switch the main power source / auxiliary power source, and there is a possibility that the operating efficiency is reduced.

本発明は上記課題を解決するために、請求項1では、第1圧縮機、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器を備えた第1ヒートポンプ回路と、第2圧縮機、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器を備えた第2ヒートポンプ回路と、外気温度を検出する外気温度検出手段と、動作を制御する制御装置と、を有し、前記制御装置は、前記外気温度検出手段の検出した前記外気温度を基準として前記第1圧縮機および前記第2圧縮機のうち一方を主動力源、他方を補助動力源に設定し、前記外気温度が所定の切換温度以上の場合には前記第2圧縮機を主動力源、前記外気温度が前記所定の切換温度未満の場合には前記第1圧縮機を主動力源に設定して暖房運転を行う複合熱源ヒートポンプ装置において、前記第2ヒートポンプ回路の前記第2熱源側熱交換器に付いた霜を溶かす除霜運転の実行されやすさを判定する判定手段を設け、前記判定手段は、前記除霜運転の実行されやすさに応じて前記所定の切換温度を設定するものとした。   In order to solve the above problems, the present invention provides a first compressor, a first load-side heat exchanger, a first expansion valve, and a second heat exchanger capable of performing heat exchange with a predetermined heat source different from outside air. A first heat pump circuit having one heat source side heat exchanger, a second compressor, a second load side heat exchanger, a second expansion valve, and a second heat source side heat exchanger capable of exchanging heat with the outside air are provided. A second heat pump circuit, an outside air temperature detecting means for detecting an outside air temperature, and a control device for controlling an operation, wherein the control device performs the operation based on the outside air temperature detected by the outside air temperature detecting means. One of the first compressor and the second compressor is set as a main power source, and the other is set as an auxiliary power source. When the outside air temperature is equal to or higher than a predetermined switching temperature, the second compressor is set as a main power source. When the outside air temperature is lower than the predetermined switching temperature, the first compressor is used as a main power source. In the combined heat source heat pump device that performs the heating operation in a fixed manner, the determination unit that determines the easiness of the defrosting operation for melting the frost attached to the second heat source side heat exchanger of the second heat pump circuit is provided, The determining means sets the predetermined switching temperature according to the ease with which the defrosting operation is performed.

また、請求項2では、前記判定手段は、前記除霜運転が実行されにくいと判定した場合は、前記切換温度を低下させるものとした。   Further, in claim 2, when the determination unit determines that the defrosting operation is difficult to be performed, the switching temperature is reduced.

また、請求項3では、前記判定手段は、前記除霜運転が実行されやすいと判定した場合は、前記切換温度を上昇させるものとした。   According to a third aspect of the present invention, when the determination unit determines that the defrosting operation is easily performed, the determination unit increases the switching temperature.

また、請求項4では、前記判定手段は、前記除霜運転が実行されやすくも実行されにくくもないと判定した場合は、前記切換温度を変更しないものとした。   According to a fourth aspect of the present invention, when the determining unit determines that the defrosting operation is not likely to be performed or hardly performed, the switching temperature is not changed.

また、請求項5では、前記判定手段は、前記除霜運転の実行状況に基づいて、前記除霜運転の実行されやすさを判定するものとした。   Further, in claim 5, the determination means determines the ease of execution of the defrosting operation based on the execution state of the defrosting operation.

また、請求項6では、前記判定手段は、外気温度が所定温度以下のときの前記第2ヒートポンプ回路の作動時間と、前記除霜運転の実行回数または実行時間とに基づいて算出された算出値によって、前記除霜運転の実行されやすさを判定し、前記算出値に応じて前記切換温度を設定するものとした。   According to a sixth aspect of the present invention, the determination unit calculates a value calculated based on an operation time of the second heat pump circuit when the outside air temperature is equal to or lower than a predetermined temperature and the number of times or the execution time of the defrosting operation. Thus, the ease of execution of the defrosting operation is determined, and the switching temperature is set according to the calculated value.

この発明の請求項1によれば、第2ヒートポンプ回路の第2熱源側熱交換器に付いた霜を溶かす除霜運転の実行されやすさを判定する判定手段を設け、判定手段は、除霜運転の実行されやすさに応じて所定の切換温度を設定するようにしたことで、除霜運転が実行されやすそうな環境であれば、第2圧縮機から第1圧縮機への主動力源の切り換えタイミングが早くなるようにし、除霜運転が実行されにくそうな環境であれば、第2圧縮機から第1圧縮機への主動力源の切り換えタイミングが遅くなるようにする等、個々の設置環境に合った切換温度へと自動的に設定されるので、運転効率を向上させることができるものである。   According to the first aspect of the present invention, there is provided a judging means for judging the easiness of executing a defrosting operation for melting frost attached to the second heat source side heat exchanger of the second heat pump circuit. By setting the predetermined switching temperature in accordance with the easiness of the operation, if the environment in which the defrosting operation is likely to be performed, the main power source from the second compressor to the first compressor is used. In the environment where the defrosting operation is unlikely to be performed, the switching timing of the main power source from the second compressor to the first compressor is delayed. Since the switching temperature is automatically set to the switching environment suitable for the installation environment, the operation efficiency can be improved.

また、請求項2によれば、判定手段は、除霜運転が実行されにくいと判定した場合は、切換温度を低下させるようにしたことで、除霜運転が実行されにくい、つまり、第2熱源側熱交換器に着霜しづらければ、第2ヒートポンプ回路は着霜による効率低下が抑制されて高効率で運転可能であり、切換温度を低下させることにより、第2圧縮機が主動力源に設定されやすくなると共に、第2圧縮機から第1圧縮機への主動力源の切り換えタイミングが遅くなるので、第2圧縮機が主動力源として駆動する割合が増え、運転効率を向上させることができるものである。   According to the second aspect, when the determination unit determines that the defrosting operation is difficult to be performed, the switching temperature is reduced, so that the defrosting operation is difficult to be performed. If it is difficult to form frost on the side heat exchanger, the second heat pump circuit can be operated with high efficiency by suppressing a decrease in efficiency due to frost, and by lowering the switching temperature, the second compressor is driven by the main power source. And the switching timing of the main power source from the second compressor to the first compressor is delayed, so that the ratio of driving the second compressor as the main power source increases, and the operating efficiency is improved. Can be done.

また、請求項3によれば、判定手段は、除霜運転が実行されやすいと判定した場合は、切換温度を上昇させるようにしたことで、除霜運転が実行されやすい、つまり、第2熱源側熱交換器に着霜しやすければ、第2ヒートポンプ回路は着霜による効率低下が生じ高効率な運転ができないが、切換温度を上昇させることにより、第1圧縮機が主動力源に設定されやすくなると共に、第2圧縮機から第1圧縮機への主動力源の切り換えタイミングが早くなるので、第2圧縮機が主動力源として駆動する割合が減り、着霜による効率低下した状態での運転が減り、運転効率を向上させることができるものである。   According to the third aspect, when the determination unit determines that the defrosting operation is easily performed, the switching temperature is increased, so that the defrosting operation is easily performed, that is, the second heat source. If the side heat exchanger is easily frosted, the efficiency of the second heat pump circuit is reduced due to frosting and high efficiency operation cannot be performed. However, by increasing the switching temperature, the first compressor is set as the main power source. In addition, the switching timing of the main power source from the second compressor to the first compressor is advanced, so that the rate at which the second compressor is driven as the main power source is reduced, and the efficiency is reduced due to frost formation. Driving is reduced and driving efficiency can be improved.

また、請求項4によれば、判定手段は、除霜運転が実行されやすくも実行されにくくもないと判定した場合は、切換温度を変更しないようにしたことで、設置環境に合致した切換温度を継続できるので、運転効率がよい状態を保つことができるものである。   According to the fourth aspect, when the determination unit determines that the defrosting operation is not easily performed or hardly performed, the determining unit does not change the switching temperature. Can be maintained, so that a state in which the operation efficiency is good can be maintained.

また、請求項5によれば、判定手段は、除霜運転の実行状況に基づいて、除霜運転の実行されやすさを判定するようにしたことで、除霜運転の実行状況、すなわち、除霜運転の実行回数や除霜運転の実行時間等から、個々の設置環境における除霜運転の実行されやすさを確実に判定でき、その判定に基づいて個々の設置環境に合った切換温度の設定を容易に行うことができるものである。   According to the fifth aspect, the determining means determines the ease of execution of the defrosting operation based on the execution state of the defrosting operation. From the number of executions of the frost operation, the execution time of the defrost operation, etc., it is possible to reliably determine the ease of execution of the defrost operation in each installation environment, and based on the determination, set a switching temperature suitable for each installation environment. Can be easily performed.

また、請求項6によれば、判定手段は、外気温度が所定温度以下のときの第2ヒートポンプ回路の作動時間と除霜運転の実行回数または実行時間とに基づいて算出された算出値によって、除霜運転の実行されやすさを判定し、算出値に応じて切換温度を設定するようにしたことで、第2熱源側熱交換器に霜の付着が生じやすくなるような外気温度状況下での第2ヒートポンプ回路50の作動時間と除霜運転の実行回数または実行時間とを用いて、簡素な演算で確実に除霜運転の実行されやすさを判定することができ、それに見合う的確な切換温度の設定を行うことができるものである。   Further, according to claim 6, the determining means calculates the operation time of the second heat pump circuit when the outside air temperature is equal to or lower than the predetermined temperature and the number of times or the execution time of the defrosting operation, or the calculated value based on the execution time. By determining the ease of execution of the defrosting operation, and by setting the switching temperature in accordance with the calculated value, under an outside air temperature condition in which frost easily adheres to the second heat source side heat exchanger. By using the operation time of the second heat pump circuit 50 and the number of executions or the execution time of the defrosting operation, it is possible to reliably determine the ease of execution of the defrosting operation by a simple calculation, and to perform an appropriate switching corresponding thereto. The temperature can be set.

本発明の実施形態に係る複合熱源ヒートポンプ装置の主要なユニットを示す外観構成図。FIG. 1 is an external configuration diagram illustrating main units of a composite heat source heat pump device according to an embodiment of the present invention. 複合熱源ヒートポンプ装置の全体構成を示す概略構成図。The schematic block diagram which shows the whole structure of a composite heat source heat pump apparatus. 複合熱源ヒートポンプ装置の主動力源/補助動力源の切換温度を示す図。The figure which shows the switching temperature of the main power source / auxiliary power source of a composite heat source heat pump apparatus. 暖房運転時の動作を説明する説明図。Explanatory drawing explaining operation | movement at the time of heating operation. 暖房運転中に除霜運転が行われる場合の動作を説明する説明図。Explanatory drawing explaining the operation | movement when a defrost driving | operation is performed during a heating driving | operation. 主動力源/補助動力源を切り換える切換温度の設定方法を示すフローチャート。5 is a flowchart illustrating a method for setting a switching temperature for switching between a main power source and an auxiliary power source. 除霜運転の実行されやすさを表す指標の除霜頻度係数と切換温度変更量との関係を示す図。The figure which shows the relationship between the defrosting frequency coefficient of the parameter | index showing the ease of performing a defrosting operation, and the switching temperature change amount. 主動力源/補助動力源の切換温度遷移の一例を説明する図。The figure explaining an example of the switching temperature transition of the main power source / auxiliary power source. 主動力源/補助動力源の切換温度遷移の他の例を説明する図。The figure explaining other examples of the switching temperature transition of the main power source / auxiliary power source. 主動力源/補助動力源の切換温度遷移のさらに他の例を説明する図。The figure explaining further another example of the switching temperature transition of the main power source / auxiliary power source.

