JP2019214712A - Dye for detection of hydrogen peroxide, dye particle complex, and structure for detection of hydrogen peroxide - Google Patents

Dye for detection of hydrogen peroxide, dye particle complex, and structure for detection of hydrogen peroxide Download PDF

Info

Publication number
JP2019214712A
JP2019214712A JP2019104764A JP2019104764A JP2019214712A JP 2019214712 A JP2019214712 A JP 2019214712A JP 2019104764 A JP2019104764 A JP 2019104764A JP 2019104764 A JP2019104764 A JP 2019104764A JP 2019214712 A JP2019214712 A JP 2019214712A
Authority
JP
Japan
Prior art keywords
dye
acid group
particles
oxidase
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104764A
Other languages
Japanese (ja)
Other versions
JP2019214712A5 (en
JP7295708B2 (en
Inventor
真範 関
Masanori Seki
真範 関
東 隆司
Takashi Azuma
隆司 東
圭吾 水澤
Keigo Mizusawa
圭吾 水澤
功 河田
Isao Kawada
功 河田
祐斗 伊藤
Yuto Ito
祐斗 伊藤
山本 毅
Takeshi Yamamoto
毅 山本
健吾 金崎
Kengo Kanezaki
健吾 金崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2019214712A publication Critical patent/JP2019214712A/en
Publication of JP2019214712A5 publication Critical patent/JP2019214712A5/ja
Application granted granted Critical
Publication of JP7295708B2 publication Critical patent/JP7295708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/12Amino derivatives of triarylmethanes without any OH group bound to an aryl nucleus
    • C09B11/14Preparation from aromatic aldehydes, aromatic carboxylic acids or derivatives thereof and aromatic amines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Abstract

To provide a dye, a dye particle complex and a structure for detection that can detect hydrogen peroxide stably with high sensitivity.SOLUTION: A dye having a structure represented by structural formula (1) is used to detect hydrogen peroxide (In structural formula 1, Rand Rindependently represent a hydrogen atom or a C1-8 hydrocarbon chain optionally having a terminal benzene ring, R, Rindependently represent a carboxylic acid group, a sulfonic acid group, or a phosphate group, at least one of Ato Ais a substituent with a positive σ value, n is an integer of 1 or more and 5 or less.)SELECTED DRAWING: None

Description

本発明は、過酸化水素検出を目的とする染料、染料粒子複合体、および過酸化水素検出用構造体に関する。   The present invention relates to a dye for detecting hydrogen peroxide, a dye particle composite, and a structure for detecting hydrogen peroxide.

過酸化水素の検出については、過酸化水素そのものの検出のみならず、酵素反応の生成物としての過酸化水素の検出の需要がある。   Regarding the detection of hydrogen peroxide, there is a demand not only for detecting hydrogen peroxide itself but also for detecting hydrogen peroxide as a product of an enzymatic reaction.

例えば、グルコース、尿酸、コレステロール、クレアチニン等の検出や定量においては、オキシダーゼなど、それぞれに特異的な酵素と反応させ、発生する過酸化水素の量から求めることができる。このような場合過酸化水素の検出、定量が必要である。   For example, in the detection and quantification of glucose, uric acid, cholesterol, creatinine and the like, it can be determined from the amount of hydrogen peroxide generated by reacting with each specific enzyme such as oxidase. In such a case, it is necessary to detect and quantify hydrogen peroxide.

過酸化水素を検出するための物質としては、オキシダーゼやペルオキシダーゼのような酵素を用いる場合と、過酸化水素の存在下で検出可能な色変化(吸収や発光)を受ける機能性色素を用いる場合、あるいはそれらの組み合わせによる場合とがある。機能性色素として代表的なものとして、4−アミノアンチピリンとフェノール系化合物またはアニリン系化合物を組み合わせた被酸化性呈色試薬、3−メチル−2−ベンゾチアゾリンヒドラゾンとアニリン系化合物の組み合わせ試薬、2,2’−アジノビス(3−エチルベンゾチアゾリン−6−スルホン酸)、トリアリールメタン系色素、ベンゾジン誘導体、o−トリアジン誘導体、o−フェニレンジアミン等が挙げられる。この中でもトリアリールメタン系色素は、最大吸収波長が650nm付近にありヘモグロビンの吸収波長領域との重なりが少なく、分子吸光係数も10前後で非常に視認性が高いことから有用なものとして知られている(特許文献1〜7)。 As a substance for detecting hydrogen peroxide, when using an enzyme such as oxidase or peroxidase, or when using a functional dye that undergoes a detectable color change (absorption or luminescence) in the presence of hydrogen peroxide, Alternatively, there is a case in which they are combined. Representative examples of functional dyes include an oxidizable color reagent obtained by combining 4-aminoantipyrine and a phenol compound or an aniline compound, a combination reagent obtained by combining 3-methyl-2-benzothiazoline hydrazone and an aniline compound, , 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), triarylmethane dyes, benzodin derivatives, o-triazine derivatives, o-phenylenediamine and the like. Triarylmethane dyes among these are less overlap between absorption wavelength region of the hemoglobin has a maximum absorption wavelength around 650 nm, known as being useful because of its very high visibility 10 5 before and after the molecular extinction coefficient (Patent Documents 1 to 7).

過酸化水素を検知する染料を使用したデバイスの研究は近年盛んに行われている(非特許文献1)。   Research on devices using dyes for detecting hydrogen peroxide has been actively conducted in recent years (Non-Patent Document 1).

発明者らは生体サンプル中の対象物の検出を目的とし、タンパク質(アルブミン等)夾雑物の存在下で色素を用いた過酸化水素の検出が可能か確認したところ、色素が夾雑物に吸着しデバイス表面より剥離溶出してしまうため、安定した過酸化水素の検出は困難であった。   The present inventors aimed at detecting an object in a biological sample and confirmed whether hydrogen peroxide could be detected using a dye in the presence of a protein (albumin or the like) contaminant. It was difficult to stably detect hydrogen peroxide because it was separated and eluted from the device surface.

また、公知の染料では、過酸化水素反応性が十分でなく、この点においても、安定した過酸化水素検出は困難であった。従って、安定して過酸化水素を検出するデバイスを作製するためには、より高感度のトリアリールメタン染料を何らかの形で固定化する必要があるという認識に至った。   In addition, known dyes do not have sufficient hydrogen peroxide reactivity, and in this respect, it has been difficult to stably detect hydrogen peroxide. Therefore, it has been recognized that in order to manufacture a device for stably detecting hydrogen peroxide, it is necessary to immobilize a more sensitive triarylmethane dye in some form.

一方で、上記特徴を有するトリアリールメタン系色素をポリビニルアルコールに練りこんだものが、近年テロ等に用いられる過酸化アセトン(TAPA)の検知に使用されることが報告されている(非特許文献2)。非特許文献2によると、過酸化水素によるトリアリールメタンの分解反応(非特許文献3)を応用し、トリアリールメタン蒸気を感知することができると報告されている。しかしながら我々の検討では、色素を単純に樹脂に練りこむだけでは、夾雑物による、染料の剥離溶出を抑制することは困難であり、仮に高感度の染料があったとしても、生体サンプル中の過酸化水素を安定して検出することは困難であった。   On the other hand, it has been reported that a triarylmethane-based dye having the above characteristics kneaded in polyvinyl alcohol is used for detecting acetone peroxide (TAPA) used in recent years such as terrorism (Non-patent Document) 2). According to Non-Patent Document 2, it is reported that triarylmethane vapor can be detected by applying a decomposition reaction of triarylmethane with hydrogen peroxide (Non-Patent Document 3). However, in our study, it is difficult to suppress the separation and elution of the dye due to impurities by simply kneading the dye into the resin. It has been difficult to stably detect hydrogen oxide.

特開昭56−26199号公報JP-A-56-26199 特開昭56−31641号公報JP-A-56-31641 特開昭60−194363号公報JP-A-60-194363 特開昭60−256056号公報JP-A-60-256056 特開昭62−296号公報JP-A-62-296 特開昭62−93261号公報JP-A-62-93261 特開平3−206896号公報JP-A-3-206896 国際公開第2012/133696号International Publication No. 2012/133696

Anal. Bioanal. Chem. (2009) 395:301-313Anal. Bioanal. Chem. (2009) 395: 301-313 Sensors and Actuators B 136 (2009) 458-463Sensors and Actuators B 136 (2009) 458-463 J. Chem. Soc. FARADAY TRANS, 1993, 8, 18, 1203-12(9)J. Chem. Soc. FARADAY TRANS, 1993, 8, 18, 1203-12 (9) Chem. Rev. 1991, 97, 165-19Chem. Rev. 1991, 97, 165-19

本発明は、生体サンプル中に存在する(または生体サンプル中で生成されて存在する)過酸化水素を、タンパク質等夾雑物の存在下でも安定して高感度で検出することが可能な、染料、染料粒子複合体および検出用構造体を提供する。   The present invention provides a dye capable of stably and highly sensitively detecting hydrogen peroxide present in a biological sample (or produced and present in a biological sample) even in the presence of impurities such as proteins. A dye particle complex and a structure for detection are provided.

発明者らは、上記課題を解決するために鋭意検討した結果、下記構造式1で表される構造を有する染料を用い、過酸化水素を有効に検出できることを見出した。

Figure 2019214712
ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAの少なくともいずれかのσ値が正の置換基を示し、nは1以上5以下の整数である。 The inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, have found that hydrogen peroxide can be effectively detected by using a dye having a structure represented by the following structural formula 1.
Figure 2019214712
However, in Structural Formula 1, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at a terminal, and R 3 and R 4 are Each independently represents a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, at least one of A 1 to A 5 has a σ value of a positive substituent, and n is an integer of 1 or more and 5 or less. .

また、粒子と、前記粒子の表層に吸着した染料とを含む染料粒子複合体であって、粒子が正帯電性の粒子であり、染料が、上記構造式1の構造で表され、中心電荷が正の値であることを特徴とする、染料粒子複合体の発明に至った。   Further, a dye-particle composite comprising particles and a dye adsorbed on the surface layer of the particles, wherein the particles are positively-charged particles, and the dye is represented by the structure of Structural Formula 1, and has a central charge of The invention of the dye particle composite, which is characterized by having a positive value, has been reached.

本発明により、タンパク質等夾雑物の存在下でも安定した過酸化水素検出が高感度で可能な、染料、染料粒子複合体および検出用構造体の提供が可能となった。   According to the present invention, it has become possible to provide a dye, a dye particle complex, and a structure for detection capable of detecting hydrogen peroxide stably with high sensitivity even in the presence of impurities such as proteins.

本発明は、第一の実施形態として、下記構造式1で表される構造を有する染料を提供する。

Figure 2019214712
ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAの少なくともいずれかのσ値が正の置換基を示し、nは1以上5以下の整数である。 The present invention provides, as a first embodiment, a dye having a structure represented by the following structural formula 1.
Figure 2019214712
However, in Structural Formula 1, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at a terminal, and R 3 and R 4 are Each independently represents a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, at least one of A 1 to A 5 has a σ value of a positive substituent, and n is an integer of 1 or more and 5 or less. .

染料はさらに好ましくは、下記構造式2、3または4で表される構造を有する。

Figure 2019214712
Figure 2019214712
Figure 2019214712
ただし、構造式2、3および4中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立にカルボン酸基、スルホン酸基、またはリン酸基であり、Aはσ値が正の置換基を表す。なお、炭化水素鎖、ベンゼン環は、置換基を有しても構わない。 More preferably, the dye has a structure represented by the following structural formula 2, 3 or 4.
Figure 2019214712
Figure 2019214712
Figure 2019214712
However, R 1 and R 2 in Structural Formulas 2, 3 and 4 are each independently a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 , R 4 are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, and A 6 represents a substituent having a positive σ value. Note that the hydrocarbon chain and the benzene ring may have a substituent.

