JP2019213312A - Battery charging device - Google Patents

Battery charging device Download PDF

Info

Publication number
JP2019213312A
JP2019213312A JP2018105931A JP2018105931A JP2019213312A JP 2019213312 A JP2019213312 A JP 2019213312A JP 2018105931 A JP2018105931 A JP 2018105931A JP 2018105931 A JP2018105931 A JP 2018105931A JP 2019213312 A JP2019213312 A JP 2019213312A
Authority
JP
Japan
Prior art keywords
battery
charging
internal resistance
resistance value
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018105931A
Other languages
Japanese (ja)
Other versions
JP7012606B2 (en
Inventor
真吾 槌矢
Shingo Tsuchiya
真吾 槌矢
鎌田 誠二
Seiji Kamata
誠二 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2018105931A priority Critical patent/JP7012606B2/en
Publication of JP2019213312A publication Critical patent/JP2019213312A/en
Application granted granted Critical
Publication of JP7012606B2 publication Critical patent/JP7012606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

To provide a battery charging device that warms up a battery by heat generated by an internal resistance of the battery due to charging, in which an optimal charging plan is created.SOLUTION: A battery charging device for charging an on-vehicle battery and warming up the battery by heat generated by an internal resistance of the battery due to the charging, the battery charging device includes a charge plan creation section that creates a charge plan for the battery such that the battery becomes at least a predetermined temperature at a start time of using the battery and a charging control section that performs constant current charging of the battery according to the charge plan, in which the charge plan creation section creates the charge plan by using an internal resistance value of the battery that changes according to the deterioration of the battery as a parameter.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリ充電装置に関する。   The present invention relates to a battery charging device.

下記特許文献1には、車両のバッテリを充電したときに発生する当該バッテリの内部抵抗の発熱で、当該バッテリを暖機するバッテリ充電装置が記載されている。   Patent Document 1 below describes a battery charger that warms the battery by heat generated by the internal resistance of the battery that is generated when the vehicle battery is charged.

このバッテリ充電装置は、車両の使用を開始する時刻(以下、「次回開始時刻」という。)の直前に、バッテリを暖機させておくことができるように充電計画を作成し、この充電計画に基づいて事前にバッテリを充電する。   This battery charging device creates a charging plan so that the battery can be warmed up immediately before the start of use of the vehicle (hereinafter referred to as “next start time”). Based on pre-charge the battery.

特開2010−88204号公報JP 2010-88204 A

しかしながら、特許文献1に記載のバッテリ充電装置は、充電計画を作成するにあたって、バッテリの劣化を考慮していない。そのため、次回開始時刻の直前にバッテリの温度を目標値に制御することができず、最適な充電計画を作成することができない場合がある。   However, the battery charging device described in Patent Document 1 does not consider the deterioration of the battery when creating the charging plan. Therefore, the battery temperature cannot be controlled to the target value immediately before the next start time, and an optimal charging plan may not be created.

本発明は、このような事情に鑑みてなされたもので、その目的は、充電によるバッテリの内部抵抗の発熱で当該バッテリを暖機するバッテリ充電装置において、最適な充電計画を作成することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to create an optimal charging plan in a battery charging apparatus that warms up the battery by heat generation of the internal resistance of the battery due to charging. .

本発明の一態様は、車載用のバッテリの充電を行うとともに、前記充電による前記バッテリの内部抵抗の発熱によって当該バッテリを暖機するバッテリ充電装置であって、前記バッテリの使用開始時刻に前記バッテリが所定温度以上になるような前記バッテリの充電計画を作成する充電計画作成部と、前記充電計画に従って前記バッテリを定電流充電する充電制御部と、を備え、前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記バッテリの内部抵抗値をパラメータとして前記充電計画を作成することを特徴とする、バッテリ充電装置である。   One aspect of the present invention is a battery charging device that charges a vehicle-mounted battery and warms up the battery by heat generation of the internal resistance of the battery due to the charging, wherein the battery is used at the start of use of the battery. A charging plan creation unit that creates a charging plan for the battery such that the battery temperature is equal to or higher than a predetermined temperature; and a charging control unit that charges the battery at a constant current according to the charging plan, the charging plan creation unit including the battery The battery charging device is characterized in that the charging plan is created using an internal resistance value of the battery that changes according to deterioration of the battery as a parameter.

本発明の一態様は、上述のバッテリ充電装置であって、前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記内部抵抗値と、前記定電流充電における充電電流値とをパラメータとして前記充電計画を作成し、前記充電電流値は、前記内部抵抗値が上昇するに従って小さくなるように設定される。   One aspect of the present invention is the battery charging device described above, wherein the charging plan creation unit uses the internal resistance value that changes according to deterioration of the battery and a charging current value in the constant current charging as parameters. The charging plan is created, and the charging current value is set to become smaller as the internal resistance value increases.

本発明の一態様は、上述のバッテリ充電装置であって、前記バッテリの充電を行う時間帯における前記バッテリの周囲の予測気温を事前に取得する予測気温取得部を更に備え、前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記内部抵抗値、前記定電流充電における充電電流値、及び前記予測気温取得部により事前に取得された前記予測気温をパラメータとして前記充電計画を作成する。   One aspect of the present invention is the above-described battery charging apparatus, further comprising a predicted temperature acquisition unit that acquires in advance a predicted temperature around the battery in a time zone in which the battery is charged, and the charging plan creation unit Creates the charging plan using as parameters the internal resistance value that changes according to the deterioration of the battery, the charging current value in the constant current charging, and the predicted temperature acquired in advance by the predicted temperature acquisition unit.

本発明の一態様は、上述のバッテリ充電装置であって、前記バッテリの経年、及びバッテリの使用回数の少なくともいずれかによって前記内部抵抗値を算出する内部抵抗値算出部を更に備え、前記充電計画作成部は、前記内部抵抗値算出部により算出された前記内部抵抗値を用いて前記充電計画を作成する。   One aspect of the present invention is the battery charging apparatus described above, further including an internal resistance value calculation unit that calculates the internal resistance value based on at least one of the aging of the battery and the number of times the battery is used, and the charging plan The creation unit creates the charging plan using the internal resistance value calculated by the internal resistance value calculation unit.