本発明の実施形態に係る複合熱源ヒートポンプ装置1の構成について、適宜図1と図2を参照しながら詳細に説明する。
図1に示すように、複合熱源ヒートポンプ装置1は、第1ヒートポンプ回路40(図2参照)を備える地中熱ヒートポンプユニット4と、第2ヒートポンプ回路50(図2参照)を備える空気熱ヒートポンプユニット5とを有している。また、複合熱源ヒートポンプ装置1は、空調端末36に負荷側循環液L(例えば、水や不凍液)を循環させる負荷側循環回路30と、熱源側循環回路20と、複合熱源ヒートポンプ装置1の動作を制御する制御手段としての制御装置6(61、62)と、制御装置6に信号を送るリモコン60とを有しており、空調端末36が設置された室内の暖房または冷房を行うものである。
The configuration of the composite heat source heat pump device 1 according to the embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 as appropriate.
As shown in FIG. 1, the composite heat source heat pump device 1 includes an underground heat pump unit 4 including a first heat pump circuit 40 (see FIG. 2) and an air heat heat pump unit including a second heat pump circuit 50 (see FIG. 2). 5 is provided. In addition, the composite heat source heat pump device 1 operates the load-side circulation circuit 30 that circulates the load-side circulating liquid L (for example, water or antifreeze) to the air conditioning terminal 36, the heat source-side circulation circuit 20, and the operation of the composite heat source heat pump device 1. It has a control device 6 (61, 62) as a control means for controlling and a remote controller 60 for sending a signal to the control device 6, and performs heating or cooling of the room where the air conditioning terminal 36 is installed.

図2に示すように、本実施形態に係る複合熱源ヒートポンプ装置1は、外気とは別の熱源、ここでは地中熱源を利用して空調端末36側の負荷側循環液Lを加熱または冷却する第1ヒートポンプ回路40の第1負荷側熱交換器41と、外気を熱源として利用して空調端末36側の負荷側循環液Lを加熱または冷却する第2ヒートポンプ回路50の第2負荷側熱交換器51とを負荷側循環回路30を循環する負荷側循環液Lの流れに対して、第1負荷側熱交換器41が第2負荷側熱交換器51よりも上流側に配設されている。この複合熱源ヒートポンプ装置1は、暖房装置および冷房装置として機能させることができるが、この実施形態においては主として暖房装置として使用している場合の構成要素および動作について説明する。   As shown in FIG. 2, the combined heat source heat pump device 1 according to the present embodiment heats or cools the load-side circulating fluid L on the air conditioning terminal 36 side using a heat source different from outside air, here, an underground heat source. A first load side heat exchanger 41 of the first heat pump circuit 40 and a second load side heat exchange of the second heat pump circuit 50 for heating or cooling the load side circulating fluid L on the air conditioning terminal 36 side using outside air as a heat source. The first load-side heat exchanger 41 is disposed upstream of the second load-side heat exchanger 51 with respect to the flow of the load-side circulating liquid L that circulates in the load-side circulation circuit 30 with the heat exchanger 51. . The composite heat source heat pump device 1 can function as a heating device and a cooling device. In this embodiment, components and operations when mainly used as a heating device will be described.

第1ヒートポンプ回路40は、第1冷媒C1を圧縮する回転数可変の第1圧縮機43と、第1四方弁44と、第1負荷側熱交換器41と、第1減圧手段としての第1膨張弁45と、第1熱源側熱交換器46と、これらを環状に接続する第1冷媒配管42とを備えて構成されている。   The first heat pump circuit 40 includes a first compressor 43 having a variable number of revolutions for compressing the first refrigerant C1, a first four-way valve 44, a first load-side heat exchanger 41, and a first pressure reducing means. It is configured to include an expansion valve 45, a first heat source side heat exchanger 46, and a first refrigerant pipe 42 that connects them in a ring shape.

前記第1冷媒配管42に設けられた第1四方弁44は、第1ヒートポンプ回路40における第1冷媒C1の流れ方向を切り換える切換弁としての機能を有し、第1圧縮機43から吐出された第1冷媒C1を、第1負荷側熱交換器41、第1膨張弁45、第1熱源側熱交換器46の順に流通させ、第1圧縮機43に戻す流路を形成する状態(暖房運転時の状態)と、第1圧縮機43から吐出された第1冷媒C1を、第1熱源側熱交換器46、第1膨張弁45、第1負荷側熱交換器41の順に流通させ、第1圧縮機43に戻す流路を形成する状態(冷房運転時の状態)とに切換可能なものである。   The first four-way valve 44 provided in the first refrigerant pipe 42 has a function as a switching valve for switching the flow direction of the first refrigerant C1 in the first heat pump circuit 40, and is discharged from the first compressor 43. A state in which the first refrigerant C1 is circulated in the order of the first load side heat exchanger 41, the first expansion valve 45, and the first heat source side heat exchanger 46 to form a flow path returning to the first compressor 43 (heating operation). State) and the first refrigerant C1 discharged from the first compressor 43 flows in the order of the first heat source side heat exchanger 46, the first expansion valve 45, and the first load side heat exchanger 41, The state can be switched to a state in which a flow path returning to one compressor 43 is formed (a state during cooling operation).

また、図2に示す地中熱ヒートポンプユニット4において、符号42aは、第1圧縮機43から吐出された第1冷媒C1の温度を検出する第1冷媒吐出温度センサであり、符号42bは、第1膨張弁45から第1熱源側熱交換器46までの第1冷媒配管42に設けられ、低圧側(暖房運転時)または高圧側(冷房運転時)の第1冷媒C1の温度を検出する第1冷媒温度センサである。   In the underground heat pump unit 4 shown in FIG. 2, reference numeral 42a denotes a first refrigerant discharge temperature sensor for detecting the temperature of the first refrigerant C1 discharged from the first compressor 43, and reference numeral 42b denotes a first refrigerant discharge temperature sensor. A first refrigerant pipe 42 is provided in the first refrigerant pipe 42 from the first expansion valve 45 to the first heat source side heat exchanger 46 and detects the temperature of the first refrigerant C1 on the low pressure side (during heating operation) or the high pressure side (during cooling operation). 1 is a refrigerant temperature sensor.

第2ヒートポンプ回路50は、第2冷媒C2を圧縮する回転数可変の第2圧縮機53と、第2四方弁54と、第2負荷側熱交換器51と、第2減圧手段としての第2膨張弁55と、送風ファン56の作動により送られる外気との熱交換を行う第2熱源側熱交換器としての空気熱交換器57と、これらを環状に接続する第2冷媒配管52とを備えて構成されている。   The second heat pump circuit 50 includes a variable-speed second compressor 53 that compresses the second refrigerant C2, a second four-way valve 54, a second load-side heat exchanger 51, and a second pressure-reducing unit. An expansion valve 55, an air heat exchanger 57 as a second heat source side heat exchanger for exchanging heat with the outside air sent by the operation of the blower fan 56, and a second refrigerant pipe 52 for connecting these in a ring shape are provided. It is configured.

前記第2冷媒配管52に設けられた第2四方弁54は、第2ヒートポンプ回路50における第2冷媒C2の流れ方向を切り換える切換弁としての機能を有し、第2圧縮機53から吐出された第2冷媒C2を、第2負荷側熱交換器51、第2膨張弁55、空気熱交換器57の順に流通させ、第2圧縮機53に戻す流路を形成する状態(暖房運転時の状態)と、第2圧縮機53から吐出された第2冷媒C2を、空気熱交換器57、第2膨張弁55、第2負荷側熱交換器51の順に流通させ、第2圧縮機53に戻す流路を形成する状態(除霜運転時または冷房運転時)とに切換可能なものである。
本実施形態では、空気熱交換器57が低温となり、着霜した場合に、第2圧縮機53から吐出される第2冷媒C2が空気熱交換器57に向けて流れるように第2四方弁54が切り換えられて、第2圧縮機53からの高温の第2冷媒C2により空気熱交換器57に発生した霜が溶かされるようになっている。
The second four-way valve 54 provided in the second refrigerant pipe 52 has a function as a switching valve for switching the flow direction of the second refrigerant C2 in the second heat pump circuit 50, and is discharged from the second compressor 53. A state in which the second refrigerant C2 is circulated in the order of the second load side heat exchanger 51, the second expansion valve 55, and the air heat exchanger 57 to form a flow path returning to the second compressor 53 (a state during the heating operation). ) And the second refrigerant C2 discharged from the second compressor 53 flows through the air heat exchanger 57, the second expansion valve 55, and the second load-side heat exchanger 51 in this order, and returns to the second compressor 53. It can be switched to a state in which a flow path is formed (during a defrosting operation or a cooling operation).
In the present embodiment, when the temperature of the air heat exchanger 57 becomes low and frost is formed, the second refrigerant C2 discharged from the second compressor 53 flows toward the air heat exchanger 57 so that the second four-way valve 54 is formed. Is switched, and the frost generated in the air heat exchanger 57 is melted by the high-temperature second refrigerant C2 from the second compressor 53.

また、図2に示す空気熱ヒートポンプユニット5において、符号52aは、第2圧縮機53から吐出された第2冷媒C2の温度を検出する第2冷媒吐出温度センサであり、符号52bは、第2膨張弁55から空気熱交換器57までの第2冷媒配管52に設けられ、低圧側(暖房運転時)または高圧側(除霜運転時または冷房運転時)の第2冷媒C2の温度を検出する第2冷媒温度センサであり、符号52cは外気温度を検出する外気温度検出手段としての外気温度センサである。   Further, in the air heat heat pump unit 5 shown in FIG. 2, reference numeral 52a is a second refrigerant discharge temperature sensor for detecting the temperature of the second refrigerant C2 discharged from the second compressor 53, and reference numeral 52b is a second refrigerant discharge temperature sensor. It is provided in the second refrigerant pipe 52 from the expansion valve 55 to the air heat exchanger 57, and detects the temperature of the second refrigerant C2 on the low pressure side (during the heating operation) or the high pressure side (during the defrost operation or the cooling operation). A second refrigerant temperature sensor 52c is an outside air temperature sensor as outside air temperature detecting means for detecting the outside air temperature.

なお、第1ヒートポンプ回路40および第2ヒートポンプ回路50の冷媒としては、R410AやR32等のHFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができる。   In addition, as the refrigerant of the first heat pump circuit 40 and the second heat pump circuit 50, any refrigerant such as HFC refrigerant such as R410A and R32 and carbon dioxide refrigerant can be used.

前記第1負荷側熱交換器41、第1熱源側熱交換器46、および第2負荷側熱交換器51は、例えばプレート式熱交換器で構成されている。このプレート式熱交換器は、複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路と循環液等の流体を流通させる流体流路とが各伝熱プレートを境にして交互に形成されている。   The first load-side heat exchanger 41, the first heat source-side heat exchanger 46, and the second load-side heat exchanger 51 are configured by, for example, a plate-type heat exchanger. In this plate heat exchanger, a plurality of heat transfer plates are stacked, and a refrigerant flow path for flowing a refrigerant and a fluid flow path for flowing a fluid such as a circulating liquid are formed alternately at each heat transfer plate. ing.

熱源側循環回路20は、回転数可変の熱源側循環ポンプ22と、第1熱源側熱交換器46と、前記第1熱源側熱交換器46を流通する第1冷媒C1と熱交換する熱源として(この例では地中に)設置された地中熱交換器23とが、熱媒配管としての熱源側配管21によって環状に接続されている。この熱源側配管21には、熱源側循環ポンプ22によって、熱媒として熱源側循環液H(水や不凍液)が循環されると共に、熱源側循環液Hを貯留し熱源側循環回路20の圧力を調整する熱源側シスターン24が設けられている。   The heat-source-side circulation circuit 20 serves as a heat-source-side circulation pump 22 having a variable number of revolutions, a first heat-source-side heat exchanger 46, and a heat source that exchanges heat with the first refrigerant C1 flowing through the first heat-source-side heat exchanger 46. The underground heat exchanger 23 installed (in the ground in this example) is connected in a ring shape by a heat source side pipe 21 as a heat medium pipe. The heat source side circulating pump 22 circulates the heat source side circulating fluid H (water or antifreeze) as a heat medium in the heat source side piping 21 and stores the heat source side circulating fluid H to reduce the pressure of the heat source side circulating circuit 20. A heat source side cistern 24 to be adjusted is provided.