本発明の第一の実施形態に係る染料は、過酸化水素の存在下で退色するという性質を有し、過酸化水素の検出に好ましく用いられる。すなわち、本発明は、さらなる実施形態として、過酸化水素検出用染料を提供する。   The dye according to the first embodiment of the present invention has a property of fading in the presence of hydrogen peroxide, and is preferably used for detecting hydrogen peroxide. That is, the present invention provides, as a further embodiment, a dye for detecting hydrogen peroxide.

本実施形態における構造式1で表される染料の合成方法は特に限定されないが、例えば下記の合成スキームに示す公知の方法に基づいて合成することができる。

Figure 2019214712
The method for synthesizing the dye represented by Structural Formula 1 in the present embodiment is not particularly limited. For example, the dye can be synthesized based on a known method shown in the following synthesis scheme.
Figure 2019214712

上記合成スキームでは、まず、化合物(A)、化合物(B)および化合物(C)を、溶媒および縮合剤の存在下で縮合する縮合工程で化合物(D)を得た後、化合物(D)を、溶媒および酸化剤の存在下で酸化する酸化工程を経ることで、構造式5で表される化合物が得られる。ただし、化合物(A)〜(D)の構造式および構造式5中RからRはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、AからAの少なくともいずれかはσ値が正の置換基を示す。 In the above synthesis scheme, first, compound (D) is obtained in a condensation step of condensing compound (A), compound (B) and compound (C) in the presence of a solvent and a condensing agent. The compound represented by the structural formula 5 is obtained through an oxidation step of oxidizing in the presence of a solvent and an oxidizing agent. However, in the structural formulas of the compounds (A) to (D) and in structural formula 5, R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at a terminal. Wherein at least one of A 1 to A 5 represents a substituent having a positive σ value.

初めに、上記合成スキームの縮合工程に用いる溶媒について説明する。上記縮合工程では、無溶媒で反応させることもできるが、溶媒を用いて反応することもでき、その場合溶媒は特に限定はないが、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブタノール、エチレングリコール、グリセリン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、クロロベンゼン、1,2−ジクロロベンゼン、ニトロメタン、ニトロベンゼンなどを単独または混合して用いることが好ましい。   First, the solvent used in the condensation step of the above synthesis scheme will be described. In the above condensation step, the reaction can be carried out without a solvent, or the reaction can be carried out using a solvent. In this case, the solvent is not particularly limited. For example, water, methanol, ethanol, propanol, isopropanol, butanol, tert -Butanol, ethylene glycol, glycerin, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide, chlorobenzene, 1,2 -It is preferable to use dichlorobenzene, nitromethane, nitrobenzene or the like alone or as a mixture.

上記合成スキームの縮合工程に用いる縮合剤について説明する。上記縮合工程における縮合剤としては、特に限定はないが、例えば、硫酸、塩酸、リン酸、酢酸、蟻酸、塩化アルミニウム、塩化亜鉛などを単独または混合して用いることが好ましい。   The condensing agent used in the condensation step of the above synthesis scheme will be described. The condensing agent in the above condensation step is not particularly limited, but for example, sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, formic acid, aluminum chloride, zinc chloride or the like is preferably used alone or in combination.

構造式5において、RとR、RとRが、それぞれ同一の基である化合物を合成する場合には、上記合成スキーム中の化合物(B)と化合物(C)は同じ種類のものを使うことができる。 In the structural formula 5, when synthesizing a compound in which R 1 and R 3 and R 2 and R 4 are the same group, the compound (B) and the compound (C) in the above synthesis scheme are of the same type. You can use things.

次に、上記合成スキームの酸化工程に用いる溶媒について説明する。上記酸化工程では、無溶媒で反応させることもできるが、溶媒を用いて反応することもでき、その場合溶媒は特に限定はないが、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブタノール、エチレングリコール、グリセリン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、クロロベンゼン、1,2−ジクロロベンゼン、ニトロメタン、ニトロベンゼンなどを単独または混合して用いることが好ましい。   Next, the solvent used in the oxidation step of the above synthesis scheme will be described. In the oxidation step, the reaction can be carried out without a solvent, or the reaction can be carried out using a solvent. In this case, the solvent is not particularly limited. For example, water, methanol, ethanol, propanol, isopropanol, butanol, tert -Butanol, ethylene glycol, glycerin, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide, chlorobenzene, 1,2 -It is preferable to use dichlorobenzene, nitromethane, nitrobenzene or the like alone or as a mixture.

上記合成スキームの酸化工程に用いる酸化剤について説明する。上記酸化工程における酸化剤は特に限定はなく、例えば、酸化鉛、酸化亜鉛、酸化鉄、酸化マンガン、過酸化水素、クロラニル、酸素などを単独または混合して用いることが好ましい。   The oxidizing agent used in the oxidation step of the above synthesis scheme will be described. The oxidizing agent in the above-mentioned oxidizing step is not particularly limited, and for example, it is preferable to use lead oxide, zinc oxide, iron oxide, manganese oxide, hydrogen peroxide, chloranil, oxygen or the like alone or in combination.

本実施形態に係る染料の具体例として化合物(1)から化合物(51)を以下に示す。

Figure 2019214712
Figure 2019214712
Figure 2019214712
Figure 2019214712
Figure 2019214712
Compounds (1) to (51) are shown below as specific examples of the dye according to this embodiment.
Figure 2019214712
Figure 2019214712
Figure 2019214712
Figure 2019214712
Figure 2019214712

本発明の第一の実施形態に係る染料は過酸化水素の存在下で退色が起こる。これは、主に、非特許文献3に記載されている機構による。すなわちトリアリールメタンの中心炭素(+)部分に過酸化水素が結合することを開始反応とし、アリール基の脱離が起きる、染料の分解による不可逆反応と考えられる。   The dye according to the first embodiment of the present invention fades in the presence of hydrogen peroxide. This is mainly due to the mechanism described in Non-Patent Document 3. That is, it is considered that irreversible reaction is caused by decomposition of the dye, in which the initiation of the reaction is the binding of hydrogen peroxide to the central carbon (+) portion of triarylmethane, and the elimination of the aryl group occurs.

上記機構を有するため、本実施形態に係る染料を過酸化水素検出に用いる際、従来のトリアリールメタン系染料を用いた検知材料(ロイコ染料)とは異なり、pHの変動等による色の復活等は起きえないため、ロイコ染料と比較して環境の変動を受けにくいという長所を有している。   Due to the above mechanism, when the dye according to the present embodiment is used for detecting hydrogen peroxide, unlike a detection material (leuco dye) using a conventional triarylmethane dye, color restoration due to a change in pH or the like is performed. Has the advantage of being less susceptible to environmental fluctuations than leuco dyes.

本発明は第二の実施形態として、粒子と、前記粒子の表層に吸着した染料とを含む染料粒子複合体であって、粒子が正帯電性の粒子であり、染料が、本発明の第一の実施形態に係る染料であることを特徴とする、染料粒子複合体を提供する。   As a second embodiment, the present invention is a dye particle composite comprising particles and a dye adsorbed on the surface layer of the particles, wherein the particles are positively chargeable particles, and the dye is the first of the present invention. A dye particle composite, which is the dye according to the embodiment.

粒子の形状は特に問わないが、球形またはそれに類した形状の粒子が入手の容易さから好ましい。粒子の直径(粒径)は、特に限定はないが、好ましくは0.01μm〜10μm、さらに好ましくは0.05μm〜0.20μmである。粒径が小さすぎる場合、夾雑物による剥離溶解が起きやすく、粒径が大きすぎる場合、発色性に問題を生じる場合がある。粒子は、有機、無機、有機−無機ハイブリッド材料等を挙げられる。粒子は、正帯電性のものが好ましいが、負帯電性または事実上帯電のない粒子表面を、シランカップリング剤や界面活性剤等で処理した粒子や、負帯電性の粒子をレイヤーバイレイヤー法により正帯電性とすることで、正帯電性の粒子として用いることができる。具体的には、ベンゾグアナミン・ホルムアルデヒド縮合物、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、カチオン変性ポリアクリルアミド樹脂、カチオン変性ポリアミン樹脂、カチオン変性脂肪アミド樹脂、カチオン変性ポリアミドポリアミン樹脂、カチオン変性ポリアクリル酸エステル樹脂、カチオン変性ポリメタクリル酸エステル樹脂、ポリエチルイミン樹脂によるナノ粒子または、これら樹脂により表面修飾されたナノ粒子、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩等で表面処理された、シリカ、アルミナ、アパタイト等の無機粒子が挙げられるが、これら粒子に限定されるものではない。本発明の実施形態において、中心電荷とは、DFT計算で得られる、構造式中の+で示される位置のマリケンチャージの計算値を中心電荷とした値である。中心電荷の値は構造式中、AからAで記載される置換基構造のいわゆるハメットのσ値と相関があることが、我々の鋭意検討により判明している。本発明の実施形態において、σ値とは、非特許文献4記載のσp+またはσp−の値を参考とした値である。σ値が正である置換基構造のより好ましい例としては、Br、Cl、F、I、NO、SO 、B(OH)、CF,OCF、SONH、SO(CF)、SCF,SeCF,CN、COO,COOR(Rは炭化水素鎖)、COOH,SOH、CFCF、CHCN,C,ピリジルなどが挙げられ、感度上より好ましくは、NO、SONH、CF,CN,COOH,COORが挙げられる。Rは、炭素数1以上3以下の炭化水素基であることが好ましい。なかでも、σ値が正である置換基は、COOH、COOCH、及びCNからなる群より選択される少なくとも1種であることが好ましい。 The shape of the particles is not particularly limited, but spherical or similar particles are preferred from the standpoint of availability. The diameter (particle size) of the particles is not particularly limited, but is preferably 0.01 μm to 10 μm, and more preferably 0.05 μm to 0.20 μm. If the particle size is too small, exfoliation and dissolution by contaminants are likely to occur, and if the particle size is too large, there may be a problem in color developability. The particles include organic, inorganic and organic-inorganic hybrid materials. The particles are preferably positively charged, but the surface of the negatively charged or virtually uncharged particles is treated with a silane coupling agent or a surfactant, or the negatively charged particles are subjected to a layer-by-layer method. By making the particles positively chargeable, the particles can be used as positively chargeable particles. Specifically, benzoguanamine / formaldehyde condensate, benzoguanamine / melamine / formaldehyde condensate, melamine / formaldehyde condensate, cation modified polyacrylamide resin, cation modified polyamine resin, cation modified fatty amide resin, cation modified polyamide polyamine resin, cation modified Nanoparticles of polyacrylate resin, cation-modified polymethacrylate resin, polyethylimine resin, or nanoparticles surface-modified with these resins, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl- -Surface with (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. Examples include, but are not limited to, treated inorganic particles such as silica, alumina, and apatite. In the embodiment of the present invention, the central charge is a value obtained by calculating the Mulliken charge at the position indicated by + in the structural formula, obtained by DFT calculation, with the central charge. It has been found by our intensive studies that the value of the central charge has a correlation with the so-called Hammett σ value of the substituent structure represented by A 1 to A 6 in the structural formula. In the embodiment of the present invention, the σ value refers to a value of σp + or σp− described in Non-Patent Document 4. More preferred examples of the substituent structure having a positive σ value include Br, Cl, F, I, NO 2 , SO 3 , B (OH) 2 , CF 3 , OCF 3 , SO 2 NH 2 , and SO 2. (CF 3 ), SCF 3 , SeCF 3 , CN, COO , COOR (R is a hydrocarbon chain), COOH, SO 3 H, CF 2 CF 3 , CH 2 CN, C 6 F 5 , pyridyl and the like. More preferably, NO 2 , SO 2 NH 2 , CF 3 , CN, COOH, and COOR are used in terms of sensitivity. R is preferably a hydrocarbon group having 1 to 3 carbon atoms. Among them, the substituent having a positive σ value is preferably at least one selected from the group consisting of COOH, COOCH 3 , and CN.