本発明の一態様は、上述のバッテリ充電装置であって、前記内部抵抗値を測定する内部抵抗値測定部を更に備え、前記充電計画作成部は、前記内部抵抗値測定部により測定された前記内部抵抗値を用いて、前記充電計画を作成する。   One aspect of the present invention is the battery charging apparatus described above, further including an internal resistance value measuring unit that measures the internal resistance value, wherein the charging plan creating unit is measured by the internal resistance value measuring unit. The charging plan is created using the internal resistance value.

以上説明したように、本発明によれば、充電によるバッテリの内部抵抗の発熱で当該バッテリを暖機するバッテリ充電装置において、最適な充電計画を作成することができる。   As described above, according to the present invention, it is possible to create an optimal charging plan in the battery charging apparatus that warms up the battery by the heat generated by the internal resistance of the battery due to charging.

本発明の一実施形態に係るバッテリ充電システムAの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the battery charging system A which concerns on one Embodiment of this invention. 本発明の一実施形態に係る記憶部251に格納される情報の一例をテーブル形式で示す図である。It is a figure which shows an example of the information stored in the memory | storage part 251 which concerns on one Embodiment of this invention in a table format. 本発明の一実施形態に係る外部充電器27の構成図である。It is a block diagram of the external charger 27 which concerns on one Embodiment of this invention. 本発明の一実施形態に係るバッテリ1の過渡熱抵抗特性を示す図である。It is a figure which shows the transient thermal resistance characteristic of the battery 1 which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係るバッテリ充電システムを、図面を用いて説明する。   Hereinafter, a battery charging system according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るバッテリ充電システムAの概略構成の一例を示す図である。図1に示すように、バッテリ充電システムAは、バッテリ1及びバッテリ充電装置2を備える。   FIG. 1 is a diagram illustrating an example of a schematic configuration of a battery charging system A according to an embodiment of the present invention. As shown in FIG. 1, the battery charging system A includes a battery 1 and a battery charging device 2.

バッテリ1は、ハイブリッド車や電気自動者等の車両に搭載されている。バッテリ1は、直列接続された複数の電池セル群10を備える。   The battery 1 is mounted on a vehicle such as a hybrid vehicle or an electric motor vehicle. The battery 1 includes a plurality of battery cell groups 10 connected in series.

各電池セル群10には、複数の電池セルが直列接続されており、各電池セル群10において、最上位に位置する電池セル(最上位セル)の正極端子が電池セル群10の正極端子(一方の出力端子)であり、また最下位に位置する電池セル(最下位セル)の負極端子が電池セル群10の負極端子(他方の出力端子)である。   In each battery cell group 10, a plurality of battery cells are connected in series, and in each battery cell group 10, the positive electrode terminal of the battery cell located at the top (uppermost cell) is the positive electrode terminal of the battery cell group 10 ( The negative electrode terminal of the battery cell group 10 (the other output terminal) is the negative electrode terminal of the battery cell (lowest cell) positioned at the lowest position.

バッテリ充電装置2は、車載用のバッテリ1の充電を行うとともに、その充電によるバッテリ1の内部抵抗IRの発熱によってバッテリ1を暖機する。
以下に、本発明の一実施形態に係るバッテリ充電装置2の構成について説明する。
The battery charger 2 charges the vehicle-mounted battery 1 and warms up the battery 1 by heat generation of the internal resistance IR of the battery 1 due to the charging.
Below, the structure of the battery charging device 2 which concerns on one Embodiment of this invention is demonstrated.

バッテリ充電装置2は、コンタクタ21、コンタクタ22、コネクタ23、充電プラグ24、制御部25、予測気温取得部26、及び外部充電器27を備える。なお、本実施形態では、コンタクタ21、コンタクタ22、コネクタ23及び制御部25は、上記車両に搭載されている。   The battery charging device 2 includes a contactor 21, a contactor 22, a connector 23, a charging plug 24, a control unit 25, a predicted temperature acquisition unit 26, and an external charger 27. In the present embodiment, the contactor 21, the contactor 22, the connector 23, and the control unit 25 are mounted on the vehicle.

コンタクタ21は、第1の電力線L1に設けられ、制御部25からの制御に応じて開状態あるいは閉状態に変化する一対の接点を備えた通電開閉器である。この第1の電力線L1は、一端がバッテリ1の正極端子に接続され、他端がコネクタ23に接続されている。   The contactor 21 is an energizing switch that is provided on the first power line L <b> 1 and includes a pair of contacts that change to an open state or a closed state in accordance with control from the control unit 25. One end of the first power line L 1 is connected to the positive terminal of the battery 1, and the other end is connected to the connector 23.

コンタクタ22は、第2の電力線L2に設けられ、上記コンタクタ21と同様に制御部25からの制御に応じて開状態あるいは閉状態に変化する一対の接点を備えた通電開閉器である。この第2の電力線L2は、一端がバッテリ1の負極端子に接続され、他端がコネクタ23に接続されている。   The contactor 22 is an energizing switch provided on the second power line L2 and having a pair of contacts that change to an open state or a closed state in accordance with control from the control unit 25 as in the case of the contactor 21 described above. One end of the second power line L <b> 2 is connected to the negative terminal of the battery 1, and the other end is connected to the connector 23.

コネクタ23は、車両に設けられており、バッテリ1を外部充電器27に接続するための接続手段である。   The connector 23 is provided in the vehicle and is a connection means for connecting the battery 1 to the external charger 27.

充電プラグ24は、外部充電器27の充電プラグであって、コネクタ23と結合することにより、外部充電器27とバッテリ1とを電気的に接続することができる。これにより、第1の電力線L1と第2の電力線L2とのそれぞれの他端が外部充電器27の出力に電気的に接続され、外部充電器27によるバッテリ1の外部充電が可能な状態となる。また、コネクタ23が充電プラグ24に結合された場合には、制御部25は、外部充電器27と通信線L3を介して通信可能となる。   The charging plug 24 is a charging plug of the external charger 27 and can be electrically connected to the battery 1 by being coupled to the connector 23. Accordingly, the other ends of the first power line L1 and the second power line L2 are electrically connected to the output of the external charger 27, and the battery 1 can be externally charged by the external charger 27. . In addition, when the connector 23 is coupled to the charging plug 24, the control unit 25 can communicate with the external charger 27 via the communication line L3.