負荷側循環回路30は、第1負荷側熱交換器41と、第2負荷側熱交換器51と、床暖房パネルやパネルコンベクタやファンコイル等の負荷端末としての空調端末36とが、負荷側配管31によって上流側から順に環状に接続されている。この負荷側配管31には、負荷側循環回路30に負荷側循環液Lを循環させる負荷側循環ポンプ32が設けられており、空調端末36毎に分岐した負荷側配管31の各々には、その開閉により空調端末36への負荷側循環液Lの供給を制御する熱動弁33がそれぞれ設けられ、熱動弁33は、空調端末36が設置された室内の室温が所定の温度になるように開閉が制御されるものであり、図2では空調端末36外に設けられているが、空調端末36に内蔵されていてもよいものである。なお、空調端末36は、図2では2つ設けられているが、1つであってもよく、3つ以上であってもよく、数量や仕様が特に限定されるものではない。   The load-side circulation circuit 30 includes a first load-side heat exchanger 41, a second load-side heat exchanger 51, and an air-conditioning terminal 36 as a load terminal such as a floor heating panel, a panel convector, or a fan coil. The side pipes 31 are connected annularly in order from the upstream side. The load-side pipe 31 is provided with a load-side circulating pump 32 that circulates the load-side circulating fluid L to the load-side circulating circuit 30. Each of the load-side pipes 31 branched for each air conditioning terminal 36 has A thermal valve 33 for controlling the supply of the load side circulating fluid L to the air conditioning terminal 36 by opening and closing is provided, and the thermal valve 33 is provided so that the room temperature in the room where the air conditioning terminal 36 is installed becomes a predetermined temperature. Opening and closing are controlled, and are provided outside the air conditioning terminal 36 in FIG. 2, but may be built in the air conditioning terminal 36. Although two air conditioning terminals 36 are provided in FIG. 2, one or three or more air conditioning terminals may be provided, and the number and specifications are not particularly limited.

また、図2に示す負荷側循環回路30において、符号34は、負荷側配管31に設けられ空調端末36から第1負荷側熱交換器41に流入する負荷側循環液Lの温度を検出する戻り温度センサであり、符号35は、負荷側循環液Lを貯留し負荷側循環回路30の圧力を調整する負荷側シスターンである。   Further, in the load-side circulation circuit 30 shown in FIG. 2, reference numeral 34 denotes a return provided in the load-side pipe 31 for detecting the temperature of the load-side circulating fluid L flowing into the first load-side heat exchanger 41 from the air conditioning terminal 36. Reference numeral 35 denotes a load-side cistern that stores the load-side circulating fluid L and adjusts the pressure of the load-side circulation circuit 30.

制御装置6は、熱源側循環回路20、負荷側循環回路30、および第1ヒートポンプ回路40の動作を制御する地中熱ヒートポンプ制御装置61と、第2ヒートポンプ回路50の動作を制御する空気熱ヒートポンプ制御装置62とを備えている。制御装置6は、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えており、外気温度センサ52c等の温度センサ、およびリモコン60からの信号を受けて、複合熱源ヒートポンプ装置1の動作を制御できるようになっている。   The control device 6 includes an underground heat pump control device 61 that controls the operation of the heat source side circulation circuit 20, the load side circulation circuit 30, and the first heat pump circuit 40, and an air heat heat pump that controls the operation of the second heat pump circuit 50. And a control device 62. The control device 6 includes a storage unit that stores various data and programs, and a control unit that performs arithmetic and control processes. The control device 6 receives signals from a temperature sensor such as an outside air temperature sensor 52c and a remote controller 60, The operation of the composite heat source heat pump device 1 can be controlled.

ここで、暖房運転時における地中熱ヒートポンプ制御装置61について説明すると、地中熱ヒートポンプ制御装置61は、第1負荷側熱交換器41の直上流側の負荷側循環液Lの温度を検出する戻り温度センサ34の検出値に応じて、第1圧縮機43の回転数を制御する。特にこの例では、戻り温度センサ34により検出される負荷側循環液Lの戻り温水温度が、例えば、リモコン60の設定温度に基づいて設定される目標温水温度になるように、第1圧縮機43の回転数を制御する。   Here, the underground heat heat pump control device 61 during the heating operation will be described. The underground heat heat pump control device 61 detects the temperature of the load-side circulating fluid L immediately upstream of the first load-side heat exchanger 41. The rotation speed of the first compressor 43 is controlled according to the detection value of the return temperature sensor 34. In particular, in this example, the first compressor 43 is set so that the return hot water temperature of the load-side circulating fluid L detected by the return temperature sensor 34 becomes the target hot water temperature set based on the set temperature of the remote controller 60, for example. To control the number of revolutions.

また、地中熱ヒートポンプ制御装置61は、第1冷媒吐出温度センサ42aにより検出される第1冷媒C1の冷媒吐出温度に応じて、第1膨張弁45の弁開度を制御する。特にこの例では、第1冷媒吐出温度センサ42aにより検出される第1冷媒C1の冷媒吐出温度が、例えばリモコン60の設定温度に対応した制御上の目標冷媒吐出温度となるように、第1膨張弁45の弁開度を制御する。   The underground heat pump control device 61 controls the opening degree of the first expansion valve 45 in accordance with the refrigerant discharge temperature of the first refrigerant C1 detected by the first refrigerant discharge temperature sensor 42a. In particular, in this example, the first expansion is performed so that the refrigerant discharge temperature of the first refrigerant C1 detected by the first refrigerant discharge temperature sensor 42a becomes the control target refrigerant discharge temperature corresponding to the set temperature of the remote controller 60, for example. The valve opening of the valve 45 is controlled.

さらに、地中熱ヒートポンプ制御装置61は、第1冷媒温度センサ42bにより検出される第1冷媒C1の温度に応じて、熱源側循環ポンプ22の回転数を制御する。特にこの例では、第1冷媒温度センサ42bにより検出される第1冷媒C1の温度が略一定値になるように、熱源側循環ポンプ22の回転数を制御する。   Further, the underground heat heat pump control device 61 controls the rotation speed of the heat source side circulation pump 22 according to the temperature of the first refrigerant C1 detected by the first refrigerant temperature sensor 42b. In particular, in this example, the rotation speed of the heat source side circulation pump 22 is controlled such that the temperature of the first refrigerant C1 detected by the first refrigerant temperature sensor 42b becomes a substantially constant value.

そして、地中熱ヒートポンプ制御装置61は、負荷側循環ポンプ32の回転数を制御する。特にこの例では、暖房運転のみが行われているときは、定速(一定回転数)にて回転するように負荷側循環ポンプ32の回転数が制御されるが、暖房運転中に、後述する除霜運転が行われるときは、暖房運転時における上記一定回転数よりも低い所定の除霜回転数で負荷側循環ポンプ32の回転数を制御する。   Then, the underground heat heat pump control device 61 controls the rotation speed of the load-side circulation pump 32. In particular, in this example, when only the heating operation is performed, the rotation speed of the load-side circulation pump 32 is controlled so as to rotate at a constant speed (constant rotation speed). When the defrosting operation is performed, the rotation speed of the load-side circulating pump 32 is controlled at a predetermined defrost rotation speed that is lower than the predetermined rotation speed during the heating operation.

また、地中熱ヒートポンプ制御装置61は、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のうちどちらの熱効率(採熱効率)が高いかを判断して、熱効率が高い方を主側(優先側)のヒートポンプユニット、熱効率が低い方を補助側のヒートポンプユニットに設定する。言い換えると、地中熱ヒートポンプ制御装置61は、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43および空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53のうち一方を主動力源、他方を補助動力源に設定するものである。   Further, the underground heat heat pump control device 61 determines which of the underground heat pump unit 4 and the air heat heat pump unit 5 has higher thermal efficiency (heat collecting efficiency) based on the outside air temperature detected by the outside air temperature sensor 52c. Then, the one with higher thermal efficiency is set as the main side (priority side) heat pump unit, and the one with lower thermal efficiency is set as the auxiliary side heat pump unit. In other words, the underground heat heat pump control device 61 determines the first compressor 43 and the air heat heat pump unit 5 of the underground heat heat pump unit 4 (the first heat pump circuit 40) based on the outside air temperature detected by the outside air temperature sensor 52c. One of the second compressors 53 of the (second heat pump circuit 50) is set as a main power source, and the other is set as an auxiliary power source.

ここで、図3を用いて、主動力源/補助動力源の切り換えについて説明する。
まず、基本的な考え方として、冬期などで外気温度が比較的低い場合には、外気から吸熱することにより空気熱交換器57が着霜する問題があることから第1圧縮機43が主動力源とされ、第2圧縮機53が補助動力源とされる。逆に、秋期や春期、冬期であっても外気温度があまり低くない場合には、外気から吸熱しても空気熱交換器57が着霜しにくいことから第2圧縮機53が主動力源とされ、第1圧縮機43が補助動力源とされる。
Here, the switching of the main power source / auxiliary power source will be described with reference to FIG.
First, as a basic idea, when the outside air temperature is relatively low in winter or the like, there is a problem that the air heat exchanger 57 is frosted by absorbing heat from the outside air, so that the first compressor 43 And the second compressor 53 is used as an auxiliary power source. Conversely, when the outside air temperature is not so low even in the autumn, spring, or winter, the second compressor 53 is used as the main power source because the air heat exchanger 57 is less likely to frost even if it absorbs heat from the outside air. Then, the first compressor 43 is used as an auxiliary power source.

すなわち、本実施形態では、暖房運転を開始する際に、外気温度センサ52cの検出する外気温度が所定の切換温度θ1(ここではθ1=5℃)未満である場合、第1ヒートポンプ回路40の第1圧縮機43を主動力源とすると共に、第2ヒートポンプ回路50の第2圧縮機53を補助動力源として、暖房運転を開始させる。また、外気温度センサ52cの検出する外気温度が所定の切換温度θ1以上である場合、第2ヒートポンプ回路50の第2圧縮機53を主動力源とすると共に、第1ヒートポンプ回路40の第1圧縮機43を補助動力源として、暖房運転を開始させる。   That is, in the present embodiment, when the outside air temperature detected by the outside air temperature sensor 52c is lower than the predetermined switching temperature θ1 (here, θ1 = 5 ° C.) when starting the heating operation, the first heat pump circuit 40 The heating operation is started using the first compressor 43 as a main power source and the second compressor 53 of the second heat pump circuit 50 as an auxiliary power source. When the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than the predetermined switching temperature θ1, the second compressor 53 of the second heat pump circuit 50 is used as a main power source and the first compression of the first heat pump circuit 40 is used. The heating operation is started using the electric machine 43 as an auxiliary power source.

そして、本実施形態では、上記のようにして暖房運転を開始した後、外気温度が変化した場合には、その変化の度合いに応じて、適宜、主動力源と補助動力源とを入れ換える。つまり、第1圧縮機43と第2圧縮機53の何れの動力源を主とするか、補助とするかを入れ換える。   Then, in the present embodiment, when the outside air temperature changes after the heating operation is started as described above, the main power source and the auxiliary power source are appropriately replaced according to the degree of the change. In other words, the power source of the first compressor 43 and the power source of the second compressor 53, which is the main power source or the auxiliary power source, is switched.