本実施形態における染料粒子複合体は、粒子表面に染料をイオン性結合で吸着するため、粒子から染料が脱離しづらい。   In the dye particle complex according to the present embodiment, the dye is adsorbed on the particle surface by ionic bonding, so that the dye is not easily detached from the particles.

本実施形態における染料粒子複合体は、正帯電性の粒子表面に対して、イオン性置換基を有する、本発明の実施形態に係る染料を吸着させることにより製造できる。具体的には、水性溶剤中に正帯電性の粒子を超音波分散機等で分散し、得られる分散液と、水性溶剤に溶解した染料水溶液を混合する。10分間ほど撹拌した後、遠心分離機等で固液分離を行い、必要に応じて水洗することで、目的とする染料が表面に吸着した染料粒子複合体が形成される。   The dye particle complex in the present embodiment can be produced by adsorbing the dye having an ionic substituent according to the embodiment of the present invention on the surface of the positively charged particles. Specifically, positively chargeable particles are dispersed in an aqueous solvent by an ultrasonic disperser or the like, and the resulting dispersion is mixed with an aqueous dye solution dissolved in the aqueous solvent. After stirring for about 10 minutes, solid-liquid separation is performed with a centrifuge or the like, and if necessary, washing is performed with water to form a dye particle complex having the target dye adsorbed on the surface.

本実施形態に係る染料粒子複合体は、目視で識別できる色を有するが、過酸化水素存在下では脱色が起こるため、過酸化水素の検出に好ましく用いられる。   The dye particle composite according to the present embodiment has a color that can be visually identified, but is desirably used in the detection of hydrogen peroxide because decolorization occurs in the presence of hydrogen peroxide.

また、本実施形態に係る染料粒子複合体は、過酸化水素検出に用いる際、染料単独で用いるよりも、感度が高く、また、夾雑物の影響も受けにくい。また、染料粒子複合体自体に重量があるため、染料単独で用いるよりも、基材に定着させやすい。   Further, the dye particle composite according to the present embodiment has higher sensitivity and is less susceptible to contaminants when used for detecting hydrogen peroxide than when the dye is used alone. In addition, since the dye particle composite itself has a weight, it is easier to fix to the substrate than using the dye alone.

また、たとえば、染料を、PVAに直接練りこむような形態をとると、過酸化水素がしみこみづらいが、本実施形態に係る染料粒子複合体は、過酸化水素と接触しやすく、感度が高い。   Further, for example, when the dye is directly kneaded into PVA, hydrogen peroxide is hardly permeated, but the dye particle composite according to the present embodiment is easily contacted with hydrogen peroxide and has high sensitivity.

本発明は第三の実施形態として、本発明の第二の実施形態に係る染料粒子複合体と基材とを含む、過酸化水素検出用構造体を提供する。   The present invention provides, as a third embodiment, a structure for detecting hydrogen peroxide, comprising the dye particle composite according to the second embodiment of the present invention and a substrate.

本実施形態の構造体においては、基材上の感知領域に本発明の第二の実施形態に係る染料粒子複合体が含有されることが好ましい。基材とは自立した材料を意味し、過酸化酸素に対する反応性が低ければ特に材質を選ばない。しかしながら染料粒子複合体を基材上に固定することが好ましく、粘着性の接着層を有するか、セルロースまたはμファイバー等を用いた紙、フェルト、編み物、不織布、または多孔質材料が望ましく、容易に入手可能なことから紙が推奨される。   In the structure of the present embodiment, it is preferable that the dye particle composite according to the second embodiment of the present invention be contained in the sensing region on the substrate. The substrate means a self-supporting material, and the material is not particularly limited as long as the reactivity to oxygen peroxide is low. However, it is preferable to fix the dye particle composite on the substrate, and it is desirable to use a paper, felt, knit, non-woven fabric, or porous material having a tacky adhesive layer or using cellulose or μ fiber or the like. Paper is recommended because it is available.

本発明の第二の実施形態に係る染料粒子複合体は、本実施形態の過酸化水素検出用構造体に好ましく用いることができる。   The dye particle composite according to the second embodiment of the present invention can be preferably used for the hydrogen peroxide detecting structure of the present embodiment.

また、本実施形態の過酸化水素検出用構造体は、必要に応じて代謝物を基質として過酸化水素を発生する酵素を併用することができる。酵素を併用した場合、本質的には酵素の生成物である過酸化水素を検出する構造体であるものの、様々な検出対象を検出することが可能となる。   In addition, the structure for detecting hydrogen peroxide of the present embodiment can use an enzyme that generates hydrogen peroxide using a metabolite as a substrate, if necessary. When an enzyme is used in combination, it is possible to detect various detection targets, although the structure is essentially a structure for detecting hydrogen peroxide which is a product of the enzyme.