制御部25は、バッテリ1の各電池セル群10の電圧をモニタしながら、バッテリ1の充放電等の管理を行う、例えば、バッテリーマネージメントシステム(BMS)である。以下に、本発明の一実施形態に係る制御部25の構成について説明する。   The control unit 25 is, for example, a battery management system (BMS) that manages charge / discharge of the battery 1 while monitoring the voltage of each battery cell group 10 of the battery 1. Below, the structure of the control part 25 which concerns on one Embodiment of this invention is demonstrated.

制御部25は、記憶部251及び内部抵抗値算出部252を備える。   The control unit 25 includes a storage unit 251 and an internal resistance value calculation unit 252.

記憶部251には、バッテリ1の劣化に応じて変化する内部抵抗IRの抵抗値(以下、「内部抵抗値」という。)Rの情報が予め格納されている。 The storage unit 251, the resistance value of the internal resistance IR which varies in accordance with the deterioration of the battery 1 (hereinafter, referred to as "internal resistance".) Information R V are stored in advance.

図2は、記憶部251に格納される情報の一例をテーブル形式で示す。記憶部251には、バッテリ1の劣化に応じて変化する内部抵抗値Rの情報として、バッテリ1の経過年数によって変化する内部抵抗値Rの情報が格納される経年劣化テーブルやバッテリ1の使用回数によって変化する内部抵抗値Rの情報が格納される使用回数テーブルが設けられている。 FIG. 2 shows an example of information stored in the storage unit 251 in a table format. The storage unit 251 as the information of the internal resistance value R V which varies according to the deterioration of the battery 1, aging table and the battery 1 information of the internal resistance value R V that varies with the number of years elapsed battery 1 is stored use count table in which information of the internal resistance value R V which changes by the use count is stored is provided.

図2(a)は、経年劣化テーブルに格納される情報の一例を示す。経年劣化テーブルには、経過年数と、その経過年数でのバッテリ1の内部抵抗値Rの各情報が対応付けられて格納される。例えば、経過年数は、バッテリ1が使用されてから経過した年数、月数、又は日数を示す情報である。 FIG. 2A shows an example of information stored in the aging deterioration table. The aging table and elapsed year, the information of the internal resistance R V of the battery 1 at the elapsed years are stored in association with each other. For example, the elapsed year is information indicating the number of years, months, or days that have elapsed since the battery 1 was used.

図2(b)は、使用回数テーブルに格納される情報の一例を示す。使用回数テーブルには、バッテリ1の使用回数と、その使用回数でのバッテリ1の内部抵抗値Rの各情報が対応付けられて格納される。なお、使用回数とは、バッテリ1の充放電の回数であってもよいし、車両の電源スイッチのオンオフのカウント数であってもよい。この電源スイッチの電源とは、アクセサリー電源であってもよいし、イグニッション電源であってもよい。 FIG. 2B shows an example of information stored in the usage count table. The use count table, and use the number of the battery 1, the information of the internal resistance R V of the battery 1 at the usage count is stored in association with each other. The number of times of use may be the number of times of charging / discharging of the battery 1 or the number of on / off counts of the power switch of the vehicle. The power source of the power switch may be an accessory power source or an ignition power source.

内部抵抗値算出部252は、現在のバッテリ1の内部抵抗値Rvを算出する。例えば、内部抵抗値算出部252は、バッテリ1の経過年数、及びバッテリ1の使用回数の少なくともいずれかによって、現在のバッテリ1の内部抵抗値Rを算出する。より具体的には、例えば、内部抵抗値算出部252は、バッテリ1の経過年数をパラメータとして、その経過年数に対応する内部抵抗値Rvを経年劣化テーブルから読み取ることで取得する。なお、内部抵抗値算出部252は、バッテリ1の使用回数をパラメータとして、その使用回数に対応する内部抵抗値Rを使用回数テーブルから読み取ることで取得してもよい。 The internal resistance value calculation unit 252 calculates the current internal resistance value Rv of the battery 1. For example, the internal resistance value calculation unit 252, the number of years elapsed battery 1, and by at least one of the number of times of use of the battery 1, calculates the internal resistance value R V current of the battery 1. More specifically, for example, the internal resistance value calculation unit 252 acquires the internal resistance value Rv corresponding to the elapsed years from the aging deterioration table by using the elapsed years of the battery 1 as a parameter. The internal resistance value calculation unit 252, the number of uses of the battery 1 as a parameter may be acquired by reading the internal resistance value R V corresponding to the number of uses from the use count table.

内部抵抗値算出部252は、取得した内部抵抗値Rvを、通信線L3を介して外部充電器27に送信する。   The internal resistance value calculation unit 252 transmits the acquired internal resistance value Rv to the external charger 27 via the communication line L3.

予測気温取得部26は、バッテリ1の充電を行う時間帯におけるバッテリ1の周囲の気温の予測値(以下、「予測気温」)Tfを事前に取得する。例えば、予測気温取得部26は、無線又は有線によりインターネット等のネットワークに接続し、気象庁や気象協会などが行った気象予報などにより求められた予測気温を取得することができる。   The predicted temperature acquisition unit 26 acquires in advance a predicted value (hereinafter, “predicted temperature”) Tf of the temperature around the battery 1 in the time zone in which the battery 1 is charged. For example, the predicted temperature acquisition unit 26 can connect to a network such as the Internet wirelessly or by wire, and can acquire a predicted temperature determined by a weather forecast performed by the Japan Meteorological Agency or the Japan Weather Association.

したがって、例えば、予測気温取得部26は、バッテリ1の周囲(例えば、車両の位置情報)の位置情報がユーザにより入力されると、その位置におけるバッテリ1の充電を行う時間帯の予測気温Tfを気象庁のウェブサイトから取得する。そして、予測気温取得部26は、取得した予測気温Tfを外部充電器27に有線又は無線で送信する。   Therefore, for example, when position information about the periphery of the battery 1 (for example, vehicle position information) is input by the user, the predicted temperature acquisition unit 26 calculates the predicted temperature Tf in the time zone in which the battery 1 is charged at that position. Obtain from the JMA website. Then, the predicted temperature acquisition unit 26 transmits the acquired predicted temperature Tf to the external charger 27 by wire or wirelessly.