すなわち、(暖房運転開始時の外気温度がθ1未満で)第1圧縮機43が主動力源、第2圧縮機53が補助動力源として暖房運転を開始した後、図3に示すように、外気温度が上昇して切換温度であるθ1(5℃)以上となるまで(5℃未満の場合)はそのまま上第1圧縮機43を主動力源とし第2圧縮機53を補助動力源とする。その後、外気温度がθ1以上に上昇したら、第2圧縮機53を主動力源とし、第1圧縮機43を補助動力源とする。   That is, after the first compressor 43 starts the heating operation as the main power source and the second compressor 53 starts the heating operation as the auxiliary power source (when the outside air temperature at the start of the heating operation is less than θ1), as shown in FIG. Until the temperature rises to or above the switching temperature θ1 (5 ° C.) (less than 5 ° C.), the upper first compressor 43 is used as the main power source and the second compressor 53 is used as the auxiliary power source. Thereafter, when the outside air temperature rises to θ1 or more, the second compressor 53 is used as a main power source, and the first compressor 43 is used as an auxiliary power source.

逆に、(暖房運転開始時の外気温度がθ1以上で)第2圧縮機53が主動力源、第1圧縮機43が補助動力源として暖房運転を開始した後、図3に示すように、外気温度が低下してθ2(ここではθ2=2℃)未満とならないうち(2℃以上の場合)はそのまま第2圧縮機53を主動力源とし第1圧縮機43を補助動力源とする。その後、外気温度がθ2未満に低下したら、第1圧縮機43を主動力源とし、第2圧縮機53を補助動力源とする。   Conversely, after the second compressor 53 starts the heating operation as the main power source and the first compressor 43 starts the heating operation as the auxiliary power source (when the outside air temperature at the start of the heating operation is θ1 or more), as shown in FIG. As long as the outside air temperature does not drop below θ2 (here, θ2 = 2 ° C.) (in the case of 2 ° C. or higher), the second compressor 53 is used as the main power source and the first compressor 43 is used as the auxiliary power source. Thereafter, when the outside air temperature falls below θ2, the first compressor 43 is used as a main power source, and the second compressor 53 is used as an auxiliary power source.

すなわち、暖房運転中において、図3の矢印で示すように、上記のような外気温度の上昇方向では、主動力源と補助動力源を切り換える区切りとなる切換温度をθ1とする一方、外気温度の低下方向では、切換温度を変えてθ2とする(=主動力源/補助動力源の切り換え挙動にヒステリシスを持たせている)。なお、上記切換温度は予め設定された初期値として、θ1=5℃、θ2=2℃が制御装置6の記憶部に記憶されている。   That is, during the heating operation, as indicated by the arrow in FIG. 3, in the above-described rising direction of the outside air temperature, the switching temperature serving as a breakpoint for switching between the main power source and the auxiliary power source is set to θ1, while the outside air temperature is changed. In the decreasing direction, the switching temperature is changed to θ2 (= the switching behavior of the main power source / auxiliary power source has hysteresis). Note that, as the switching temperature, θ1 = 5 ° C. and θ2 = 2 ° C. are stored in the storage unit of the control device 6 as preset initial values.

以上のように、外気温度が変化し、それまでの主動力源・補助動力源の割り当てを入れ換えたほうが効率がよいとみなされた場合には、第1圧縮機43及び第2圧縮機53に対する割り当てが入れ換えられ、それまで主動力源だった圧縮機が補助動力源として駆動され、補助動力源だった圧縮機が主動力源として駆動される。   As described above, when the outside air temperature changes and it is considered that it is more efficient to change the assignment of the main power source and the auxiliary power source up to that time, the first compressor 43 and the second compressor 53 The assignment is changed, and the compressor that was the main power source is driven as the auxiliary power source, and the compressor that was the auxiliary power source is driven as the main power source.

なお、本実施形態では、地中熱ヒートポンプ制御装置61が、主動力源/補助動力源の切換制御を行うものとして説明したが、空気熱ヒートポンプ制御装置62が主動力源/補助動力源の切換制御を行うものであってもよく、地中熱ヒートポンプ制御装置61と空気熱ヒートポンプ制御装置62とが、必要に応じて互いに連係して、主動力源/補助動力源の切換制御を行うものであってもよい。   In this embodiment, the underground heat heat pump control device 61 has been described as performing the switching control of the main power source / auxiliary power source. However, the air heat heat pump control device 62 performs the switching of the main power source / auxiliary power source. The underground heat heat pump control device 61 and the air heat heat pump control device 62 may control the switching of the main power source / auxiliary power source in cooperation with each other as necessary. There may be.

続いて、暖房運転時における空気熱ヒートポンプ制御装置62について説明すると、空気熱ヒートポンプ制御装置62は、戻り温度センサ34の検出値に応じて、第2圧縮機53の回転数を制御する。特にこの例では、戻り温度センサ34により検出される負荷側循環液Lの戻り温水温度が、例えばリモコン60の設定温度に基づいて設定される目標温水温度になるように、第2圧縮機53の回転数を制御する。なお、この空気熱ヒートポンプ制御装置62と地中熱ヒートポンプ制御装置61とは、必要に応じて互いに連係しつつ、対象となる第1圧縮機43または第2圧縮機53の制御を行う。   Next, the air heat heat pump control device 62 during the heating operation will be described. The air heat heat pump control device 62 controls the rotation speed of the second compressor 53 according to the detection value of the return temperature sensor 34. Particularly, in this example, the return temperature of the second compressor 53 is set such that the return hot water temperature of the load-side circulating fluid L detected by the return temperature sensor 34 becomes the target hot water temperature set based on the set temperature of the remote controller 60, for example. Control the speed. The air heat pump control device 62 and the underground heat pump control device 61 control the target first compressor 43 or the second compressor 53 while cooperating with each other as necessary.

また、空気熱ヒートポンプ制御装置62は、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の冷媒吐出温度に応じて、第2膨張弁55の弁開度を制御する。特にこの例では、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の冷媒吐出温度が、例えばリモコン60の設定温度に対応した制御上の目標冷媒吐出温度となるように、第2膨張弁55の弁開度を制御する。なお、この空気熱ヒートポンプ制御装置62と地中熱ヒートポンプ制御装置61とは、必要に応じて互いに連係しつつ、対象となる第1膨張弁45または第2膨張弁55の制御を行う。   The air heat pump control device 62 controls the valve opening of the second expansion valve 55 according to the refrigerant discharge temperature of the second refrigerant C2 detected by the second refrigerant discharge temperature sensor 52a. In particular, in this example, the second expansion is performed so that the refrigerant discharge temperature of the second refrigerant C2 detected by the second refrigerant discharge temperature sensor 52a becomes the control target refrigerant discharge temperature corresponding to the set temperature of the remote controller 60, for example. The valve opening of the valve 55 is controlled. The air heat heat pump control device 62 and the underground heat heat pump control device 61 control the target first expansion valve 45 or the second expansion valve 55 while cooperating with each other as necessary.

さらに、空気熱ヒートポンプ制御装置62は、外気温度センサ52cにより検出された外気温度に応じて、送風ファン56の回転数を制御する。   Further, the air heat pump control device 62 controls the rotation speed of the blower fan 56 according to the outside air temperature detected by the outside air temperature sensor 52c.

そして、空気熱ヒートポンプ制御装置62は、暖房運転中に、空気熱交換器57に霜が付着していると判断した場合、その霜を溶かす除霜運転を行わせる。   Then, when the air heat heat pump control device 62 determines that frost is attached to the air heat exchanger 57 during the heating operation, the air heat heat pump control device 62 performs a defrost operation to melt the frost.

前記除霜運転の形態は、暖房運転時と逆方向に第2冷媒C2を循環させる形態であり、具体的に除霜運転は、第2膨張弁55を除霜運転前の暖房運転時よりも所定の開度(例えば全開)まで拡大すると共に、第2四方弁54を除霜運転時の状態に切り換えて第2冷媒C2の流れ方向が暖房運転時の第2冷媒C2の流れ方向と逆になるようにし、第2圧縮機53から吐出された第2冷媒C2を、空気熱交換器57に直接供給して空気熱交換器57に発生した霜を溶かす。空気熱交換器57にて霜との熱交換で温度低下した第2冷媒C2は、第2膨張弁55で減圧されることなく第2膨張弁55を通過し、第2負荷側熱交換器51を流通して再び第2圧縮機53に戻るものである。   The mode of the defrosting operation is a mode in which the second refrigerant C2 is circulated in a direction opposite to that of the heating operation. Specifically, the defrosting operation is performed by setting the second expansion valve 55 to a heating operation before the defrosting operation. While expanding to a predetermined opening degree (for example, fully open), the second four-way valve 54 is switched to the state during the defrosting operation, and the flow direction of the second refrigerant C2 is opposite to the flow direction of the second refrigerant C2 during the heating operation. The second refrigerant C2 discharged from the second compressor 53 is directly supplied to the air heat exchanger 57 to melt the frost generated in the air heat exchanger 57. The second refrigerant C2, whose temperature has been reduced by heat exchange with frost in the air heat exchanger 57, passes through the second expansion valve 55 without being depressurized by the second expansion valve 55, and passes through the second load-side heat exchanger 51. And returns to the second compressor 53 again.

前記除霜運転の開始は、例えば、第2冷媒温度センサ52bで検出した冷媒温度が予め設定された除霜開始温度に達したか否か、または、外気温度センサ52cで検出した外気温度および第2冷媒温度センサ52bで検出した冷媒温度がそれぞれ予め設定された除霜開始温度に達したか否かなどを制御装置6(例えば、空気熱ヒートポンプ制御装置62)が判断、すなわち、所定の除霜開始条件が成立したか否かを制御装置6が判断して、除霜開始条件が成立したと判断したら除霜運転を開始することができる。また、除霜運転の完了は、第2冷媒温度センサ52bで検出する空気熱交換器57を流通してきた第2冷媒C2の温度が、予め設定された除霜終了温度に達したか否かを制御装置6(例えば、空気熱ヒートポンプ制御装置62)が判断、すなわち所定の除霜終了条件が成立したか否かを制御装置6が判断して、除霜終了条件が成立したと判断したら除霜運転を終了することができる。   The start of the defrosting operation is, for example, whether or not the refrigerant temperature detected by the second refrigerant temperature sensor 52b has reached a preset defrosting start temperature, or the outside air temperature detected by the outside air temperature sensor 52c and the second temperature. (2) The control device 6 (for example, the air heat heat pump control device 62) determines whether the refrigerant temperature detected by the refrigerant temperature sensor 52b has reached a preset defrost start temperature, that is, a predetermined defrost. The control device 6 determines whether or not the start condition is satisfied, and when it is determined that the defrost start condition is satisfied, the defrost operation can be started. Completion of the defrosting operation is based on whether the temperature of the second refrigerant C2 flowing through the air heat exchanger 57 detected by the second refrigerant temperature sensor 52b has reached a preset defrost end temperature. The controller 6 (for example, the air heat heat pump controller 62) makes a determination, that is, the controller 6 determines whether or not a predetermined defrost end condition is satisfied. The operation can be ended.

また、空気熱ヒートポンプ制御装置62は、空気熱交換器57に付いた霜を溶かす除霜運転の実行されやすさを判定する判定手段62aを有し、判定手段62aは、除霜運転の実行されやすさに応じて所定の切換温度(θ1、θ2)を変更するものである。判定手段62aの具体的な制御内容については後述する。   In addition, the air heat heat pump control device 62 includes a determination unit 62a that determines the easiness of performing the defrosting operation for melting the frost attached to the air heat exchanger 57, and the determination unit 62a performs the defrosting operation. The predetermined switching temperatures (θ1, θ2) are changed according to the ease. Specific control contents of the determination means 62a will be described later.