本実施形態において併用することができる酵素として、グルコースオキシダーゼ(glucose oxidase)、ヘキソースオキシダーゼ(hexose oxidase)、コレステロールオキシダーゼ(cholesterol oxidase)、アリールアルコールオキシダーゼ(aryl-alcohol oxidase)、L−グロノラクトンオキシダーゼ(L-gulonolactone oxidase)、ガラクトースオキシダーゼ(galactose oxidase)、ピラノースオキシダーゼ(pyranose oxidase)、L−ソルボースオキシダーゼ(L-sorbose oxidase)、ピリドキシン4−オキシダーゼ(pyridoxine 4-oxidase)、アルコールオキシダーゼ(alcohol oxidase)、カテコールオキシダーゼ(catechol oxidase)、(S)−2−ヒドロキシ酸オキシダーゼ((S)-2-hydroxy-acid oxidase)、エクジソンオキシダーゼ(ecdysone oxidase)、コリンオキシダーゼ(choline oxidase)、第二級アルコールオキシダーゼ(secondary-alcohol oxidase)、4−ヒドロキシマンデル酸オキシダーゼ(4-hydroxymandelate oxidase)、長鎖アルコールオキシダーゼ(long-chain-alcohol oxidase)、グリセロール−3−リン酸オキシダーゼ(glycerol-3-phosphate oxidase)、チアミンオキシダーゼ(thiamin oxidase)、ヒドロキシフィタン酸オキシダーゼ(hydroxyphytanate oxidase)、ヌクレオシドオキシダーゼ(nucleoside oxidase)、N−アシルヘキサソミンオキシダーゼ(N-acylhexosamine oxidase)、ポリビニルアルコールオキシダーゼ(polyvinyl-alcohol oxidase)、D−アラビノノ−1,4−ラクトンオキシダーゼ(D-arabinono-1,4-lactone oxidase)、バニリルアルコールオキシダーゼ(vanillyl-alcohol oxidase)、ヌクレオシドオキシダーゼ(H形成)(nucleoside oxidase (H2O2-forming))、D−マンニトールオキシダーゼ(D-mannitol oxidase)、アルジトールオキシダーゼ(alditol oxidase)、プロソラナピロン−IIオキシダーゼ(prosolanapyrone-II oxidase)、パロマミン6’−オキシダーゼ(paromamine 6'-oxidase)、6’’’−ヒドロキシネオマイシンCオキシダーゼ(6′′′-hydroxyneomycin C oxidase)、アクラシノマイシン−Nオキシダーゼ(aclacinomycin-N oxidase)、5−(ヒドロキシメチル)フルフラールオキシダーゼ(5-(hydroxymethyl)furfural oxidase)、3−デオキシ−α−D−マンノ−オクツロソン酸8−オキシダーゼ(3-deoxy-α-D-manno-octulosonate 8-oxidase)、(R)−マンデロニトリルオキシダーゼ((R)-mandelonitrile oxidase)、アルデヒドオキシダーゼ(aldehyde oxidase)、ピルビン酸オキシダーゼ(pyruvate oxidase)、シュウ酸オキシダーゼ(oxalate oxidase)、グリオキシル酸オキシダーゼ(glyoxylate oxidase)、インドール−3−アセトアルデヒドオキシダーゼ(indole-3-acetaldehyde oxidase)、ピリドキサールオキシダーゼ(pyridoxal oxidase)、アリールアルデヒドオキシダーゼ(aryl-aldehyde oxidase)、4−ヒドロキシフェニルピルビン酸オキシダーゼ(4-hydroxyphenylpyruvate oxidase)、アブシシンアルデヒドオキシダーゼ(abscisic aldehyde oxidase)、(メチル)グリオキサールオキシダーゼ((methyl)glyoxal oxidase)、コプロポルフィリノーゲンオキシダーゼ(coproporphyrinogen oxidase)、プロトポルフィリノーゲンオキシダーゼ(protoporphyrinogen oxidase)、ビリルビンオキシダーゼ(bilirubin oxidase)、アシルCoAオキシダーゼ(acyl-CoA oxidase)、ジヒドロウラシルオキシダーゼ(dihydrouracil oxidase)、テトラヒドロベルベリンオキシダーゼ(tetrahydroberberine oxidase)、セコロガニンシンターゼ(secologanin synthase)、トリプトファンα,β−オキシダーゼ(tryptophan α,β-oxidase)、ピロロキノリンキノンシンターゼ(pyrroloquinoline-quinone synthase)、L−ガラクトノラクトンオキシダーゼ(L-galactonolactone oxidase)、アルボノウルシンシンターゼ(albonoursin synthase)、アクラシノマイシン−Aオキシダーゼ(aclacinomycin-A oxidase)、コプロポルフィリノーゲンIIIオキシダーゼ(コプロポルフィリン形成)(coproporphyrinogen III oxidase (coproporphyrin-forming))、D−アスパラギン酸オキシダーゼ(D-aspartate oxidase)、L−アミノ酸オキシダーゼ(L-amino-acid oxidase)、D−アミノ酸オキシダーゼ(D-amino-acid oxidase)、アミンオキシダーゼピロドキサール5’−リン酸シンターゼ(amine oxidase、pyridoxal 5'-phosphate synthase)、D−グルタミン酸オキシダーゼ(D-glutamate oxidase)、エタノールアミンオキシダーゼ(ethanolamine oxidase)、プトレシンオキシダーゼ(putrescine oxidase)、L−グルタミン酸オキシダーゼ(L-glutamate oxidase)、シクロヘキシルアミンオキシダーゼ(cyclohexylamine oxidase)、タンパク質−リジン6−オキシダーゼ(protein-lysine 6-oxidase)、L−リジンオキシダーゼ(L-lysine oxidase)、D−グルタミン酸(D−アスパラギン酸)オキシダーゼ(D-glutamate(D-aspartate) oxidase)、L−アスパラギン酸オキシダーゼ(L-aspartate oxidase)、グリシンオキシダーゼ(glycine oxidase)、L−リジン6−オキシダーゼ(L-lysine 6-oxidase)、第一級アミンオキシダーゼ(primary-amine oxidase)、ジアミンオキシダーゼ(diamine oxidase)、7−クロロ−L−トリプトファンオキシダーゼ(7-chloro-L-tryptophan oxidase)、プソイドオキシニコチンオキシダーゼ(pseudooxynicotine oxidase)、L−アルギニンオキシダーゼ(L-arginine oxidase)、サルコシンオキシダーゼ(sarcosine oxidase)、N−メチル−L−アミノ酸オキシダーゼ(N-methyl-L-amino-acid oxidase)、N−メチル−リジンオキシダーゼ(N6-methyl-lysine oxidase)、(S)−6−ヒドロキシニコチンオキシダーゼ((S)-6-hydroxynicotine oxidase)、(R)−6−ヒドロキシニコチンオキシダーゼ((R)-6-hydroxynicotine oxidase)、L−ピペコリン酸オキシダーゼ(L-pipecolate oxidase)、ジメチルグリシンオキシダーゼ(dimethylglycine oxidase)、ジヒドロベンゾフェナントリジンオキシダーゼ(dihydrobenzophenanthridine oxidase)、N−アセチルポリアミンオキシダーゼ(N1-acetylpolyamine oxidase)、ポリアミンオキシダーゼ(プロパン−1,3−ジアミン形成)(polyamine oxidase (propane-1,3-diamine-forming))、N−アセチルスペルミジンオキシダーゼ(プロパン−1,3−ジアミン形成)(N8-acetylspermidine oxidase (propane-1,3-diamine -forming))、スペルミンオキシダーゼ(spermine oxidase)、非特異的ポリアミンオキシダーゼ(non-specific polyamine oxidase)、L−サッカロピンオキシダーゼ(L-saccharopine oxidase)、4−メチルアミノブタン酸オキシダーゼ(ホルムアルデヒド形成)(4-methylaminobutanoate oxidase (formaldehyde-forming))、N−アルキルグリシンオキシダーゼ(N-alkylglycine oxidase)、4−メチルアミノブタン酸オキシダーゼ(メチルアミン形成)(4-methylaminobutanoate oxidase (methylamine-forming))、コエンザイムF420オキシダーゼ(coenzyme F420H2 oxidase)、グリホサートオキシドレダクターゼ(glyphosate oxidoreductase)、NAD(P)Hオキシダーゼ(H形成)NAD(P)H oxidase (H2O2-forming)、NAD(P)Hオキシダーゼ(HO形成)(NAD(P)H oxidase (H2O-forming))、NADHオキシダーゼ(H形成)(NADH oxidase (H2O2-forming))、NADHオキシダーゼ(HO形成)(NADH oxidase (H2O-forming))、レナラーゼ(renalase)、ニトロアルカンオキシダーゼ(nitroalkane oxidase)、アセチルインドキシルオキシダーゼ(acetylindoxyl oxidase)、因子非依存性尿酸ヒドロキシラーゼ(factor-independent urate hydroxylase)、3−aci−ニトロプロパン酸オキシダーゼ(3-aci-nitropropanoate oxidase)、ヒドロキシルアミンオキシダーゼ(シトクロム)(hydroxylamine oxidase (cytochrome))、亜硫酸オキシダーゼ(sulfite oxidase)、チオールオキシダーゼ(thiol oxidase)、グルタチオンオキシダーゼ(glutathione oxidase)、メタンチオールオキシダーゼ(methanethiol oxidase)、プレニルシステインオキシダーゼ(prenylcysteine oxidase)、ファルネシルシステインリアーゼ(farnesylcysteine lyase)、シトクロム−cオキシダーゼ(cytochrome-c oxidase)、ラッカーゼ(laccase)、L−アスコルビン酸オキシダーゼ(L-ascorbate oxidase)、o−アミノフェノールオキシダーゼ(o-aminophenol oxidase)、3−ヒドロキシアントラニル酸オキシダーゼ(3-hydroxyanthranilate oxidase)、リファマイシン−Bオキシダーゼ(rifamycin-B oxidase)、フォトシステムII(photosystem II)、ユビキノールオキシダーゼ(H輸送)(ubiquinol oxidase (H+-transporting))、ユビキノールオキシダーゼ(電位不形成型)(ubiquinol oxidase (non-electrogenic))、メナキノールオキシダーゼ(H輸送)(menaquinol oxidase (H+-transporting))、カルダリエラキノールオキシダーゼ(H輸送)(caldariellaquinol oxidase (H+-transporting))、ユビキノールオキシダーゼ(電位形成型、非H輸送)(ubiquinol oxidase (electrogenic, non H+-transporting))、グリキサゾンシンターゼ(grixazone synthase)、ジヒドロフェナジンジカルボン酸シンターゼ(dihydrophenazinedicarboxylate synthase)、フェロキシダーゼ(ferroxidase)、細菌性非ヘムフェリチン(bacterial non-heme ferritin)、プテリジンオキシダーゼ(pteridine oxidase)、キサンチンオキシダーゼ(xanthine oxidase)、6−ヒドロキシニコチン酸デヒドロゲナーゼ(6-hydroxynicotinate dehydrogenase)、ジュグロン3−ヒドロキシラーゼ(juglone 3-hydroxylase)、イソペニシリン−Nシンターゼ(isopenicillin-N synthase)、コルンバミンオキシダーゼ(columbamine oxidase)、レチクリンオキシダーゼ(reticuline oxidase)、スロクリンオキシダーゼ[(+)−ビスデクロロゲオジン形成](sulochrin oxidase [(+)-bisdechlorogeodin-forming])、スロクリンオキシダーゼ[(−)−ビスデクロロゲオジン形成](sulochrin oxidase [(-)-bisdechlorogeodin-forming])、オーロイシジンシンターゼ(aureusidin synthase)、テトラヒドロカンナビノール酸シンターゼ(tetrahydrocannabinolic acid synthase)、カンナビジオール酸シンターゼ(cannabidiolic acid synthase)、スーパーオキシドジスムターゼ(superoxide dismutase)、スーパーオキシドレダクターゼ(superoxide reductase)、NADHペルオキシダーゼ(NADH peroxidase)、NADPHペルオキシダーゼ(NADPH peroxidase)、脂肪酸ペルオキシダーゼ(fatty-acid peroxidase)、シトクロム−cペルオキシダーゼ(cytochrome-c peroxidase)、カタラーゼ(catalase)、ペルオキシダーゼ(peroxidase)、ヨージドペルオキシダーゼ(iodide peroxidase)、グルタチオンペルオキシダーゼ(glutathione peroxidase)、クロリドペルオキシダーゼ(chloride peroxidase)、L−アスコルビン酸ペルオキシダーゼ(L-ascorbate peroxidase)、リン脂質−ヒドロペルオキシドグルタチオンペルオキシダーゼ(phospholipid-hydroperoxide glutathione peroxidase)、マンガンペルオキシダーゼ(manganese peroxidase)、リグニンペルオキシダーゼ(lignin peroxidase)、ペルオキシレドキシン(peroxiredoxin)、万能ペルオキシダーゼ(versatile peroxidase)、グルタチオンアミド依存性ペルオキシダーゼ(glutathione amide-dependent peroxidase)、ブロミドペルオキシダーゼ(bromide peroxidase)、
色素脱色型ペルオキシダーゼ(dye decolorizing peroxidase)(Dye decolorizing peroxidase)、プロスタミド/プロスタグランジンF2αシンターゼ(prostamide/prostaglandin F2α synthase)、カタラーゼ−ペルオキシダーゼ(catalase-peroxidase)、ヒドロペルオキシ脂肪酸レダクターゼ(hydroperoxy fatty acid reductase)、(S)−2−ヒドロキシプロピルホスホン酸エポキシダーゼ((S)-2-hydroxypropylphosphonic acid epoxidase)、フルクトシル−アミノ酸オキシダーゼ(Fructosyl-amino Acid Oxidase)、乳酸オキシダーゼ(Lactate Oxidase)、L−アルギニンオキシダーゼ(L -arginine oxidase)、L−ヒスチジンオキシダーゼ(L- histidine oxidase)、L−システインオキシダーゼ(L- cysteine oxidase)が挙げられるが、本実施形態において併用可能な酵素は上記酵素に限定されるものではない。
As enzymes that can be used in combination in the present embodiment, glucose oxidase (glucose oxidase), hexose oxidase (hexose oxidase), cholesterol oxidase (cholesterol oxidase), aryl alcohol oxidase (aryl-alcohol oxidase), L-gulonolactone oxidase ( L-gulonolactone oxidase, galactose oxidase, galanose oxidase, pyranose oxidase, L-sorbose oxidase, L-sorbose oxidase, pyridoxine 4-oxidase, alcohol oxidase, alcohol oxidase Oxidase (catechol oxidase), (S) -2-hydroxy acid oxidase ((S) -2-hydroxy-acid oxidase), ecdysone oxidase (ecdysone oxidase), choline oxidase (choline oxidase), secondary alcohol Oxidase (secondary-alcohol oxidase), 4-hydroxymandelate oxidase, long-chain alcohol oxidase (long-chain-alcohol oxidase), glycerol-3-phosphate oxidase, Thiamin oxidase, hydroxyphytanate oxidase, nucleoside oxidase, N-acylhexosamine oxidase, polyvinyl-alcohol oxidase, D-arabinono -1,4-lactone oxidase (D-arabinono-1,4-lactone oxidase), vanillyl alcohol oxidase (vanillyl-alcohol oxidase), nucleoside oxidase (H 2 O 2 formation) (nucleoside oxidase (H 2 O 2 -forming) )), D-mannitol oxida (D-mannitol oxidase), alditol oxidase (alditol oxidase), prosolanapyrone-II oxidase, prolamanapyrone-II oxidase, paromamine 6'-oxidase, 6 '''-hydroxyneomycin C Oxidase (6 ""-hydroxyneomycin C oxidase), aclacinomycin-N oxidase, 5- (hydroxymethyl) furfural oxidase, 3-deoxy-α-D -Manno-octulosonate 8-oxidase (3-deoxy-α-D-manno-octulosonate 8-oxidase), (R) -mandelonitrile oxidase ((R) -mandelonitrile oxidase), aldehyde oxidase, pyruvin Acid oxidase (pyruvate oxidase), oxalate oxidase (oxalate oxidase), glyoxylate oxidase (glyoxy late oxidase), indole-3-acetaldehyde oxidase, indole-3-acetaldehyde oxidase, pyridoxal oxidase, aryl-aldehyde oxidase, 4-hydroxyphenylpyruvate oxidase, Abscisic aldehyde oxidase, (methyl) glyoxal oxidase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, bilirubin oxidase, bilirubin oxidase CoA oxidase (acyl-CoA oxidase), dihydrouracil oxidase (dihydrouracil oxidase), tetrahydroberberine oxidase (tetrahydroberberine oxidase), Seco Ganin synthase (secologanin synthase), tryptophan α, β-oxidase (tryptophan α, β-oxidase), pyrroloquinoline-quinone synthase, L-galactonolactone oxidase, arbonoursin Synthase (acylinomycin-A oxidase), coproporphyrinogen III oxidase (coproporphyrin-forming) (coproporphyrinogen III oxidase (coproporphyrin-forming)), D-aspartate oxidase (D-aspartate) oxidase), L-amino-acid oxidase, D-amino-acid oxidase, amine oxidase pyrodoxal 5'-phosphate synthase (amine oxidase, pyridoxal 5'-phosphate synthase) ), D-glutamateoxy (D-glutamate oxidase), ethanolamine oxidase (ethanolamine oxidase), putrescine oxidase (putrescine oxidase), L-glutamate oxidase (L-glutamate oxidase), cyclohexylamine oxidase (cyclohexylamine oxidase), protein-lysine 6-oxidase ( protein-lysine 6-oxidase), L-lysine oxidase (L-lysine oxidase), D-glutamic acid (D-aspartate) oxidase (D-glutamate (D-aspartate) oxidase), L-aspartate oxidase (L-aspartate) oxidase), glycine oxidase, glycine oxidase, L-lysine 6-oxidase, primary-amine oxidase, diamine oxidase, 7-chloro-L- Tryptophan oxidase (7-chloro-L-tryptophan oxidase), pseudo Pseudooxynicotine oxidase, L-arginine oxidase, sarcosine oxidase, N-methyl-L-amino-acid oxidase, N 6 − Methyl-lysine oxidase (N 6 -methyl-lysine oxidase), (S) -6-hydroxynicotine oxidase ((S) -6-hydroxynicotine oxidase), (R) -6-hydroxynicotine oxidase ((R) -6- hydroxynicotine oxidase), L- pipecolic acid oxidase (L-pipecolate oxidase), dimethylglycine oxidase (dimethylglycine oxidase), dihydrobenzo phenanthridine oxidase (dihydrobenzophenanthridine oxidase), N 1 - acetyl polyamine oxidase (N 1 -acetylpolyamine oxidase), polyamines Oxidase (propane-1,3-diamine form ) (Polyamine oxidase (propane-1,3 -diamine-forming)), N 8 - acetyl spermidine oxidase (propane-1,3-diamine formation) (N 8 -acetylspermidine oxidase (propane -1,3-diamine -forming) ), Spermine oxidase, non-specific polyamine oxidase, L-saccharopine oxidase, 4-methylaminobutanoate oxidase (formaldehyde formation) (4-methylaminobutanoate oxidase) (formaldehyde-forming)), N- alkyl glycine oxidase (N-alkylglycine oxidase), 4- methylamino-butanoic acid oxidase (methylamine formation) (4-methylaminobutanoate oxidase (methylamine -forming)), coenzyme F 420 H 2 oxidase ( coenzyme F 420 H 2 oxidase), glyphosate oxidoreductase (glyphosate oxidoreductase , NAD (P) H Oxidase (H 2 O 2 formed) NAD (P) H oxidase ( H 2 O 2 -forming), NAD (P) H oxidase (H 2 O formation) (NAD (P) H oxidase (H 2 O-forming)), NADH oxidase (H 2 O 2 formed) (NADH oxidase (H 2 O 2 -forming)), NADH oxidase (H 2 O formation) (NADH oxidase (H 2 O -forming)), Renaraze (Renalase), nitroalkane oxidase, acetylindoxyl oxidase, factor-independent urate hydroxylase, 3-aci-nitropropanoate oxidase (3-aci-nitropropanoate) oxidase), hydroxylamine oxidase (cytochrome), sulfite oxidase, thiol oxidase, glutathione Glutathione oxidase, methanethiol oxidase, prenylcysteine oxidase, farnesylcysteine lyase, cytochrome-c oxidase, laccase, laccase. Oxidase (L-ascorbate oxidase), o-aminophenol oxidase (o-aminophenol oxidase), 3-hydroxyanthranilate oxidase (3-hydroxyanthranilate oxidase), rifamycin-B oxidase, photosystem II (photosystem) II), ubiquinol oxidase (H + transport) (ubiquinol oxidase (H + -transporting)), ubiquinol oxidase (potential non-forming type) (ubiquinol oxidase (non-electrogenic)), menaquinol oxidase (H + transport) (mena quinol oxidase (H + -transporting)) , cardanol Riera quinol oxidase (H + transport) (caldariellaquinol oxidase (H + -transporting )), ubiquinol oxidase (potential formation type, non-H + transport) (ubiquinol oxidase (electrogenic, non H + -transporting)), glixazone synthase, dihydrophenazinedicarboxylate synthase, ferroxidase, bacterial non-heme ferritin, pteridine oxidase , Xanthine oxidase, 6-hydroxynicotinate dehydrogenase, juglone 3-hydroxylase, isopenicillin-N synthase, columbamine oxidase oxidase), reticuline oxidase (reticuline oxidase), sulocrine oxidase [(+)-bisdechlorogeodin-forming] (sulochrin oxidase [(+)-bisdechlorogeodin-forming]), sulocrine oxidase [(-)-bisdechlorogee Osin formation] (sulochrin oxidase [(-)-bisdechlorogeodin-forming]), aureusidin synthase, tetrahydrocannabinolic acid synthase, cannabidiolic acid synthase, superoxide dismutase superoxide remutase, superoxide reductase, NADH peroxidase, NADPH peroxidase, NADPH peroxidase, fatty-acid peroxidase, cytochrome-c peroxidase roxidase, catalase, peroxidase, peroxidase, iodide peroxidase, glutathione peroxidase, chloride peroxidase, L-ascorbate peroxidase, phospholipid- Hydroperoxide glutathione peroxidase, manganese peroxidase, lignin peroxidase, lignin peroxidase, peroxiredoxin, versatile peroxidase, glutathione amide-dependent peroxidase peroxidase), bromide peroxidase,
Dye decolorizing peroxidase (Dye decolorizing peroxidase), prostamide / prostaglandin F2α synthase, catalase-peroxidase, hydroperoxy fatty acid reductase, hydroperoxy fatty acid reductase (S) -2-hydroxypropylphosphonic acid epoxidase ((S) -2-hydroxypropylphosphonic acid epoxidase), fructosyl-amino acid oxidase (Fructosyl-amino acid oxidase), lactate oxidase (Lactate Oxidase), L-arginine oxidase (L- arginine oxidase, L-histidine oxidase, and L-cysteine oxidase, but the enzymes that can be used together in the present embodiment are not limited to the above enzymes.