外部充電器27は、バッテリ1を車両外部から定電流充電(外部充電)する装置や設備であり、例えば、商業施設、駐車場などに設置される充電スタンドや、可搬可能な電源である。   The external charger 27 is a device or facility that performs constant current charging (external charging) of the battery 1 from the outside of the vehicle, and is, for example, a charging stand installed in a commercial facility, a parking lot, or a portable power source.

以下に、本発明の一実施形態に係る外部充電器27の構成について、図3を用いて説明する。図3は、本発明の一実施形態に係る外部充電器27の構成図である。   Below, the structure of the external charger 27 which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 3 is a configuration diagram of the external charger 27 according to an embodiment of the present invention.

図3に示すように、外部充電器27は、充電計画作成部271及び充電制御部272を備える。   As shown in FIG. 3, the external charger 27 includes a charge plan creation unit 271 and a charge control unit 272.

充電計画作成部271は、バッテリ1の使用開始時刻(以下、単に「使用開始時刻」という。)にバッテリ1が所定温度Tth以上になるようなバッテリ1の充電計画を作成する。その際に、充電計画作成部271は、バッテリ1の劣化に応じて変化する内部抵抗値Rvをパラメータとして充電計画を作成する。以下に、本発明の一実施形態に係る充電計画の作成方法を説明する。 The charge plan creation unit 271 creates a charge plan for the battery 1 such that the battery 1 reaches a predetermined temperature Tth or higher at the use start time of the battery 1 (hereinafter simply referred to as “use start time”). At that time, the charging plan creation unit 271 creates a charging plan using the internal resistance value Rv that changes according to the deterioration of the battery 1 as a parameter. Below, the preparation method of the charging plan which concerns on one Embodiment of this invention is demonstrated.

充電計画作成部271は、使用開始時刻及び所定温度Tthの情報を取得する。例えば、充電計画作成部271は、使用開始時刻及び所定温度Tthの情報がユーザにより入力されることで取得する。また、充電計画作成部271は、予測気温取得部26から予測気温Tfを取得する。 The charging plan creation unit 271 acquires information on the use start time and the predetermined temperature Tth . For example, the charging plan creation unit 271 acquires the information about the use start time and the predetermined temperature T th by being input by the user. In addition, the charging plan creation unit 271 acquires the predicted temperature Tf from the predicted temperature acquisition unit 26.

ここで、予測気温Tfは、バッテリ1を外部充電する時間帯のバッテリ1の温度とみなせる。そのため、充電計画作成部271は、予測気温Tfから所定温度Tthにバッテリ1を温度上昇させるために必要な熱量を定電流充電により発生させる充電計画を作成することになる。 Here, the predicted temperature Tf can be regarded as the temperature of the battery 1 in the time zone in which the battery 1 is externally charged. Therefore, the charging plan creation unit 271 creates a charging plan for generating the amount of heat necessary for raising the temperature of the battery 1 from the predicted temperature Tf to the predetermined temperature Tth by constant current charging.

例えば、充電計画作成部271は、バッテリ1に対する定電流充電の充電損失Pを求める。具体的には、充電計画作成部271は、内部抵抗値算出部252から内部抵抗値Rvを取得し、この内部抵抗値Rvと定電流充電における充電電流値Ivとから下記の式(1)に基づいて充電損失Pを求める。   For example, the charging plan creation unit 271 calculates a charging loss P of constant current charging for the battery 1. Specifically, the charging plan creation unit 271 acquires the internal resistance value Rv from the internal resistance value calculation unit 252, and the following equation (1) is obtained from the internal resistance value Rv and the charging current value Iv in constant current charging. Based on this, the charging loss P is obtained.

P=Iv×Iv×Rv …(1)   P = Iv × Iv × Rv (1)

そして、充電計画作成部271は、式(1)で求めた充電損失P及びバッテリ1の過渡熱抵抗特性から、バッテリ1の温度が予測気温Tfから所定温度Tthになるために必要な定電流充電の充電時間を求める。この過渡熱抵抗特性とは、充電時間による過渡熱抵抗の変化を示すものである。 And the charging plan preparation part 271 is constant current required in order for the temperature of the battery 1 to become predetermined temperature Tth from the estimated temperature Tf from the charging loss P calculated | required by Formula (1), and the transient thermal resistance characteristic of the battery 1. Find the charging time for charging. This transient thermal resistance characteristic indicates a change in transient thermal resistance with charging time.

図4は、本発明の一実施形態に係るバッテリ1の過渡熱抵抗特性を示す図である。図4の横軸が充電時間、縦軸が過渡熱抵抗Rthであり、充電時間が長くなるにつれてバッテリ1の温度が上昇することがわかる。   FIG. 4 is a diagram showing transient thermal resistance characteristics of the battery 1 according to the embodiment of the present invention. The horizontal axis in FIG. 4 is the charging time and the vertical axis is the transient thermal resistance Rth. It can be seen that the temperature of the battery 1 increases as the charging time increases.

したがって、充電計画作成部271は、図4に示すバッテリ1の過渡熱抵抗特性の過渡熱抵抗Rthと、式(1)で求めた充電損失Pとを下記式(2)に代入し、どのくらいの充電時間で予測気温Tfから所定温度Tthになるかを算出する。すなわち、充電計画作成部271は、式(2)により温度上昇ΔTが(Tth−Tf)となる充電時間をバッテリ1の過渡熱抵抗特性から求める。 Therefore, the charging plan creation unit 271 substitutes the transient thermal resistance Rth of the transient thermal resistance characteristic of the battery 1 shown in FIG. 4 and the charging loss P obtained by the expression (1) into the following expression (2), and how much It is calculated whether the predetermined temperature Tth is obtained from the predicted temperature Tf in the charging time. That is, the charging plan creation unit 271 obtains the charging time during which the temperature increase ΔT is (T th −Tf) from the transient thermal resistance characteristics of the battery 1 using Equation (2).

ΔT=P×Rth …(2)   ΔT = P × Rth (2)

そして、充電計画作成部271は、求めた充電時間分だけ使用開始時刻から前倒しで定電流充電する充電計画を作成する。   And the charge plan preparation part 271 produces the charge plan which carries out constant current charge ahead of use from the use start time only for the calculated | required charge time.