なお、本実施形態では、空気熱ヒートポンプ制御装置62が上記判定手段62aを有するものとしたが、地中熱ヒートポンプ制御装置61が判定手段62aと同等の機能を持った判定手段を有するものであってもよく、地中熱ヒートポンプ制御装置61と空気熱ヒートポンプ制御装置62とが、必要に応じて互いに連係して、判定手段62aと同等の機能を発揮するようにしたものであってもよい。   In the present embodiment, the air heat heat pump control device 62 has the determination means 62a. However, the underground heat heat pump control device 61 has a determination means having the same function as the determination means 62a. Alternatively, the underground heat heat pump control device 61 and the air heat heat pump control device 62 may cooperate with each other as needed to exhibit the same function as the determination unit 62a.

次に、図1および図2に示す複合熱源ヒートポンプ装置1の暖房運転時の動作について図4および図5を用いて説明する。空調端末36に供給される負荷側循環液Lを加熱する暖房運転は、第1ヒートポンプ回路40または第2ヒートポンプ回路50の何れか一方を作動させて行う場合と、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合があるが、ここでは、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合について説明するものである。なお、図4および図5中の矢印は、冷媒や循環液の流れる方向を示したものである。   Next, the operation of the combined heat source heat pump device 1 shown in FIGS. 1 and 2 during the heating operation will be described with reference to FIGS. 4 and 5. The heating operation for heating the load-side circulating fluid L supplied to the air-conditioning terminal 36 is performed by operating one of the first heat pump circuit 40 and the second heat pump circuit 50, and when the first heat pump circuit 40 and the second heat pump circuit There is a case where the operation is performed by operating both of the heat pump circuits 50. Here, a case where the operation is performed by operating both the first heat pump circuit 40 and the second heat pump circuit 50 will be described. The arrows in FIGS. 4 and 5 indicate the directions in which the refrigerant and the circulating liquid flow.

リモコン60から空調端末36による室内の加熱の指示がなされると、まず、制御装置6は、外気温度を基準として、地中熱ヒートポンプユニット4の第1圧縮機43と空気熱ヒートポンプ装置5の第2圧縮機53のうち、一方を主動力源に設定し、他方を補助動力源に設定する。   When the indoor heating is instructed by the air-conditioning terminal 36 from the remote controller 60, first, the controller 6 sets the first compressor 43 of the underground heat pump unit 4 and the second compressor of the air heat pump unit 5 based on the outside air temperature. One of the two compressors 53 is set as a main power source, and the other is set as an auxiliary power source.

具体的には、外気温度センサ52cで検出した外気温度が所定の切換温度θ1(例えば、5℃)以上であれば、空気熱ヒートポンプユニット5の方が採熱効率が高いと判断し、第2圧縮機53を主動力源とすると共に第1圧縮機43を補助動力源として設定し、外気温度センサ52cで検出した外気温度が所定の切換温度θ1(例えば、5℃)未満であれば、地中熱ヒートポンプユニット4の方が採熱効率が高いと判断し、第1圧縮機43を主動力源とすると共に第2圧縮機53を補助動力源として設定する。   Specifically, if the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than a predetermined switching temperature θ1 (for example, 5 ° C.), it is determined that the air heat heat pump unit 5 has higher heat collection efficiency, and the second compression When the outside air temperature detected by the outside air temperature sensor 52c is lower than the predetermined switching temperature θ1 (for example, 5 ° C.), the underground The heat heat pump unit 4 determines that the heat collection efficiency is higher, and sets the first compressor 43 as the main power source and sets the second compressor 53 as the auxiliary power source.

そして、制御装置6は、第1四方弁44および第2四方弁54を暖房運転時の状態となるように流路を切り換え、第1圧縮機43、第1膨張弁45、熱源側循環ポンプ22、第2圧縮機53、第2膨張弁55、送風ファン56、および負荷側循環ポンプ32を駆動させて暖房運転を開始させる。この時、熱動弁33も開弁される。   Then, the control device 6 switches the flow path so that the first four-way valve 44 and the second four-way valve 54 are in the state of the heating operation, and the first compressor 43, the first expansion valve 45, the heat source side circulation pump 22 The second compressor 53, the second expansion valve 55, the blower fan 56, and the load-side circulation pump 32 are driven to start the heating operation. At this time, the thermal valve 33 is also opened.

前記暖房運転中、第1ヒートポンプ回路40では、第1圧縮機43で圧縮された高温・高圧のガス状の第1冷媒C1が第1圧縮機43から吐出され、第1冷媒C1は凝縮器として機能する第1負荷側熱交換器41にて、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lに熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第1冷媒C1が第1膨張弁45において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第1熱源側熱交換器46において、熱源側循環回路20を流れる熱源側循環液Hと熱交換を行って熱源側循環液Hから吸熱して低温・低圧のガス状の第1冷媒C1となって、再び第1圧縮機43へ戻るものである。   During the heating operation, in the first heat pump circuit 40, the high-temperature and high-pressure gaseous first refrigerant C1 compressed by the first compressor 43 is discharged from the first compressor 43, and the first refrigerant C1 serves as a condenser. In the functioning first load-side heat exchanger 41, heat is exchanged with the load-side circulating fluid L flowing through the load-side circulating circuit 30 to release heat to the load-side circulating fluid L and heat the gas-liquid mixed state. Changes to high-pressure refrigerant. Then, the first refrigerant C1 in this state is reduced in pressure in the first expansion valve 45 to become a low-pressure refrigerant and easily vaporized. In the first heat source side heat exchanger 46 functioning as an evaporator, the heat source side circulation circuit The heat exchange is performed with the heat source side circulating fluid H flowing through 20 to absorb heat from the heat source side circulating fluid H to become a low temperature / low pressure gaseous first refrigerant C <b> 1 and return to the first compressor 43 again.

一方、第2ヒートポンプ回路50では、第2圧縮機53で圧縮された高温・高圧のガス状の第2冷媒C2が第2圧縮機53から吐出され、第2冷媒C2は凝縮器として機能する第2負荷側熱交換器51にて、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lに熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第2冷媒C2が第2膨張弁55において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する空気熱交換器57において、送風ファン56の作動により送られる外気と熱交換を行って外気から吸熱して低温・低圧のガス状の第2冷媒C2となって、再び第2圧縮機53へ戻るものである。   On the other hand, in the second heat pump circuit 50, the high-temperature and high-pressure gaseous second refrigerant C2 compressed by the second compressor 53 is discharged from the second compressor 53, and the second refrigerant C2 functions as a condenser. (2) In the load-side heat exchanger 51, heat exchange is performed with the load-side circulating liquid L flowing through the load-side circulation circuit 30, and heat is released to the load-side circulating liquid L, and the high-pressure refrigerant in a gas-liquid mixed state while heating Changes to Then, the second refrigerant C2 in this state is reduced in pressure in the second expansion valve 55, becomes a low-pressure refrigerant, and is easily evaporated, and is sent to the air heat exchanger 57 functioning as an evaporator by the operation of the blower fan 56. The refrigerant exchanges heat with the outside air to absorb heat from the outside air to become a low-temperature, low-pressure gaseous second refrigerant C2, which returns to the second compressor 53 again.

前記熱源側循環回路20では、地中熱交換器23によって地中熱が採熱され、その熱を帯びた熱源側循環液Hが熱源側循環ポンプ22の駆動により第1熱源側熱交換器46に供給される。そして第1熱源側熱交換器46にて第1冷媒C1と熱源側循環液Hとで熱交換が行われ、地中熱交換器23にて採熱された地中熱が第1冷媒C1側に汲み上げられ、第1冷媒C1が加熱され蒸発するものである。   In the heat source side circulation circuit 20, the underground heat is collected by the underground heat exchanger 23, and the heat source side circulating liquid H bearing the heat is driven by the heat source side circulation pump 22 to the first heat source side heat exchanger 46. Supplied to Then, heat exchange is performed between the first refrigerant C1 and the heat source side circulating liquid H in the first heat source side heat exchanger 46, and the underground heat collected in the underground heat exchanger 23 is transferred to the first refrigerant C1 side. And the first refrigerant C1 is heated and evaporated.

前記負荷側循環回路30では、一定回転数で駆動される負荷側循環ポンプ32の駆動により第1負荷側熱交換器41に流入した負荷側循環液Lは、凝縮器として機能する第1負荷側熱交換器41において第1冷媒C1と熱交換されて加熱された後、凝縮器として機能する第2負荷側熱交換器51において第2冷媒C2と熱交換されてさらに加熱され、加熱された負荷側循環液Lは、その後、空調端末36に供給されて室内の暖房が行われ、空調端末36にて放熱された温度低下した負荷側循環液Lは再び第1負荷側熱交換器41へと戻るものである。   In the load-side circulation circuit 30, the load-side circulating liquid L flowing into the first load-side heat exchanger 41 by the driving of the load-side circulation pump 32 driven at a constant rotation speed is supplied to the first load-side functioning as a condenser. After being heat-exchanged with the first refrigerant C1 in the heat exchanger 41 and heated, the heat is exchanged with the second refrigerant C2 in the second load-side heat exchanger 51 functioning as a condenser, and further heated, so that the heated load is heated. The side circulating fluid L is then supplied to the air conditioning terminal 36 to heat the room, and the temperature-reduced load-side circulating fluid L radiated by the air conditioning terminal 36 is returned to the first load-side heat exchanger 41 again. Return.

なお、暖房運転中に、空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の空気熱交換器57の霜を溶かす除霜運転が実行される場合は、第2四方弁54が暖房運転時の状態から除霜運転時の状態に切り換えられ、図5に示すように、第2冷媒C2の流れ方向が暖房運転時の第2冷媒C2の流れ方向と逆方向になる。   During the heating operation, when the defrosting operation for melting the frost of the air heat exchanger 57 of the air heat pump unit 5 (second heat pump circuit 50) is performed, the second four-way valve 54 is in the state during the heating operation. From the state of the defrosting operation, and the flow direction of the second refrigerant C2 is opposite to the flow direction of the second refrigerant C2 during the heating operation, as shown in FIG.

前記除霜運転中、第1ヒートポンプ回路40は作動すると共に負荷側循環ポンプ32も駆動しており、空気熱交換器57の除霜のために第2ヒートポンプ回路50側に熱供給を行いつつ、安定した暖房能力を確保して空調端末36に供給される負荷側循環液Lの温水温度を低下させないように暖房運転を継続させることができるものである。   During the defrosting operation, the first heat pump circuit 40 is operated and the load-side circulation pump 32 is also driven, and while supplying heat to the second heat pump circuit 50 for defrosting the air heat exchanger 57, The heating operation can be continued so that a stable heating capacity is secured and the hot water temperature of the load side circulating fluid L supplied to the air conditioning terminal 36 is not lowered.

次に、特徴的な動作として、上記判定手段62aによる主動力源/補助動力源を切り換えるための切換温度の設定方法について、図6のフローチャートを用いて説明する。   Next, as a characteristic operation, a method of setting a switching temperature for switching the main power source / auxiliary power source by the determination means 62a will be described with reference to the flowchart of FIG.

前記判定手段62aは、所定期間(例えば3日間)における空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の作動状況や除霜運転の実施状況を把握して、それらに基づいて主動力源/補助動力源の切換温度を設定するものであり、まず、判定手段62aは、前記所定期間をカウントするためのタイマをスタートする(ステップS1)。   The judging means 62a grasps the operation status of the air heat heat pump unit 5 (second heat pump circuit 50) and the execution status of the defrosting operation during a predetermined period (for example, three days), and based on the information, the main power source / auxiliary. This is for setting the switching temperature of the power source. First, the determination means 62a starts a timer for counting the predetermined period (step S1).