<過酸化水素の検出方法>
生体サンプル中に含まれる過酸化水素の検出方法は、以下の工程を有する。染料粒子複合体としては、上述に記載の複合体を用いる。発色量とは、色強度または蛍光強度の信号強度のことを指す:
(1)染料粒子複合体が基材に塗布された過酸化水素検出用構造体に、生体サンプルを接触させる工程;及び
(2)構造体に前記生体サンプルを接触させた後、前記染料粒子複合体を前記基材に塗布した領域の染料粒子複合体の発色量を測定する工程。
また、生体サンプル中に含まれる過酸化水素の検出方法は、(1)、(2)の他に以下の(3)の工程を有することが好ましい:
(3)構造体に生体サンプルを接触させた後、染料粒子複合体を基材に塗布した領域から漏出した染料粒子複合体の発色量を測定する工程。
<Method for detecting hydrogen peroxide>
The method for detecting hydrogen peroxide contained in a biological sample includes the following steps. As the dye particle composite, the composite described above is used. The amount of color development refers to the signal intensity of color intensity or fluorescence intensity:
(1) a step of contacting a biological sample with a structure for detecting hydrogen peroxide having a dye particle composite applied to a substrate; and (2) a step of contacting the biological sample with the structure, followed by the dye particle composite. Measuring the color development amount of the dye particle complex in the region where the body is applied to the substrate.
Further, the method for detecting hydrogen peroxide contained in a biological sample preferably includes the following step (3) in addition to the steps (1) and (2):
(3) A step of measuring the amount of color development of the dye particle complex that has leaked from the region where the dye particle complex has been applied to the substrate after the biological sample has been brought into contact with the structure.

<代謝物の検出方法>
生体サンプル中に含まれる代謝物の検出方法は、以下の工程を有する。染料粒子複合体としては、上述に記載の複合体を用いる:
(1)生体サンプルに、検出対象である代謝物を基質として過酸化水素を発生する酵素を加える工程;
(2)染料粒子複合体が基材に塗布された過酸化水素検出用構造体に、生体サンプルを接触させる工程;及び
(3)構造体に生体サンプルを接触させた後、染料粒子複合体を基材に塗布した領域の染料粒子複合体の発色量を測定する工程。
他の代謝物の検出方法は、代謝物の検出方法における(1)の工程ではなく、(1’)の工程を有する。染料粒子複合体としては、上述に記載の複合体を用いる:
(1’)基材と、染料粒子複合体と、検出対象とする代謝物を基質として過酸化水素を発生する酵素を含有する過酸化水素検出用構造体に生体サンプルを接触させる工程。
<Metabolite detection method>
A method for detecting a metabolite contained in a biological sample includes the following steps. As the dye particle composite, the composite described above is used:
(1) adding, to a biological sample, an enzyme that generates hydrogen peroxide using a metabolite to be detected as a substrate;
(2) contacting the biological sample with the structure for detecting hydrogen peroxide having the dye particle complex applied to the base material; and (3) contacting the biological sample with the structure, A step of measuring the amount of color development of the dye particle composite in an area applied to the substrate.
Another method for detecting a metabolite has the step (1 ′) instead of the step (1) in the method for detecting a metabolite. As the dye particle composite, the composite described above is used:
(1 ′) a step of bringing a biological sample into contact with a hydrogen peroxide detection structure containing a substrate, a dye particle complex, and an enzyme that generates hydrogen peroxide using a metabolite to be detected as a substrate.

<検出キット>
本実施形態に係る過酸化水素検出用構造体を用いた生体サンプル中の過酸化水素または代謝物の検出キットを提供することができる。本実施形態に係る検出キットは、少なくとも染料粒子複合体が基材に固定されていればよく、染料粒子複合体が支持体上の基材に固定されていてもよい。過酸化水素を含んでいると思われる生体サンプルを構造体に直接滴下することで過酸化水素の量や濃度を測ることができる。また、生体サンプルに構造体を浸透させるための別体の容器を設けてもよい。別体の容器を設けることで、生体サンプルを構造体に対して均一に浸透させることができる。酵素及び酵素の水溶液を別体の容器内に予め内包していてもよい。その容器内に生体サンプルを添加すると同時に構造体を浸透させることもできる。また、その容器内に生体サンプルを添加し一定時間経過させて過酸化水素を発生させた後に、構造体を浸透させることもできる。
<Detection kit>
A kit for detecting hydrogen peroxide or a metabolite in a biological sample using the structure for detecting hydrogen peroxide according to the present embodiment can be provided. In the detection kit according to the present embodiment, it is sufficient that at least the dye particle complex is fixed to the base material, and the dye particle complex may be fixed to the base material on the support. The amount and concentration of hydrogen peroxide can be measured by directly dropping a biological sample that is thought to contain hydrogen peroxide onto the structure. Further, a separate container for allowing the structure to penetrate the biological sample may be provided. By providing a separate container, the biological sample can be uniformly permeated into the structure. The enzyme and an aqueous solution of the enzyme may be previously contained in a separate container. At the same time as adding the biological sample into the container, the structure can be infiltrated. Alternatively, after the biological sample is added to the container and hydrogen peroxide is generated after a certain period of time, the structure can be permeated.

検出キットは、過酸化水素または代謝物の、量または濃度に応じた構造体の色(蛍光)変化をみるための、色相、明度や彩度を表した色見本を備えていてもよい。紙やプラスチック板などの別体に印刷されたものでもよい。構造体の変化後の色と色見本との比較により目視観察によって、生体サンプルに含まれる過酸化水素や代謝物の量または濃度を半定量的に判定することもできる。   The detection kit may include a color sample representing hue, lightness, and saturation for observing a change in color (fluorescence) of the structure according to the amount or concentration of hydrogen peroxide or a metabolite. It may be printed on a separate body such as paper or a plastic plate. By comparing the color after the change of the structure with the color sample, the amount or concentration of hydrogen peroxide or metabolite contained in the biological sample can be semi-quantitatively determined by visual observation.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.

<化合物の同定>
下記で合成した化合物は、下記の分析手法により同定を行った。
LC/MS質量分析:LC/TOF MS(LC/MSD TOF;Agilent Technologies製)。なお、イオン化法としては、エレクトロスプレーイオン化法(ESI)を利用した。
<Identification of compound>
The compounds synthesized below were identified by the following analytical methods.
LC / MS mass spectrometry: LC / TOF MS (LC / MSD TOF; manufactured by Agilent Technologies). The ionization method used was electrospray ionization (ESI).