このように、充電計画作成部271は、内部抵抗値Rv、充電電流値Iv、及び予測気温Tfをパラメータとして充電計画を作成する。   Thus, the charge plan creation unit 271 creates a charge plan using the internal resistance value Rv, the charge current value Iv, and the predicted temperature Tf as parameters.

充電制御部272は、充電計画作成部271が作成した充電計画に従って、バッテリ1を定電流充電する。   The charging control unit 272 charges the battery 1 with a constant current according to the charging plan created by the charging plan creation unit 271.

以下に、本発明の一実施形態に係るバッテリ充電装置の動作について説明する。
例えば、外部充電器27に対して、使用開始時刻が翌日の午前6時に設定され、所定温度Tthが15℃に設定されたとする。この場合には、充電計画作成部271は、予測気温取得部26から、例えば、翌日の午前6時の予測気温を取得する。ここで、翌日の午前6時の予測気温Tfが5℃である場合には、充電計画作成部271は、バッテリ1をΔT=10℃(=Tth−Tf)温度上昇させて、翌日の午前6時にバッテリ1が15℃(Tth)になるような充電計画を作成することになる。
The operation of the battery charger according to one embodiment of the present invention will be described below.
For example, it is assumed that the use start time is set to 6:00 am the next day for the external charger 27, and the predetermined temperature Tth is set to 15 ° C. In this case, the charging plan creation unit 271 acquires, for example, the predicted temperature at 6:00 am on the next day from the predicted temperature acquisition unit 26. Here, when the predicted temperature Tf at 6 am on the next day is 5 ° C., the charging plan creation unit 271 raises the temperature of the battery 1 by ΔT = 10 ° C. (= T th −Tf), and the next morning A charging plan is created so that the battery 1 reaches 15 ° C. (T th ) at 6:00.

まず、充電計画作成部271は、内部抵抗値Rvを内部抵抗値算出部252から取得する。そして、充電計画作成部271は、バッテリ1に対する定電流充電の充電損失Pを求める。ここで、バッテリ1に対する定電流充電の充電電流値が1A、内部抵抗値Rvが10mΩとすると、充電損失P=1Wとなる。   First, the charging plan creation unit 271 acquires the internal resistance value Rv from the internal resistance value calculation unit 252. Then, the charging plan creation unit 271 calculates a charging loss P of constant current charging for the battery 1. Here, if the charging current value of constant current charging for the battery 1 is 1 A and the internal resistance value Rv is 10 mΩ, the charging loss P = 1W.

次に、充電計画作成部271は、充電損失P及び図4の過渡熱抵抗特性の過渡熱抵抗Rthからバッテリ1の温度上昇がΔT=10℃となる充電時間を算出する。   Next, the charging plan creation unit 271 calculates a charging time during which the temperature rise of the battery 1 becomes ΔT = 10 ° C. from the charging loss P and the transient thermal resistance Rth of the transient thermal resistance characteristic of FIG.

例えば、図4の過渡熱抵抗特性より、充電時間が1hである場合にはバッテリ1の過渡熱抵抗Rthが6℃/Wとなる。したがって、式(2)から充電時間が1hである場合には、バッテリ1の温度上昇ΔTが6℃(=1W×6℃/W)となる。すなわち、定電流充電を1h行った場合には、バッテリ1が11℃までしか昇温されず、バッテリ1の温度が所定温度Tth=15℃には到達しないことになる。 For example, from the transient thermal resistance characteristics of FIG. 4, when the charging time is 1 h, the transient thermal resistance Rth of the battery 1 is 6 ° C./W. Therefore, when the charging time is 1 h from the equation (2), the temperature rise ΔT of the battery 1 is 6 ° C. (= 1 W × 6 ° C./W). That is, when constant current charging is performed for 1 h, the battery 1 is heated only to 11 ° C., and the temperature of the battery 1 does not reach the predetermined temperature T th = 15 ° C.

一方、充電時間が3hである場合にはバッテリ1の過渡熱抵抗Rthが10℃/Wとなる。したがって、式(2)から充電時間が3hである場合には、バッテリ1の温度上昇ΔTが10℃(=1W×10℃/W)となる。すなわち、定電流充電を3h行った場合には、バッテリ1が15℃まで昇温され、バッテリ1の温度が所定温度Tth=15℃に到達することがわかる。 On the other hand, when the charging time is 3 h, the transient thermal resistance Rth of the battery 1 is 10 ° C./W. Therefore, when the charging time is 3 h from the equation (2), the temperature rise ΔT of the battery 1 is 10 ° C. (= 1 W × 10 ° C./W). That is, it is understood that when the constant current charging is performed for 3 hours, the battery 1 is heated to 15 ° C., and the temperature of the battery 1 reaches the predetermined temperature T th = 15 ° C.

したがって、充電計画作成部271は、使用開始時刻の3時間前である翌日の午前3時に充電電流値Ivの定電流充電を開始する充電計画を作成する。そして、充電制御部272は、充電計画作成部271が作成した充電計画に従って、翌日の午前3時から午前6時まで充電電流値Ivの定電流充電を行う。これにより、バッテリ1が所望のSOC(State Of Charge:充電状態)まで充電されるとともに、使用開始時刻にバッテリの温度が所定温度Tthになるように暖機することができる。 Therefore, the charging plan creation unit 271 creates a charging plan for starting constant current charging at the charging current value Iv at 3 am on the next day, which is 3 hours before the use start time. Then, the charging control unit 272 performs constant current charging with the charging current value Iv from 3 am to 6 am on the next day according to the charging plan created by the charging plan creation unit 271. As a result, the battery 1 is charged to a desired SOC (State Of Charge) and can be warmed up so that the temperature of the battery reaches a predetermined temperature Tth at the use start time.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

(変形例1)
上記実施形態では、充電計画作成部271は、バッテリ1の劣化に応じて変化する内部抵抗値Rvをパラメータとして定電流充電を開始する時間を設定し、その設定した時間を含む充電計画を作成したが、本発明はこれに限定されない。
(Modification 1)
In the above embodiment, the charging plan creation unit 271 sets the time for starting constant current charging using the internal resistance value Rv that changes according to the deterioration of the battery 1 as a parameter, and creates a charging plan including the set time. However, the present invention is not limited to this.