続いて、判定手段62aは、外気温度センサ52cで検出される外気温度が所定温度未満(空気熱交換器57に霜の付着が生じやすくなる状況として、例えば5℃未満)か否か判断し(ステップS2)、外気温度が所定温度未満であると判断すると、外気温度が所定温度未満のときの第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間[分]をカウント(積算)すると共に、除霜運転を実行した回数をカウントし(ステップS3)、後述のステップS4の処理に進む。なお、上記ステップS3の処理においてカウントされる第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間は、第2ヒートポンプ回路50のみを作動させて暖房運転を行っているときの時間、および、第1ヒートポンプ回路40と第2ヒートポンプ回路50の双方を作動させて暖房運転を行っているときの第2ヒートポンプ回路50の作動時間の両方が含まれる。一方、前記ステップS2において、外気温度が所定温度以上であると判断した場合は、後述のステップS4の処理に進む。   Subsequently, the judging means 62a judges whether or not the outside air temperature detected by the outside air temperature sensor 52c is lower than a predetermined temperature (for example, lower than 5 ° C. as a condition in which frost easily adheres to the air heat exchanger 57) ( In step S2), when it is determined that the outside air temperature is lower than the predetermined temperature, the operation time [minute] of the second heat pump circuit 50 (air heat pump unit 5) when the outdoor air temperature is lower than the predetermined temperature is counted (integrated). The number of times the defrosting operation has been performed is counted (step S3), and the process proceeds to step S4 described below. The operation time of the second heat pump circuit 50 (air heat pump unit 5) counted in the process of step S3 is a time when only the second heat pump circuit 50 is operated to perform the heating operation, and Both the operation time of the second heat pump circuit 50 when the heating operation is performed by operating both the first heat pump circuit 40 and the second heat pump circuit 50 are included. On the other hand, if it is determined in step S2 that the outside air temperature is equal to or higher than the predetermined temperature, the process proceeds to step S4 described below.

そして、判定手段62aは、所定期間(3日間)が経過したか否か判断し(ステップS4)、所定期間が経過していないと判断した場合は、前記ステップS2の処理に戻り、所定期間が経過するまで、ステップS2、ステップS3の処理を繰り返し行い、所定期間が経過したと判断すると、第2ヒートポンプ回路50の作動時間(積算作動時間)が所定時間(例えば6時間)以上か否か判断し(ステップS5)、第2ヒートポンプ回路50の作動時間が所定時間以上であると判断した場合は、前記ステップS3の処理でカウントした第2ヒートポンプ回路50の作動時間と除霜運転の実行回数とに基づき、除霜運転の実行されやすさを表す指標となる除霜頻度係数を算出し(ステップS6)、この算出した値から主動力源/補助動力源の切換温度(θ1、θ2)を設定し(ステップS7)、所定期間のカウントを行っていたタイマをリセットし(ステップS8)、前記ステップS1の処理に戻る。なお、判定手段62aが、前記ステップS5の処理において、第2ヒートポンプ回路50の作動時間が所定時間未満であると判断した場合は、現在設定されている切換温度(θ1、θ2)を維持し(ステップS9)、前記ステップS8の処理に進むものである。   Then, the determining means 62a determines whether or not a predetermined period (three days) has elapsed (step S4). If it is determined that the predetermined period has not elapsed, the process returns to step S2 and the predetermined period is determined. Until the time elapses, the processes of steps S2 and S3 are repeated. When it is determined that the predetermined period has elapsed, it is determined whether the operation time (integrated operation time) of the second heat pump circuit 50 is equal to or longer than a predetermined time (for example, 6 hours). Then, if it is determined that the operation time of the second heat pump circuit 50 is equal to or longer than the predetermined time (step S5), the operation time of the second heat pump circuit 50 and the number of executions of the defrosting operation counted in the processing of step S3 are determined. , A defrosting frequency coefficient, which is an index indicating the ease with which the defrosting operation is performed, is calculated (step S6), and the main power source / auxiliary power source is switched from the calculated value. Degrees (.theta.1, .theta.2) Set (step S7), and resets the timer that has been subjected to counting of a predetermined time period (step S8), and the process returns to step S1. When the determining means 62a determines that the operation time of the second heat pump circuit 50 is less than the predetermined time in the process of step S5, the switching temperature (θ1, θ2) currently set is maintained ( Step S9) and proceed to the processing of step S8.

ここで、上記の除霜頻度係数を算出する方法、および、算出値から主動力源/補助動力源の切換温度(θ1、θ2)を設定する方法について説明すると、判定手段62aは、まず、以下に示す式1にて除霜頻度係数を算出する。
除霜頻度係数=第2ヒートポンプ回路50作動時間/除霜運転実行回数 (式1)
Here, a method of calculating the above defrost frequency coefficient and a method of setting the switching temperature (θ1, θ2) of the main power source / auxiliary power source from the calculated value will be described. The defrost frequency coefficient is calculated by the following equation (1).
Defrost frequency coefficient = second heat pump circuit 50 operating time / number of executions of defrost operation (Equation 1)

続いて、判定手段62aは、算出された除霜頻度係数を用い、制御装置6の記憶部に予め記憶された図7に示すような除霜頻度係数と切換温度変更量との関係に照らし合わせて、主動力源/補助動力源の切換温度を設定する。図7に示すように、算出された除霜頻度係数が予め設定された基準範囲(90以上120未満)を上回る120以上(除霜運転実行回数が0回の場合、除霜頻度係数は計算できないが、この場合、除霜頻度係数は自動的に120以上の値が算出されるよう予めプログラムされているものとする)の場合、判定手段62aは、除霜運転が実行されにくいと判定し、現状値として現在設定されている主動力源/補助動力源の切換温度(θ1、θ2)から1℃低下させるように切換温度(θ1、θ2)を変更し、算出された除霜頻度係数が基準範囲内となる90以上120未満の場合、判定手段62aは、除霜運転は実行されやすくも実行されにくくもないと判定し、現状値として現在設定されている主動力源/補助動力源の切換温度(θ1、θ2)を維持し、算出された除霜頻度係数が予め設定された基準範囲(90以上120未満)を下回る90未満の場合、判定手段62aは、除霜運転が実行されやすいと判定し、現状値として現在設定されている主動力源/補助動力源の切換温度(θ1、θ2)から1℃上昇させるように切換温度(θ1、θ2)を変更する。   Subsequently, the determination unit 62a compares the calculated defrost frequency coefficient with the relationship between the defrost frequency coefficient and the switching temperature change amount as shown in FIG. Thus, the switching temperature of the main power source / auxiliary power source is set. As shown in FIG. 7, the defrost frequency coefficient cannot be calculated when the calculated defrost frequency coefficient exceeds a predetermined reference range (90 or more and less than 120) and is 120 or more (when the number of times of the defrost operation is 0). However, in this case, the defrosting frequency coefficient is assumed to be programmed in advance so that a value of 120 or more is automatically calculated.), The determining unit 62a determines that the defrosting operation is difficult to be performed, The switching temperature (θ1, θ2) is changed by 1 ° C. from the main power source / auxiliary power source switching temperature (θ1, θ2) which is currently set as the current value, and the calculated defrost frequency coefficient is used as a reference. When the value is within the range of 90 or more and less than 120, the determination unit 62a determines that the defrosting operation is not easily performed or hardly performed, and the main power source / auxiliary power source currently set as the current value is switched. Temperature (θ1, θ2) If the calculated defrost frequency coefficient is less than 90, which is below a preset reference range (90 or more and less than 120), the determination unit 62a determines that the defrost operation is easy to be performed, and determines the current value as the current value. The switching temperature (θ1, θ2) is changed so as to increase by 1 ° C. from the set main power source / auxiliary power source switching temperature (θ1, θ2).

次に、主動力源/補助動力源の切換温度遷移の具体例を、図8〜図10を用いて説明する。なお、図8〜図9における、(a)第1期間、(b)第2期間、(c)第3期間、および、図10における、(a)第1期間、(b)第2期間は、先に説明した所定期間とされ、ここでは3日間とし、図8〜図10において、第2ヒートポンプ回路50の積算作動時間を作動時間(分)と表記すると共に、除霜運転実行回数を除霜回数と表記する。   Next, a specific example of the transition temperature transition between the main power source and the auxiliary power source will be described with reference to FIGS. Note that (a) the first period, (b) the second period, (c) the third period, and (a) the first period and (b) the second period in FIGS. 8 to 10, the integrated operation time of the second heat pump circuit 50 is described as the operation time (minute), and the number of times of the defrosting operation is executed. Expressed as the number of frosts.

まず、図8の(a)第1期間において、主動力源/補助動力源の切換温度が、例えば、θ1=5℃、θ2=2℃に設定された状態で、外気温度センサ52cで検出される外気温度が所定温度(5℃)未満のときに、暖房運転に関与した第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間が360分、除霜運転実行回数が3回であった場合、上記判定手段62aは、(a)第1期間において、第2ヒートポンプ回路50の作動時間が所定時間(6時間)以上あると判断し、除霜頻度係数を上記式1に基づき、除霜頻度係数=360/3=120と算出し、算出された値から除霜運転が実行されにくい設置環境であると判定し、図7に示すような除霜頻度係数と切換温度変更量との関係を参照して、現在の切換温度(θ1=5℃、θ2=2℃)から1℃低下させ、次回の(b)第2期間の切換温度をθ1=4℃、θ2=1℃に設定する。   First, in the first period of FIG. 8A, the switching temperature of the main power source / auxiliary power source is detected by the outside air temperature sensor 52c in a state where, for example, θ1 = 5 ° C. and θ2 = 2 ° C. When the outside air temperature was lower than the predetermined temperature (5 ° C.), the operation time of the second heat pump circuit 50 (air heat pump unit 5) involved in the heating operation was 360 minutes, and the number of times of the defrosting operation was three. In this case, the determining means 62a determines that (a) the operation time of the second heat pump circuit 50 is equal to or longer than a predetermined time (6 hours) in the first period, and the defrost frequency coefficient is determined based on the above-described equation (1). Frequency coefficient = 360/3 = 120, and it is determined from the calculated value that the installation environment is such that the defrosting operation is difficult to execute, and the relationship between the defrosting frequency coefficient and the switching temperature change amount as shown in FIG. , The current switching temperature (θ1 = 5 , Θ2 = 2 ℃) 1 ℃ lowered from the next (b) a switching temperature of the second period .theta.1 = 4 ° C., is set to .theta.2 = 1 ° C..

そして、図8の(b)第2期間において、主動力源/補助動力源の切換温度がθ1=4℃、θ2=1℃に設定された状態で、外気温度センサ52cで検出される外気温度が所定温度(5℃)未満のときに、暖房運転に関与した第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間が420分、除霜運転実行回数が4回であった場合、上記判定手段62aは、(b)第2期間において、第2ヒートポンプ回路50の作動時間が所定時間(6時間)以上あると判断し、除霜頻度係数を上記式1に基づき、除霜頻度係数=420/4=105と算出し、算出された値から除霜運転が実行されやすくもされにくくもない設置環境であると判定し、現在の切換温度(θ1=4℃、θ2=1℃)を維持し、次回の(c)第3期間の切換温度をθ1=4℃、θ2=1℃に設定する。   Then, in the state where the switching temperature of the main power source / auxiliary power source is set to θ1 = 4 ° C. and θ2 = 1 ° C. in the second period of FIG. 8B, the outside air temperature detected by the outside air temperature sensor 52c. Is less than the predetermined temperature (5 ° C.), when the operation time of the second heat pump circuit 50 (air heat pump unit 5) involved in the heating operation is 420 minutes and the number of executions of the defrosting operation is four, The determining means 62a determines that the operation time of the second heat pump circuit 50 is equal to or longer than a predetermined time (6 hours) in the second period (b). 420/4 = 105, it is determined from the calculated value that the installation environment is not likely to be easily performed or not difficult to perform the defrosting operation, and the current switching temperature (θ1 = 4 ° C., θ2 = 1 ° C.) is determined. Maintain the next (c) switching temperature for the third period The .theta.1 = 4 ° C., is set to .theta.2 = 1 ° C..