<合成例>
<合成実施例1:化合物(1)の合成>
N−エチル−N−(3−カルボキシベンジル)アニリン2.60gおよびテレフタルアルデヒド酸0.79gを、水15mL中、硫酸5.0gの存在下において、70℃で24時間加熱して反応させた。この反応液を室温まで冷却した後、氷100g上に排出し、クロロホルムを加えて分液して水層を抽出した。ここに酸化マンガン2.00gを加え、室温で24時間撹拌した。反応液をろ過し、ろ液に2mol/L水酸化ナトリウム水溶液を加えてpH7.0に中和した後、塩化ナトリウムを加えて塩析し、ろ過して塩析物を回収した。塩析物をメタノール100mLに分散してろ過し、ろ液を減圧濃縮した後、カラムクロマトグラフィーにより精製することで、化合物(1)0.96gを得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=642.2633(M
<Synthesis example>
<Synthesis Example 1: Synthesis of Compound (1)>
2.60 g of N-ethyl-N- (3-carboxybenzyl) aniline and 0.79 g of terephthalaldehyde acid were reacted by heating at 70 ° C. for 24 hours in 15 mL of water in the presence of 5.0 g of sulfuric acid. After the reaction solution was cooled to room temperature, it was discharged onto 100 g of ice, chloroform was added, and the mixture was separated to extract an aqueous layer. 2.00 g of manganese oxide was added thereto, and the mixture was stirred at room temperature for 24 hours. The reaction solution was filtered, and the filtrate was neutralized to pH 7.0 by adding a 2 mol / L aqueous sodium hydroxide solution. Then, sodium chloride was added for salting out, followed by filtration to collect a salted-out product. The salted-out product was dispersed in 100 mL of methanol and filtered, and the filtrate was concentrated under reduced pressure and purified by column chromatography to obtain 0.96 g of compound (1). It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 642.2633 (M + )

<合成実施例2:化合物(2)の合成>
合成実施例1でのN−エチル−N−(3−カルボキシベンジル)アニリンを4−[(エチルフェニルアミノ)メチル]ベンゼンスルホン酸に換えた他は同様の方法で化合物(2)を0.80g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=712.1868(M
<Synthesis Example 2: Synthesis of compound (2)>
0.80 g of compound (2) by the same method except that N-ethyl-N- (3-carboxybenzyl) aniline in Synthesis Example 1 was changed to 4-[(ethylphenylamino) methyl] benzenesulfonic acid. Obtained. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 712.1868 (M + )

<合成実施例3:化合物(9)の合成>
合成実施例1でのテレフタルアルデヒド酸をイソフタルアルデヒド酸に換えた他は同様の方法で化合物(9)を0.85g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=642.1629(M
<Synthesis Example 3: Synthesis of compound (9)>
0.85 g of compound (9) was obtained in the same manner except that terephthalaldehyde acid in Synthesis Example 1 was changed to isophthalaldehyde acid. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 642.1629 (M + )

<合成実施例4:化合物(10)の合成>
合成実施例2でのテレフタルアルデヒド酸をイソフタルアルデヒド酸に換えた他は同様の方法で化合物(10)を0.95g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=712.1987(M
<Synthesis Example 4: Synthesis of compound (10)>
In the same manner as in Synthesis Example 2 except that terephthalaldehyde acid was replaced with isophthalaldehyde acid, 0.95 g of compound (10) was obtained. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 712.987 (M + )

<合成実施例5:化合物(13)の合成>
合成実施例2でのテレフタルアルデヒド酸をテレフタルアルデヒド酸メチルに換えた他は同様の方法で化合物(13)を0.75g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=726.2007(M
<Synthesis Example 5: Synthesis of compound (13)>
0.75 g of compound (13) was obtained in the same manner except that terephthalaldehyde acid in Synthesis Example 2 was changed to methyl terephthalaldehyde. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 726.2007 (M + )

<合成実施例6:化合物(49)の合成>
合成実施例1でのテレフタルアルデヒド酸を4−ホルミルベンゾニトリルに換えた他は同様の方法で化合物(49)を0.80g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=568.2178(M
<Synthesis Example 6: Synthesis of compound (49)>
0.80 g of compound (49) was obtained in the same manner as in Synthesis Example 1 except that terephthalaldehyde acid was changed to 4-formylbenzonitrile. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 568.2178 (M + )

<合成実施例7:化合物(50)の合成>
合成実施例1でのテレフタルアルデヒド酸を3−ホルミルベンゾニトリルに換えた他は同様の方法で化合物(50)を0.71g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=568.2202(M
<Synthesis Example 7: Synthesis of compound (50)>
0.71 g of compound (50) was obtained in the same manner as in Synthesis Example 1, except that terephthalaldehyde acid was changed to 3-formylbenzonitrile. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 568.2022 (M + )

<合成実施例8:化合物(51)の合成>
合成実施例1でのテレフタルアルデヒド酸を3−ホルミルベンゾニトリルに換えた他は同様の方法で化合物(51)を0.64g得た。得られた化合物が目的とする化合物の構造を持つことを、LC/TOF MS質量分析で確認した。LC/TOF MS質量分析の結果は以下のとおりであった。m/z=568.2189(M
<Synthesis Example 8: Synthesis of compound (51)>
In the same manner as in Synthesis Example 1 except that terephthalaldehyde acid was replaced with 3-formylbenzonitrile, 0.64 g of compound (51) was obtained. It was confirmed by LC / TOF MS mass spectrometry that the obtained compound had the structure of the target compound. The result of LC / TOF MS mass spectrometry was as follows. m / z = 568.2189 (M + )

<表面処理正帯電性粒子の作製例>
本発明における表面処理による正帯電性粒子の作製方法を示すが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。
<Example of preparation of surface-treated positively-chargeable particles>
The method for producing positively chargeable particles by surface treatment in the present invention will be described, but the present invention is not limited to these examples unless it exceeds the gist.

<表面処理正帯電性粒子の作製例1>
シリカ粒子(スノーテックSTZL 日産化学製)をメタノールで10w%に希釈、次いでシリカ粒子の固形分量と同量のN−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(KBM−603 信越シリコーン製)を滴下し、12時間室温で撹拌を行った。撹拌終了後、メタノールを減圧除去、次いで24時間加熱還流を行った。加熱還流終了後遠心処理、上澄み除去、イオン交換水での洗浄を行うことで目的とする表面処理正帯電粒子を作製した。
<Production example 1 of surface-treated positively-chargeable particles>
Silica particles (Snowtech STZL, manufactured by Nissan Chemical Industries, Ltd.) are diluted to 10% by weight with methanol, and then N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603 Shin-Etsu Silicone) in the same amount as the solid content of the silica particles. Was added dropwise, and the mixture was stirred at room temperature for 12 hours. After completion of the stirring, methanol was removed under reduced pressure, and then the mixture was heated under reflux for 24 hours. After completion of the heating and refluxing, the target surface-treated positively-charged particles were produced by performing centrifugal treatment, removing supernatant, and washing with ion-exchanged water.

<樹脂被覆正帯電性粒子の作製例2>
シリカ粒子(スノーテックSTZL 日産化学製)を水で10w%に希釈し、特許文献8と同様の方法で表層にポリ(ジアリールジメチルアンモニウムクロライド)(PDDA:シグマアルドリッチ製)を理論上1層被覆した樹脂被覆正帯電性粒子を作製した。
<Production Example 2 of Resin Coated Positively Chargeable Particles>
Silica particles (Snowtech STZL, manufactured by Nissan Chemical Industries) were diluted to 10 w% with water, and poly (diaryldimethylammonium chloride) (PDDA: manufactured by Sigma-Aldrich) was theoretically coated on the surface by one layer in the same manner as in Patent Document 8. Resin-coated positively chargeable particles were prepared.

<染料粒子複合体1の調製>
20w%の正帯電性の粒子(エポスターSS 日本触媒製)の水溶液に、1w%の化合物(1)分子水溶液を滴下し、その後、10分間超音波処理(W−133サンパ(本多電子製))を行なった。次いで遠心処理、上澄み液除去、イオン交換水を投入し、10分間超音波処理し、上澄み液の電子吸収スペクトルを測定した。上澄み液の電子吸収スペクトルのピークトップ高さ(abs)が0.1以下となるまで、超音波、遠心処理の工程を繰り返すことで、染料粒子複合体1を得た。
<Preparation of dye particle composite 1>
A 1 w% aqueous solution of the compound (1) molecule is dropped into an aqueous solution of 20 w% of positively-chargeable particles (Epostor SS Nippon Shokubai), and then ultrasonically treated for 10 minutes (W-133 Sampa (Honda Electronics)) ). Next, centrifugal treatment, removal of the supernatant, introduction of ion-exchanged water, ultrasonic treatment for 10 minutes, and measurement of the electronic absorption spectrum of the supernatant were performed. The steps of ultrasonication and centrifugation were repeated until the peak top height (abs) of the electronic absorption spectrum of the supernatant was 0.1 or less, to obtain the dye particle complex 1.

<染料粒子複合体2の調製>
正帯電性の粒子をエポスターS(日本触媒製)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体2を得た。
<Preparation of dye particle composite 2>
A dye particle composite 2 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the positively-charged particles were Eposter S (manufactured by Nippon Shokubai).

<染料粒子複合体3の調製>
正帯電性の粒子をエポスターS6(日本触媒製)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体3を得た。
<Preparation of dye particle composite 3>
A dye particle composite 3 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the positively-charged particles were Eposter S6 (manufactured by Nippon Shokubai).

<染料粒子複合体4の調製>
正帯電性の粒子をエポスターS12(日本触媒製)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体4を得た。
<Preparation of dye particle composite 4>
A dye particle composite 4 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the positively-charged particles were Eposter S12 (produced by Nippon Shokubai).

<染料粒子複合体5の調製>
正帯電性の粒子をエポスターMS(日本触媒製)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体5を得た。
<Preparation of dye particle composite 5>
A dye particle composite 5 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the positively chargeable particles were changed to Eposter MS (manufactured by Nippon Shokubai).

<染料粒子複合体6の調製>
正帯電性の粒子を表面処理正帯電粒子とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体6を得た。
<Preparation of dye particle composite 6>
A dye particle composite 6 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the positively charged particles were surface-treated positively charged particles.

<染料粒子複合体7の調製>
正帯電性の粒子を樹脂被覆正帯電粒子とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体7を得た。
<Preparation of dye particle composite 7>
Dye particle composite 7 was obtained in the same manner as in the preparation of dye particle composite 1, except that the positively charged particles were resin-coated positively charged particles.

<染料粒子複合体8の調製>
化合物(1)を化合物(2)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体8を得た。
<Preparation of dye particle composite 8>
A dye particle composite 8 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the compound (1) was changed to the compound (2).

<染料粒子複合体9の調製>
化合物(1)を化合物(9)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体9を得た。
<Preparation of dye particle composite 9>
Dye particle composite 9 was obtained in the same manner as in preparation of dye particle composite 1, except that compound (1) was changed to compound (9).

<染料粒子複合体10の調製>
化合物(1)を化合物(10)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体10を得た。
<Preparation of dye particle composite 10>
A dye particle composite 10 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the compound (1) was changed to the compound (10).

<染料粒子複合体11の調製>
化合物(1)を化合物(13)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体11を得た。
<Preparation of dye particle composite 11>
Dye particle composite 11 was obtained in the same manner as in preparation of dye particle composite 1, except that compound (1) was changed to compound (13).