例えば、充電計画作成部271は、バッテリ1の劣化に応じて変化する内部抵抗値Rvをパラメータとして定電流充電の充電電流値Ivを設定し、その設定した充電電流値Ivを含む充電計画を作成してもよい。例えば、定電流充電を開始する時間が予め設定されている場合には、充電計画作成部271は、使用開始時刻を用いて充電時間を算出し、その充電時間で予測気温Tfから所定温度Tthにバッテリ1を温度上昇させるために必要な充電電流値Ivを、内部抵抗値Rv及び過渡熱抵抗特性から求める。 For example, the charging plan creation unit 271 sets the charging current value Iv for constant current charging using the internal resistance value Rv that changes according to the deterioration of the battery 1 as a parameter, and creates a charging plan that includes the set charging current value Iv. May be. For example, when the time for starting constant current charging is set in advance, the charging plan creation unit 271 calculates the charging time using the use start time, and from the predicted temperature Tf to the predetermined temperature T th with the charging time. Next, a charging current value Iv necessary for raising the temperature of the battery 1 is obtained from the internal resistance value Rv and the transient thermal resistance characteristic.

実施例として、使用開始時刻が翌日の午前6時に設定され、定電流充電の開始時刻が午前5時に設定された場合には、充電時間が1hであると設定される。また、所定温度Tthが15℃に設定され、予測気温Tfが9℃であったとすると、バッテリ1の温度上昇ΔTが6℃に設定される。 As an example, when the use start time is set to 6:00 am on the next day and the constant current charge start time is set to 5:00 am, the charging time is set to 1 h. If the predetermined temperature Tth is set to 15 ° C. and the predicted temperature Tf is 9 ° C., the temperature rise ΔT of the battery 1 is set to 6 ° C.

この場合には、充電計画作成部271は、充電時間が1hであるときの過渡熱抵抗Rth(=6℃/W)を図4の過渡熱抵抗特性から読み取り、その過渡熱抵抗Rth(=6℃/W)と、バッテリ1の温度上昇ΔT(=6℃)とから式(2)を用いて、充電損失P(=1W)を算出する。そして、内部抵抗値Rvが10mΩであるとした場合には、充電計画作成部271は、算出した充電損失P(=1W)と内部抵抗値Rv(=10mΩ)とから式(1)を用いて、充電電流値Iv(=1A)を算出する。したがって、充電計画作成部271は、充電電流値を1Aとして、翌日の午前5時から午前6時までの間に定電流充電を開始するという充電計画を作成する。   In this case, the charging plan creation unit 271 reads the transient thermal resistance Rth (= 6 ° C./W) when the charging time is 1 h from the transient thermal resistance characteristics of FIG. 4, and the transient thermal resistance Rth (= 6 The charge loss P (= 1 W) is calculated using Equation (2) from the temperature rise ΔT (= 6 ° C.) of the battery 1. Then, when the internal resistance value Rv is 10 mΩ, the charging plan creation unit 271 uses the calculated charging loss P (= 1 W) and the internal resistance value Rv (= 10 mΩ) using the formula (1). The charging current value Iv (= 1 A) is calculated. Therefore, the charging plan creation unit 271 creates a charging plan in which constant current charging is started between 5 am and 6 am on the next day, with a charging current value of 1A.

ここで、充電電流値Ivは、バッテリ1の劣化によって内部抵抗値Rvが上昇するに従って小さくなるように設定される。これにより、バッテリ充電装置2は、内部抵抗値が小さいため発熱しにくい新品又は新品に近いバッテリ1に対しても、最適な充電計画を作成することができる。すなわち、バッテリ充電装置2は、バッテリ1が新品に近いほど充電電流値Ivを大きくすることで昇温を促進し、短時間昇温を実現することができる。したがって、長期にわたって最適な充電計画を作成できる。   Here, the charging current value Iv is set so as to decrease as the internal resistance value Rv increases due to deterioration of the battery 1. Thereby, the battery charging device 2 can create an optimum charging plan even for a new battery or a new battery 1 that hardly generates heat due to a small internal resistance value. That is, the battery charging device 2 can increase the charging current value Iv as the battery 1 is closer to a new one, thereby promoting the temperature increase and realizing the temperature increase for a short time. Therefore, an optimal charging plan can be created over a long period of time.

(変形例2)
上記実施形態では、充電計画作成部271は、内部抵抗値算出部252により算出された内部抵抗値Rvを用いて充電計画を作成したが、本発明はこれに限定されない。例えば、バッテリ充電装置2は、内部抵抗値Rvを測定する内部抵抗値測定部を備えてもよい。そして、充電計画作成部271は、その内部抵抗値測定部で測定された内部抵抗値Rvを用いて充電計画を作成してもよい。
(Modification 2)
In the above embodiment, the charging plan creating unit 271 creates a charging plan using the internal resistance value Rv calculated by the internal resistance value calculating unit 252, but the present invention is not limited to this. For example, the battery charging device 2 may include an internal resistance value measurement unit that measures the internal resistance value Rv. And the charge plan preparation part 271 may create a charge plan using the internal resistance value Rv measured by the internal resistance value measurement part.

(変形例3)
上記実施形態において、予測気温取得部26は、外部充電器27に設けられてもよいし、車両に設けられてもよい。また、充電計画作成部271の機能を、制御部25に設けてもよい。この場合には、予測気温取得部26は、予測気温Tfを制御部25に送信する。そして、制御部25は、上記実施形態において説明した方法で充電計画を作成して通信回線L3を介して外部充電器27に送信する。これにより、外部充電器27は、制御部25が作成した充電計画に従って、バッテリ1に対する定電流充電を開始する。
(Modification 3)
In the said embodiment, the estimated temperature acquisition part 26 may be provided in the external charger 27, and may be provided in a vehicle. Further, the function of the charging plan creation unit 271 may be provided in the control unit 25. In this case, the predicted temperature acquisition unit 26 transmits the predicted temperature Tf to the control unit 25. And the control part 25 creates a charging plan by the method demonstrated in the said embodiment, and transmits to the external charger 27 via the communication line L3. Thereby, the external charger 27 starts constant current charging for the battery 1 in accordance with the charging plan created by the control unit 25.