続いて、図9に示す動力源/補助動力源の切換温度遷移例について説明する。
図9の(a)第1期間において、主動力源/補助動力源の切換温度が、例えば、θ1=5℃、θ2=2℃に設定された状態で、外気温度センサ52cで検出される外気温度が所定温度(5℃)未満のときに、暖房運転に関与した第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間が420分、除霜運転実行回数が5回であった場合、上記判定手段62aは、(a)第1期間において、第2ヒートポンプ回路50の作動時間が所定時間(6時間)以上あると判断し、除霜頻度係数を上記式1に基づき、除霜頻度係数=420/5=84と算出し、算出された値から除霜運転が実行されやすい設置環境であると判定し、図7に示すような除霜頻度係数と切換温度変更量との関係を参照して、現在の切換温度(θ1=5℃、θ2=2℃)から1℃上昇させ、次回の(b)第2期間の切換温度をθ1=6℃、θ2=3℃に設定する。
Next, an example of transition of the switching temperature of the power source / auxiliary power source shown in FIG. 9 will be described.
In the state where the switching temperature of the main power source / auxiliary power source is set to, for example, θ1 = 5 ° C. and θ2 = 2 ° C. in the first period of FIG. 9A, the outside air temperature detected by the outside air temperature sensor 52c is set. When the temperature is lower than the predetermined temperature (5 ° C.), when the operation time of the second heat pump circuit 50 (air heat pump unit 5) involved in the heating operation is 420 minutes, and the number of times of the defrosting operation is five, The determination means 62a determines that (a) the operation time of the second heat pump circuit 50 is equal to or longer than a predetermined time (6 hours) in the first period, and determines the defrost frequency coefficient based on the above-described equation (1). = 420/5 = 84, and it is determined from the calculated values that the environment is an installation environment in which the defrosting operation is easily performed, and the relationship between the defrosting frequency coefficient and the switching temperature change amount as shown in FIG. 7 is referred to. The current switching temperature (θ1 = 5 ° C., θ2 2 ° C.) 1 ° C. is raised from the switching temperature of the next (b) second period .theta.1 = 6 ° C., set at .theta.2 = 3 ° C..

そして、図9の(b)第2期間において、主動力源/補助動力源の切換温度がθ1=6℃、θ2=3℃に設定された状態で、外気温度センサ52cで検出される外気温度が所定温度(5℃)未満のときに、暖房運転に関与した第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間が400分、除霜運転実行回数が4回であった場合、上記判定手段62aは、(b)第2期間において、第2ヒートポンプ回路50の作動時間が所定時間(6時間)以上あると判断し、除霜頻度係数を上記式1に基づき、除霜頻度係数=40/4=100と算出し、算出された値から除霜運転が実行されやすくもされにくくもない設置環境であると判定し、現在の切換温度(θ1=6℃、θ2=3℃)を維持し、次回の(c)第3期間の切換温度をθ1=6℃、θ2=3℃に設定する。   Then, in the state where the switching temperature of the main power source / auxiliary power source is set to θ1 = 6 ° C. and θ2 = 3 ° C. in the second period of FIG. 9B, the outside air temperature detected by the outside air temperature sensor 52c. Is less than a predetermined temperature (5 ° C.), when the operation time of the second heat pump circuit 50 (air heat pump unit 5) involved in the heating operation is 400 minutes, and the number of executions of the defrosting operation is four, The determining means 62a determines that the operation time of the second heat pump circuit 50 is equal to or longer than a predetermined time (6 hours) in the second period (b). 40/4 = 100, it is determined from the calculated value that the installation environment is not likely to be difficult to perform the defrosting operation, and the current switching temperature (θ1 = 6 ° C., θ2 = 3 ° C.) Maintain the next (c) switching temperature for the third period .theta.1 = 6 ° C., set at .theta.2 = 3 ° C..

続いて、図10に示す動力源/補助動力源の切換温度遷移例について説明する。
図10の(a)第1期間において、主動力源/補助動力源の切換温度が、例えば、θ1=5℃、θ2=2℃に設定された状態で、外気温度センサ52cで検出される外気温度が所定温度(5℃)未満のときに、暖房運転に関与した第2ヒートポンプ回路50(空気熱ヒートポンプユニット5)の作動時間が240分、除霜運転実行回数が1回であった場合、上記判定手段62aは、(a)第1期間において、第2ヒートポンプ回路50の作動時間が所定時間(6時間)未満であると判断し、次回の(b)第2期間の切換温度として、(a)第1期間と同じ切換温度θ1=5℃、θ2=2℃を設定する。
Next, an example of transition of the power source / auxiliary power source switching temperature shown in FIG. 10 will be described.
In the state where the switching temperature of the main power source / auxiliary power source is set at, for example, θ1 = 5 ° C. and θ2 = 2 ° C. in the first period of FIG. When the temperature is lower than the predetermined temperature (5 ° C.), the operation time of the second heat pump circuit 50 (air heat pump unit 5) involved in the heating operation is 240 minutes, and the number of times of the defrosting operation is one, The determining means 62a determines that (a) the operation time of the second heat pump circuit 50 is less than the predetermined time (6 hours) in the first period, and (b) the switching temperature in the next (b) second period is as follows. a) Set the same switching temperature θ1 = 5 ° C. and θ2 = 2 ° C. as in the first period.

以上説明してきたように、上記判定手段62aは、除霜運転の実行されやすさに応じて切換温度(θ1、θ2)を設定するようにしたことで、除霜運転が実行されやすそうな環境であれば、空気熱ヒートポンプユニット5の第2圧縮機53から地中熱ヒートポンプユニット4の第1圧縮機43への主動力源の切り換えタイミングが早くなるようにし、除霜運転が実行されにくそうな環境であれば、空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53から地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43への主動力源の切り換えタイミングが遅くなるようにする等、個々の設置環境に合った切換温度(θ1、θ2)へと自動的に設定されるので、運転効率を向上させることができるものである。   As described above, the determination unit 62a sets the switching temperatures (θ1, θ2) in accordance with the ease with which the defrosting operation is performed, thereby providing an environment in which the defrosting operation is likely to be performed. If so, the switching timing of the main power source from the second compressor 53 of the air heat heat pump unit 5 to the first compressor 43 of the underground heat heat pump unit 4 is advanced, so that the defrosting operation is difficult to be performed. In such an environment, the main power source from the second compressor 53 of the air heat heat pump unit 5 (second heat pump circuit 50) to the first compressor 43 of the underground heat heat pump unit 4 (first heat pump circuit 40) The switching temperature (θ1, θ2) suitable for each installation environment is automatically set, such as by delaying the switching timing, so that the operation efficiency can be improved. A.

前記判定手段62aは、上記所定期間における除霜運転の実行状況に基づいて、除霜運転の実行されやすさを判定するようにしたことで、除霜運転の実行状況、すなわち、除霜運転の実行回数や除霜運転の実行時間等から、個々の設置環境における除霜運転の実行されやすさを確実に判定でき、その判定に基づいて個々の設置環境に合った切換温度(θ1、θ2)の設定を容易に行うことができるものである。   The determination unit 62a determines the ease of execution of the defrosting operation based on the execution state of the defrosting operation in the predetermined period, and thus the execution state of the defrosting operation, that is, the defrosting operation. The ease of execution of the defrosting operation in each installation environment can be reliably determined from the number of executions, the execution time of the defrosting operation, and the like, and based on the determination, the switching temperatures (θ1, θ2) suitable for the individual installation environment. Can be easily set.

また、判定手段62aは、上記所定期間において外気温度センサ52cが検出する外気温度が所定温度未満のときの第2ヒートポンプ回路50の作動時間と除霜運転の実行状況としての除霜運転の実行回数とに基づいて算出された算出値である除霜頻度係数によって、除霜運転の実行されやすさを判定し、その算出値に応じて切換温度(θ1、θ2)を設定するようにしたことで、空気熱交換器57に霜の付着が生じやすくなるような外気温度状況下での第2ヒートポンプ回路50の作動時間と除霜運転の実行回数とを用いて、簡素な演算で確実に除霜運転の実行されやすさを判定することができ、それに見合う的確な切換温度(θ1、θ2)の設定を行うことができるものである。   The determining means 62a determines the operation time of the second heat pump circuit 50 when the outside air temperature detected by the outside air temperature sensor 52c is lower than the predetermined temperature during the predetermined period, and the number of times the defrosting operation is performed as the execution state of the defrosting operation. The defrosting frequency coefficient, which is a calculated value calculated based on the above, determines the ease of execution of the defrosting operation, and sets the switching temperatures (θ1, θ2) according to the calculated value. The defrosting can be reliably performed by a simple calculation using the operation time of the second heat pump circuit 50 and the number of executions of the defrosting operation under an outside air temperature condition in which frost easily adheres to the air heat exchanger 57. It is possible to determine the easiness of the operation and to set an appropriate switching temperature (θ1, θ2) corresponding to it.

さらに、判定手段62aは、算出した除霜頻度係数が予め設定された基準範囲を上回ると判定した場合、すなわち、除霜運転が実行されにくいと判定した場合は、現在設定されている切換温度(θ1、θ2)を低下させるようにしたことで、除霜運転が実行されにくい、つまり、空気熱交換器57に着霜しづらければ、第2ヒートポンプ回路50は着霜による効率低下が抑制されて高効率で運転可能であり、切換温度(θ1、θ2)を低下させることにより、空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53が主動力源に設定されやすくなると共に、空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53から地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43への主動力源の切り換えタイミングが遅くなるので、効率の高い第2ヒートポンプ回路50の第2圧縮機53が主動力源として駆動する割合が増え、運転効率を向上させることができるものである。   Furthermore, when the determining unit 62a determines that the calculated defrost frequency coefficient exceeds the preset reference range, that is, when it is determined that the defrosting operation is difficult to be performed, the determination unit 62a determines the currently set switching temperature ( θ1, θ2), the defrosting operation is difficult to execute, that is, if it is difficult to form frost on the air heat exchanger 57, the second heat pump circuit 50 suppresses a decrease in efficiency due to frost formation. By operating at high efficiency with a low switching temperature (θ1, θ2), the second compressor 53 of the air heat heat pump unit 5 (second heat pump circuit 50) can be easily set as the main power source. From the second compressor 53 of the air heat heat pump unit 5 (second heat pump circuit 50) to the first compressor 4 of the underground heat heat pump unit 4 (first heat pump circuit 40). Since the switching timing of the main power source is delayed to the proportion of the second compressor 53 of the high efficiency second heat pump circuit 50 is driven as the main power source is increased, it is capable of improving the operating efficiency.

その上、判定手段62aは、算出した除霜頻度係数が予め設定された基準範囲を下回ると判定した場合、すなわち、除霜運転が実行されやすいと判定した場合は、現在設定されている切換温度(θ1、θ2)を上昇させるようにしたことで、除霜運転が実行されやすい、つまり、空気熱交換器57に着霜しやすければ、第2ヒートポンプ回路50は着霜による効率低下が生じ高効率な運転ができないが、切換温度(θ1、θ2)を上昇させることにより、地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43が主動力源に設定されやすくなると共に、空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53から地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43への主動力源の切り換えタイミングが早くなるので、効率の低い第2ヒートポンプ回路50の第2圧縮機53が主動力源として駆動する割合が減り、着霜による効率低下した状態での運転が減り、運転効率を向上させることができるものである。   In addition, when the determining unit 62a determines that the calculated defrost frequency coefficient is lower than the preset reference range, that is, when it determines that the defrosting operation is easy to be performed, the determining unit 62a determines whether the currently set switching temperature is higher. By increasing (θ1, θ2), the defrosting operation is easily performed, that is, if the air heat exchanger 57 is easily frosted, the efficiency of the second heat pump circuit 50 is reduced due to frosting and the second heat pump circuit 50 is high. Although efficient operation is not possible, raising the switching temperature (θ1, θ2) makes it easier for the first compressor 43 of the underground heat pump unit 4 (first heat pump circuit 40) to be set as the main power source, From the second compressor 53 of the air heat pump unit 5 (second heat pump circuit 50) to the first compressor 43 of the underground heat pump unit 4 (first heat pump circuit 40) Since the switching timing of the main power source is advanced, the rate at which the second compressor 53 of the second heat pump circuit 50 having low efficiency is driven as the main power source is reduced, and the operation in a state where the efficiency is reduced due to frosting is reduced, and the operation is performed. The efficiency can be improved.