<染料粒子複合体12の調製>
化合物(1)を化合物(49)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体12を得た。
<Preparation of dye particle composite 12>
A dye particle composite 12 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the compound (1) was changed to the compound (49).

<染料粒子複合体13の調製>
化合物(1)を化合物(50)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体13を得た。
<Preparation of dye particle composite 13>
A dye particle composite 13 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the compound (1) was changed to the compound (50).

<染料粒子複合体14の調製>
化合物(1)を化合物(51)とした以外は、染料粒子複合体1の調製と同様の方法で染料粒子複合体14を得た。
<Preparation of dye particle composite 14>
A dye particle composite 14 was obtained in the same manner as in the preparation of the dye particle composite 1, except that the compound (1) was changed to the compound (51).

<検知紙の製造方法>
<サンプル紙1>
濾紙(Advantec製)に染料粒子複合体1の水分散液(10−4g/L、1μL)を塗布し、乾燥させることで、サンプル紙1を得た。
<Method of manufacturing detection paper>
<Sample paper 1>
A sample paper 1 was obtained by applying an aqueous dispersion (10 −4 g / L, 1 μL) of the dye particle complex 1 to a filter paper (manufactured by Advantec) and drying.

<サンプル紙2〜14>
染料粒子複合体1をそれぞれ染料粒子複合体2〜14に替える以外は、サンプル紙1と同様の方法でサンプル紙2〜14を得た。
<Sample paper 2-14>
Sample papers 2 to 14 were obtained in the same manner as sample paper 1 except that dye particle composites 1 were replaced with dye particle composites 2 to 14, respectively.

<比較サンプル紙>
濾紙(Advantec製)に染料1(化合物(1)からなる染料)の0.5mM水溶液1mLを塗布し、乾燥させることで、比較サンプル紙を得た。
<Comparative sample paper>
A filter paper (manufactured by Advantec) was coated with 1 mL of a 0.5 mM aqueous solution of Dye 1 (dye comprising compound (1)) and dried to obtain a comparative sample paper.

[実施例1]
サンプル紙1を、5mM過酸化水素および10%(v/v)ウシ胎児血清を含む1×リン酸緩衝生理食塩水(200μL)(反応漕)に室温で2時間浸透させることで評価した。反射濃度計SpectroLino(Gretag Macbeth製)にて、評価前後でのサンプル紙1の光学濃度(Optical Density、以下OD値)を測定した。評価前のサンプル紙のOD値をOD0、評価後のサンプル紙のOD値をOD1とした。サンプル紙1を10回作製し同様に評価を行い、1−OD1/OD0の平均値(ΔOD)および、標準偏差(以下SD)を算出したところ、それぞれ0.73と0.03であった。
[Example 1]
Sample paper 1 was evaluated by immersing it in 1 × phosphate buffered saline (200 μL) (reaction tank) containing 5 mM hydrogen peroxide and 10% (v / v) fetal calf serum at room temperature for 2 hours. The optical density (Optical Density, hereinafter referred to as OD value) of the sample paper 1 before and after the evaluation was measured with a reflection densitometer SpectroLino (manufactured by Gretag Macbeth). The OD value of the sample paper before evaluation was OD0, and the OD value of the sample paper after evaluation was OD1. Sample paper 1 was prepared 10 times and evaluated in the same manner, and the average value (ΔOD) of 1-OD1 / OD0 and the standard deviation (hereinafter SD) were calculated to be 0.73 and 0.03, respectively.

[実施例2]
サンプル紙1をサンプル紙2に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.53と0.02であった。
[Example 2]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 2. ΔOD and SD were 0.53 and 0.02, respectively.

[実施例3]
サンプル紙1をサンプル紙3に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.42と0.02であった。
[Example 3]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 3. ΔOD and SD were 0.42 and 0.02, respectively.

[実施例4]
サンプル紙1をサンプル紙4に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.32と0.03であった。
[Example 4]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 4. ΔOD and SD were 0.32 and 0.03, respectively.

[実施例5]
サンプル紙1をサンプル紙6に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.26と0.02であった。
[Example 5]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was changed to the sample paper 6. ΔOD and SD were 0.26 and 0.02, respectively.

[実施例6]
サンプル紙1をサンプル紙6に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.72と0.08であった。
[Example 6]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was changed to the sample paper 6. ΔOD and SD were 0.72 and 0.08, respectively.

[実施例7]
サンプル紙1をサンプル紙7に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.75と0.11であった。
[Example 7]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 7. ΔOD and SD were 0.75 and 0.11, respectively.

[実施例8]
サンプル紙1をサンプル紙8に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.71と0.03であった。
Example 8
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was changed to the sample paper 8. ΔOD and SD were 0.71 and 0.03, respectively.

[実施例9]
サンプル紙1をサンプル紙9に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.69と0.01であった。
[Example 9]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was changed to the sample paper 9. ΔOD and SD were 0.69 and 0.01, respectively.

[実施例10]
サンプル紙1をサンプル紙10に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.72と0.01であった。
[Example 10]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 10. ΔOD and SD were 0.72 and 0.01, respectively.

[実施例11]
サンプル紙1をサンプル紙11に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.63と0.02であった。
[Example 11]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 11. ΔOD and SD were 0.63 and 0.02, respectively.

[実施例12]
過酸化水素濃度を0.1mMに替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.20と0.07であった。
[Example 12]
Evaluation was performed in the same manner as in Example 1 except that the concentration of hydrogen peroxide was changed to 0.1 mM. ΔOD and SD were 0.20 and 0.07, respectively.

[実施例13]
過酸化水素濃度を20mMに替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.87と0.02であった。
[Example 13]
Evaluation was performed in the same manner as in Example 1 except that the hydrogen peroxide concentration was changed to 20 mM. ΔOD and SD were 0.87 and 0.02, respectively.

[実施例14]
ウシ胎児血清を除いた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.76と0.03であった。
[Example 14]
Evaluation was performed in the same manner as in Example 1 except that fetal bovine serum was removed. ΔOD and SD were 0.76 and 0.03, respectively.

[実施例15]
1.0%(v/v)ウシ胎児血清を用いた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.75と0.04であった。
[Example 15]
Evaluation was performed in the same manner as in Example 1, except that 1.0% (v / v) fetal bovine serum was used. ΔOD and SD were 0.75 and 0.04, respectively.

[実施例16]
99%(v/v)ウシ胎児血清を用いた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.61と0.09であった。
[Example 16]
Evaluation was performed in the same manner as in Example 1 except that 99% (v / v) fetal bovine serum was used. ΔOD and SD were 0.61 and 0.09, respectively.

[実施例17]
サンプル紙1をサンプル紙12に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.70と0.03であった。
[Example 17]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 12. ΔOD and SD were 0.70 and 0.03, respectively.

[実施例18]
サンプル紙1をサンプル紙13に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.54と0.02であった。
[Example 18]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 13. ΔOD and SD were 0.54 and 0.02, respectively.

[実施例19]
サンプル紙1をサンプル紙14に替えた以外は実施例1と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.61と0.02であった。
[Example 19]
Evaluation was performed in the same manner as in Example 1 except that the sample paper 1 was replaced with the sample paper 14. ΔOD and SD were 0.61 and 0.02, respectively.

[比較例1]
比較サンプル紙を用いた以外は実施例12と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.82と0.23であったが、反応漕が染料1で染色されてしまう現象が観測された。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 12 except that the comparative sample paper was used. Although ΔOD and SD were 0.82 and 0.23, respectively, a phenomenon that the reaction vessel was dyed with Dye 1 was observed.

[比較例2]
比較サンプル紙を用いた以外は実施例13と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.81と0.22であったが、反応漕が染料1で染色されてしまう現象が観測された。
[Comparative Example 2]
Evaluation was performed in the same manner as in Example 13 except that the comparative sample paper was used. ΔOD and SD were 0.81 and 0.22, respectively, but the phenomenon that the reaction tank was dyed with Dye 1 was observed.

[比較例3]
比較サンプル紙を用いた以外は実施例14と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.88と0.21であったが、反応漕が染料1で染色されてしまう現象が観測された。
[Comparative Example 3]
Evaluation was performed in the same manner as in Example 14 except that the comparative sample paper was used. Although ΔOD and SD were 0.88 and 0.21, respectively, a phenomenon that the reaction tank was dyed with Dye 1 was observed.

[比較例4]
比較サンプル紙を用いた以外は実施例15と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.83と0.26であったが、反応漕が染料1で染色されてしまう現象が観測された。
[Comparative Example 4]
Evaluation was performed in the same manner as in Example 15 except that the comparative sample paper was used. ΔOD and SD were 0.83 and 0.26, respectively, but a phenomenon that the reaction tank was dyed with Dye 1 was observed.

[比較例5]
比較サンプル紙を用いた以外は実施例16と同様の方法で評価を行った。ΔODおよびSDはそれぞれ0.86と0.33であったが、反応漕が染料1で染色されてしまう現象が観測された。
[Comparative Example 5]
Evaluation was performed in the same manner as in Example 16 except that the comparative sample paper was used. Although ΔOD and SD were 0.86 and 0.33, respectively, a phenomenon that the reaction tank was dyed with the dye 1 was observed.

評価としては、下記の基準とし、A〜Cまでを許容レベル、Dを許容できないレベルとした。
A:SD値が0.05未満
B:SD値が0.05以上、0.1未満
C:SD値が0.1以上、0.2未満
D:SD値が0.2以上
The evaluation was based on the following criteria, and A to C were acceptable levels, and D was an unacceptable level.
A: SD value is less than 0.05 B: SD value is 0.05 or more, less than 0.1 C: SD value is 0.1 or more, less than 0.2 D: SD value is 0.2 or more

以下に本発明の実施例で得られたサンプル紙の評価結果を表1に記載する。

Figure 2019214712
Table 1 below shows the evaluation results of the sample papers obtained in the examples of the present invention.
Figure 2019214712

Claims (15)

下記構造式1で表される構造を有する過酸化水素検出用染料。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAの少なくともいずれかのσ値が正の置換基を示し、nは1以上5以下の整数である。)
A dye for detecting hydrogen peroxide having a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Is each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, and at least one of A 1 to A 5 represents a positive substituent, and n is an integer of 1 or more and 5 or less. is there.)
下記構造式2、3または4で表される構造を有する、請求項1に記載の過酸化水素検出用染料。
Figure 2019214712
Figure 2019214712
Figure 2019214712
(ただし、構造式2、3および4中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立にカルボン酸基、スルホン酸基、またはリン酸基であり、Aはσ値が正の置換基を表す。)
The dye for detecting hydrogen peroxide according to claim 1, which has a structure represented by the following structural formula 2, 3 or 4.
Figure 2019214712
Figure 2019214712
Figure 2019214712
(However, R 1 and R 2 in Structural Formulas 2, 3 and 4 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal; 3 and R 4 are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, and A 6 represents a substituent having a positive σ value.)
粒子と、前記粒子の表層に吸着した染料とを含む染料粒子複合体であって、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする染料粒子複合体。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A dye particle composite comprising particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A dye particle composite, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
前記染料が下記構造式2、3または4で表される構造を有することを特徴とする、請求項3に記載の染料粒子複合体。
Figure 2019214712
Figure 2019214712
Figure 2019214712

(ただし、構造式2、3および4中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立にカルボン酸基、スルホン酸基、またはリン酸基であり、Aはσ値が正の置換基を表す。)
The dye particle composite according to claim 3, wherein the dye has a structure represented by the following structural formula 2, 3, or 4.
Figure 2019214712
Figure 2019214712
Figure 2019214712