(変形例4)
上記実施形態では、バッテリ充電装置2は、充電計画を作成するにあたって、バッテリ1のSOCを考慮してもよい。例えば、制御部25がバッテリ1のSOCを算出し、外部充電器27は、制御部25により算出されたSOCが使用開始時刻に目標値になるように充電計画を作成してもよい。すなわち、充電計画作成部271は、充電計画を作成するにあたって、制御部25により算出されたSOCが使用開始時刻に目標値になるという条件を追加して、充電計画を作成してもよい。
(Modification 4)
In the above embodiment, the battery charging device 2 may consider the SOC of the battery 1 when creating the charging plan. For example, the control unit 25 may calculate the SOC of the battery 1, and the external charger 27 may create a charging plan so that the SOC calculated by the control unit 25 becomes a target value at the use start time. That is, when creating the charging plan, the charging plan creation unit 271 may create a charging plan by adding a condition that the SOC calculated by the control unit 25 becomes a target value at the use start time.

以上、説明したように、本実施形態に係るバッテリ充電装置2は、充電計画に従って車載用のバッテリ1の充電を行うとともに、当該充電によるバッテリ1の内部抵抗RIの発熱によってバッテリ1を暖機するものであって、バッテリ1の劣化に応じて変化する内部抵抗値Rvをパラメータとして充電計画を作成する充電計画作成部271を備える。   As described above, the battery charging device 2 according to the present embodiment charges the vehicle-mounted battery 1 according to the charging plan, and warms up the battery 1 by the heat generation of the internal resistance RI of the battery 1 due to the charging. And a charging plan creation unit 271 that creates a charging plan using an internal resistance value Rv that changes according to deterioration of the battery 1 as a parameter.

このような構成によれば、バッテリが劣化した場合であっても、最適な充電計画を作成することができる。   According to such a configuration, an optimum charging plan can be created even when the battery is deteriorated.

また、充電計画作成部271は、バッテリ1の劣化に応じて変化する内部抵抗値Rvと、定電流充電における充電電流値Ivとをパラメータとして充電計画を作成する。そして、充電電流値Ivは、内部抵抗値Rvが上昇するに従って小さくなるように設定される。   In addition, the charging plan creation unit 271 creates a charging plan using the internal resistance value Rv that changes according to the deterioration of the battery 1 and the charging current value Iv in constant current charging as parameters. The charging current value Iv is set so as to decrease as the internal resistance value Rv increases.

このような構成によれば、バッテリ充電装置2は、バッテリ1が新品に近いほど充電電流値Ivを大きくすることで昇温を促進し、短時間昇温を実現することができる。したがって、長期にわたって最適な充電計画を作成できる。   According to such a configuration, the battery charging device 2 can accelerate the temperature increase by increasing the charging current value Iv as the battery 1 is closer to a new one, and can realize a temperature increase for a short time. Therefore, an optimal charging plan can be created over a long period of time.

また、バッテリ充電装置2は、バッテリ1の充電を行う時間帯におけるバッテリ1の周囲の予測気温Tfを事前に取得する予測気温取得部26を備えてもよい。そして、充電計画作成部271は、バッテリ1の劣化に応じて変化する内部抵抗値Rv、定電流充電における充電電流値Iv、及び予測気温Tfをパラメータとして充電計画を作成してもよい。   Further, the battery charging device 2 may include a predicted temperature acquisition unit 26 that acquires in advance a predicted temperature Tf around the battery 1 in a time zone in which the battery 1 is charged. Then, the charging plan creation unit 271 may create a charging plan using the internal resistance value Rv that changes according to the deterioration of the battery 1, the charging current value Iv in constant current charging, and the predicted temperature Tf as parameters.

このような構成によれば、バッテリ経年劣化と、季節により変わる予測気温を考慮して常に最適な充電及び昇温計画を作成できる。例えば、季節により、冬は気温が低く昇温しにくく、夏は気温が高く昇温しやすい。したがって、バッテリ充電装置2は、例えば、インターネットにより予測気温Tfを取得して充電計画に反映させることで季節を問わず最適な充電計画を作成できる。このときバッテリの経年劣化も考慮している為、長期にわたって常に最適な充電計画を作成できる。   According to such a configuration, it is possible to always create an optimal charging and temperature increase plan in consideration of the battery aging and the predicted temperature that varies depending on the season. For example, depending on the season, the temperature is low in winter and it is difficult to raise the temperature, and in summer, the temperature is high and the temperature is likely to rise. Therefore, the battery charging device 2 can create an optimal charging plan regardless of the season by acquiring the predicted temperature Tf via the Internet and reflecting it in the charging plan, for example. At this time, since the aging of the battery is also taken into consideration, an optimal charging plan can always be created over a long period of time.

A バッテリ充電システム
1 バッテリ
2 バッテリ充電装置
26 予測気温取得部
27 外部充電器
252 内部抵抗値算出部
271 充電計画作成部
272 充電制御部
A battery charging system 1 battery 2 battery charging device 26 predicted temperature acquisition unit 27 external charger 252 internal resistance value calculation unit 271 charging plan creation unit 272 charging control unit

Claims (5)