また、判定手段62aは、算出した除霜頻度係数が予め設定された基準範囲内であると判定した場合、すなわち、除霜運転が実行されやすくも実行されにくくもないと判定した場合は、現在設定されている切換温度(θ1、θ2)を変更せず維持するようにしたことで、設置環境に合致した切換温度(θ1、θ2)を継続できるので、運転効率がよい状態を保つことができるものである。   In addition, when the determining unit 62a determines that the calculated defrost frequency coefficient is within the preset reference range, that is, when it is determined that the defrosting operation is not easily performed or hardly performed, Since the set switching temperatures (θ1, θ2) are maintained without being changed, the switching temperatures (θ1, θ2) that match the installation environment can be maintained, so that a state in which the operation efficiency is good can be maintained. Things.

なお、本発明は先に説明した一実施形態に限定されるものでなく、本実施形態では、地中熱ヒートポンプユニット4の熱源として地中熱交換器23を示したが、熱源としては、地中熱の他に、湖沼、貯水池、井戸等の水熱源も利用可能であり、外気以外の熱源を利用するものであれば種類は問わないものであり、さらに、第1熱源側熱交換器46に供給される熱源側循環液Hは熱源側循環回路20のような閉回路を循環する形態でなくてもよく、熱源側循環液Hは第1熱源側熱交換器46で熱交換した後は外部に排出されるような開放式の形態であってもよいものである。   Note that the present invention is not limited to the above-described embodiment. In the present embodiment, the underground heat exchanger 23 is shown as a heat source of the underground heat heat pump unit 4. In addition to medium heat, water heat sources such as lakes, reservoirs, wells, etc. can be used. Any type of heat source can be used as long as it uses a heat source other than the outside air. The heat source side circulating fluid H supplied to the heat source side circulating fluid H may not be in a form circulating in a closed circuit such as the heat source side circulating circuit 20. It may be of an open type that is discharged to the outside.

また、本実施形態では、判定手段62aは、上記所定期間において外気温度センサ52cが検出する外気温度が所定温度未満のときの第2ヒートポンプ回路50の作動時間と除霜運転の実行回数とに基づき、除霜運転の実行されやすさを表す指標となる除霜頻度係数を、上記式1を用いて算出したが、除霜運転の実行回数の代わりに、除霜運転の実行状況として除霜運転の実行時間を用いて、除霜頻度係数を算出してもよいものであり、上記所定期間において外気温度センサ52cが検出する外気温度が所定温度未満のときの第2ヒートポンプ回路50の作動時間と除霜運転の実行回数または実行時間とに基づいていれば、除霜頻度係数を算出する方法としては上記式1に限定されるものでもない。   Further, in the present embodiment, the determination means 62a is based on the operation time of the second heat pump circuit 50 and the number of executions of the defrosting operation when the outside air temperature detected by the outside air temperature sensor 52c is lower than the predetermined temperature during the predetermined period. The defrosting frequency coefficient, which is an index indicating the ease with which the defrosting operation is performed, is calculated using Equation 1, but instead of the number of times the defrosting operation is performed, the defrosting operation is performed as the defrosting operation execution status. The defrost frequency coefficient may be calculated using the execution time of the second heat pump circuit 50 when the outside air temperature detected by the outside air temperature sensor 52c is lower than the predetermined temperature during the predetermined period. The method of calculating the defrost frequency coefficient is not limited to the above formula 1 as long as it is based on the number of times or the execution time of the defrosting operation.

1 複合熱源ヒートポンプ装置
6 制御装置
40 第1ヒートポンプ回路
41 第1負荷側熱交換器
43 第1圧縮機
45 第1膨張弁
46 第1熱源側熱交換器
50 第2ヒートポンプ回路
51 第2負荷側熱交換器
52c 外気温度センサ
53 第2圧縮機
55 第2膨張弁
57 空気熱交換器
62a 判定手段
REFERENCE SIGNS LIST 1 composite heat source heat pump device 6 control device 40 first heat pump circuit 41 first load side heat exchanger 43 first compressor 45 first expansion valve 46 first heat source side heat exchanger 50 second heat pump circuit 51 second load side heat Exchanger 52c Outside air temperature sensor 53 Second compressor 55 Second expansion valve 57 Air heat exchanger 62a Determination means

Claims (6)

第1圧縮機、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器を備えた第1ヒートポンプ回路と、第2圧縮機、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器を備えた第2ヒートポンプ回路と、外気温度を検出する外気温度検出手段と、動作を制御する制御装置と、を有し、前記制御装置は、前記外気温度検出手段の検出した前記外気温度を基準として前記第1圧縮機および前記第2圧縮機のうち一方を主動力源、他方を補助動力源に設定し、前記外気温度が所定の切換温度以上の場合には前記第2圧縮機を主動力源、前記外気温度が前記所定の切換温度未満の場合には前記第1圧縮機を主動力源に設定して暖房運転を行う複合熱源ヒートポンプ装置において、前記第2ヒートポンプ回路の前記第2熱源側熱交換器に付いた霜を溶かす除霜運転の実行されやすさを判定する判定手段を設け、前記判定手段は、前記除霜運転の実行されやすさに応じて前記所定の切換温度を設定するようにしたことを特徴とする複合熱源ヒートポンプ装置。   A first heat pump circuit including a first compressor, a first load-side heat exchanger, a first expansion valve, and a first heat-source-side heat exchanger capable of exchanging heat with a predetermined heat source different from outside air; A second heat pump circuit including a two-compressor, a second load-side heat exchanger, a second expansion valve, and a second heat-source-side heat exchanger capable of exchanging heat with the outside air, and an outside-air temperature detecting means for detecting an outside-air temperature And a control device for controlling an operation, wherein the control device drives one of the first compressor and the second compressor based on the outside air temperature detected by the outside air temperature detecting means as a main power. The second compressor is set as a main power source when the outside air temperature is equal to or higher than a predetermined switching temperature, and the second compressor is set when the outside air temperature is lower than the predetermined switching temperature. For a combined heat source heat pump device that performs heating operation with one compressor set as the main power source Determining means for determining whether the defrosting operation for melting the frost attached to the second heat source side heat exchanger of the second heat pump circuit is easily performed. The determining means performs the defrosting operation. A composite heat source heat pump device wherein the predetermined switching temperature is set according to ease. 前記判定手段は、前記除霜運転が実行されにくいと判定した場合は、前記切換温度を低下させることを特徴とする請求項1記載の複合熱源ヒートポンプ装置。   The composite heat source heat pump device according to claim 1, wherein the determination unit reduces the switching temperature when determining that the defrosting operation is difficult to perform. 前記判定手段は、前記除霜運転が実行されやすいと判定した場合は、前記切換温度を上昇させることを特徴とする請求項1または2記載の複合熱源ヒートポンプ装置。   3. The combined heat source heat pump device according to claim 1, wherein the determination unit increases the switching temperature when determining that the defrosting operation is easily performed. 4. 前記判定手段は、前記除霜運転が実行されやすくも実行されにくくもないと判定した場合は、前記切換温度を変更しないことを特徴とする請求項1から3の何れか一項に記載の複合熱源ヒートポンプ装置。   The composite according to any one of claims 1 to 3, wherein the determination unit does not change the switching temperature when the determination unit determines that the defrosting operation is not easily performed or hardly performed. Heat source heat pump device. 前記判定手段は、前記除霜運転の実行状況に基づいて、前記除霜運転の実行されやすさを判定するようにしたことを特徴とする請求項1から4の何れか一項に記載の複合熱源ヒートポンプ装置。   The composite according to any one of claims 1 to 4, wherein the determination unit determines the ease of execution of the defrosting operation based on an execution state of the defrosting operation. Heat source heat pump device. 前記判定手段は、外気温度が所定温度以下のときの前記第2ヒートポンプ回路の作動時間と、前記除霜運転の実行回数または実行時間とに基づいて算出された算出値によって、前記除霜運転の実行されやすさを判定し、前記算出値に応じて前記切換温度を設定するようにしたことを特徴とする請求項5記載の複合熱源ヒートポンプ装置。   The determination unit is configured to perform the defrosting operation based on a calculation value calculated based on an operation time of the second heat pump circuit when the outside air temperature is equal to or lower than a predetermined temperature and the number of times or the execution time of the defrosting operation. The combined heat source heat pump device according to claim 5, wherein the ease of execution is determined, and the switching temperature is set according to the calculated value.
JP2018113269A 2018-06-14 2018-06-14 Combined heat source heat pump device Active JP7000261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018113269A JP7000261B2 (en) 2018-06-14 2018-06-14 Combined heat source heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113269A JP7000261B2 (en) 2018-06-14 2018-06-14 Combined heat source heat pump device

Publications (2)

Publication Number Publication Date
JP2019215134A true JP2019215134A (en) 2019-12-19
JP7000261B2 JP7000261B2 (en) 2022-01-19

Family

ID=68917960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113269A Active JP7000261B2 (en) 2018-06-14 2018-06-14 Combined heat source heat pump device

Country Status (1)

Country Link
JP (1) JP7000261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880162A (en) * 2021-01-27 2021-06-01 青岛东软载波智能电子有限公司 Control method of intelligent comfortable cold and warm household air conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040500A (en) * 2014-08-12 2016-03-24 株式会社コロナ Composite heat source heat pump device
JP2016200356A (en) * 2015-04-13 2016-12-01 株式会社コロナ Composite heat source heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040500A (en) * 2014-08-12 2016-03-24 株式会社コロナ Composite heat source heat pump device
JP2016200356A (en) * 2015-04-13 2016-12-01 株式会社コロナ Composite heat source heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880162A (en) * 2021-01-27 2021-06-01 青岛东软载波智能电子有限公司 Control method of intelligent comfortable cold and warm household air conditioning system
CN112880162B (en) * 2021-01-27 2022-03-08 青岛东软载波智能电子有限公司 Control method of intelligent comfortable cold and warm household air conditioning system

Also Published As

Publication number Publication date
JP7000261B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
CN106461253B (en) Air conditioner and defrosting operation method thereof
JP6479162B2 (en) Air conditioner
JP5929862B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
JP6138711B2 (en) Air conditioner
JP5802339B2 (en) Air conditioner
JP2010007995A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JP5802340B2 (en) Air conditioner
CN109357369A (en) Air conditioner and its refrigerant recovering control method
JP2012154600A (en) Air conditioner
CN107655164A (en) A kind of water system air-conditioner electronic expansion valve of indoor unit aperture control method
JPWO2020161805A1 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
WO2017138167A1 (en) Cooler and air conditioner
KR101964946B1 (en) temperature compensated cooling system high efficiency
JP6785867B2 (en) Air conditioning system
JP4562650B2 (en) Air conditioner
JP2013053780A (en) Air conditioner
JP2019215134A (en) Composite heat source heat pump device
KR20150009201A (en) A heat pump system and a control method the same
US20210341193A1 (en) Air Conditioning Device
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP6968769B2 (en) Combined heat source heat pump device
JP2017187249A (en) Composite heat source heat pump device
JP5109971B2 (en) Air conditioner
JP2015068570A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7000261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150