(However, R 1 and R 2 in Structural Formulas 2, 3 and 4 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal; 3 and R 4 are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, and A 6 represents a substituent having a positive σ value.)
前記Aが、COOH、COOCH、及びCNからなる群より選択される少なくとも1種であることを特徴とする、請求項4に記載の染料粒子複合体。 Wherein A 6 is, COOH, and wherein the at least one selected from the group consisting of COOCH 3, and CN, dye particles composite according to claim 4. 前記正帯電性の粒子を水性溶剤に分散した分散液と、染料を水性溶剤に溶解した水溶液を混合する工程を含む、請求項3乃至5のいずれか1項に記載の染料粒子複合体の製造方法。   The method for producing a dye particle composite according to any one of claims 3 to 5, comprising a step of mixing a dispersion in which the positively-charged particles are dispersed in an aqueous solvent and an aqueous solution in which a dye is dissolved in an aqueous solvent. Method. 請求項3乃至5のいずれか1項に記載の染料粒子複合体と基材とを含む過酸化水素検出用構造体。   A structure for detecting hydrogen peroxide, comprising the dye particle composite according to any one of claims 3 to 5 and a substrate. 生体サンプル中に含まれる過酸化水素の検出方法であって、
染料粒子複合体が基材に塗布された過酸化水素検出用構造体に、生体サンプルを接触させる工程、および前記構造体に前記生体サンプルを接触させた後、前記染料粒子複合体を前記基材に塗布した領域の染料粒子複合体の発色量を測定する工程と、を有し、
前記染料粒子複合体が、粒子と、前記粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする過酸化水素の検出方法。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A method for detecting hydrogen peroxide contained in a biological sample,
A step of contacting a biological sample with the structure for detecting hydrogen peroxide in which the dye particle complex is applied to the base material, and after contacting the biological sample with the structure, the dye particle complex is formed on the base material. Measuring the amount of color development of the dye particle composite in the area applied to the,
The dye particle composite includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A method for detecting hydrogen peroxide, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
生体サンプル中に含まれる代謝物の検出方法であって、
生体サンプルに、検出対象である代謝物を基質として過酸化水素を発生する酵素を加える工程と、染料粒子複合体が基材に塗布された過酸化水素検出用構造体に、前記生体サンプルを接触させる工程と、および前記構造体に前記生体サンプルを接触させた後、前記染料粒子複合体を前記基材に塗布した領域の染料粒子複合体の発色量を測定する工程と、を有し、
前記染料粒子複合体が、粒子と、前記粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする代謝物の検出方法。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A method for detecting a metabolite contained in a biological sample,
A step of adding an enzyme that generates hydrogen peroxide using a metabolite to be detected as a substrate to the biological sample, and contacting the biological sample with a hydrogen peroxide detection structure in which a dye particle complex is applied to a substrate. And after contacting the biological sample with the structure, and measuring the color development amount of the dye particle complex in the area where the dye particle complex is applied to the substrate,
The dye particle composite includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A method for detecting a metabolite, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
生体サンプル中に含まれる代謝物の検出方法であって、
基材と、染料粒子複合体と、検出対象とする代謝物を基質として過酸化水素を発生する酵素を含有する過酸化水素検出用構造体に前記生体サンプルを接触させる工程と、前記構造体に前記生体サンプルを接触させた後、前記染料粒子複合体を前記基材に塗布した領域の染料粒子複合体の発色量を測定する工程と、を有し、
前記染料粒子複合体が、粒子と、該粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする代謝物の検出方法。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A method for detecting a metabolite contained in a biological sample,
Contacting the biological sample with a hydrogen peroxide detection structure containing an enzyme that generates hydrogen peroxide using a metabolite to be detected as a substrate, and a dye particle complex; and After contacting the biological sample, a step of measuring the color development amount of the dye particle complex in the area where the dye particle complex is applied to the substrate,
The dye particle complex includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A method for detecting a metabolite, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
生体サンプル中に含まれる過酸化水素の検出キットであって、
前記検出キットが、基材と染料粒子複合体を含有する過酸化水素検出用構造体を含み、
前記染料粒子複合体が、粒子と、該粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする検出キット。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A kit for detecting hydrogen peroxide contained in a biological sample,
The detection kit includes a substrate and a structure for detecting hydrogen peroxide containing a dye particle complex,
The dye particle complex includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A detection kit, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
生体サンプル中に含まれる代謝物の検出キットであって、
前記検出キットが、基材と、染料粒子複合体と、検出対象とする代謝物を基質として過酸化水素を発生する酵素を含有する過酸化水素検出用構造体を含み、
前記染料粒子複合体が、粒子と、前記粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする検出キット。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A kit for detecting a metabolite contained in a biological sample,
The detection kit includes a substrate, a dye particle complex, and a hydrogen peroxide detection structure containing an enzyme that generates hydrogen peroxide using a metabolite to be detected as a substrate,
The dye particle composite includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A detection kit, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
生体サンプルを前記構造体に接触させるための別体の容器を備えることを特徴とする、請求項11または12に記載の検出キット。   The detection kit according to claim 11, further comprising a separate container for bringing a biological sample into contact with the structure. 生体サンプル中に含まれる代謝物の検出キットであって、
前記キットが、基材と染料粒子複合体を含有する過酸化水素検出用構造体、および前記代謝物を基質として過酸化水素を発生する酵素、又は前記酵素の水溶液が内包されている別体の容器を備え、
前記染料粒子複合体が、粒子と、前記粒子の表層に吸着した染料とを含み、
前記粒子が正帯電性の粒子であり、
前記染料が下記構造式1で表される構造を有することを特徴とする検出キット。
Figure 2019214712
(ただし、構造式1中R、Rはそれぞれ独立に水素原子または末端にベンゼン環を有してもよい炭素数が1から8の炭化水素鎖のいずれかであり、R,Rは、それぞれ独立に、カルボン酸基、スルホン酸基、またはリン酸基であり、AからAはσ値が正の置換基を示し、nは1以上5以下の整数である。)
A kit for detecting a metabolite contained in a biological sample,
The kit, a structure for detecting hydrogen peroxide containing a substrate and a dye particle complex, and an enzyme that generates hydrogen peroxide using the metabolite as a substrate, or a separate body containing an aqueous solution of the enzyme Equipped with a container,
The dye particle composite includes particles and a dye adsorbed on a surface layer of the particles,
The particles are positively charged particles,
A detection kit, wherein the dye has a structure represented by the following structural formula 1.
Figure 2019214712
(However, R 1 and R 2 in Structural Formula 1 each independently represent a hydrogen atom or a hydrocarbon chain having 1 to 8 carbon atoms which may have a benzene ring at the terminal, and R 3 and R 4 Are each independently a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, A 1 to A 5 each represent a substituent having a positive σ value, and n is an integer of 1 or more and 5 or less.)
過酸化水素または代謝物の量または濃度に応じた構造体の色変化をみるための、色相、明度または彩度を表す色見本を備えることを特徴とする、請求項11乃至14のいずれか1項に記載の検出キット。   15. A color sample representing hue, lightness or saturation for observing a color change of a structure according to the amount or concentration of hydrogen peroxide or a metabolite is provided. The detection kit according to Item.
JP2019104764A 2018-06-07 2019-06-04 Hydrogen Peroxide Sensing Dyes, Dye Particle Complexes, and Hydrogen Peroxide Sensing Structures Active JP7295708B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109801 2018-06-07
JP2018109801 2018-06-07

Publications (3)

Publication Number Publication Date
JP2019214712A true JP2019214712A (en) 2019-12-19
JP2019214712A5 JP2019214712A5 (en) 2022-07-28
JP7295708B2 JP7295708B2 (en) 2023-06-21

Family

ID=68769843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104764A Active JP7295708B2 (en) 2018-06-07 2019-06-04 Hydrogen Peroxide Sensing Dyes, Dye Particle Complexes, and Hydrogen Peroxide Sensing Structures

Country Status (2)

Country Link
JP (1) JP7295708B2 (en)
WO (1) WO2019235580A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631641A (en) * 1979-08-24 1981-03-31 Yatoron:Kk New quantitative determination method for hydrogen peroxide
JPH0764986B2 (en) * 1984-03-02 1995-07-12 和光純薬工業株式会社 New coloring reagent
JPS60217900A (en) * 1984-04-13 1985-10-31 Kyowa Medetsukusu Kk Method for determination of mercapto group-containing compound
EP2062946B1 (en) * 2007-08-13 2012-06-06 Procter & Gamble International Operations SA Dye-loaded particles
JP5631641B2 (en) 2010-06-23 2014-11-26 富山県 Industrial production method of (R) -1,1,1-trifluoro-2-propanol
US9903797B2 (en) * 2013-03-08 2018-02-27 Konica Minolta, Inc. Staining agent for staining tissue, production method for staining agent for staining tissue and tissue staining kit including staining agent for staining tissue

Also Published As

Publication number Publication date
JP7295708B2 (en) 2023-06-21
WO2019235580A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
FI98569C (en) Use of a highly soluble salt of a heteropoly acid for the determination of an analyte, a corresponding assay method and an agent suitable thereto
Li et al. Ultrafast and efficient detection of formaldehyde in aqueous solutions using chitosan-based fluorescent polymers
Yamanaka et al. A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells
JP6196988B2 (en) Selective detection of thiols
Wu et al. A new quinoline-derived highly-sensitive fluorescent probe for the detection of hydrazine with excellent large-emission-shift ratiometric response
Hou et al. A colorimetric and ratiometric fluorescent probe for cyanide sensing in aqueous media and live cells
Du et al. A “Turn-On” fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission
CN104059005B (en) A kind of fluorescent molecular probe compound and its preparation method and application
Venkateswarulu et al. Sensitive molecular optical material for signaling primary amine vapors
Yu et al. A silica nanoparticle-based sensor for selective fluorescent detection of homocysteine via interaction differences between thiols and particle-surface-bound polymers
Tümay et al. A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg 2+ ions in environmental samples
Othman et al. Enhancing selectivity in spectrofluorimetric determination of tryptophan by using graphene oxide nanosheets
Sun et al. A polymer-based turn-on fluorescent sensor for specific detection of hydrogen sulfide
Zheng et al. A robust, water-soluble and low cytotoxic fluorescent probe for sulfide anion achieved through incorporation of betaine
Li et al. Novel colorimetric and NIR fluorescent probe for bisulfite/sulfite detection in food and water samples and living cells based on the PET mechanism
JP7295708B2 (en) Hydrogen Peroxide Sensing Dyes, Dye Particle Complexes, and Hydrogen Peroxide Sensing Structures
Jiang et al. Colorimetric and fluorometric detection of NADPH using imidazolium functionalized polydiacetylenes with high sensitivity and selectivity
EP3183246A1 (en) Redoxindicators
Jia et al. Rhodamine B Piperazinoacetohydrazine: A Water‐Soluble Spectroscopic Reagent for Pyruvic Acid Labeling
Ahmmed et al. A deoxygenation-switch-based red-emitting fluorogenic light-up probe for the detection of highly toxic free bilirubin in human blood serum
WO2014153533A1 (en) A fluorescent chemical sensor for biological amines
TWI431164B (en) Electrode for electrochemical devices and their applications
CN110590762B (en) Ratio type fluorescent probe for detecting bisulfite and preparation method and application thereof
JP7408299B2 (en) Polymer dye for hydrogen peroxide detection and structure for hydrogen peroxide detection
Zou et al. Polymer nanoparticles integrated with ESIPT modules for sensing cysteine based on modulation of their tautomeric emission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R151 Written notification of patent or utility model registration

Ref document number: 7295708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151