車載用のバッテリの充電を行うとともに、前記充電による前記バッテリの内部抵抗の発熱によって当該バッテリを暖機するバッテリ充電装置であって、
前記バッテリの使用開始時刻に前記バッテリが所定温度以上になるような前記バッテリの充電計画を作成する充電計画作成部と、
前記充電計画に従って前記バッテリを定電流充電する充電制御部と、
を備え、
前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記バッテリの内部抵抗値をパラメータとして前記充電計画を作成することを特徴とする、バッテリ充電装置。
A battery charging device that charges an in-vehicle battery and warms up the battery by heat generation of the internal resistance of the battery due to the charging,
A charging plan creation unit for creating a charging plan for the battery such that the battery is at a predetermined temperature or higher at the start of use of the battery;
A charge control unit for charging the battery at a constant current according to the charging plan;
With
The said charge plan preparation part produces the said charge plan by using the internal resistance value of the said battery which changes according to deterioration of the said battery as a parameter, The battery charging device characterized by the above-mentioned.
前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記内部抵抗値と、前記定電流充電における充電電流値とをパラメータとして前記充電計画を作成し、
前記充電電流値は、前記内部抵抗値が上昇するに従って小さくなるように設定されることを特徴とする、請求項1に記載のバッテリ充電装置。
The charging plan creation unit creates the charging plan using the internal resistance value that changes according to deterioration of the battery and a charging current value in the constant current charging as parameters,
The battery charging device according to claim 1, wherein the charging current value is set to become smaller as the internal resistance value increases.
前記バッテリの充電を行う時間帯における前記バッテリの周囲の予測気温を事前に取得する予測気温取得部を更に備え、
前記充電計画作成部は、前記バッテリの劣化に応じて変化する前記内部抵抗値、前記定電流充電における充電電流値、及び前記予測気温取得部により事前に取得された前記予測気温をパラメータとして前記充電計画を作成することを特徴とする、請求項2に記載のバッテリ充電装置。
A predicted temperature acquisition unit for acquiring in advance a predicted temperature around the battery in a time zone for charging the battery;
The charging plan creation unit is configured to charge the internal resistance value that changes according to deterioration of the battery, a charging current value in the constant current charging, and the predicted temperature acquired in advance by the predicted temperature acquisition unit as parameters. The battery charger according to claim 2, wherein a plan is created.
前記バッテリの経年、及びバッテリの使用回数の少なくともいずれかによって前記内部抵抗値を算出する内部抵抗値算出部を更に備え、
前記充電計画作成部は、前記内部抵抗値算出部により算出された前記内部抵抗値を用いて前記充電計画を作成することを特徴とする、請求項1から3のいずれか一項に記載のバッテリ充電装置。
An internal resistance value calculation unit that calculates the internal resistance value according to at least one of the aging of the battery and the number of times the battery is used;
The battery according to any one of claims 1 to 3, wherein the charging plan creation unit creates the charging plan using the internal resistance value calculated by the internal resistance value calculation unit. Charging device.
前記内部抵抗値を測定する内部抵抗値測定部を更に備え、
前記充電計画作成部は、前記内部抵抗値測定部により測定された前記内部抵抗値を用いて、前記充電計画を作成することを特徴とする、請求項1から3のいずれか一項に記載のバッテリ充電装置。
An internal resistance value measuring unit for measuring the internal resistance value;
The said charge plan preparation part produces the said charge plan using the said internal resistance value measured by the said internal resistance value measurement part, It is characterized by the above-mentioned. Battery charger.
JP2018105931A 2018-06-01 2018-06-01 Battery charger Active JP7012606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105931A JP7012606B2 (en) 2018-06-01 2018-06-01 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105931A JP7012606B2 (en) 2018-06-01 2018-06-01 Battery charger

Publications (2)

Publication Number Publication Date
JP2019213312A true JP2019213312A (en) 2019-12-12
JP7012606B2 JP7012606B2 (en) 2022-01-28

Family

ID=68844178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105931A Active JP7012606B2 (en) 2018-06-01 2018-06-01 Battery charger

Country Status (1)

Country Link
JP (1) JP7012606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613786A (en) * 2021-12-14 2023-06-21 Jaguar Land Rover Ltd Battery charging protocols

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088204A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Charging system of secondary battery and vehicle
JP2012029491A (en) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd Motor-driven vehicle system
JP2012119310A (en) * 2010-11-12 2012-06-21 Honda Motor Co Ltd Charge/discharge control device and charge/discharge control method
JP2013090360A (en) * 2011-10-13 2013-05-13 Nissan Motor Co Ltd Charge control device
JP2013106476A (en) * 2011-11-15 2013-05-30 Toshiba Corp Charge and discharge planning system and charge and discharge planning method
JP2014180080A (en) * 2013-03-13 2014-09-25 Mitsubishi Heavy Ind Ltd Controller and control method and program
WO2017056162A1 (en) * 2015-09-28 2017-04-06 本田技研工業株式会社 Power consumption control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088204A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Charging system of secondary battery and vehicle
JP2012029491A (en) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd Motor-driven vehicle system
JP2012119310A (en) * 2010-11-12 2012-06-21 Honda Motor Co Ltd Charge/discharge control device and charge/discharge control method
JP2013090360A (en) * 2011-10-13 2013-05-13 Nissan Motor Co Ltd Charge control device
JP2013106476A (en) * 2011-11-15 2013-05-30 Toshiba Corp Charge and discharge planning system and charge and discharge planning method
JP2014180080A (en) * 2013-03-13 2014-09-25 Mitsubishi Heavy Ind Ltd Controller and control method and program
WO2017056162A1 (en) * 2015-09-28 2017-04-06 本田技研工業株式会社 Power consumption control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613786A (en) * 2021-12-14 2023-06-21 Jaguar Land Rover Ltd Battery charging protocols

Also Published As

Publication number Publication date
JP7012606B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP4668306B2 (en) Secondary battery life estimation device and secondary battery life estimation method
JP5248764B2 (en) Storage element abnormality detection device, storage element abnormality detection method, and abnormality detection program thereof
JP6634453B2 (en) Power consumption control device
JP6488398B2 (en) Heating control device
KR101041124B1 (en) Battery management system and driving method thereof
JPWO2019026143A1 (en) Charging time calculation method and charging control device
US9379565B2 (en) Battery pack, method of charging the same, and vehicle including the same
JP2011238428A (en) Secondary battery charging system and charging method
CN110391482B (en) Method, device and equipment for rapidly heating battery and storage medium
JP6250164B2 (en) Method and apparatus for balancing an energy storage system
US8198867B2 (en) Charging control method for secondary battery and battery charger
CN107769293A (en) Dynamic power limitation adjustment in battery charging process
JP2011099691A (en) Electric vehicle
CN109311410B (en) Method and system for thermal conditioning of battery packs
WO2007006121A1 (en) Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle
JP6534846B2 (en) Secondary battery charge control device and secondary battery charge control method
KR101863700B1 (en) Battery Management System
JP7012606B2 (en) Battery charger
JP2012023836A (en) Charging system and charging method of secondary battery
JP2008199743A (en) Controller of electricity storage mechanism
JP5195440B2 (en) Power control device for vehicle and internal resistance estimation method of battery pack
KR20140111187A (en) Battery module and maintenance method of over battery standard temperature
KR101744560B1 (en) Hybrid battery management system
JP2018037332A (en) Method of estimating battery temperature
JP5454027B2 (en) Charge control device and charge control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7012606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150